当前位置:文档之家› 微积分知识点英语版

微积分知识点英语版

微积分知识点英语版
微积分知识点英语版

简介微积分

数学就像一种奇妙的幻想,但这种奇妙幻想最终还是会真实的体现在现实中。做数学运算有一种在做一个想象的发明的感觉,但它确定是强化我们的洞察力的过程,所以我们在周围任何地方都可以发现那样的情景模式,我们数学教育的目标是为了飞跃到现实的脚步之前并分享数学运算带来的理智愉悦的体验。

微积分的发展史是数学的重要做成部分。极限、函数、导数、积分和无穷级数等内容在微积分中所体现。微积分这门学科依然在现代数学教育史中占据一席之地。微分学和积分学统称为微积分学。这两大部分间起桥梁作用的是著名的微积分学基本定理。微积分研究的主要内容是丰富、变化的。微积分课程是先进思想的传播课程,后来人们也将微积分称为数学分析。微积分作为工具广泛用于在科学,经济学,工程等领域,用于解决许多问题,这是代数这门学科独自解决是不能满足的。

一、微积分

希腊数学家阿基米德是第一个找到切线方向的曲线,除了一个圆圈,在一个方法类似于微积分。当研究螺旋时,他一个点的运动分开成两个部分,一个径向运动部件和一个圆周运动部件,然后继续增加双组分在一起从而找到切线运动的曲线。

印度数学家及天文学家阿雅巴塔在499年为解决无穷小天文问题,采用了新的观念和表达方式,创造性的利用了一种基本微分方程形式。Manjula,在世纪十周年开个玩会,详细阐述了该微分方程一个评论。该方程skara最终导致Bha 二世时12世纪发展一种衍生为代表无穷小观念的改变,而他描述早期版本的“罗尔定理”。在15世纪,一个早期版本中值定理parameshvara是在天文学的喀拉拉学校里他的评定中和数学登顶,巴卡拉II被首次描述(1370-1460)。

在17世纪,欧洲数学家撒向后拉线,皮埃尔、德、费,布莱斯帕斯科,约翰沃利斯和其他学者讨论了概念的衍生体系,特别是,在Methodus广告disquirendam maximan最小风险,在tangentibus等linearum curvarum,开发出一种方法测定费最大值、最小值,并对各种曲线的切线相当于分化。艾萨克、牛顿后来写他自己的想法微分早期直接来自“费马研究极值的问题”。

二、积分学

计算面积和体积是微积分的基本功能。这可以追溯到莫斯科纸莎的手写稿(约1820年),其中一名埃及数学家成功的运用微积分知识计算金字塔形锥体的体积。希腊geometers被人认为是利用无穷小解决问题的显著体现者。德谟克利特是称自己是第一个经过慎密,严肃考虑后,将对象划分成无数的横切面。但他不能把其合理化,如果想把光滑的斜坡构思成数学中的一个离散的锥形截面,这个问题是他走入到了思想紧闭区,所以他必须创造出新的理论。大约在相同的时间点上,季诺也急于这方面的思考,使得他焦头烂额后,给出了无穷小理论的悖论。

安提和欧多克斯把它们进行分割成若干的部分,能过计算出地区和固体的面积和体积,这个过程穷尽了他们所熟悉的一般方法,阿基米德进一步创造了这一方法,利用启发式思想,最后得出结论是有点类似于现代的概念。(阿基米德将方形上的抛物线的研究方法应用于球体和圆柱体。)到了牛顿时代,这些方法都

过时了,它不应该被认为是无穷理论的基础,这一说法在此期间流传,然而,希腊数学家说恰是它的这种方法被应用于几何证明是可以被确定为一个正确的理论。

11世纪积分学走上了一个新的层次,一位在埃及工作的伊拉克籍数学家实在欧洲挺有盛誉的,他提出的问题推动了对四次方程求根问题的思考。在他所学的书中,有效解决了上述问题。其中,采用了一种方法很容易的确定出整数求和的问题。他在抛物面上求体积,而且能够将其进行推广,最终得到多项式的积分,并以此获得新的荣誉,他的这种方式接近于一般多项式的积分,但是还有限制因素就是四次多项式。

三、现代微积分

詹姆斯、格雷戈里能证明17世纪中叶微积分一个版本第二基本定理是受限制的。牛顿和莱布尼兹判别法通常被人为是现代的发明,微积分理论日渐成熟与17世纪后期。他们最重要的贡献是发展发展微积分基本定理。同时,大量利用莱布尼兹判别法做出一致的工作和有用的符号以及概念,牛顿是第一个在该领域组织成为一个一致的主题,并提供了一些方法,也是最重要的应用,尤其是积分学的理论基础。巴德费惠更斯,沃利斯以及其他许多人也做出了重要贡献。

