当前位置:文档之家› 焊接冶金学—材料焊接性课后复习资料

焊接冶金学—材料焊接性课后复习资料

焊接冶金学—材料焊接性课后复习资料
焊接冶金学—材料焊接性课后复习资料

第三章:合金结构焊接热影响区()最高硬度

1.分析热轧钢和正火钢的强化方式和主强化元素又什么不同,二者的焊接性有何差别?在制定焊接工艺时要注意什么问题?答:热轧钢的强化方式有:(1)固溶强化,主要强化元素:,。(2)细晶强化,主要强化元素:。(3)沉淀强化,主要强化元素:.;正火钢的强化方式:(1)固溶强化,主要强化元素:强的合金元素(2)细晶强化,主要强化元素:(3)沉淀强化,主要强化元素:.;焊接性:热轧钢含有少量的合金元素,碳当量较低冷裂纹倾向不大,正火钢含有合金元素较多,淬硬性有所增加,碳当量低冷裂纹倾向不大。热轧钢被加热到1200℃以上的热影响区可能产生粗晶脆化,韧性明显降低,而是、正火钢在该条件下粗晶区的V析出相基本固溶,抑制A 长大及组织细化作用被削弱,粗晶区易出现粗大晶粒及上贝氏体、等导致韧性下降和时效敏感性增大。制定焊接工艺时根据材料的结构、板厚、使用性能要求及生产条件选择焊接方法。

2.分析Q345的焊接性特点,给出相应的焊接材料及焊接工艺要求。答345钢属于热轧钢,其碳当量小于0.4%,焊接性良好,一般不需要预热和严格控制焊接热输入,从脆硬倾向上,Q345钢连续冷却时,珠光体转变右移,使快冷下的铁素体析出,剩下富碳奥氏体来不及转变为珠光体,而转变为含碳量高的贝氏体与马氏体具有淬硬倾向,Q345刚含碳量低含锰高,具有良好的抗热裂性能,在Q345刚中加入V、达到沉淀强化作用可以消除焊接接头中的应力裂纹。被加热到1200℃以上的热影响区过热区可能产生粗晶脆化,韧性明显降低,

Q345钢经过600℃×1h退火处理,韧性大幅提高,热应变脆化倾向明显减小。;焊接材料:对焊条电弧焊焊条的选择:E5系列。埋弧焊:焊剂501,焊丝08A08.电渣焊:焊剂431、360焊丝H08。2气体保护焊:H08系列和5系列。预热温度:100~150℃。焊后热处理:电弧焊一般不进行或600~650℃回火。电渣焊900~930℃正火,600~650℃回火

3345与Q390焊接性有何差异?Q345焊接工艺是否适用于Q390焊接,为什么?答:Q345与Q390都属于热轧钢,化学成分基本相同,只是Q390的含量高于Q345,从而使Q390的碳当量大于Q345,所以Q390的淬硬性和冷裂纹倾向大于Q345,其余的焊接性基本相同。Q345的焊接工艺不一定适用于Q390的焊接,因为Q390的碳当量较大,一级Q345的热输入叫宽,有可能使Q390的热输入过大会引起接头区过热的加剧或热输入过小使冷裂纹倾向增大,过热区的脆化也变的严重。

4.低合金高强钢焊接时,选择焊接材料的原则是什么?焊后热处理对焊接材料有什么影响?答:选择原则:考虑焊缝及热影响区组织状态对焊接接头强韧性的影响。由于一般不进行焊后热处理,要求焊缝金属在焊态下应接近母材的力学性能。中碳调质钢,根据焊缝受力条件,性能要求及焊后热处理情况进行选择焊接材料,对于焊后需要进行处理的构件,焊缝金属的化学成分应与基体金属相近。

5.分析低碳调质钢焊接时可能出现的问题?简述低碳调质钢的焊接工艺要点,典型的低碳调质钢如(14、70、80)的焊接热输入应控制在

什么范围?在什么情况下采用预热措施,为什么有最低预热温度要求,如何确定最高预热温度。(P81)答:焊接时易发生脆化,焊接时由于热循环作用使热影响区强度和韧性下降。焊接工艺特点:①要求马氏体转变时的冷却速度不能太快,使马氏体有一“自回火”作用,以防止冷裂纹的产生;②要求在800~500℃之间的冷却速度大于产生脆性混合组织的临界速度。

此外,焊后一般不需热处理,采用多道多层工艺,采用窄焊道而不用横向摆动的运条技术;典型的低碳调质钢在>0.18%时不应提高冷速,<0.18%时可提高冷速(减小热输入)焊接热输入应控制在小于481;当焊接热输入提高到最大允许值裂纹还不能避免时,就必须采用预热措施,当预热温度过高时不仅对防止冷裂纹没有必要,反而会使800~500℃的冷却速度低于出现脆性混合组织的临界冷却速度,使热影响区韧性下降,所以需要避免不必要的提高预热温度,包括层间温度,因此有最低预热温度。通过实验后确定钢材的焊接热输入的最大允许值,然后根据最大热输入时冷裂纹倾向再来考虑,是否需要采取预热和预热温度大小,包括最高预热温度。

6.低碳调质钢和中碳调质钢都属于调质钢,他们的焊接热影响区脆化机制是否相同?为什么低碳钢在调质状态下焊接可以保证焊接质量,而中碳调质钢一般要求焊后热处理?答:低碳调质钢:在循环作用下,t8/5继续增加时,低碳钢调质钢发生脆化,原因是奥氏体粗化和上贝氏体与组元的形成。中碳调质钢:由于含碳高合金元素也多,有相当大淬硬倾向,马氏体转变温度低,无自回火过程,因而在焊接热

影响区易产生大量M组织大致脆化。低碳调质钢一般才用中、低热量对母材的作用而中碳钢打热量输入焊接在焊后进行及时的热处理能获得最佳性能焊接接头。

7.比较Q345、1钢、2.25和30的冷裂、热裂和消除应裂纹的倾向. 答:1、冷裂纹的倾向:Q345为热扎钢其碳含量与碳当量较底,淬硬倾向不大,因此冷裂纹敏感倾向较底。1钢为低碳调质钢,加入了多种提高淬透性的合金元素,保证强度、韧性好的低碳自回火M和部分下B的混合组织减缓冷裂倾向,2.251为珠光体耐热钢,其中、能显著提高淬硬性,控制、的含量能减缓冷裂倾向,2.25-1冷裂倾向相对敏感。30为中碳调质钢,其母材含量相对高,淬硬性大,由于M中C 含量高,有很大的过饱和度,点阵畸变更严重,因而冷裂倾向更大。

2、热裂倾向Q345含碳相对低,而含量高,钢的能达到要求,具有较好的抗热裂性能,热裂倾向较小。1钢含C低但含较高且S、P的控制严格因此热裂倾小。30含碳量及合金元素含量高,焊缝凝固结晶时,固-液相温度区间大,结晶偏析严重,焊接时易产生洁净裂纹,热裂倾向较大。

3、消除应力裂纹倾向:钢中、元素及含量对产生影响大,Q345钢中不含、,因此倾向小。1钢令、但含量都小于1%,对于有一定的敏感性;倾向峡谷年队较大,2.25其中、含量相对都较高,倾向较大。

8.同一牌号的中碳调质钢分别在调质状态和退火状态进行焊接时焊接工艺有什么差别?为什么中碳调质钢一般不在退火的状态下进行焊接?答:在调质状态下焊接,若为消除热影响区的淬硬区的淬硬

