当前位置:文档之家› Z变换定义与性质

Z变换定义与性质

第六章_线性变换_68180769

第六章 线性变换 映射:,X Y ≠?≠?,如果有一个法则σ,它使得X 中每个元素α,在Y 中有唯一确定的元素β与之对应,则称σ为X 到Y 的一个映射,记作:X Y σ→,()σαβ=,β称为α在σ下的象,α称为β在σ下的原象。 注:()(),X στασατα=??∈=对。 变换:一个集合到自身的映射。 线性变换的定义与性质 定义 设V 是数域F 上的线性空间,σ是V 的一个变换,如果满足条件: (1)()()()βσασβασV,α,β+=+∈?; (2)()()k F,αV,k αk σασ?∈?∈=, 则称σ是V 上的线性变换或线性算子。 (1), (2)等价于条件:,,,k l F V αβ?∈∈ ()()()σk αl βk σαl σβ+=+。 例:设σ:n n R R →,定义为()c αασ=,c 为常数。-----数乘 变换或位似变换。 c =0-----零变换,记为o 。 c =1-----恒等变换,记为ε。 例:设σ是把平面上的向量绕坐标原点逆时针旋转θ角的变换 设()()(),,,T T x y x y ασα''==,则

cos sin sin cos x x y y x y θθ θθ'=-??'=+? 记cos sin sin cos A θθθ θ-?? =??? ? ,则()A σαα=是一个线性变换。 例:判断下列变换是否是线性变换 (1) ()()12323,,1,,T T a a a a a σ=; (2) ()()12323,,0,,T T a a a a a σ=; (3) ()()12312231,,2,,T T a a a a a a a a σ=-+; (4) ()()212312 3,,,,3T T a a a a a a σ=. 线性变换的基本性质 (1)()θθσ=; (2)()()ασασ-=-; (3)线性变换保持向量的线性组合关系不变,即若s s αk αk αk β+++=Λ2211,则1122s s βk αk αk ασσσσ=+++L ; 若θ=+++s s αk αk αk Λ2211,则θσσσ=+++s s αk αk αk Λ2211。 (4)线性变换将线性相关的向量组映成线性相关的向量组。 线性变换的运算 ()V L ----线性空间V 上所有线性变换的集合。

拉氏变换和z变换表

附录A 拉普拉斯变换及反变换 1.拉氏变换的基本性质 附表A-1 拉氏变换的基本性质 1()([n n k f t dt s s -+= +∑?个

2.常用函数的拉氏变换和z变换表 附表A-2 常用函数的拉氏变换和z变换表

3. 用查表法进行拉氏反变换 用查表法进行拉氏反变换的关键在于将变换式进行部分分式展开,然后逐项查表进行反变换。设)(s F 是s 的有理真分式,即 11 10 111)()()(a s a s a s a b s b s b s b s A s B s F n n n n m m m m ++++++++==---- (m n >) 式中,系数n n a a a a ,,...,,110-和011,, ,,m m b b b b -都是实常数;n m ,是正整数。按代数定理 可将)(s F 展开为部分分式。分以下两种情况讨论。 (1)0)(=s A 无重根:这时,F(s)可展开为n 个简单的部分分式之和的形式,即 ∑=-=-++-++-+-=n i i i n n i i s s c s s c s s c s s c s s c s F 122 11)( (F-1) 式中,n s s s ,,,21 是特征方程A(s)=0的根;i c 为待定常数,称为()F s 在i s 处的留数,可按下列两式计算:lim()()i i i s s c s s F s →=- (F-2) 或 i s s i s A s B c ='= )() ( (F-3)

式中,)(s A '为)(s A 对s 的一阶导数。根据拉氏变换的性质,从式(F-1)可求得原函数为 []??????-==∑=--n i i i s s c L s F L t f 11 1 )()(=1 i n s t i i c e =∑ (F-4) (2)0)(=s A 有重根:设0)(=s A 有r 重根1s ,F(s)可写为 ()) ()()() (11n r r s s s s s s s B s F ---= + = n n i i r r r r r r s s c s s c s s c s s c s s c s s c -++-++-+-++-+-++-- 11 111 111)()()( 式中,1s 为F(s)的r 重根,1+r s ,…,n s 为F(s)的n r -个单根;其中,1+r c ,…,n c 仍按式(F-2)或式(F-3)计算,r c ,1-r c ,…,1c 则按下式计算: )()(lim 11 s F s s c r s s r -=→ 11lim [()()]i r r s s d c s s F s ds -→=- )()(lim !11)() (1s F s s ds d j c r j j s s j r -=→- (F-5) )()(lim )!1(11)1() 1(11s F s s ds d r c r r r s s --=--→ 原函数)(t f 为 [])()(1 s F L t f -= ??????-++-++-+-++-+-=++---n n i i r r r r r r s s c s s c s s c s s c s s c s s c L 11 111 1111)()() ( t s n r i i t s r r r r i e c e c t c t r c t r c ∑+=---+?? ????+++-+-=112211 1 )!2()!1( (F-6)