四、应用

微积分作为工具解决了物理学以及天文学的问题,这是当代科学的起源。18世纪这些应用不断增多,直接接近拉普拉斯和拉格朗日整体研究的分析领域,拉格朗日(1773年)称我们应该引入动态的潜力理论,虽然名称是“潜在功能”,但科学基本的回忆录必须是绿色的(1827年,1828年印)。进入分析物理问题的其他应用程序种类繁多,在这个地方是不可能的,赫姆霍兹用自己的劳动特别声明,因为在他的动力,电力等理论所做出的贡献,并带来了他伟大的分析能力,并用来承担力学的基本公理,以及对于那些纯粹的数学。此外,微积分被引入到社会科学,新古典经济学。今天它成为主流经济学的有价值得工具。

博耶,卡尔、数学史、纽约:约.威利父子,1991年。

威廉.瑟斯顿,通告阿米尔数学SOC.1990年

Introduction to the calculus

Mathematics is like a flight of fancy,but one in which the fanciful turns out to be real and to have been present all long.Doing mathematics has the feel of fanciful invention,but it is really a process for sharpening for sharpening our perception so that we discover patterns that are everywhere around.To share in the delight and the intellectual experience of mathematics-to fly where before we walked-that is the goal mathematical education.

History of Calculus is part of the history of mathematics focused on limits,functions,derivatives,integrals,and infinte series.the subject,known historicall as infinitesimal calculus,constitutes a major part of modern mathematics education.It has two major-branches,differential calculus and integral calculus,which are related by the fundamental theorem of calculus.calculus is the study of change,in the same way that geometry is the study of shape and algebra is the study of operations and their application to solving equations.A course in calculus is a gateway to other,more advanced courses in mathematics devoted to the study of functions and functions and limits,broadly called mathematical analysis.Calculus has widespread applications in science,economics,and engineering and can solve many problems for which algebra alone is insufficient..

Differential calculus

The Greek mathematician Archimedes was the first to find the tangent to a curve,other than a circle,in a method akin to differential calculus.while studying the spiral,he separated a point's motion into two components,one radial motion component and one circular motion component,and then continued to add the two component motions together thereby finding the tangent to the curve.

The Indian mathematician astronomer Aryabhata in499used notion of infinitesimals and expressed an astronomical problem in the from of a basic differential equation.Manjula,in the10th century,elaborated on this differential equation in a commentary.this equation eventually led Bh a skara II in the12th century to develop the concept of a derivative representing infinitesimal change,and he described an early from of“Rolle’s theorem”.In the15th century,an early version of the mean value theorem was first described by parameshvara(1370-1460)from the Kerala school of astronomy and mathematics in his commentaries on.

Govindasv miand and Bhaskara II.

In the17th century,European mathematicians Isaac Barrow,Pierre de Fermat,Blaise pascal,John Wallis and others discussed the idea of a derivative.In particular,in Methodused disquirendam maximamet minima and in De tangentibus linearum curvarum,Fermat developed a method for detemining maxima,minima and tangents to various curves that was equivalent to differentiation..Isaac Newton would later write that his own early ideas about calculus came directly from“Fermat’s way of drawing tangents”.

Integral calculus

Calculating volumes and areas,the basic function of integral calculus,can be

traced back to the Moscow papyrus(c.1820BC),in which an Egyptian mathematician successfully calculated the volume of a pyramidal frustum.Greek geometers are credited with a significant use of infinitesimals.Democritus is the first person recorded to consider seriously the division of objects into an infinite number of cross sections,but his inability to rationalize discrete cross sections with a cone’s smooth prevented him from accepting the idea.At approximately the same time,zeno of Elea discredited infinitesimals further by his articulation of the paradoxes which they create.

The next major step in integral calculus came in the11th century,when I bal-haytham(known as Alhacen in Europe),an Iraqi mathematician working in Egypt,devised what is now known as“Alhazen’s problem”,which leads to an equation of the fourth degree,in his Book of Optics.while solving this problem,he his the first mathematician to derive the formula for the sum of the fourth powers,using a method that is readily generalizable for determining the general formula for the sum of any integral powers.He performed integration in order to find the volume of a parabolic,and was able to generalize his result for the integrals of polynomials up to the fourth degree.He thus came close to finding a general formula for the integrals of polynomials,but he was not concerned with any polynomials higher than the fourth degree.

Antiphon and later Emulous are generally credited with implementing the method of exhaustion,which made it possible to compute the area and volume of regions and solids by breaking them up into an infinite number of recognizable shapes.Archimedes developed this meth further,while also inventing heuristic methods which resemble modern day concepts somewhat.(See Archimedes’Quadrate of the Parabla,The Method,Archimedes on spheres Cylinders.)It was not until the time of Newton that these methods were made obsolete.It should not be thought that infinitesimals were put on rigorous footing during this time,however.only when it was supplemented by a proper geomeyric proof would Greek mathematicians accept a proposition as true.

Modern calculus

James Gregory was able to prove a restricted version of the second fundamental theorem of calculus in the mid-17thcentury.Newton and Leibniz are usually credited with the invention of modern infinitesimal calculus in the late17th century.their most important contributions were the development of the fundamental theorem of calculus.Also,Leibniz did a great deal of work with developing consistent and useful notation and concepts.Newton was the first to organize the field into one consistent subject,and also provided some of the first and most important applications,especially of integral calculus.Important contributions were also made by barrow,de fermat,Huygens,Wallis and many others.