材料焊接性

焊接性:同质材料或异质材料在制造工艺条件下,能够焊接形成完整接头并满足预期使用要求的能力。 工艺焊接性:指金属或材料在一定的焊接工艺条件下,能否获得优质致密、无缺陷和具有一定使用性能的焊接接头的能力。 冶金焊接性:熔焊高温下的熔池金属与气相、熔渣等相之间发生化学冶金反应所引起的焊接性变化。 屈强比:屈服强度与抗拉强度之比称为屈强比(σs/σb) 焊缝强度匹配系数:焊缝强度与母材强度之比S=(σb)w/(σb)b,是表征接头力学非均质性的参数之一。碳当量法:各种元素中,碳对冷裂纹敏感性的影响最显著。可以把钢中合金元素的含量按相当于若干碳含量折算并叠加起来,作为粗略评定钢材冷裂纹倾向的参数指标,即所谓碳当量(CE或Ceq)。 点腐蚀:金属材料表面大部分不腐蚀或腐蚀轻微,而分散发生的局部腐蚀 应力腐蚀:不锈钢在特定的腐蚀介质和拉应力作用下出现的低于强度极限的脆性开裂现象。 1、影响材料焊接性的因素:材料、设计、工艺和服役环境 2、合金结构钢按性能分类可分为:强度用钢和低中合金特殊用钢 3、强度用钢:热轧及正火钢、低碳调质钢、中碳调质钢 4、焊缝中存在较高比例针状铁素体组织时,韧性显著提高,韧脆转变温度降低 5、低碳调质钢的种类:高强度结构钢、高强度耐磨钢、高强度韧性钢;成分:碳质量分数不大于0.22%。热处理的工艺一般为奥氏体化→淬火→回火,经淬火回火后的组织是回火低碳马氏体、下贝氏体或回火索氏体 6、中碳调质钢成分:含碳量Wc=0.25%~0.5%较高,并加入合金元素(Mn、Si、Cr、Ni、B)以保证钢的淬透性 7、提高耐热钢的热强性三种合金方式:基体固溶强化、第二相沉淀强化、晶界强化 8、不锈钢的主要腐蚀形式:均匀腐蚀、点腐蚀、缝隙腐蚀、应力腐蚀 9、铜及铜合金分为工业纯铜、黄铜、青铜及白铜 10、不锈钢的分类:按化学成铬不锈钢、铬镍不锈钢、铬锰氮不锈钢 按用途不锈钢、抗氧化钢、热强钢 按组织奥氏体钢、铁素体钢、马氏体钢、铁素体-奥氏体双相钢、沉淀硬化钢 11、铝合金的性质:化学活性强、表面极易氧化、导入性强、易造成不溶合、易形成杂质 12、铸铁分为:白口铸铁、灰铸铁、可锻铸铁、球墨铸铁及蠕墨铸铁 13、引起应力腐蚀开裂条件:环境、选择性的腐蚀介质、拉应力 1、材料焊接性包含的两个含义 一是材料在焊接加工中是否容易形成接头或产生缺陷; 二是焊接完成的接头在一定的使用条件下可靠运行的能力。 2.焊接性的影响因素 1、材料因素:母材的化学成分,状态,性能 2、设计因素:接头的应力状态,能否自由变形 3、工艺因素:焊接方法和工艺措施 4、服役环境:服役温度、服役介质、载荷性质 3、“小铁研”实验的条件 1) 试验条件试验焊缝选用的焊条应与母材相匹配,所用焊条应严格烘干。试 验焊接参数:焊条直径4mm,焊接电流(170±10)A,焊接电压(24±2)V,焊接速度(150±10)mm/min 2) 检测与裂纹率

金属材料焊接性知识要点(最新整理)

金属材料焊接性知识要点 1. 金属焊接性:指同质材料或异质材料在制造工艺条件下,能够形成完整接头并满足预期使用要求的能力。包括(工艺焊接性和使用焊接性)。 2. 工艺焊接性:金属或材料在一定的焊接工艺条件下,能否获得优质致密无缺陷和具有一定使用性能的焊接接头能力。 3. 使用焊接性:指焊接接头和整体焊接结构满足各种性能的程度,包括常规的力学性能。 4. 影响金属焊接性的因素:1、材料本因素2、设计因素3、工艺因素4、服役环境 5. 评定焊接性的原则:(1)评定焊接接头中产生工艺缺陷的倾向,为制定合理的焊接工艺提供依据;(2)评定焊接接头能否满足结构使用性能的要求。 6. 实验方法应满足的原则:1可比性 2针对性 3再现性 4经济性 7. 常用焊接性试验方法: A:斜Y坡口焊接裂纹试验法: 此法主要用于评定碳钢和低合金高强钢焊接热影响区对冷裂纹的敏感性。 B:插销试验 C:压板对接焊接裂纹试验法 D:可调拘束裂纹试验法 一问答:1、“小铁研”实验的目的是什么,适用于什么场合?了解其主要实验步骤,分析影响实验结果稳定性的因素有哪些? 答:1、目的是用于评定用于评定碳钢和低合金高强钢焊接热影响区对冷裂纹的敏感性。评定碳钢和低合金高强钢焊接热影响区对冷裂纹的敏感性时,影响结果稳定因素焊接接头拘束度预热温度角变形和未焊透。(一般认为低合金钢“小铁研实验”表面裂纹率小于20%时。用于一般焊接结构是安全的) 2、影响工艺焊接性的主要因素有哪些? 答:影响因素:(1)材料因素包括母材本身和使用的焊接材料,如焊条电弧焊的焊条、埋弧焊时的焊丝和焊剂、气体保护焊时的焊丝和保护气体等。 (2)设计因素焊接接头的结构设计会影响应力状态,从而对焊接性产生影响。 (3)工艺因素对于同一种母材,采用不同的焊接方法和工艺措施,所表现出来的焊接性有很大的差异。 (4)服役环境焊接结构的服役环境多种多样,如工作温度高低、工作介质种类、载荷性质等都属于使用条件。 3、举例说明有时工艺焊接性好的金属材料使用焊接性不一定好。 答:金属材料使用焊接性能是指焊接接头或整体焊接结构满足技术条件所规定的各种使用性能主要包括常规的力学性能或特定工作条件下的使用性能,如低温韧性、断裂韧性、高温蠕变强度、持久强度、疲劳性能以及耐蚀性、耐磨性等。而工艺焊接性是指金属或材料在一定的焊接工艺条件下,能否获得优质致密、无缺陷和具有一定使用性能的焊接接头的能力。比如低碳钢焊接性好,但其强度、硬度却没有高碳钢好。 4、为什么可以用热影响区最高硬度来评价钢铁材料的焊接冷裂纹敏感性?焊接工艺条件对热影响区最高硬度有什么影响? 答:因为(1).冷裂纹主要产生在热影响区; (2)其直接评定的是冷裂纹产生三要素中最重要的,接头淬硬组织,所以可以近似用来评价冷裂纹。 一般来说,焊接接头包括热影响区,它的硬度值相对于母材硬度值越高,证明焊接接头的