拉氏变换和z变换表(精选.)

word. 附录A 拉普拉斯变换及反变换 1.拉氏变换的基本性质 1()([n n k f t dt s s -+=+∑? 个

2.常用函数的拉氏变换和z变换表 word.

word. 3. 用查表法进行拉氏反变换 用查表法进行拉氏反变换的关键在于将变换式进行部分分式展开,然后逐项查表进行反变换。设)(s F 是s 的有理真分式,即 11 10 111)()()(a s a s a s a b s b s b s b s A s B s F n n n n m m m m ++++++++==---- (m n >) 式中,系数n n a a a a ,,...,,110-和011,, ,,m m b b b b -都是实常数;n m ,是正整数。按代数定理 可将)(s F 展开为部分分式。分以下两种情况讨论。 (1)0)(=s A 无重根:这时,F(s)可展开为n 个简单的部分分式之和的形式,即 ∑=-=-++-++-+-=n i i i n n i i s s c s s c s s c s s c s s c s F 122 11)( (F-1) 式中,n s s s ,,,21 是特征方程A(s)=0的根;i c 为待定常数,称为()F s 在i s 处的留数,可按下列两式计算:lim()()i i i s s c s s F s →=- (F-2) 或 i s s i s A s B c ='= )() ( (F-3) 式中,)(s A '为)(s A 对s 的一阶导数。根据拉氏变换的性质,从式(F-1)可求得原函数为 []??????-==∑=--n i i i s s c L s F L t f 11 1 )()(=1 i n s t i i c e =∑ (F-4) (2)0)(=s A 有重根:设0)(=s A 有r 重根1s ,F(s)可写为

2。2线性变换的基本性质

§2.2线性变换的基本性质 教学目标: 一、知识与技能: 会证明定理1和定理2;理解矩阵变换把平面上的直线变成直线,即)(21βλαλ+A = βλαλA A 21+ 二、方法与过程 分析可逆的线性变换将直线变成直线,平行四边形变成平行四边形这一结论,得到定理1和定理 2的证明,寻求线性变换在向量上的作用等式。 三、情感、态度与价值观 感受数学活动充满探索性和创造性,激发学生乐于探究的热情。增强学生的符号意识,培养学生的逻辑推理能力。 教学重点:定理的探究及证明 教学难点:定理的探究 教学过程 一、复习引入: 1、基本概念 (1)二阶矩阵:由四个数a ,b ,c ,d 排成的正方形数表??? ? ??d c b a 称为二阶矩阵。特别地, 称二阶矩阵???? ??0000为零矩阵,简记为0。称二阶矩阵??? ? ??1001为二阶单位矩阵,记为2E 。 (2)向量:向量(y x ,)是一对有序数对,y x ,叫做它的两个分量,且称??? ? ??y x 为列向量,(y x ,)为行向量。同时,向量、点以及有序实数对三者不加区别。 2、败类特殊线性变换及其二阶矩阵 (1)线性变换 在平面直角坐标系中,把形如???+=+=dy cx y by ax x ``(其中a ,b ,c ,d 为常数)的几何变换叫做线性 变换。 (2)旋转变换

坐标公式为???+=-=α αααcos sin sin cos ``y x y y x x ,变换对应的矩阵为??? ? ??-αα αα cos sin sin cos (3)反射变换 ①关于x 的反射变换坐标公式为???-==y y x x ``对应的二阶矩阵为? ??? ??-1001; ②关于y 的反射变换坐标公式为???=-=y y x x ``对应的二阶矩阵为???? ??-1001; ③关于x y =的反射变换坐标公式为???==x y y x ``对应的二阶矩阵为? ?? ? ??0110; (4)伸缩变换 坐标公式为???==y k y x k x 2`1`对应的二阶矩阵为??? ? ??21 0k k ; (5)投影变换 ①投影在x 上的变换坐标公式为???==0``y x x 对应的二阶矩阵为???? ??0001; ②投影在y 上的变换坐标公式为???==y y x ``0对应的二阶矩阵为???? ??1000 (6)切变变换 ①平行于x 轴的切变变换坐标公式为???=+=y y sy x x ``对应的二阶矩阵为???? ??101s ? ??? ??101s ②平行于y 轴的切变变换坐标公式为???+==y sx y x x ``对应的二阶矩阵为??? ? ??101s 二、新课讲解 定理1 设A =??? ? ??d c b a ,???? ??=111y x X ,???? ??=222y x X ,t ,k 是实数。则以下公式成立: (1) A (t 1X )=t (A 1X ) (2) A 1X +A 2X =A (1X +2X ) (3) A (t 1X +k 2X )=t A 1X +k A 2X

