当前位置:文档之家› 射频集成电路设计实验报告

射频集成电路设计实验报告

射频集成电路设计实验报告
射频集成电路设计实验报告

大连理工大学本科实验报告

课程名称:射频集成电路设计实验

学院(系):电子信息与电气工程学部

专业:集成电路设计与集成系统

班级:

学号:

学生姓名:

成绩:

2016 年 6 月 5 日

目录

实验一分立电容电感匹配仿真实验 (3)

一、实验目的 (3)

二、设计平台 (3)

三、实验原理 (3)

四、实验步骤 (3)

五、原理图设计 (3)

1、匹配电路原理图: (3)

2、匹配过程及网络响应图: (4)

3、匹配网络电路图: (4)

4、SMITH原图及仿真结果: (5)

实验二微带线单支短截线匹配仿真实验 (6)

一、实验目的 (6)

二、设计平台 (6)

三、实验原理 (6)

四、实验步骤 (6)

五、原理图设计 (6)

1、匹配电路原理图: (6)

2、匹配网络电路图: (7)

3、SMITH原图及仿真结果: (7)

五、实验心得 (8)

实验一分立电容电感匹配仿真实验

一、实验目的

使用ADS2011仿真软件,用分立的电容电感元件串并联构成无源网络,使

负载阻抗和源阻抗共轭匹配,实现电路的最大功率传输。

二、实验平台

ADS2011仿真软件

三、实验原理

在射频电路设计中,阻抗匹配十分的重要。阻抗匹配的通常做法是在源和负载之间插入一个无源网络,使负载阻抗与源阻抗共轭匹配,这种网络称为匹配网络。本次实验的目的是实现电路的最大功率传输,阻抗匹配的具体思路如下图所示,其中是看向负载的输入阻抗,是看向信号源的源阻抗,和共轭;是负载看向左边的输出阻抗,和共轭,则整个电路实现最大功率的传输。但若没有设计中间的匹配网络,那么看向左边的阻抗是,看向右边的阻抗是,阻抗不共轭,产生反射信号,即有功率损失。故电路设计当中需要在输入阻抗和输出阻抗中间插入一个匹配网络来实现阻抗变换,使变换成,使其与共轭,消除反射信号,实现最大功率传输。

由于分立元件在高频是会产生寄生效应,由其组成的匹配网络一般用于1GHz及更低的频段。故本次实验的S参数网络的扫描频段为1MHz到100MHz。如果要求匹配网络的工作频段在1GHz以上时,应采用为微带线的分布参数元件来实现。

四、实验步骤

(1)在原理图里设定输入/输出端口和相应阻抗。

(2)在原理图里加入Smith Chart Matching 控件,在控件的参数里面设置相关频率和输入/输出阻抗参数。

(3)打开Smith Chart Utility ,导入相应的Smith Chart Mactching 控件的相关参数或者输入相关参数。

(4)在Smith Chart Utility 中选用元器件完成匹配。

(5)生成匹配的原理图。

五、实验结果

(1)匹配电路原理图

其中输入阻抗:=50-j*30;输出阻抗:=100-j*40;频率扫描:1.0MHz-100MHz,步长1MHz。

(2)匹配过程及网络响应图

(3)匹配网络电路图

其中:电感L=277.61nH;电容C=20.71pF;

(4)Smith原图及仿真结果

实验二微带线单支短截线匹配仿真实验

一、实验目的

使用ADS2011仿真软件,用微带线单支短截线实现的负载与信号源负载的阻抗匹配。

二、实验平台

ADS2011仿真软件

三、实验原理

微带匹配电路分为单短截线匹配和双短截线匹配。本次实验使用的匹配电路是由串联的微带线和并联的终端开路短截线或终端短路短截线构成,通常称之为微带线单支短截线匹配电路。这种匹配电路有两种拓扑结构如下图所示:一种是负载与短截线并联之后再与一段串联传输线相连;另一种是负载与串联传输线相连后再与一段终端开路或终端短路短截线并联。本次实验使用的是前一种拓扑结构。