材料焊接性

一、名词解释 1.金属焊接性:指同质材料或异质材料在制造工艺条件下,能够焊接形成完整接头并满足预 期使用要求的能力。 2.Ceq(碳当量):把钢中合金元素的含量按相当于若干碳含量折算并叠加起来,作为粗略 评定钢材冷裂纹倾向的参数指标。 3.焊接线能量:单位长度焊缝上吸收热源的能量 4.熔合比:焊缝是由局部熔化的母材和填充金属组成,局部熔化的母材所占总体的质量比 为熔合比 5.t8/5:在HAZ区中,温度从800到500℃的冷却时间 6.t8/3:在HAZ区中,温度从800到300℃的冷却时间 7.t100:在HAZ区中,温度从峰值温度到100℃的冷却时间 8.微合金化:加入微量的合金元素形成碳化物或氮化物,析出微小的这些化合物产生明显 的沉淀强化作用,在固溶强化的基础上屈服强度提高50~100MPa,并保持了韧性,故称为微合金化。 9.焊缝成形系数:熔焊时,在单道焊缝横截面上焊缝宽度(B)与焊缝计算厚度(H)的比 值(F AI=B/H) 10.回火脆性:铬钼耐热钢及其焊接接头在350~500℃温度区间长期运行过程中发生脆变的 现象称为回火脆性 11.点腐蚀:是指在金属材料表面大部分不腐蚀或腐蚀轻微,而分散发生的局部腐蚀 12.凝固模式:首先是指以何种初生相(γ或δ)开始结晶进行凝固过程,其次是指以何种 相完成凝固过程。 13.稳定化处理:将含有T i和N b的不锈钢,先经过固溶处理,再经850~950℃,保温1~4 小时后,空冷的一种处理方式,其目的是使——的碳化物溶解,使碳化物保留,从而达到防止晶间腐蚀的目的 14.铬当量:为把每一铁素体元素,按其铁素体化的强烈程度折合成相当若干铬元素后的总 和 15.应力腐蚀:是指不锈钢在特定的腐蚀介质和拉应力作用下出现的低于强度极限的脆性开 裂现象 16.镍当量:为把每一奥氏体元素折合成相当若干镍元素后的总和 17.均匀腐蚀:是指接触腐蚀介质的金属表面全部产生腐蚀的现象 18.晶间腐蚀:在晶粒边界附近发生的有选择性的腐蚀现象 19.敏化处理:指经过固溶处理的奥氏体不锈钢,在500~850℃加热,将铬从固溶体中以碳 化铬的形式析出,由于碳比铬扩散快,铬来不及从晶内补充到晶界,造成奥氏体不锈钢的晶界“贫铬”现象,产生晶界腐蚀敏感性 20.热强性:是指在高温下长时间工作时对断裂的抗力(持久强度),或在高温下长时间工 作抗塑性变形的能力(蠕变抗力) 21.耐热性能:是指高温下,既有抗氧化或耐气体介质腐蚀的性能即热稳定性,同时又有足 够的强度即热强性 22.475℃脆化:在430~480℃之间长期加热并缓冷,就可导致在常温时或负温时出现强度升 高而韧性下降的现象,称之为475℃脆性 二、选择题 1.焊接性试验(冷裂、热裂) 冷:斜Y形坡口对接裂纹试验、刚性拘束裂纹试验、刚性固定对接裂纹试验、窗形拘束裂纹试验、搭接接头焊接裂纹试验、插销试验

材料焊接性考试重点试题及答案备课讲稿

材料焊接性考试重点试题及答案

3.5.分析低碳调质钢焊接时可能出现的问题?简述低碳调质钢的焊接工艺要点,典型的低碳调质钢如(14MnMoNiB、HQ70、HQ80)的焊接热输入应控制在什么范围?在什么情况下采用预热措施,为什么有最低预热温度要求,如何确定最高预热温度。 答:焊接时易发生脆化,焊接时由于热循环作用使热影响区强度和韧性下降。焊接工艺特点:焊后一般不需热处理,采用多道多层工艺,采用窄焊道而不用横向摆动的运条技术。。典型的低碳调质钢的焊接热输入应控制在Wc>0.18%时不应提高冷速,Wc<0.18%时可提高冷速(减小热输入)焊接热输入应控制在小于481KJ/cm当焊接热输入提高到最大允许值裂纹还不能避免时,就必须采用预热措施,当预热温度过高时不仅对防止冷裂纹没有必要,反而会使800~500℃的冷却速度低于出现脆性混合组织的临界冷却速度,使热影响区韧性下降,所以需要避免不必要的提高预热温度,包括屋间温度,因此有最低预热温度。通过实验后确定钢材的焊接热输入的最大允许值,然后根据最大热输入时冷裂纹倾向再来考虑,是否需要采取预热和预热温度大小,包括最高预热温度。 4.3. 18-8型不锈钢焊接接头区域在那些部位可能产生晶间腐蚀,是由于什么原因造成?如何防止?答:18-8型焊接接头有三个部位能出现腐蚀现象:{1}焊缝区晶间腐蚀。产生原因根据贫铬理论,碳与晶界附近的Cr形成Cr23C6,并在在晶界析出,导致γ晶粒外层的含Cr量降低,形成贫Cr层,使得电极电位下降,当在腐蚀介质作用下,贫Cr层成为阴极,遭受电化学腐蚀;{2}热影响区敏化区晶间腐蚀。是由于敏化区在高温时易析出铬的碳化物,形成贫Cr层,造成晶间腐

焊接冶金学—材料焊接性课后答案

第三章:合金结构焊接热影响区( HAZ最高硬度 1.分析热轧钢和正火钢的强化方式和主强化元素又什么不同,二者的焊接性有何差别?在制定焊接工艺时要注意什么问题?答:热轧钢的强化方式有:( 1)固溶强化,主要强化元素:Mn,Si 。( 2)细晶 强化,主要强化元素: Nb,V。(3)沉淀强化,主要强化元素:Nb,V. ;正火钢的强化方式:( 1)固溶强化, 主要强化元素:强的合金元素( 2)细晶强化,主要强化元素:V,Nb,Ti,Mo ( 3)沉淀强化,主要强化元素: Nb,V,Ti,Mo. ;焊接性:热轧钢含有少量的合金元素,碳当量较低冷裂纹倾向不大,正火钢含有合金元素较多,淬硬性有所增加,碳当量低冷裂纹倾向不大。热轧钢被加热到1200 C以上的热影响区可能产生粗晶脆 化,韧性明显降低,而是、正火钢在该条件下粗晶区的V析出相基本固溶,抑制 A长大及组织细化作用被 削弱,粗晶区易出现粗大晶粒及上贝氏体、 M-A 等导致韧性下降和时效敏感性增大。制定焊接工艺时根据材料的结构、板厚、使用性能要求及生产条件选择焊接方法。 2. 分析Q345的焊接性特点,给出相应的焊接材料及焊接工艺要求。答:Q345钢属于热轧钢,其碳当量小 于0.4 %,焊接性良好,一般不需要预热和严格控制焊接热输入,从脆硬倾向上,Q345钢连续冷却时,珠 光体转变右移,使快冷下的铁素体析出,剩下富碳奥氏体来不及转变为珠光体,而转变为含碳量高的贝氏 体与马氏体具有淬硬倾向,Q345刚含碳量低含锰高,具有良好的抗热裂性能,在Q345刚中加入V、Nb达 到沉淀强化作用可以消除焊接接头中的应力裂纹。被加热到1200 C以上的热影响区过热区可能产生粗晶脆 化,韧性明显降低,Q345钢经过600CX 1h退火处理,韧性大幅提高,热应变脆化倾向明显减小。;焊接材料:对焊条电弧焊焊条的选择:E5系列。埋弧焊:焊剂 SJ501,焊丝H08A/H08MnA电渣焊:焊剂HJ431、 HJ360焊丝H08MnMo A CO2气体保护焊:H08系列和YJ5系列。预热温度:100?150C。焊后热处理:电弧焊一般不进行或600?650 C回火。电渣焊 900?930 C正火,600?650 C回火 3. Q345与Q390焊接性有何差异? Q345焊接工艺是否适用于 Q390焊接,为什么?答:Q345与Q390都属 于热轧钢,化学成分基本相同,只是Q390的Mn含量高于Q345,从而使Q390的碳当量大于 Q345,所以Q390 的淬硬性和冷裂纹倾向大于Q345,其余的焊接性基本相同。Q345的焊接工艺不一定适用于 Q390的焊接, 因为Q390的碳当量较大,一级Q345的热输入叫宽,有可能使Q390的热输入过大会引起接头区过热的加剧或热输入过小使冷裂纹倾向增大,过热区的脆化也变的严重。 4. 低合金高强钢焊接时,选择焊接材料的原则是什么?焊后热处理对焊接材料有什么影响?答:选择原 则:考虑焊缝及热影响区组织状态对焊接接头强韧性的影响。由于一般不进行焊后热处理,要求焊缝金属在焊态下应接近母材的力学性能。中碳调质钢,根据焊缝受力条件,性能要求及焊后热处理情况进行选择焊接材料,对于焊后需要进行处理的构件,焊缝金属的化学成分应与基体金属相近。 5. 分析低碳调质钢焊接时可能出现的问题?简述低碳调质钢的焊接工艺要点,典型的低碳调质钢如 (14MnMoNiB HQ70 HQ80)的焊接热输入应控制在什么范围?在什么情况下采用预热措施,为什么有最低预热温度要求,如何确定最高预热温度。(P81)答:焊接时易发生脆化,焊接时由于热循环作用使热影 响区强度和韧性下降。焊接工艺特点:①要求马氏体转变时的冷却速度不能太快,使马氏体有一自回火” 作用,以防止冷裂纹的产生;② 要求在800~500C之间的冷却速度大于产生脆性混合组织的临界速度。此外,焊后一般不需热处理,采用多道多层工艺,采用窄焊道而不用横向摆动的运条技术 ; 典型的低碳调质钢在 Wc> 0.18 %时不应提高冷速,Wc< 0.18 %时可提高冷速(减小热输入)焊接热输入应控制在小于 481KJ/cm;当焊接热输入提高到最大允许值裂纹还不能避免时,就必须采用预热措施,当预热温度过高时不仅对防止冷裂纹没有必要,反而会使800?500C的冷却速度低于出现脆性混合组织的临界冷却速度,使 热影响区韧性下降,所以需要避免不必要的提高预热温度,包括层间温度,因此有最低预热温度。通过实验后确定钢材的焊接热输入的最大允许值,然后根据最大热输入时冷裂纹倾向再来考虑,是否需要采取预热和预热温度大小,包括最高预热温度。 6. 低碳调质钢和中碳调质钢都属于调质钢,他们的焊接热影响区脆化机制是否相同?为什么低碳钢在调质 状态下焊接可以保证焊接质量,而中碳调质钢一般要求焊后热处理?答:低碳调质钢:在循环作用下, t8/5 继续增加时,低碳钢调质钢发生脆化,原因是奥氏体粗化和上贝氏体与M-A组元的形成。中碳调质钢:由