Applications

The application of the infinitesimal calculus to problems in physics and astronomy was contemporary with the origin of the science.All throught the eighteenth century these applications were multiplied until at its close Laplace and Lagrange had brought the whole range of the study of forces into the realm of

analysis.To Lagrange(1773)we owe the introduction of the theory of the potential into dynamics,although the name“potential function”and the fundamental memoir of the subject are due to Green(1872,prited in1828).The labors of Helmholtz should be especially mentioned,since he contributed to the theories of dynamics,electricity,etc,and brought his great analytical powers to bear on the fundamental axioms of mechanics as well as on those of pure mathematics.Furthermore,infinitesimal calculus was introduced into the social sciences,starting with Neo classical economics.Today,iit is a valuable tool in mainstream economics.

Boyer,car.a History of Mathematies.New York:John Wiley Sons,1991.

William Thurston,Notices Amir.Math.Soc.1990.

微积分英文专业词汇

微积分词汇 第一章函数与极限 Chapter1Function and Limit 集合set 元素element 子集subset 空集empty set 并集union 交集intersection 差集difference of set 基本集basic set 补集complement set 直积direct product 笛卡儿积Cartesian product 开区间open interval 闭区间closed interval 半开区间half open interval 有限区间finite interval 区间的长度length of an interval 无限区间infinite interval 领域neighborhood 领域的中心centre of a neighborhood 领域的半径radius of a neighborhood 左领域left neighborhood 右领域right neighborhood 映射mapping X到Y的映射mapping of X ontoY 满射surjection 单射injection 一一映射one-to-one mapping 双射bijection 算子operator 变化transformation 函数function 逆映射inverse mapping 复合映射composite mapping 自变量independent variable 因变量dependent variable 定义域domain 函数值value of function 函数关系function relation 值域range 自然定义域natural domain 单值函数single valued function 多值函数multiple valued function 单值分支one-valued branch 函数图形graph of a function 绝对值函数absolute value 符号函数sigh function 整数部分integral part 阶梯曲线step curve 当且仅当if and only if(iff) 分段函数piecewise function 上界upper bound 下界lower bound 有界boundedness 无界unbounded 函数的单调性monotonicity of a function 单调增加的increasing 单调减少的decreasing 单调函数monotone function 函数的奇偶性parity(odevity)of a function 对称symmetry 偶函数even function 奇函数odd function 函数的周期性periodicity of a function 周期period 反函数inverse function 直接函数direct function 复合函数composite function 中间变量intermediate variable 函数的运算operation of function 基本初等函数basic elementary function 初等函数elementary function 幂函数power function 指数函数exponential function 对数函数logarithmic function 三角函数trigonometric function 反三角函数inverse trigonometric function 常数函数constant function 双曲函数hyperbolic function 双曲正弦hyperbolic sine 双曲余弦hyperbolic cosine 双曲正切hyperbolic tangent 反双曲正弦inverse hyperbolic sine 反双曲余弦inverse hyperbolic cosine 反双曲正切inverse hyperbolic tangent

高等数学 英文试题A

西南大学课程考核

《高等数学IA 》课程试题 【A 】卷 (1) The function 4 14 )(-= x x f at x = 4 is ( ). A. not continuous, f (4) does not exist and )(lim 4 x f x → does not exist. B. continuous. C. not continuous, )(lim 4 x f x → exists but f (4) does not exist D. not continuous, )(lim 4 x f x → and f (4) exist but )4()(lim 4 f x f x ≠→. (2) For the function y = arcsin x , we have the assert ( ). A .'y is undefined at x = -1 and x = 1, so its graph has not tangent lines at ??? ??2π, 1 and ??? ? ? --2π,1. B .since its graph has not tangent lines at ??? ??2π, 1 and ??? ? ? --2π,1,'y is undefined at x = -1 and x = 1. C .'y is defined at x = -1 and x = 1, and its graph has tangent lines at ??? ??2π, 1 and ??? ?? --2π,1. D .'y is undefined at x = -1 and x = 1, and its graph has tangent lines at ?? ? ??2π, 1 and ??? ? ?--2π,1. (3) =?x x x d )(ln 1 5( ) . A. C x x +- 4 )(ln 41 B. C x +-6)(ln 61. C. C x +- 4)(ln 41 D. C x x +-6 ) (ln 61 . (4) The definite integral =+?-x x x d 131 1 32 ( ). A. 334 B. 324. C. 423 D. 4 33 (5) Area of shaded region in the following figure is ( ).