拉氏变换和z变换表

附录A 拉普拉斯变换及反变换 1.拉氏变换的基本性质 1()([n n k f t dt s s -+= +∑?个 2.常用函数的拉氏变换和z 变换表 附表A-2 常用函数的拉氏变换和z 变换表

3. 用查表法进行拉氏反变换 用查表法进行拉氏反变换的关键在于将变换式进行部分分式展开,然后逐项查表进行反变换。设)(s F 是s 的有理真分式,即

11 10 111)()()(a s a s a s a b s b s b s b s A s B s F n n n n m m m m ++++++++==---- (m n >) 式中,系数n n a a a a ,,...,,110-和011,,,,m m b b b b -都是实常数;n m ,是正整数。按代数定理可将)(s F 展开为部分 分式。分以下两种情况讨论。 (1)0)(=s A 无重根:这时,F(s)可展开为n 个简单的部分分式之和的形式,即 ∑=-=-++-++-+-=n i i i n n i i s s c s s c s s c s s c s s c s F 122 11)( (F-1) 式中,n s s s ,,,21 是特征方程A(s)=0的根;i c 为待定常数,称为()F s 在i s 处的留数,可按下列两式计算: lim()()i i i s s c s s F s →=- (F-2) 或 i s s i s A s B c ='= )() ( (F-3) 式中,)(s A '为)(s A 对s 的一阶导数。根据拉氏变换的性质,从式(F-1)可求得原函数为 []? ?????-==∑=--n i i i s s c L s F L t f 11 1 )()(=1 i n s t i i c e =∑ (F-4) (2)0)(=s A 有重根:设0)(=s A 有r 重根1s ,F(s)可写为 ()) ()()() (11n r r s s s s s s s B s F ---= + =n n i i r r r r r r s s c s s c s s c s s c s s c s s c -++-++-+-++-+-++-- 11 111111)()()( 式中,1s 为F(s)的r 重根,1+r s ,…,n s 为F(s)的n r -个单根;其中,1+r c ,…,n c 仍按式(F-2)或式(F-3)计算,r c ,1-r c ,…,1c 则按下式计算: )()(lim 11 s F s s c r s s r -=→ 11lim [()()]i r r s s d c s s F s ds -→=- )()(lim !11)() (1s F s s ds d j c r j j s s j r -=→- (F-5)

三维线性变换及其应用

三维线性变换 陈祥科 1、线性空间 (2) 1.1、线性空间的代数定义 (2) 1.2 线性空间的基和维度 (2) 2、线性变换 (2) 2.1、变换的定义 (2) 2.2、线性变换的定义 (2) 2.3线性变换的性质 (3) 2.4、线性变换下的坐标变换 (3) 2.5、线性变换的矩阵表示: (3) 3、三维图形的几何变换 (4) 3.1平移变换 (5) 3.2缩放变换 (5) 3.3绕坐标轴的旋转变换 (5) 3.4绕任意轴的旋转变换 (6) 4、三维线性变换的应用实例 (7) 4.1 三维图形变换理论 (7) 4.1.1 三维图形的几何变换 (7) 4.1.2 组合三维几何变换 (8) 4.1.3 围绕任意轴的旋转矩阵的推导 (9) 4.1.4 三维图形的轴侧投影变换 (9) 4.2 叉车稳定性试验的仿真 (10) 4.2.1 纵向稳定性试验的仿真 (10) 4.2.2 横向稳定性试验的仿真 (11) 4.3 结论 (12)

1、线性空间 1.1、 线性空间的代数定义 一个定义了加法与数乘运算,且对这些运算封闭,空间中任意向量都属于数域P ,并满足八条算律的集合为数域P 上的线性空间。 1.2 线性空间的基和维度 对于一个数域上的线性空间R ,由n 个属于R 的元素组成的一个线性无关组,如果R 中的任意一个元素都是这n 个元素的线性组合,那么这个线性空间的维度为n ,且这个线性无关组为R 的一组基。显然,三维空间的基有3个元素组成。三维线性空间的的两组基分别为(0,0,1)和(1,0,0)、(0,1,0)。 2、线性变换 2.1、变换的定义 变换是广义概念的函数,它是这样定义的,如果存在2个非空集合A 、B ,α是A 中的任意元素,如果在集合B 中必定有一个元素β与集合A 中的α元素对应,则称这个对应关系是集合A 到集合B 的一个变换,变换也称为映射,记为T ,即有等式 β=T(α) 称β为α在T 变换下的象,称α为β在T 变换下的源,集合A 称为变换T 的源集,A 在变换T 下的所有象称为象集,显然象集是B 的子集。 2.2、线性变换的定义 R 是数域F 上的线性空间,σ是R 的一个变换,并且满足 ()()()()() a k ka b a b a σσσσσ=+=+ 其中a,b ∈R ,k ∈F 则称σ是R 的一个线性变换(这是由R 到R 自身的一个映射)。线性变换定义的意义是,将R 的任意2个元素的和进行变换等同于将这2个元素分别进行变换后再求和,将R 的任意元素的数乘进行变换等同于将这个元素先进行变换再数乘。下面是线性变换的另一种表述方式: )()()(βσασβασl k l k +=+ F l k R ∈∈?,,,βα