焊接期末知识点总结

1、焊接的基本概念,本质,特点及分类? (1)、焊接是通过加热或加压,或两者并用,并且用或者不用填充材料,使工件达到原子结合的一种方法。 (2)、通过原子间的结合力将两个固体连接起来,对于金属来说,必须产生金属键,也就是说,被连接表面要接近到原子晶格间距。 (3)、特点: 1)焊接可将各个零部件直接连接起来,无需其他附加件,接头强度一般也能达到与母材相同,因此,焊接产品的重量轻、成本低。 2)焊接接头是通过原子间的结合力实现的连接,均匀性及整体性好、刚度大,在外力作用下不像机械连接那样产生较大的变形。 3)焊接结构具有良好的气密性、水密性,这是其他连接方法无法比拟的。 4)可连接不同类型的金属材料、不同形状及尺寸的材料,可使金属结构中材料的分布更合理。 5)可将结构复杂的大型构件分解为许多小型零部件分别加工,然后再将这些零部件焊接起来,这样就简化了金属结构的加工工艺、 缩短了加工周期。 6)焊接是一种“柔性”加工工艺,既适用于大批量生产,又适用于小批量生产。 (4)、按照焊缝金属结合的性质,分为:熔焊、压焊、钎焊。 熔化极电弧焊:螺柱焊、焊条电弧焊、埋弧焊、氩弧焊、 CO2气体保护焊、 非熔化极电弧焊:钨极氩弧焊、原子氢焊、等离子弧焊 2、电弧的基本概念、区域组成?电弧的温度分布? (1)、电弧是一种气体放电现象,通过放电将电能转变为热能与机械能。 (2)、由阴极区、阳极区、弧柱三部分组成。 1)、阴极区:长度极短、电压较大、E(电场强度)极高 2)、阳极区:长度也极短、电压较大、E极高 3)、弧柱区:长度基本上等于电弧长度,E较小 (3)、弧柱温度分布 1、轴向 1)两电极尺寸相等时,轴向温度分布均匀 2)两电极尺寸不等,轴向温度分布不均匀,靠近尺寸较小的一端,

材料焊接性考试重点试题及答案

3.5.分析低碳调质钢焊接时可能出现的问题?简述低碳调质钢的焊接工艺要点,典型的低碳调质钢如(14MnMoNiB、HQ70、HQ80)的焊接热输入应控制在什么范围?在什么情况下采用预热措施,为什么有最低预热温度要求,如何确定最高预热温度。 答:焊接时易发生脆化,焊接时由于热循环作用使热影响区强度和韧性下降。焊接工艺特点:焊后一般不需热处理,采用多道多层工艺,采用窄焊道而不用横向摆动的运条技术。。典型的低碳调质钢的焊接热输入应控制在Wc>0.18%时不应提高冷速,Wc<0.18%时可提高冷速(减小热输入)焊接热输入应控制在小于481KJ/cm当焊接热输入提高到最大允许值裂纹还不能避免时,就必须采用预热措施,当预热温度过高时不仅对防止冷裂纹没有必要,反而会使800~500℃的冷却速度低于出现脆性混合组织的临界冷却速度,使热影响区韧性下降,所以需要避免不必要的提高预热温度,包括屋间温度,因此有最低预热温度。通过实验后确定钢材的焊接热输入的最大允许值,然后根据最大热输入时冷裂纹倾向再来考虑,是否需要采取预热和预热温度大小,包括最高预热温度。 4.3. 18-8型不锈钢焊接接头区域在那些部位可能产生晶间腐蚀,是由于什么原因造成?如何防止?答:18-8型焊接接头有三个部位能出现

腐蚀现象:{1}焊缝区晶间腐蚀。产生原因根据贫铬理论,碳与晶界附近的Cr形成Cr23C6,并在在晶界析出,导致γ晶粒外层的含Cr量降低,形成贫Cr层,使得电极电位下降,当在腐蚀介质作用下,贫Cr层成为阴极,遭受电化学腐蚀;{2}热影响区敏化区晶间腐蚀。是由于敏化区在高温时易析出铬的碳化物,形成贫Cr层,造成晶间腐蚀;{3}融合区晶间腐蚀{刀状腐蚀}。只发生在焊Nb或Ti的18-8型钢的溶合区,其实质也是与M23C6沉淀而形成贫Cr有关,高温过热和中温敏化相继作用是其产生的的必要条件。防止方法:{1}控制焊缝金属化学成分,降低含碳量,加入稳定化元素Ti、Nb;{2} 控制焊缝的组织形态,形成双向组织{γ+15%δ};{3}控制敏化温度范围的停留时间;{4}焊后热处理:固溶处理,稳定化处理,消除应力处理。 4.7何为“脆化现象”?铁素体不锈钢焊接时有哪些脆化现象,各发生在 什么温度区域?如何避免?答:“脆化现象”就是材料硬度高,但塑性 和韧性差。现象与避免措施:{1}高温脆性:在900~1000℃急冷至 室温,焊接接头HAZ的塑性和韧性下降。可重新加热到750~850℃, 便可恢复其塑性。{2}σ相脆化:在570~820℃之间加热,可析出σ相 。σ相析出与焊缝金属中的化学成分、组织、加热温度、保温时间以 及预先冷变形有关。加入Mn、Nb使σ相所需Cr的含量降低,Ni能使形成σ相所需温度提高。{3}475℃脆化:在400~500℃长期加热后可出 现475℃脆化。适当降低含Cr量,有利于减轻脆化,若出现475℃脆