(完整版)微积分术语中英文对照

微积分术语中英文对照 A、B: Absolute convergence :绝对收敛 Absolute extreme values :绝对极值 Absolute maximum and minimum :绝对极大与极小Absolute value :绝对值 Absolute value function :绝对值函数Acceleration :加速度 Antiderivative :原函数,反导数 Approximate integration :近似积分(法) Approximation :逼近法 by differentials :用微分逼近 linear :线性逼近法 by Simpson’s Rule :Simpson法则逼近法 by the Trapezoidal Rule :梯形法则逼近法Arbitrary constant :任意常数 Arc length :弧长 Area :面积 under a curve :曲线下方之面积 between curves :曲线间之面积 in polar coordinates :极坐标表示之面积 of a sector of a circle :扇形之面积 of a surface of a revolution :旋转曲面之面积Asymptote :渐近线 horizontal :水平渐近线 slant :斜渐近线 vertical :垂直渐近线 Average speed :平均速率 Average velocity :平均速度 Axes, coordinate :坐标轴 Axes of ellipse :椭圆之对称轴 Binomial series :二项式级数 Binomial theorem:二项式定理 C: Calculus :微积分 differential :微分学 integral :积分学 Cartesian coordinates :笛卡儿坐标一般指直角坐标Cartesian coordinates system :笛卡儿坐标系Cauch’s Mean Value Theorem :柯西中值定理Chain Rule :链式法则 Circle :圆 Circular cylinder :圆柱体,圆筒 Closed interval :闭区间 Coefficient :系数 Composition of function :复合函数 Compound interest :复利 Concavity :凹性 Conchoid :蚌线 Conditionally convergent:条件收敛 Cone :圆锥 Constant function :常数函数 Constant of integration :积分常数 Continuity :连续性 at a point :在一点处之连续性 of a function :函数之连续性 on an interval :在区间之连续性 from the left :左连续 from the right :右连续 Continuous function :连续函数 Convergence :收敛 interval of :收敛区间 radius of :收敛半径 Convergent sequence :收敛数列 series :收敛级数 Coordinates:坐标 Cartesian :笛卡儿坐标 cylindrical :柱面坐标 polar :极坐标 rectangular :直角坐标 spherical :球面坐标 Coordinate axes :坐标轴 Coordinate planes :坐标平面 Cosine function :余弦函数 Critical point :临界点 Cubic function :三次函数 Curve :曲线 Cylinder:圆筒, 圆柱体, 柱面 Cylindrical Coordinates :圆柱坐标 D: Decreasing function :递减函数 Decreasing sequence :递减数列 Definite integral :定积分 Degree of a polynomial :多项式之次数 Density :密度 Derivative :导数 of a composite function :复合函数之导数 of a constant function :常数函数之导数directional :方向导数 domain of :导数之定义域 of exponential function :指数函数之导数higher :高阶导数 partial :偏导数 of a power function :幂函数之导数 of a power series :羃级数之导数 of a product :积之导数 of a quotient :商之导数 as a rate of change :导数当作变化率 right-hand :右导数 second :二阶导数 as the slope of a tangent :导数看成切线之斜率Determinant :行列式 Differentiable function :可导函数 Differential :微分 Differential equation :微分方程 partial :偏微分方程 Differentiation :求导法 implicit :隐求导法 partial :偏微分法 term by term :逐项求导法 Directional derivatives :方向导数Discontinuity :不连续性

微积分试卷及答案6套

微积分试题 (A 卷) 一. 填空题 (每空2分,共20分) 三. 已知,)(lim 1A x f x =+ →则对于0>?ε,总存在δ>0,使得当 时,恒有│?(x )─A│< ε。 四. 已知22 35 lim 2=-++∞→n bn an n ,则a = ,b = 。 五. 若当0x x →时,α与β 是等价无穷小量,则=-→β β α0 lim x x 。 六. 若f (x )在点x = a 处连续,则=→)(lim x f a x 。 七. )ln(arcsin )(x x f =的连续区间是 。 八. 设函数y =?(x )在x 0点可导,则=-+→h x f h x f h ) ()3(lim 000 ______________。 九. 曲线y = x 2+2x -5上点M 处的切线斜率为6,则点M 的坐标为 。 十. ='?))((dx x f x d 。 十一. 设总收益函数和总成本函数分别为2 224Q Q R -=,52 +=Q C ,则当利润最大 时产量Q 是 。 二. 单项选择题 (每小题2分,共18分) 十二. 若数列{x n }在a 的ε 邻域(a -ε,a +ε)内有无穷多个点,则( )。 (A) 数列{x n }必有极限,但不一定等于a (B) 数列{x n }极限存在,且一定等于a (C) 数列{x n }的极限不一定存在 (D) 数列{x n }的极 限一定不存在 十三. 设1 1 )(-=x arctg x f 则1=x 为函数)(x f 的( )。 (A) 可去间断点 (B) 跳跃间断点 (C) 无穷型间断点