拉氏变换定义及性质

拉氏变换与反变换 机电控制工程所涉及的数学问题较多,经常要解算一些线性微分方程。按照一般方法解算比较麻烦,如果用拉普拉斯变换求解线性微分方程,可将经典数学中的微积分运算转化为代数运算,又能够单独地表明初始条件的影响,并有变换表可查找,因而是一种较为简便的工程数学方法。 2.5.1 拉普拉斯变换的定义 如果有一个以时间t 为自变量的实变函数 ()t f ,它的定义域是 0≥t ,,那么()t f 的的拉普拉斯变换定义为 ()()()0 e d st F s L f t f t t ∞ -=?????? s 是复变数, ωσj +=s (σ、ω均为实数), ?∞ -0 e st 称为拉普拉斯积分; )(s F 是 函数 )(t f 的拉普拉斯变换,它是一个复变函数,通常也称 )(s F 为 )(t f 的象函数,而称 )(t f 为 )(s F 的原函数;L 是表示进行拉普拉斯变换的符号。 式()表明:拉氏变换是这样一种变换,即在一定条件下,它能把一实数域中的实变函数变换为一个在复数域内与之等价的复变函数 )(s F 。 1.单位阶跃函数 )(1t 的拉氏变换 单位阶跃函数是机电控制中最常用的典型输入信号之一,常以它作为评价系统性能的标准输入,这一函数定义为 ?? ?≥s ,则 0 e lim →-∞ →st t 。

第七章线性变换.

第七章线性变换 计划课时:24 学时.(P 307—334) §7.1 线性变换的定义及性质( 2 学时) 教学目的及要求:理解线性变换的定义,掌握线性变换的性质 教学重点、难点:线性变换的定义及线性变换的性质 本节内容可分为下面的两个问题讲授. 一. 线性变换的定义(P307) 注意:向量空间V到自身的同构映射一定是V上的线性变换,反之不然。 二. 线性变换的性质 定理7.1.1 (P309) 定理7.1.2 (P309) 推论7.1.3 (P310) 注意: 1.定理7.1.2 给出了在有限维向量空间构造线性变换的方法,且说明了一个线性变换完全被它对基向量的作用所决定。 2. 两个线性变换相等当且仅当它们对任意一个向量的作用结果相等,推论7.1.3 (P310)告诉我们,只要这两个线性变换对某个基中的每个基向量的作用结果相等即可。 作业:习题七P330 1 ,2, 3. §7.2 线性变换的运算( 4 学时) 教学目的及要求:掌握线性变换的运算及线性变换可逆的条件教学重点、难点:线性变换的运算及线性变换可逆的条件 本节内容分为下面四个问题讲授: 一. 加法运算 定义 1 (P310) 注意:+ 是V的线性变换. 二. 数乘运算 定义 2 (P311) 显然k 也是V的一个线性变换. 定理7.2.1 L(V)对于线性变换的加法与数乘运算构成数域F上的一个向量空间. 三. 乘法运算 (1). 乘法运算 定义 3 (P311-312)

注意:线性变换的乘法适合结合律,但不适合交换律及消去律. 两个非零线性变换的乘积可能是零变换. (2). 线性变换的方幂 四. 可逆线性变换定义 4 ( P313) 线性变换可逆的充要条件例 2 ( P314) 线性变换的多项式的概念( 阅读 内容). 作业:P330 习题七4, 5. §7.3 线性变换的矩阵( 6 学时) 教学目的及要求:理解线性变换关于一个基的矩阵的定义,掌握与( ) 关于同一个基的坐标之间的关系、线性变换与它们的和、数乘、乘积在同一个基下的矩阵的关系、 同一个线性变换在不同基下的矩阵是相似的理论,掌握L(V)与M(F)的同构理 论。 教学重点、难点: 1. 线性变换关于一个基的矩阵的定义。 2. L(V)与M(F)的同构理论,线性变换与它们的和、数乘、乘积在同一个基下的矩阵的关系。 本节内容分为下面四个问题讲授: 一.线性变换关于基的矩阵 定义 ( P316) 。 注意:取定n维向量空间V的一个基之后,对于V的每一个线性变换,有唯一确定的n阶矩阵与 它对应. 例 1 ( P316 ) 注意:一个线性变换在不同基下的矩阵通常是不同的. 例 2 ( P317) 例 3 ( P317) 二.与( )关于同一个基的坐标之间的关系. 定理7.3.1 例 4 ( P318 ) 三? L(V)与M(F)的同构 定理7.3.2 (P320) 定理7.3.3 (P320) 注意:1.定理732 ( P320)的证明是本章的难点,在证明之前应复习证明所用到的知识点。 2. 由于L(V) 同构于M n ( F ) ,所以就把研究一个很复杂的向量空间L(V) 的问题转化成研究一个很直观具体的向量空间M n(F) 的问题。同构是高等代数课程的一个基本概念。 3. 定理7.3.3 不仅给出了在有限维向量空间判定一个线性变换可逆的方法,而且给出了求 逆变换的方法。 四. 同一个线性变换在不同基下的矩阵之间的关系定理7.3.4 (P321). 作业:P331 习题七6,9,12,17.