材料成型知识点归纳总结

一、焊接部分 1.焊接是通过局部加热或同时加压,并且利用或不用填充材料,使两个分离的焊件达到牢固结合的一种连接方法。实质——金属原子间的结合。 2.应用:制造金属结构件;2、生产机械零件;3、焊补和堆焊。 3.特点:与铆接相比1 . 节省金属;2 . 密封性好;3 . 施工简便,生产率高。与铸造相比 1 . 工序简单,生产周期短;2 . 节省金属; 3 . 较易保证质量 4.焊条电弧焊:焊条电弧焊(手工电弧焊)是用电弧作为热源,利用手工操作焊条进行焊接的熔焊方法,简称手弧焊,是应用最为广泛的焊接方法。 5.焊接电弧:焊接电弧是在电极与工件之间的气体介质中长时间稳定放电现象,即局部气体有大量电子流通过的导电现象。电极可以是焊条、钨极和碳棒。用直流电焊机时有正接法和反接法. 6.引弧方式接触短路引弧高频高压引弧 7.常见接头形式:对接搭接角接T型接头 8.保护焊缝质量的措施:1、对熔池进行有效的保护,限制空气进入焊接区(药皮、焊剂和气体等)。2、渗加有用合金元素,调整焊缝的化学成分(锰铁、硅铁等)。3、进行脱氧和脱磷。 9.牌号J×××J-结构钢焊条××-熔敷金属抗拉强度最低值×-药皮类型及焊接电源种类 10.焊缝由熔池金属结晶而成。冷却凝固后形成由铁素体和少量珠光体组成的柱状晶铸态组织。 11.热影响区的组织过热区正火区部分相变区熔合区 12.影响焊缝质量的因素影响焊缝金属组织和性能的因素有焊接材料、焊接方法、焊接工艺参数、焊接操作方法、焊接接头形式、坡口和焊后热处理等。 13.改善焊接热影响区性能方法:1.用手工电弧焊或埋弧焊焊一般低碳钢结构时,热影响区较窄,焊后不处理即可保证使用。2.重要的钢结构或用电渣焊焊接构件,要用焊后热处理方法消除热影响区。3.碳素钢、低合金结构钢构件,用焊后正火消除。4.焊后不能接受热处理的金属材料或构件,要正确选择焊接方法与焊接工艺。 14.常见的焊接缺陷裂纹夹渣未焊透未熔合焊瘤气孔咬边 15.焊接应力的产生及变形的基本形式收缩变形弯曲变形波浪变形扭曲变形角变形 16.焊接应力与变形产生的原因焊接过程中,对焊件进行了局部不均匀的加热是产生焊接应力与变形。 17.防止和减少焊接变形的措施:可以从设计和工艺两方面综合考虑来降低焊接应力。在设计焊接结构时,应采用刚性较小的接头形式,尽量减少焊缝数量和截面尺寸,避免焊缝集中等。 18.矫正焊接变形的方法机械矫正法火焰加热矫正法 19.坡口:焊件较薄时,在焊件接头处只需留出一定的间隙,用单面焊或双面焊,就可以保证焊透。焊件较厚时,为保证焊透,需预先将接头处加工成一定几何形状的坡口。 20.焊缝位置:熔焊时,焊缝所处的空间位置称为焊接位置。它有平焊、立焊、横焊和仰焊等四种。 21.埋弧自动焊的焊接电弧是在熔剂下燃烧,其引弧,维持一定弧长和向前移动电弧等主要焊接动作都由机械设备自动完成,故称为埋弧自动焊。 22.埋弧自动焊特点:1.生产率高2.焊缝质量好3.节省焊接材料和电能4.改善了劳动条件5.焊件变形小6.设备费用一次性投资较大。但由于埋弧焊是利用焊剂堆积进行焊接的,故只适用于平焊和直焊缝,不能焊空间位置焊缝及不规则焊缝。 23.自动焊工艺:仔细下料、清洁表面、准备坡口和装配点固。 24.气体保护焊:用外加气体作为电弧介质并保护电弧和焊接区的电弧焊。按照保护气体的不同,气体保护焊分为两类:使用惰性气体作为保护的称惰性气体保护焊,包括氩弧焊、氦弧焊、混合气体保护焊等;使用CO2气体作为保护的气体保护焊,简称CO2焊。特点:保护气体廉价,成本低;热量集中,焊速快,不用清渣,生产率高;明弧操作,焊接方便;热影响区小,质量好,尤其适合焊接薄板。主要用于30mm 以下厚度的低碳钢和部分合金结构钢。缺点是熔滴飞溅较为严重,焊缝不光滑,弧光强烈操作不当,易产生气孔。焊接工艺规范:采用直流反接,低电压(小于36V)和大电流密度。

焊接冶金学-材料焊接性-课后答案 李亚江版

焊接冶金学材料-焊接性课后习题答案 第一章:概述 第二章:焊接性及其实验评定 1.了解焊接性的基本概念。什么是工艺焊接性?影响工艺焊接性的主要因素有哪些? 答:焊接性是指同质材料或异质材料在制造工艺条件下,能够焊接形成完整接头并满足预期使用要求的能力。影响因素:材料因素、设计因素、工艺因素、服役环境。 第三章:合金结构钢 1.分析热轧钢和正火钢的强化方式和主强化元素又什么不同,二者的焊接性有何差别?在制定焊接工艺时要注意什么问题? 答:热轧钢的强化方式有:(1)固溶强化,主要强化元素:Mn,Si。(2)细晶强化,主要强化元素:Nb,V。(3)沉淀强化,主要强化元素:Nb,V.;正火钢的强化方式:(1)固溶强化,主要强化元素:强的合金元素(2)细晶强化,主要强化元素:V,Nb,Ti,Mo(3)沉淀强化,主要强化元素:Nb,V,Ti,Mo.;焊接性:热轧钢含有少量的合金元素,碳当量较低冷裂纹倾向不大,正火钢含有合金元素较多,淬硬性有所增加,碳当量低冷裂纹倾向不大。热轧钢被加热到1200℃以

上的热影响区可能产生粗晶脆化,韧性明显降低,而是、正火钢在该条件下粗晶区的V析出相基本固溶,抑制A长大及组织细化作用被削弱,粗晶区易出现粗大晶粒及上贝、M-A等导致韧性下降和时效敏感性增大。制定焊接工艺时根据材料的结构、板厚、使用性能要求及生产条件选择焊接。 2.分析Q345的焊接性特点,给出相应的焊接材料及焊接工艺要求。 答:Q345钢属于热轧钢,其碳当量小于0.4%,焊接性良好,一般不需要预热和严格控制焊接热输入,从脆硬倾向上,Q345钢连续冷却时,珠光体转变右移,使快冷下的铁素体析出,剩下富碳奥氏体来不及转变为珠光体,而转变为含碳量高的贝氏体与马氏体具有淬硬倾向,Q345刚含碳量低含锰高,具有良好的抗热裂性能,在Q345刚中加入V、Nb达到沉淀强化作用可以消除焊接接头中的应力裂纹。被加热到1200℃以上的热影响区过热区可能产生粗晶脆化,韧性明显降低,Q345钢经过600℃×1h退火处理,韧性大幅提高,热应变脆化倾向明显减小。;焊接材料:对焊条电弧焊焊条的选择:E5系列。埋弧焊:焊剂SJ501,焊丝H08A/H08MnA.电渣焊:焊剂HJ431、HJ360焊丝H08MnMoA。CO2气体保护焊:H08系列和YJ5系列。预热温度:100~150℃。焊后热处理:电弧焊一般不进行或600~650℃回火。电渣焊900~930℃正火,600~650℃回火