其基本原理与分立集总参数元件构成无缘匹配网络一致,通过组合分布参数不同的微带线构成合适的匹配网络,使负载阻抗变换为信号源阻抗的共轭阻抗。不同的是微带线的分布参数相较于集总参数计算更加复杂,且适用更高频率的传输电路。

本次实验目标:设计微带线单支短截线匹配电路,把阻抗=(50-j*200)Ohm的负载匹配到阻抗=(30+j*100)Ohm的信号源,中心频率为1.5GHz,S参数网络频率扫描范围为1GHz-2GHz,步长为0.001GHz。

四、实验步骤

(1)新建工程

(2)设计原理图

(3)选择元器件参数

(4)Smith圆图仿真

五、实验结果

(1)匹配电路原理图

(2)匹配网络电路图

(3)Smith原图及仿真结果

五.实验心得

通过本次实验,深刻理解了关于分立电容电感和单支微带传输线的阻抗匹配原理和过程。学会了使用ADS2011仿真软件。虽然距离单独解决问题设计电路仍有差距,不过熟练掌握了设计方法和工具的使用,对进一步深入的学习大有帮助。

ADS2009射频电路仿真实验实验报告

低通滤波器的设计与仿真报告 一、实验目的 (1)熟悉ADS2009的使用及操作; (2)运用此软件设计一低通录波器,通过改变C2.L1的值,使低通录波器达到预定的要求(dB值以大于—3.0以上为宜); (3)画出输出仿真曲线并标明截止频率的位置与大小。 二、低通滤波器简介 (1)定义:让某一频率以下的信号分量通过,而对该频率以上的信号分量大大抑制的电容、电感与电阻等器件的组合装置。低通滤波器是容许低于截止频率的信号通过,但高于截止频率的信号不能通过的电子滤波装置。 (2)特点与用途 特点:低损耗高抑制;分割点准确;双铜管保护;频蔽好,防水功能强。 用途:产品用途广泛,使用于很多通讯系统,如 CATV EOC 等系统。并能有效的除掉通频带以外的信号和多余的频段、频率的干扰。 低通滤波器在信号处理中的作用等同于其它领域如金融领域中移动平均数所起的作用;低通滤波器有很多种,其中,最通用的就是巴特沃斯滤波器和切比雪夫滤波器。 三、设计步骤 1,建立新项目 (1)在界面主窗口执行菜单命令【File】/【New Project...】,创建

新项目。在选择保存路径时,在“Name”栏中输入项目的名称“lab1”; (2)单击按钮“确认”,出现电路原理图设计及仿真向导对话框,按照要求进行选择选项。 2,建立一个低通录波器设计 (1)在主界面窗口,单击“New Schematic Window”图标,弹出原理图设计窗口; (2)单击“保存”图标,保存原理图,命名为“lpf1”; (3)在元件模型列表窗口中选择“Lumped-Components”集总参数元件类; (4)在左侧面板中选择电容图标,将其放置到电路图设计窗口中,并进行旋转; (5)用类似的方法将电感放置到电路图设计窗口中,并利用接地图标,把电容器的一端接地,将各个器件连接起来; (6)在元件库列表窗口选择“Simulation-S-Param”项,在该面板中选择S-parameter模拟控制器和端口Term,将其放到原理图中。双击电容“C2”并修改其参数。 低通滤波器原理图如下图1所示: 3,电路仿真 1)设置S参数控件参数 (1)双击S参数控件,打开参数设置窗口,将“Step-size”设置为0.5GHz; (2)选中【Display】选项卡,在此列出了所有可以显示在原理