线性变换的定义

第七章 线 性 变 换 § 1 线性变换的定义 上一章我们看到,数域 P 上任意一个 n 维线性空间都与n P 同构,因之,有限维线性空间的同构可以认为是完全清楚了.线性空间是某一类事物从量的方面的一个抽象.我们认识客观事物,固然要弄清它们单个的和总体的性质,但是更重要的是研究它们之间的各种各样的联系.在线性空间中,事物之间的联系就反映为线性空间的映射.线性空间到自身的映射通常称为的一个变换.这一章中要讨论的线性变换就是最简单的,同时也可以认为是最基本的一种变换,正如线性函数是最简单的和最基本的函数一样. 线性变换是代数的一个主要研究对象. 下面如果不特别声明,所考虑的都是某一固定的数域P 上的线性空间. 定义 1 线性空间 V 的一个变换 A 称为线性变换,如果对于V 中的任意的元素αβ,和数域中任意数k ,都有 ()()A A αβαβ+=+ ()()A k kA αα= (1) 以后我们一般用黑体答谢拉丁字 A , B ,…代表 V 的变换,()A k α或()A α代表 元素α在变换下的象. 定义中等式(1)所表示的性质,有时也说成线性变换保持向量的加法与数量乘法. 问题1: 线性变换与线性同构有什么异同? 下面我们来看几个简单的例子 ,它们表明线性变换这个概念是有丰富的内容的. 例 1 平面上的向量构成实数域上的二维线性空间 . 把平面围绕坐标原点按反时针方向旋转θ角,就是一个线性变换,我们用I θ表示。如果平面上一个向量α在直角坐标系下的坐标是(,)x y ,那么象I θα()的坐标,即旋转θ角之后的坐标是(,)x y ''按照公式 cos sin sin cos x x y y θθθ θ'-??????= ? ???'?????? 来计算的.同样地,空间中绕轴的旋转也是一个线性变换. 例 2 设α是几何空间中一固定的非零向量,把每个向量ξ变到它在α上的内映射的变换也是一个线性变换,以α∏表示它.用公式表示就是 (,)()(,) ααξξααα∏= 这里(,)αξ表示内积. 例 3 线性空间 V 中的恒等变换或称单位变换 E ,即 ()E αα= ()V α∈ 以及零变换0,即 0()0α= ()V α∈ 都是线性变换. 例 4 设V 是数域P 上的线性空间,k 是P 中某个数 ,定义V 的变换如下: ,k αα→ ()V α∈ 不难证明,这是一个线性变换,称为由数 k 决定的数乘变换,可用k 表示.显然,当k=1时,我们便得恒等变换,当k=0时,便得零变换. 例 5 在线性空间[]P x 或者[]n P x 中,求微商是一个线性变换.这个变换通常用D 代表,即11220r r k k k ααα+++=, (())()D f x f x '= 例 6 定义在闭区间[a,b ]上的全体连续函数组成实数域上一线性空间,以C (a,b )代表.在这个空间中,变换

线性变换与矩阵的关系

线性变换与矩阵的关系 学院:数学与计算机科学学院 班级:2011级数学与应用数学

姓名: 学号: 线性变换与矩阵的关系 (西北民族大学数学与应用数学专业,兰州 730124) 指导教师 一、线性变换 定义1 设有两个非空集合V,U,若对于V中任一元素α,按照一定规则总有U中一个确定的元素β和它对应,则这个对应规则被称为从集合V到集合U的变换(或映射),记作β=T(α)或β=T α,( α∈V)。 设α∈V,T(α)= β,则说变换T把元素α变为β,β称为α在变换T下的象,α称为β在变换T下的源,V称为变换T的源集,象的全体所构成的集合称为象集,记作T(V)。即 T(V)={ β=T(α)|α∈V}, 显然T(V) ?U 注:变换的概念实际上是函数概念的推广。