各种材料的焊接性能

金属材料的焊接性能 (1)焊接性能良好的钢材主要有: 低碳钢(含碳量<0.25);低合金钢(合金元素含量1~3、含碳量<0.20);不锈钢(合金元素含量>3、含碳量<0.18)。 (2)焊接性能一般的钢材主要有: 中碳钢(合金元素含量<1、含碳量0.25~0.35);低合金钢(合金元素含量<3、含碳量<0.30);不锈钢(合金元素含量13~25、含碳量£0.18) (3)焊接性能较差的钢材主要有: 中碳钢(合金元素含量<1、含碳量0.35~0.45);低合金钢(合金元素含量1~3、含碳量0.30~0.40);不锈钢(合金元素含量13、含碳量0.20)。 (4)焊接性能不好的钢材主要有: 中、高碳钢(合金元素含量<1、含碳量>0.45);低合金钢(合金元素含量1~3、含碳量>0.40);不锈钢(合金元素含量13、含碳量0.30~0.40)。 焊条和焊丝选择的基本要点如下: 同类钢材焊接时选择焊条主要考虑以下几类因素: 考虑工件的物理、机械性能和化学成分;考虑工件的工作条件和使用性能; 考虑工件几何形状的复杂程度、刚度大小、焊接坡口的制备情况和焊接部位所处的位置等;考虑焊接设备情况;考虑改善焊接工艺和环保;考虑成本。 异种钢材和复合钢板选择焊条主要考虑以下几类焊接情况: 一般碳钢和低合金钢间的焊接;低合金钢和奥氏体不锈钢之间的焊接;不锈钢复合钢板的焊接。 焊条和焊丝的选择参数查阅机械设计手册中焊条和焊丝等章节和焊条分类及型号(GB 980-76)、焊条的性能和用途(GB 980~984-76)等有关国家标准。 ###15CrMoR的换热器的热处理工艺 ***当板厚超过筒体内径的3%时,卷板后壳体须整体热处理。 *** 15CrMoR焊接性能良好。手工焊用E5515-B2(热307)焊条,焊前预热至200-250℃(小口径薄壁管可不预热),焊后650-700℃回火处理。自动焊丝用H13CrMoA和焊剂250等。 ###压力容器用钢的基本要求 压力容器用钢的基本要求:较高的强度,良好的塑性、韧性、制造性能和与相容性。 改善钢材性能的途径:化学成分的设计,组织结构的改变,零件表面改性。 本节对压力容器用钢的基本要求作进一步分析。 一、化学成分 钢材化学成分对其性能和热处理有较大的影响。 1、碳:碳含量增加时,钢的强度增大,可焊性下降,焊接时易在热影响区出现裂纹。 因此压力容器用钢的含碳量一般不应大于0.25%。2、钒、钛、铌等:在钢中加入钒、钛、铌等元素,可提高钢的强度和韧性。

金属材料的焊接性能

金属材料的焊接性能 (2014.2.27) 摘要:对各种常用金属材料的焊接性能进行研究,通过参考各类焊接丛书及焊接前辈多年的经验总结,对常用金属材料的焊接工艺可行性起指导作用。 关键词:碳当量;焊接性;焊接工艺参数;焊接接头 1 前言 随着中国特种设备制造业的不断发展,我们在制造产品时所用到的金属材料种类也在不断增加,相应地所必须掌握的各种金属材料的焊接性能也在不断研究和更新中,为了实际产品制造的焊接质量,熟悉金属材料的焊接性能,以制定正确的焊接工艺参数,从而获得优良的焊接接头起到至关重要的指导作用。 2 金属材料的焊接性能 2.1 金属材料焊接性的定义及其影响因素 2.1.1 金属材料焊接性的定义 金属材料的焊接性是指金属材料在采用一定的焊接工艺包括焊接方法、焊接材料、焊接规范及焊接结构形式等条件下,获得优良焊接接头的能力。一种金属,如果能用较多普通又简便的焊接工艺获得优良的焊接接头,则认为这种金属具有良好的焊接性能金属材料焊接性一般分为工艺焊接性和使用焊接性两个方面。 工艺焊接性是指在一定焊接工艺条件下,获得优良,无缺陷焊接接头的能力。它不是金属固有的性质,而是根据某种焊接方法和所采用的具体工艺措施来进行的评定。所以金属材料的工艺焊接性与焊接过程密切相关。 使用焊接性是指焊接接头或整个结构满足产品技术条件规定的使用性能的程度。使用性能取决于焊接结构的工作条件和设计上提出的技术要求。通常包括力学性能、抗低温韧性、抗脆断性能、高温蠕变、疲劳性能、持久强度、耐蚀性能和耐磨性能等。例如我们常用的S30403,S31603不锈钢就具有优良的耐蚀性能,16MnDR,09MnNiDR低温钢也有具备良好的抗低温韧性性能。

材料成型技术基础知识点总结

第一章铸造 1.铸造:将液态金属在重力或外力作用下充填到型腔中,待其凝固冷却后,获得所需形状和尺寸的毛坯或零件的方法。 2.充型:溶化合金填充铸型的过程。 3.充型能力:液态合金充满型腔,形成轮廓清晰、形状和尺寸符合要求的优质铸件的能力。 4.充型能力的影响因素: 金属液本身的流动能力(合金流动性) 浇注条件:浇注温度、充型压力 铸型条件:铸型蓄热能力、铸型温度、铸型中的气体、铸件结构 流动性是熔融金属的流动能力,是液态金属固有的属性。 5.影响合金流动性的因素: (1)合金种类:与合金的熔点、导热率、合金液的粘度等物理性能有关。 (2)化学成份:纯金属和共晶成分的合金流动性最好; (3)杂质与含气量:杂质增加粘度,流动性下降;含气量少,流动性好。 6.金属的凝固方式: ①逐层凝固方式 ②体积凝固方式或称“糊状凝固方式”。 ③中间凝固方式 7.收缩:液态合金在凝固和冷却过程中,体积和尺寸减小的现象称为合金的收缩。 收缩能使铸件产生缩孔、缩松、裂纹、变形和内应力等缺陷。 8.合金的收缩可分为三个阶段:液态收缩、凝固收缩和固态收缩。 液态收缩和凝固收缩,通常以体积收缩率表示。液态收缩和凝固收缩是铸件产生缩孔、缩松缺陷的基本原因。 合金的固态收缩,通常用线收缩率来表示。固态收缩是铸件产生内应力、裂纹和变形等缺陷的主要原因。 9.影响收缩的因素 (1)化学成分:碳素钢随含碳量增加,凝固收缩增加,而固态收缩略减。 (2)浇注温度:浇注温度愈高,过热度愈大,合金的液态收缩增加。 (3)铸件结构:铸型中的铸件冷却时,因形状和尺寸不同,各部分的冷却速度不同,结果对铸件收缩产生阻碍。 (4)铸型和型芯对铸件的收缩也产生机械阻力 10.缩孔及缩松:铸件凝固结束后常常在某些部位出现孔洞,按照孔洞的大小和分布可分为缩孔和缩松。大而集中的孔洞称为缩孔,细小而分散的孔洞称为缩松。 缩孔的形成:主要出现在金属在恒温或很窄温度范围内结晶,铸件壁呈逐层凝固方式的条件下。 缩松的形成:主要出现在呈糊状凝固方式的合金中或断面较大的铸件壁中,是被树枝状晶体分隔开的液体区难以得到补缩所致。 合金的液态收缩和凝固收缩越大,浇注温度越高,铸件的壁越厚,缩孔的容积就越大。 缩松大多分布在铸件中心轴线处、热节处、冒口根部、内浇口附近或缩孔下方。