(D) 连续点 十四. =+-∞→13)1 1(lim x x x ( )。 (A) 1 (B) ∞ (C) 2e (D) 3e 十五. 对需求函数5 p e Q -=,需求价格弹性5 p E d - =。当价格=p ( )时,需求量减少的幅度小于价格提高的幅度。 (A) 3 (B) 5 (C) 6 (D) 10 十六. 假设)(),(0)(lim , 0)(lim 0 x g x f x g x f x x x x ''==→→;在点0x 的某邻域内(0x 可以 除外)存在,又a 是常数,则下列结论正确的是( )。 (A) 若a x g x f x x =→) ()(lim 或∞,则a x g x f x x =''→)() (lim 0或∞ (B) 若a x g x f x x =''→)()(lim 0或∞,则a x g x f x x =→) () (lim 0或∞ (C) 若) ()(lim x g x f x x ''→不存在,则)() (lim 0x g x f x x →不存在 (D) 以上都不对 十七. 曲线2 2 3 )(a bx ax x x f +++=的拐点个数是( ) 。 (A) 0 (B)1 (C) 2 (D) 3 十八. 曲线2 ) 2(1 4--= x x y ( )。 (A) 只有水平渐近线; (B) 只有垂直渐近线; (C) 没有渐近线; (D) 既有水平渐近线, 又有垂直渐近线 十九. 假设)(x f 连续,其导函数图形如右图所示,则)(x f 具有 (A) 两个极大值一个极小值 (B) 两个极小值一个极大值 (C) 两个极大值两个极小值 (D) 三个极大值一个极小值 二十. 若?(x )的导函数是2 -x ,则?(x )有一个原函数为 ( ) 。 x

微积分试卷及答案

. 2009 — 2010 学年第 2 学期 课程名称 微积分B 试卷类型 期末A 考试形式 闭卷 考试时间 100 分钟 命 题 人 2010 年 6 月10日 使用班级 教研室主任 年 月 日 教学院长 年 月 日 姓 名 班 级 学 号 一、填充题(共5小题,每题3分,共计15分) 1.2 ln()d x x x =? . 2.cos d d x x =? . 3. 3 1 2d x x --= ? . 4.函数2 2 x y z e +=的全微分d z = . 5.微分方程ln d ln d 0y x x x y y +=的通解为 . 二、选择题(共5小题,每题3分,共计15分) 1.设 ()1x f e x '=+,则()f x = ( ). (A) 1ln x C ++ (B) ln x x C + (C) 2 2x x C ++ (D) ln x x x C -+ 2.设 2 d 11x k x +∞=+? ,则k = ( ).

. (A) 2π (B) 22π (C) (D) 2 4π 3.设()z f ax by =+,其中f 可导,则( ). (A) z z a b x y ??=?? (B) z z x y ??= ?? (C) z z b a x y ??=?? (D) z z x y ??=- ?? 4.设点00(,)x y 使00(,)0x f x y '=且00(,)0 y f x y '=成立,则( ) (A) 00(,)x y 是(,)f x y 的极值点 (B) 00(,)x y 是(,)f x y 的最小值点 (C) 00(,)x y 是(,)f x y 的最大值点 (D) 00(,)x y 可能是(,)f x y 的极值点 5.下列各级数绝对收敛的是( ). (A) 211(1)n n n ∞ =-∑ (B) 1 (1)n n ∞ =-∑ (C) 13(1)2n n n n ∞ =-∑ (D) 1 1(1)n n n ∞=-∑ 三、计算(共2小题,每题5分,共计10分) 1. 2d x x e x ? 2.4 ? 四、计算(共3小题,每题6分,共计18分) 1.设 arctan y z x =,求2,.z z z x y x y ???????,

英文版-微积分试卷答案-(1).doc

1、 (1) lim sin 2x 0 . x x (2) d(arctan x) 1 2 dx 1+x (3) 1 dx x-cot x+C sin 2 x (4). ( e 2 x )(n) 2n e 2 x . (5) 4 2xdx 26/3 1 2、 (6) The right proposition in A. If lim f (x) exists and lim the following propositions is ___A_____. g (x) does not exist then lim( f (x) g( x)) does not exist. x a x a x a B. If lim f (x) , lim g (x) do both not exist then lim( f ( x) g (x)) does not exist. x a x a x a C. If lim f (x) exists and lim g (x) does not exist then lim f ( x) g(x) does not exist. x a x a x a D. If lim f (x) exists and lim g (x) does not exist then lim f ( x) does not exist. x a x a x a g( x) (7) The right proposition in the following propositions is __B______. A. If lim f (x) f (a) then f ( a) exists. x a B. If lim f (x) f (a) then f (a) does not exist. x a C. If f (a) does not exist then lim f (x) f (a) . x a D. If f ( a) y f (x) (a, f (a)) . does not exist then the cure does not have tangent at (8) The right statement in the following statements is ___D_____. lim sin x 1 A. 1 B. lim(1 x) x e x x x C. x dx 1 x 1 C b 1 5 dx b 1 5 dy D. x a 1 y 1 a 1 (9) For continuous function f ( x) , the erroneous expression in the following expressions is ____D__. A. d ( b f (b) B. d ( b f (a) f ( x)dx) f (x)dx) db a da a C. d ( b 0 D. d ( b f (b) f ( a) f (x)dx) f (x)dx) dx a dx a (10) The right proposition in the following propositions is __B______. A. If f (x) is discontinuous on [ a, b] then f ( x) is unbounded on [ a,b] . [ 第 1 页 共 5 页 ]