定义2 设V n,U m分别是实数域R上的n维和m维线性空间,T是一个从V n到U m得变换,如果变换满足 (1)任给α1 ,α2∈V n,有T(α1+α2)=T(α1)+T(α2); (2)任给α∈V n,k∈R,都有 T(kα)=kT(α)。 那么,就称T为从V n到U m的线性变换。 说明: ○1线性变换就是保持线性组合的对应的变换。 ○2一般用黑体大写字母T,A,B,…代表现象变换,T(α)或Tα代表元 α在变换下的象。 ○3若U m=V n,则T是一个从线性空间V n到其自身的线性变换,称为线性空 V n中的线性变换。下面主要讨论线性空间V n中的线性变换。 二、线性变换的性质 设T是V n中的线性变换,则 (1)T(0)=0,T(-α)=-T(α); (2)若β=k1α1+k2α2+…+k mαm,则Tβ=k1Tα1+k2Tα2+…+k m Tα m; (3)若α1,…αm线性相关,则Tα1…Tαm亦线性相关; 注:讨论对线性无关的情形不一定成立。 (4)线性变换T的象集T(V n)是一个线性空间V n的子空间。 记S T={α|α∈V n,T α=0}称为线性变换T的核,S T是V n的子空间。

一些常见的Z变换

附表A-2 常用函数的拉氏变换和z 变换表 序 号 拉氏变换()E s 时间函数()e t Z 变换()E s 1 1 δ(t) 1 2 Ts e --11 ∑∞ =-=0 )()(n T nT t t δδ 1 -z z 3 s 1 )(1t 1 -z z 4 2 1s t 2 )1(-z Tz 5 3 1s 2 2t 3 2 )1(2)1(-+z z z T 6 11+n s !n t n )(!)1(lim 0aT n n n a e z z a n -→-??- 7 a s +1 at e - aT e z z -- 8 2 )(1a s + at te - 2 )(aT aT e z Tze --- 9 ) (a s s a + at e --1 ) )(1()1(aT aT e z z z e ----- 10 ) )((b s a s a b ++- bt at e e --- bT aT e z z e z z ----- 11 2 2ωω +s t ωsin 2 sin 2cos 1 z T z z T ωω-+ 12 2 2ω+s s t ωcos 2 (cos )2cos 1 z z T z z T ωω--+ 13 22)(ω ω ++a s t e at ωsin - 22sin 2cos aT aT aT ze T z ze T e ωω----+ 14 2 2)(ω+++a s a s t e at ωcos - 222cos 2cos aT aT aT z ze T z ze T e ωω-----+ 15 a T s ln )/1(1- T t a / a z z -

z变换的基本知识

z 变换基本知识 1 z 变换定义 连续系统一般使用微分方程、拉普拉斯变换的传递函数和频率特性等概念进行研究。一个连续信号()f t 的拉普拉斯变换()F s 是复变量s 的有理分式函数;而微分方程通过拉普拉斯变换后也可以转换为s 的代数方程,从而可以大大简化微分方程的求解;从传递函数可以很容易地得到系统的频率特征。因此,拉普拉斯变换作为基本工具将连续系统研究中的各种方法联系在一起。计算机控制系统中的采样信号也可以进行拉普拉斯变换,从中找到了简化运算的方法,引入了z 变换。 连续信号()f t 通过采样周期为T 的理想采样开关采样后,采样信号*()f t 的表达式为 0*()()()(0)()()()(2)(2)k f t f kT t kT f t f T t T f T t T δδδδ∞ ==-=+-+-+∑ (3)(3)f T t T δ-+L (1) 对式(1)作拉普拉斯变换 23*()[*()](0)()(2)(3)sT sT sT F s L f t f f T e f T e f T e ---==++++L ()e ksT k f kT ∞ -==∑ (2) 从式(2)可以看出,*()F s 是s 的超越函数,含有较为复杂的非线性关系,因此仅用拉普拉斯变换这一数学工具,无法使问题简化。为此,引入了另一个复变量“z ”,令 e sT z = (3) 代入式(2)并令1 ln *() ()s z T F x F z ==,得

1 2 ()(0)()(2)()k k F z F f T z f T z f kT z ∞ ---==+++=∑L (4) 式(4)定义为采样信号*()f t 的z 变换,它是变量z 的幂级数形式,从而有利于问题的简化求解。通常以()[*()]F z L f t =表示。 由以上推导可知,z 变换实际上是拉普拉斯变换的特殊形式,它是对采样信号作e sT z =的变量置换。 *()f t 的z 变换的符号写法有多种,如 [*()],[()],[()],[*()],()Z f t Z f t Z f k Z F s F z 等,不管括号内写的是连续信号、 离散信号还是拉普拉斯变换式,其概念都应该理解为对采样脉冲序列进行z 变换。 式(1),式(2)和式(3)分别是采样信号在时域、s 域和z 域的表达式,形式上都是多项式之和,加权系数都是()f kT ,并且时域中的()t kT s δ-、域中的 e ksT -及z 域中的k z -均表示信号延迟了k 拍,体现了信号的定时关系。 在实际应用中,采样信号的z 变换在收敛域内都对应有闭合形式,其表达式是z 的有理分式 11101110 () ()m m m n n n K z d z d z d F z z C z C z C ----++++= ++L L ++ m n ≤ (5) 或1z -的有理分式 1111011110(1) ()1l m m m n n n Kz d z d z d z F z C z C z C z ---+----+--++= ++++L L ++ l n m =- (6) 其分母多项式为特征多项式。在讨论系统动态特征时,z 变换写成零、极点形式更为有用,式(5)可改写为式(7) 11()() ()()()()() m n K z z z z KN z F z D z z p z p --= =--L L m n ≤ (7) 2 求z 变换的方法 1)级数求和法