焊接课后习题答案只是分享

绪论 1、什么是焊接? 焊接是指通过加热或加压,或两者并用,并且用或者不用填充材料,使工件达到结合的一种方法。 第一章 1、焊接热过程有何特点?焊条电弧焊焊接过程中,电弧热源的能量以什么方式传递给焊件? 其一是对焊件的加热是局部的,焊件热源集中作用在焊件的接口部位,整个焊件的加热时不均匀的。其二是焊接过程是瞬时的,焊接热源始终以一定速度运动。主要是通过热辐射和热对流。 2、什么叫焊接温度场?温度场如何表示?影响温度场的主要因素有哪些? 焊接过程中每一瞬时焊接接头上各点的温度分布状态称为焊接温度场。可用列表法、公式法或图像法表示。影响因素:1热源的性质及焊接工艺参数,2被焊金属的热物理性质,3焊件的几何尺寸级状态。 3、焊接热循环的主要参数有哪些?有何特点?有哪些影响因素? 焊接热循环的主要参数是加热速度(VH)、最高加热温度Tm、相对温度以上停留时间(tH)及冷却速焊接热循环具有以下特点:1焊接热循环的参数对焊接冶金过程和焊接热影响区的组织性能有强烈的影响,从而影响焊接质量。2焊件上各点的热循环不同主要取决于各点离焊缝中心的距离,离焊缝中心越近,其加热速度越大,峰值温度越高,冷却速度也越大。 4、焊接冶金有何特点?焊条电弧焊有几个焊接化学冶金反应区? 1焊接冶金反应分区域连续进行,2焊接冶金反应具有超高温特征,3冶金反应界面大,4焊接冶金过程时间短,5焊接金属处于不断运动状态。药皮反应区、熔滴反应区、熔池反应区。 5、焊条电弧焊各冶金反应区的冶金反应有何不同? 药皮反应区是整个冶金过程的准备阶段,其产物就是熔滴和熔池反应区的反应物,对冶金过程有一定的影响。熔滴反应区是冶金反应最剧烈的区域,对焊缝的成分影响最大。熔池反应区是对焊缝成分起决定性作用的反应区。 6、焊条加热与焊化的热量来自于哪些方面?电阻热过大队焊接质量有何影响? 来自于三个方面:焊接电弧传递给焊条的热能;焊接电流通过焊芯时产生的电阻热;化学冶金反应产生的反应热。 电阻热过大,会使焊芯和药皮升温过高引起以下不良反应:产生飞溅;药皮开裂与过早脱落,电弧燃烧不稳;焊缝成形变坏,甚至引起气孔等缺陷;药皮过早进行冶金反应,丧失冶金反应和保护能力;焊条发红变软,操作苦难。 7、熔滴过渡的作用力有哪些?其对熔滴过渡的影响如何? 1重力平焊时,重力促进熔滴过渡;立焊和仰焊时,重力阻碍熔滴过渡 2表面张力平焊时,表面张力阻碍熔滴过渡,在立焊和仰焊时,表面张力促进熔滴过渡 3电磁压缩力电磁压缩力在任何焊接位置都促使熔滴过渡 4斑点压力斑点压力的作用方向是阻碍熔滴过渡,并且正接时的斑点压力较反接时大 5等离子流力等离子流力有利于熔滴过渡 6电弧气体吹力无论焊接位置如何,电弧气体吹力都有利熔滴过渡。 8、氢对焊接质量有何影响?控制焊接接头氢含量的措施有哪些? 氢的危害性主要由以下几个方面:1形成氢气孔;2产生白点;3导致氢脆;4形成冷裂缝

材料焊接性

《材料焊接性》(专科)学案 第一章绪论 二、本章习题 1. 根据本章所述内容,举例说明低合金钢焊接在工程结构中的重要作用。 2.先进材料的发展和应用在工程中越来越受到人们的重视,简述先进材料(如陶瓷、金属间化合物和复合材料等)和金属材料相比,在工程结构中的应用有什么不同? 第2章材料焊接性及其试验方法 1. 了解焊接性的基本概念。什么是工艺焊接性?影响工艺焊接性的主要因素有哪些? 焊接性,是指金属材料在采用一定的焊接工艺包括焊接方法、焊接材料、焊接规范及焊接结构形式等条件下,获得优良焊接接头的难易程度。 工艺焊接性是指在一定焊接工艺条件下,获得优质、无缺陷的焊接接头的能力。 影响因素:材料因素、工艺因素、结构因素、使用条件。 2. 什么是热焊接性和冶金焊接性,各涉及到焊接中的什么问题? 冶金焊接性指在熔焊高温下的熔池金属与气象熔渣等相互之间繁盛化学冶金反映所引起的焊接变化

3. 举例说明有时工艺焊接性好的金属材料使用焊接性不一定好。 工艺焊接性是指影响焊接操作的焊接性能,如电弧的稳定性、焊缝的成形性、脱渣性、飞溅大小及发尘量等。而使用焊接性则是指焊件需满足的使用要求,如接头的力学性能、物理性能及化学性能要求。 有时,工艺焊接性好的材料如果焊接材料选择不当,其使用性能就不一定好:例如不锈钢焊接,若使用普通结构钢焊条焊接,其工艺焊接性很好,即焊接过程很顺利,但是,焊缝不耐腐蚀,就不能满足不锈钢焊件的使用要求,因此焊接接头是不合格的。 金属材料使用性能主要指力学性能,即金属材料在外力作用下表现出来的各种特性,如弹性、塑性、韧性、强度、硬度等。 比如低碳钢焊接性好,但其强度、硬度却没有高碳钢好| 第3章低合金结构钢的焊接 1. 分析热轧钢和正火钢的强化方式及主强化元素有什么不同。二者的焊接性有何差异,在制定焊接工艺时应注意什么问题。 热轧钢的强化方式有:(1)固溶强化,主要强化元素:Mn,Si。(2)细晶强化,主要强化元素:Nb,V。(3)沉淀强化,主要强化元素:Nb,V.;正火钢的强化方式:(1)固溶强化,主要强化元素:强的合金元素(2)细晶强化,主要强化元素:V,Nb,Ti,Mo(3)沉淀强化,主要强化元素:Nb,V,Ti,Mo.;焊接性:热轧钢含有少量的合金元素,碳当量较低冷裂纹倾向不大,正火钢含有合金元素较多,淬硬性有所增加,碳当量低冷裂纹倾向不大。热轧钢被加热到1200℃以上的热影响区可能产生粗晶脆化,韧性明显降低,而是、正火钢在该条件粗晶区的析出相基本固溶,抑制A长大及组织细化作用被削弱,粗晶区易出现粗大晶粒及上贝、M-A等导致韧性下降和时敏感性增大。制定焊接工艺时根据材料的结构、板厚、使用性能要求及生产条件选择焊接 2. 分析16Mn的焊接性特点,给出相应的焊接材料及焊接工艺要求。