微积分常用英文词汇 分章

英汉微积分词汇 English-Chinese Calculus Vocabulary 第一章函数与极限 Chapter 1 Function and Limit 高等数学higher mathematics 集合set 元素element 子集subset 空集empty set 并集union 交集intersection 差集difference of set 基本集basic set 补集complement set 直积direct product 笛卡儿积Cartesian product 象限quadrant 原点origin 坐标coordinate 轴axis x 轴x-axis 整数integer 有理数rational number 实数real number 开区间open interval 闭区间closed interval 半开区间half open interval 有限区间finite interval 区间的长度length of an interval 无限区间infinite interval 领域neighborhood 领域的中心center of a neighborhood 领域的半径radius of a neighborhood 左领域left neighborhood 右领域right neighborhood 映射mapping X到Y的映射mapping of X onto Y 满射surjection 单射injection 一一映射one-to-one mapping 双射bijection

算子operator 变化transformation 函数function 逆映射inverse mapping 复合映射composite mapping 自变量independent variable 因变量dependent variable 定义域domain 函数值value of function 函数关系function relation 值域range 自然定义域natural domain 单值函数single valued function 多值函数multiple valued function 单值分支one-valued branch 函数图形graph of a function 绝对值absolute value 绝对值函数absolute value function 符号函数sigh function 整数部分integral part 阶梯曲线step curve 当且仅当if and only if (iff) 分段函数piecewise function 上界upper bound 下界lower bound 有界boundedness 最小上界least upper bound 无界unbounded 函数的单调性monotonicity of a function 单调增加的increasing 单调减少的decreasing 严格递减strictly decreasing 严格递增strictly increasing 单调函数monotone function 函数的奇偶性parity (odevity) of a function 对称symmetry 偶函数even function 奇函数odd function 函数的周期性periodicity of a function 周期period 周期函数periodic function 反函数inverse function 直接函数direct function 函数的复合composition of function

微积分考试题

2011年微积分CI 期末试题 一、计算下列各题(本题有5个小题,每小题6分,共30分) 1. 求极限 () n n n n n cos lim 424 +-+∞ → 2. 求极限 ?? ? ??+-+-→1212111lim 1 x x x x 3. 求极限 ??? ? ? ?-- ∞ →21 8lim 3n n n 4. 求极限 x x e x x sin ) 1ln(1lim 0++--∞→ 5. 已知 ?+=C xe dx x f x )(,求? +dx x f x ) (1 二.计算下列各题(本题有6个小题,每小题6分,共36分) 6. 设 x x y )2cos 1(+=,求π=x dy |。 7. 设函数?? ?≤>++=0 , 0,)1ln()(x a x b ex x f x ,)1,0(≠>a a 确定b a ,的值,使得)(x f 在0=x 处可导,并求)0('f 。 8. 设 ) ()('x f x e e f y =,其中)(x f 二阶可导,求'y 。 9. 设)(x f y =是由方程0162 =-++x xy e y 所确定的隐函数,求)0("y 。 10.求不定积分 ? -+---dx e e e e x x x x 2 22。 11. 求不定积分 ? +xdx x arctan )1(2。 三.综合题(本题有4个小题,共34分) 12(8分) 证明不等式1,1) 1(2ln >+-> x x x x 。 13(8分) 已知函数)(x f 在区间]1,0[上连续,在)1,0(内可导,且0)0(=f ,1)1(=f 。 证明:(1)存在)1,0(∈ξ使得ξξ-=1)(f 。 (2)存在两个不同的)1,0(,∈ξη使得1)(')('=ηξf f 14(8分)某服装公司正在推广某款套装。公司确定,为卖出该款服装x 套,其单价应为

微积分(下)英文教材

Chapter 1 Infinite Series Generally, for the given sequence ,.......,......,3,21n a a a a the expression formed by the sequence ,.......,......,3,21n a a a a .......,.....321+++++n a a a a is called the infinite series of the constants term, denoted by ∑∞ =1 n n a , that is ∑∞ =1 n n a =.......,.....321+++++n a a a a Where the nth term is said to be the general term of the series, moreover, the nth partial sum of the series is given by =n S ......321n a a a a ++++ 1.1 Determine whether the infinite series converges or diverges. Whil e it’s possible to add two numbers, three numbers, a hundred numbers, or even a million numbers, it’s impossible to add an infinite number of numbers. To form an infinite series we begin with an infinite sequence of real numbers: .....,,,3210a a a a , we can not form the sum of all the k a (there is an infinite number of the term), but we can form the partial sums ∑===0 000k k a a S ∑==+=1 101k k a a a S ∑==++=2 2102k k a a a a S

英文版微积分试卷答案(1)