线性变换的几何意义

本科生毕业论文论文题目:线性变换的几何背景 学院 专业 学号 学生姓名 指导教师 指导教师职称 指导教师单位 年月日

学位论文写作声明 本人重声明:所呈交的学位论文,是本人在导师的指导下,独立进行研究工作所取得的成果。除文中已经注明引用的容外,本论文不含任何其他个人或集体已经发表或撰写过的作品或成果。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。本声明的法律结果由本人承担。 论文作者签名:日期:年月日 论文作者签名:导师签名: 日期:年月日

线性变换的几何背景 摘要 线性变换可以通过几何现象直观化,几何现象也可以通过线性变换精练化。本文就通过研究几何现象所表现出来的线性变换、思考矩阵与线性变换在几何意义上的关系、思考线性变换一些性质所具备的几何意义、思考线性变换的非矩阵表现形式、思考线性变换和几何联系起来解决问题的思路以及思考射影几何上的线性变换。我们可以得出线性变换是运动的、线性的,许多几何现象都是线性变换,我们可以用矩阵来研究线性变换的几何意义,但矩阵只是研究线性变换的几何意义的工具之一,线性变换许多拓展相关的问题也涉及到几何现象,并且线性变换与几何联合起来对于解决某些问题存在好处,但不同的几何体系的研究客体对于线性变换来说也存在不同方面。 关键词:线性变换;几何现象;矩阵

The geometry background of linear transformation Abstract:Linear transformation could be visualized through the geometric phenomena, geometric phenomenon could be refined through the linear transformation. The article analyzes the linear transformation, reflects by geometric phenomenon, studies the relationship of matrix and linear transformation on the basis of geometric meaning, researches the geometric meanings of linear transformation, reflects the expression of nonnegativematrix of linear transformation, discusses the solutions to the questions on the basis of connection between linear transformation and geometry, and considers the linear transformation of projective geometry. In conclusion, the thesis finds out that the linear transformation is athletic, linear, and many geometry phenomena are linear transformation. The matrix could be used to analyze the geometry meaning of linear meaning, but the matrix is one of the tools to study the geometry meaning of linear transformation. Many of the linear transformation related problems are involved in the geometric phenomena, and the combination of linear transformation and geometry is beneficial to the solutions to some problems, but different geometry research objects have various aspects. Key words: linear transformation; geometry phenomenon; matrix

拉氏变换定义及性质

2.5 拉氏变换与反变换 机电控制工程所涉及的数学问题较多,经常要解算一些线性微分方程。按照一般方法解算比较麻烦,如果用拉普拉斯变换求解线性微分方程,可将经典数学中的微积分运算转化为代数运算,又能够单独地表明初始条件的影响,并有变换表可查找,因而是一种较为简便的工程数学方法。 2.5.1 拉普拉斯变换的定义 如果有一个以时间t 为自变量的实变函数 ()t f ,它的定义域是 0≥t ,,那么()t f 的的拉普拉斯变换定义为 ()()()0 e d st F s L f t f t t ∞ -=?????? (2.10) s 是复变数, ωσj +=s (σ、ω均为实数), ?∞ -0e st 称为拉普拉斯积分; )(s F 是函数 )(t f 的拉普拉斯变换,它是一个复变函数,通常也称 )(s F 为 )(t f 的象函数,而称 )(t f 为 )(s F 的原函数;L 是表示进行拉普拉斯变换的符号。 式(2.10)表明:拉氏变换是这样一种变换,即在一定条件下,它能把一实数域中的实变函数变换为一个在复数域内与之等价的复变函数 )(s F 。 1.单位阶跃函数 )(1t 的拉氏变换 单位阶跃函数是机电控制中最常用的典型输入信号之一,常以它作为评价系统性能 的标准输入,这一函数定义为 ?? ?≥s ,则 0 e lim →-∞ →st t 。 所以:

附表A-2 常用函数的拉氏变换和z变换表

附录A拉普拉斯变换及反变换1.拉氏变换的基本性质 附表A-1 拉氏变换的基本性质 419

2.常用函数的拉氏变换和z变换表 附表A-2 常用函数的拉氏变换和z变换表 420

421 3. 用查表法进行拉氏反变换 用查表法进行拉氏反变换的关键在于将变换式进行部分分式展开,然后逐项查表进行反变换。设)(s F 是s 的有理真分式,即 11 10111) ()()(a s a s a s a b s b s b s b s A s B s F n n n n m m m m ++++++++== ---- (m n >) 式中,系数n n a a a a ,,...,,110-和011,,,,m m b b b b - 都是实常数;n m ,是正整数。按代数定理可将)(s F 展开为部分分式。分以下两种情况讨论。 (1)0)(=s A 无重根:这时,F(s)可展开为n 个简单的部分分式之和的形式,即 ∑ =-= -+ +-+ +-+ -= n i i i n n i i s s c s s c s s c s s c s s c s F 1 2 21 1)( (F-1) 式中,n s s s ,,,21 是特征方程A(s)=0的根;i c 为待定常数,称为()F s 在i s 处的留数,可按下列两式计算:lim ()()i i i s s c s s F s →=- (F-2) 或 i s s i s A s B c ='= ) ()( (F-3) 式中,)(s A '为)(s A 对s 的一阶导数。根据拉氏变换的性质,从式(F-1)可求得原函数为 []?? ????-==∑=--n i i i s s c L s F L t f 11 1)()(=1i n s t i i c e =∑ (F -4) (2)0)(=s A 有重根:设0)(=s A 有r 重根1s ,F(s)可写为

三.线性变换的基本性质(1)

三、线性变换的基本性质(1) 学习目标 理解线性变换的基本性质 新课讲解 定义: 1.数乘平面向量:设x y α→ ??=????,λ是任意一个实数,则x y λλαλ→??=???? 2.平面向量的加法:设11x y α→ ??=????,22x y β→??=????,则1212x x y y αβ→→+??+=??+?? 探究:设向量?? ????=21,吧此向量先伸长2倍,在按逆时针方向旋转90°;吧此向量先按逆时针方向旋转90°再伸长2倍。这两个过程的结果相同吗? 相同,即A (α2)=2A α. 探究:()A A λαλα→→ =是否成立呢? 设A=a b c d ??????,x y α→??=????,则??????++=??????++=dy cx by ax A dy cx by ax λλλλλλλλλλ,A )( 所以()A A λαλα→→ =. 同理,可得出()A A A αβαβ→→→→+=+。 性质1:设A 是一个二阶矩阵,,αβ→→是平面上的任意两个向量,λ是任意一个实数,则 (1)()A A λαλα→→=;(2)()A A A αβαβ→→→→+=+ 。 定理1:设A 是一个二阶矩阵,,αβ→→是平面上的任意两个向量,21λλ,是任意两个实数,则βλαλβπαλA A A 2121)(+=+。 探究:线性变换把平面上的直线(或线段)变成什么图形? 研究y kx b =+分别在以下变换下的像所形成的图形: ①伸缩变换:1002?????? ②旋转变换:12122?-?????? ③切变变换:1201?????? 性质2:二阶矩阵对应的变换(线性变换)把平面上的直线变成直线(或一点)。

第三讲线性变换

线性变换 本章中我们将讨论同一线性空间向量间的联系、线性空间之间的一种特殊的映射,即所谓的线性变换,这是一种保持线性结构的映射,是线性代数的一个重要的研究对象。 从这里我们可以初步看出线性代数的几何理论(变换)与代数理论(矩阵) 间的有机结合,而用代数的方法研究几何问题是线性代数的一个基本思想。 要求掌握: 线性变换的定义 线性变换和矩阵的特征值和特征向量 矩阵的相似标准形 矩阵相似于对角阵的充分必要条件 一.线性变换的定义和性质 1. 线性变换的定义 例:图形的伸缩变换。对坐标平面的单位圆:12 2 =+y x 做如下的伸缩变换 y v x u 2,3== 得到一个椭圆上述变换将单位圆沿x 轴方向放大3倍,沿y 轴方向放大2倍,从而得到一个 椭圆。 14 92 2=+v u 3212 1 上述变换只对图形沿数轴方向进行了伸缩,没有改变图形的基本形状。我们说 它们是线性的变换。 旋转变换不改变图形的形状,只改变它的位置,它也是一种线性的变换。

例:坐标平面上的如下变换 ???+=+=y x y y x x 2.0~1.0~ 设C1是由边平行于坐标轴的矩形网格, C2是单位圆12 2 =+y x , C3是正弦曲线 )sin(x y =。绘制变换前后的图形,观察图形的变化。 变换前的C1与C2 变换后的C1与 C2 变换前的C1与C3 变换后的C1与C3 图形不仅沿斜线方向发生伸缩变化,并且产生错切现象。 但上述变换仍保持图形的基本形状不变,例如,直线仍变为直线,平行直线变为平行直线,圆变为椭圆。 将直线变为直线且将平行直线变为平行直线是图形线性变换的基本特性。这一特性可以由 图形变换 保持线性组合运算不变。 ??? ? ??-???? ??-???? ??11,cos sin sin cos ,θθθθ μλ 伸缩变换、旋转变换、反射变换

相关主题
文本预览
相关文档 最新文档