常见金属材料特性

45—优质碳素结构钢{最常用中碳调质钢} 主要特性最常用中碳调质钢,综合力学性能良好,淬透性低,水淬时易生裂纹。小型件宜采用调质处理,大型件宜采用正火处理。 应用举例 主要用于制造强度高的运动件,如透平机叶轮、压缩机活塞。轴、齿轮、齿条、蜗杆等。(焊接件注意焊前预热,焊后消除应力退火)。 Q235A(A3钢){最常用中碳素结构钢} 主要特性具有高的塑性、韧性和焊接性能、冷却性能,以及一定的强度,好的冷弯性能。 应用举例广泛用于一般要求的零件和焊接结构。如受力不大的拉杆、连杆、销、轴、螺钉、螺母、套圈、支架、机座、建筑结构。 40Cr{合金结构钢} 主要特性经调质处理后,具有良好的综合力学性能、低温冲击韧度及低的缺口敏感性,淬透性良好,油冷时可得到较高的疲劳强度,水冷时复杂形状的零件易产生裂纹,冷弯塑性中等,回火或调质后切削加工性好,但焊接性不好,易产生裂纹,焊接前应预热100~150℃,一般在调质状态下室使用,还可以进行碳氮共参和高频表面淬火处理。

应用举例调质处理后用于制造中速,中载的零件,如机床齿轮、轴、蜗杆、花键轴、顶针套等。调质并高频表面淬火后用于制造表面高硬度、耐磨的零件,如齿轮、轴、主轴、曲轴、心轴、套筒、销子、连杆、螺钉螺母、进气阀等。经淬火及中温回火后用于制造重载、中速冲击的零件,如油泵转子、滑块、齿轮、主轴、套环等。经淬火及低温回火后用于制造重载、低冲击、耐磨的零件,如蜗杆、主轴、轴、套环等,碳氮共渗处即后制造尺寸较大、低温冲击韧度较高的传动零件,如轴、齿轮 等。 HT150{灰铸铁} 应用举例 齿轮箱体,机床床身,箱体,液压缸,泵体,阀体,飞轮,气缸盖,带轮,轴承盖等。 35{各种标准件、紧固件的常用材料} 主要特性强度适当,塑性较好,冷塑性高,焊接性尚可。冷态下可局部镦粗和拉丝。淬透性低,正火或调 质后使用。 应用举例适于制造小截面零件,可承受较大载荷的零件:如曲轴、杠杆、连杆、钩环等,各种标准件、紧固 件。

焊接技术知识点讲义

绪论 1)材料连接:材料通过机械、物理、化学和冶金方式,由简单型材或零件连接成复杂零件和机械部件的工艺过程。 2)冶金连接成型是:通过加热或加压(两者并用)使两个分离表面的原子达到晶格距离,并形成金属键而获得不可拆接头的工艺过程。主要用于:金属材料及金属结构的连接,通常称为焊接。 为了克服阻碍材料表面紧密接触的各种因素,在连接工艺上主要采取以下两种措施: A对被连接的材质施加压力B对被连接的材质加热(局部或整体) 3)焊接方法分类:熔化焊、压力焊、钎焊;冶金角度分为:液相连接、固相连接、液-固相连接 熔化焊属液相连接、压力焊属固相连接、钎焊属液-固相连接 第一章熔化焊的本质是小熔池熔炼和铸造。 1)焊接过程所采用的能源主要是热能和机械能。对于熔化焊来说,主要采用热能 2)焊接热源:①电弧热(手工电弧焊、埋弧焊、气体保护焊②电阻热(电阻焊、电渣焊③高频热源(钎焊)④摩擦热(摩擦焊)⑤等离子弧(等离子弧焊接⑥电子束(电子束焊⑦激光束(激光焊⑧化学热(气焊、热剂焊)3)理想的焊接热源:应具有加热面积小、功率密度高和加热温度高等特点 4)真正的热效率:用于熔化金属形成焊缝的热量所占的比例。(热效率:加热焊件所吸收的热量所占的比例) 5)温度场:某瞬时焊件上各点温度的分布称为温度场。 6)焊接热循环:在焊接热源的作用下,焊件上某点的温度随时间的变化过程称为焊接热循环 决定焊接热循环特征的基本参数:加热速度wH、最高加热温度Tm、在相变温度以上停留的时间tH、冷却速度wc 焊接热循环的影响因素:材质的影响、接头形状尺寸的影响、焊道长度的影响、预热温度的影响、线能量的影响 7)多层焊:前一层焊道对后一层焊道起预热作用;后一层焊道对前一层焊道起后热作用。 8)焊条熔化:①焊条金属的平均熔化速度gM:在单位时间内熔化的焊芯质量或长度,与焊接电流成正比; ②损失系数ψ:在焊接过程中由于飞溅,氧化和蒸发而损失的金属质量与熔化的焊芯质量之比 ③焊条金属平均熔敷系数gH:单位时间内真正进入焊接熔池的那部分金属质量 gH=(1-ψ)gM 9)熔池:母材上由熔化的焊条金属与局部熔化的母材共同组成的具有一定几何形状的液体金属区域称为熔池熔滴:焊条端部熔化形成的滴状液态金属称为熔滴。熔滴过渡三种形式:短路过渡、颗粒过渡、附壁过渡 熔渣:药皮熔化反应之后的产物,两种过渡方式:一是以薄膜形式包在熔滴外面或夹在熔滴内同熔滴一起落入熔池: 二是直接从焊条端部流入熔池或以滴状落入熔池 10)熔化焊过程中所采用的保护方式:渣保护、气保护、渣气联合保护 11)焊接的接头组成:焊缝、(熔合区)、热影响区。 焊接的接头的形成过程:焊接热过程、焊接化学冶金过程、熔池凝固和相变过程 熔化焊焊接接头形式:对接接头、角接头、丁字接头、搭接接头 13)熔合比:在焊缝金属中局部熔化母材所占的比例,称为熔合比。 14)焊接性:是指金属材料(同种或异种)在一定焊接工艺条件下,能够焊成满足结构和使用要求的焊件能力。其具体包括:结合性能,即焊接时形成缺陷的敏感性,也称工艺焊接性;使用性能,即焊成的焊接接头满足使用要求 的程度,称为焊接性 15)熔化焊焊接材料:焊条(焊条由焊芯和药皮两部分组成)、焊剂、焊丝、保护气 16)焊芯的作用:a作为电极,起导电作用,产生电弧,提供焊接热源b 焊芯受热熔化成为焊缝的填充金属c 药皮的作用:a保护作用b冶金作用c改善焊接工艺性 17)焊条选用原则:是要求焊缝和母材具有相同水平的使用性能(等强度、等成分) 18)焊接熔渣:焊接时焊条药皮或焊剂熔化后,经过一系列化学变化形成的覆盖在焊缝表面上的非金属物质称为焊接熔渣焊接熔渣在焊接过程中有机械保护作用,改善焊接工艺性能和冶金处理作用 长渣:把粘度随温度变化而缓慢变化的熔渣称为长渣 短渣:一般把黏度随温度变化而急剧变化的熔渣称为短渣 19)焊接化学冶金反应包括:药皮反应区、熔滴反应区、熔池反应区 20)电弧气氛中的H主要来源于焊接材料中的水分及有机物,吸附水和结晶水,表面杂质及空气中的水分等焊接气氛中的H的存在形式有扩散氢和残余氢 21)焊接区的N来源于焊接区周围的空气,O主要来源于焊接材料 22)脱氧剂的选择原则:a在焊接温度下脱氧剂对氧的亲合力必须比被焊金属大 b脱氧产物应熔点低,不溶于液态金属,且其密度也应小于液态金属的密度 23)脱氧反应按其进行的方式和特点分为先期脱氧、沉淀脱氧和扩散脱氧: 先期脱氧:在焊条药皮加热阶段,固态药皮中进行的脱氧反应;

相关主题
文本预览
相关文档 最新文档