1、 (1) sin 2lim x x x →∞= 0 . (2) d(arctan )x = 2 1 d 1+x x (3) 21 d sin x x =? -cot +C x x (4).2() ()x n e = 22n x e . (5) x =? 26/3 2、 (6) The right proposition in the following propositions is ___A_____. A. If lim ()x a f x →exists and lim ()x a g x →does not exist then lim(()())x a f x g x →+does not exist. B. If lim ()x a f x →,lim ()x a g x →do bot h not exist then lim(()())x a f x g x →+does not exist. C. If lim ()x a f x →exists and lim ()x a g x →does not exist then lim ()()x a f x g x →does not exist. D. If lim ()x a f x →exists and lim ()x a g x →does not exist then () lim () x a f x g x →does not exist. (7) The right proposition in the following propositions is __B______. A. If lim ()()x a f x f a →=then ()f a 'exists. B. If lim ()()x a f x f a →≠ then ()f a 'does not exist. C. If ()f a 'does not exist then lim ()()x a f x f a →≠. D. If ()f a 'does not exist then the cure ()y f x =does not have tangent at (,())a f a . (8) The right statement in the following statements is ___D_____. A. sin lim 1x x x →∞= B. 1 lim(1)x x x e →∞+= C. 11d 1x x x C ααα += ++? D. 5511 d d 11b b a a x y x y =++?? (9) For continuous function ()f x , th e erroneous expression in the following expressions is ____D__. A. d (()d )()d b a f x x f b b =? B. d (()d )()d b a f x x f a a =-?

英文版 微积分试卷答案 (1)

1、 (1) sin 2lim x x x →∞ = 0 . (2) d(arctan )x = 2 1d 1+x x (3) 2 1 d sin x x = ? -cot +C x x (4).2()()x n e = 22n x e . (5)0 x =? 26/3 2、 (6) The right proposition in the following propositions is ___A_____. A. If lim ()x a f x →exists and lim ()x a g x →does not exist then lim (()())x a f x g x →+does not exist. B. If lim ()x a f x →,lim ()x a g x →do bot h not exist then lim (()())x a f x g x →+does not exist. C. If lim ()x a f x →exists and lim ()x a g x →does not exist then lim ()()x a f x g x →does not exist. D. If lim ()x a f x →exists and lim ()x a g x →does not exist then ()lim () x a f x g x →does not exist. (7) The right proposition in the following propositions is __B______. A. If lim ()()x a f x f a →=then ()f a 'exists. B. If lim ()()x a f x f a →≠ then ()f a 'does not exist. C. If ()f a 'does not exist then lim ()()x a f x f a →≠. D. If ()f a 'does not exist then the cure ()y f x =does not have tangent at (,())a f a . (8) The right statement in the following statements is ___D_____. A. sin lim 1x x x →∞ = B. 1 lim (1)x x x e →∞ += C. 1 1d 1x x x C α αα += ++? D. 5 5 11d d 11b b a a x y x y = ++? ? (9) For continuous function ()f x , the erroneous expression in the following expressions is ____D__. A.d (()d )() d b a f x x f b b =? B. d (()d )()d b a f x x f a a =-? C. d (()d )0 d b a f x x x =? D. d (()d )()()d b a f x x f b f a x =-? (10) The right proposition in the following propositions is __B______. A. If ()f x is discontinuous on [,]a b then ()f x is unbounded on [,]a b .

微积分calculus英文单词

微积分英语单词 Absolute convergence :绝对收敛 Absolute extreme values :绝对极值 Absolute maximum and minimum :绝对极大与极小Absolute value :绝对值 Absolute value function :绝对值函数Acceleration :加速度 Antiderivative :反导数 Approximate integration :近似积分Approximation :逼近法 Arc length :弧长 Area :面积 Asymptote :渐近线 Average speed :平均速率 Average velocity :平均速度 Axes, coordinate :坐标轴 Axes of ellipse :椭圆之轴 at a point :在一点处之连续性 as the slope of a tangent :导数看成切线之斜率 by differentials :用微分逼近 between curves :曲线间之面积 Binomial series :二项级数 Cartesian coordinates :笛卡儿坐标一般指直角坐标Cartesian coordinates system :笛卡儿坐标系Cauch’s Mean Value Theorem :柯西均值定理Chain Rule :连锁律 Change of variables :变数变换 Circle :圆 Circular cylinder :圆柱 Closed interval :封闭区间 Coefficient :系数 Composition of function :函数之合成Compound interest :复利 Concavity :凹性 Conchoid :蚌线

微积分试题及答案

一、选择题(每题2分) 1、设x ?()定义域为(1,2),则lg x ?()的定义域为() A 、(0,lg2) B 、(0,lg2] C 、(10,100) D 、(1,2) 2、x=-1是函数x ?()=() 22 1x x x x --的() A 、跳跃间断点 B 、可去间断点 C 、无穷间断点 D 、不是间断点 3、试求0x →() A 、- 1 4 B 、0 C 、1 D 、∞ 4、若 1y x x y +=,求y '等于() A 、 22x y y x -- B 、22y x y x -- C 、22y x x y -- D 、22x y x y +- 5、曲线2 21x y x = -的渐近线条数为() A 、0 B 、1 C 、2 D 、3 6、下列函数中,那个不是映射() A 、2 y x = (,)x R y R + - ∈∈ B 、2 2 1y x =-+ C 、2 y x = D 、ln y x = (0)x > 二、填空题(每题2分) 1、 __________2、、2(1))lim ()1 x n x f x f x nx →∞-=+设 (,则 的间断点为__________ 3、21lim 51x x bx a x →++=-已知常数 a 、b,,则此函数的最大值为__________ 4、2 63y x k y x k =-==已知直线 是 的切线,则 __________ 5、ln 21 11x y y x +-=求曲线 ,在点(,)的法线方程是__________ 三、判断题(每题2分) 1、2 2 1x y x =+函数是有界函数 ( ) 2、有界函数是收敛数列的充分不必要条件 ( ) 3、lim β βαα =∞若,就说是比低阶的无穷小( )4可导函数的极值点未必是它的驻点 ( )

应用物理微积分中英文对照外文翻译文献

中英文对照外文翻译 中英文对照外文翻译 牛顿与莱布尼兹创立微积分之解析 摘要:文章主要探讨了牛顿和莱布尼兹所处的时代背景以及他们的哲学思想对其创立广泛地应用于自然科学的各个领域的基本数学工具———微积分的影响。 关键词:牛顿;莱布尼兹;微积分;哲学思想 Abstract:This paper mainly discusses the background of the times of Newton and Leibniz, and their philosophy of its founder is widely used in various fields of natural science basic mathematical tools --- calculus. Key words: Newton; Leibniz; calculus; philosophical thought 今天,微积分已成为基本的数学工具而被广泛地应用于自然科学的各个领域。恩格斯说过:“在一切理论成就中,未有象十七世纪下半叶微积分的发明那样被看作人类精神的最高胜利了,如果在某个地方我们看到人类精神的纯粹的和唯一的功绩,那就正是在这里。”[1] (p. 244) 本文试从牛顿、莱布尼兹创立“被看作人类精神的最高胜利”的微积分的时代背景及哲学思想对其展开剖析。 一、牛顿所处的时代背景及其哲学思想 “牛顿( Isaac Newton ,1642 - 1727) 1642 年生于英格兰。??,1661 年,入英国剑桥大学,1665 年,伦敦流行鼠疫,牛顿回到乡间,终日思考各种问题,运用他的智慧和数年来获得的知识,发明了流数术(微积分) 、万有引力和光的分析。”[2] (p. 155) 1665 年5 月20 日,牛顿的手稿中开始有“流数术”的记载。《流数的介绍》和《用运动解决问题》等论文中介绍了流数(微分) 和积分,以及解流数方程的方法与积分表。1669 年,牛顿在他的朋友中散发了题为《运用无穷多项方程的分析学》

(完整版)大一微积分期末试卷及答案[1],推荐文档

微积分期末试卷 一、选择题(6×2)cos sin 1.()2,()()2 2 ()() B ()() D x x f x g x f x g x f x g x C π==1设在区间(0,)内( )。A是增函数,是减函数是减函数,是增函数二者都是增函数二者都是减函数 2x 1n n n n 20cos sin 1n A X (1) B X sin 2 1C X (1) x n e x x n a D a π→-=--==>、x 时,与相比是( )A高阶无穷小 B低阶无穷小 C等价无穷小 D同阶但不等价无价小3、x=0是函数y=(1-si nx)的( ) A连续点 B可去间断点 C跳跃间断点 D无穷型间断点4、下列数列有极限并且极限为1的选项为( ) n 1 X cos n =20 0000001 (5"()() ()()0 ''( )<0 D ''()'()06x f x X X o B X o C X X X X y xe =<===、若在处取得最大值,则必有( )Af 'f 'f '且f f 不存在或f 、曲线( )A仅有水平渐近线 B仅有铅直渐近线 C既有铅直又有水平渐近线 D既有铅直渐近线 1~6 DDBDBD 二、填空题 1d 12lim 2,,x d x ax b a b →++=xx2211、( )=x+1 、求过点(2,0)的一条直线,使它与曲线y=相切。这条直线方程为:x 23、函数y=的反函数及其定义域与值域分别是:2+1 x5、若则的值分别为:x+2x-3

1 ; 2 ; 3 ; 4(0,0)In 1x +322y x x =-2 log ,(0,1),1x y R x =-5解:原式=11(1)()1m lim lim 2(1)(3)34 77,6 x x x x m x m x x x m b a →→-+++===-++∴=∴=-= 三、判断题 1、无穷多个无穷小的和是无穷小( ) 2、0sin lim x x x →-∞+∞在区间(,)是连续函数()3、0f"(x )=0一定为f (x)的拐点() 4、若f(X)在处取得极值,则必有f(x)在处连续不可导( ) 0x 0x 5、设函数f(x)在上二阶可导且 []0,1'()0A '0B '(1),(1)(0),A>B>C( ) f x f f C f f <===-令(),则必有1~5 FFFFT 四、计算题 1用洛必达法则求极限2 1 20lim x x x e →解:原式=2221 11 330002(2)lim lim lim 12x x x x x x e e x e x x --→→→-===+∞-2 若34()(10),''(0) f x x f =+求解: 332233 33232233432'()4(10)312(10)''()24(10)123(10)324(10)108(10)''()0 f x x x x x f x x x x x x x x x x f x =+?=+=?++??+?=?+++∴=3 2 4 0lim(cos )x x x →求极限

相关主题
文本预览
相关文档 最新文档