带通滤波器

四川大学 电子信息专业实验报告 课程射频通信电路 实验题目射频实验 实验人许留留 2012141451075 实验时间周一晚上 带通滤波器

要求: 通带频率:4.8-5.2GHz 通带内波纹:<3dB 阻带抑制:>30dB (5.3GHz 处) 输入输出阻抗:50Ω 介质基板相对介电常数:2.65 计算过程: f 0=2f f L +H =5GHz Ω=??? ? ??f -f -f f f f f 000L H =1.467 按照设计要求,需要选用3dB 等波纹契比雪夫低通滤波电路。在归一化频率Ω=1.467处,需要具有大于30dB 的衰减。因此,要满足设计要求必须选用5阶 滤波电路。 设计电路图如下

采用优化的方式。 仿真步骤: 用微带线连接电路图,参数TL1=TL2,w=2.69mm,l=10.03mm (用ADS自带软件算出)。

由于CLin1=CLin6,CLin2=CLin5,CLin3=CLin4。设置9个变量L1,L2,L3;W1,W2,W3;S1,S2,S3。单位为mm。在V AR 1,中同样添加,初始值w设为1,l设为10,s设为1(l的长度约为 4 w和s大于0.2mm)。调节范围设置,L(9-11),W(0.2-3),S(0.2-3)。 从4GHz开始,到6GHz结束,步长为10MHz。 波形与带通滤波器较为形似则继续。

用OPTM来优化波形,设置两个GOAL,使频率在4.8-5.2GHz 间波纹大于-3dB,同时在5.3-5.4GHz间衰减小于-30dB。 按下仿真键开始仿真出现以下结果 波形图如下

集成电路设计实验报告

集成电路设计 实验报告 时间:2011年12月

实验一原理图设计 一、实验目的 1.学会使用Unix操作系统 2.学会使用CADENCE的SCHEMA TIC COMPOSOR软件 二:实验内容 使用schematic软件,设计出D触发器,设置好参数。 二、实验步骤 1、在桌面上点击Xstart图标 2、在User name:一栏中填入用户名,在Host:中填入IP地址,在Password:一栏中填入 用户密码,在protocol:中选择telnet类型 3、点击菜单上的Run!,即可进入该用户unix界面 4、系统中用户名为“test9”,密码为test123456 5、在命令行中(提示符后,如:test22>)键入以下命令 icfb&↙(回车键),其中& 表示后台工作,调出Cadence软件。 出现的主窗口所示: 6、建立库(library):窗口分Library和Technology File两部分。Library部分有Name和Directory 两项,分别输入要建立的Library的名称和路径。如果只建立进行SPICE模拟的线路图,Technology部分选择Don’t need a techfile选项。如果在库中要创立掩模版或其它的物理数据(即要建立除了schematic外的一些view),则须选择Compile a new techfile(建立新的techfile)或Attach to an existing techfile(使用原有的techfile)。 7、建立单元文件(cell):在Library Name中选择存放新文件的库,在Cell Name中输 入名称,然后在Tool选项中选择Composer-Schematic工具(进行SPICE模拟),在View Name中就会自动填上相应的View Name—schematic。当然在Tool工具中还有很多别的

射频实验报告二

实验二混频器实验 一、实验内容 1.连接混频器实验板,将混频器设置为下变频模式。 2.用射频连接线将信号加至实验电路板,观测本振信号与射频信号以及中 频输出得波形,记录并分析。 3.观测中频输出未经过滤波电路与经过滤波电路得输出信号,分别记录信 号得波形并进行分析。 4.保持本振不变,改变射频信号得功率,测量得出混频器得1dB压缩点 二、实验记录 1.记录信号源产生得信号波形。 2.用示波器在测量点3、测量点4观测本振信号与射频信号得波形,记录并分析。 测量点3:本振信号

测量点4:射频信号 分析:设本振信号为:,射频信号为:,图可知对于本振信号为15MHZ,本振信号峰峰值为380mv。 对于射频信号为20MHZ,峰峰值为52mv。 3.用示波器在测量点5与输出2端分别观测未经过滤波电路与经过滤波电路得输出信号,分别记录信号得波形并进行分析。

测量点5输出信号波形: 分析:测试点5输出信号为中频信号,从频域角度瞧,变频就是一种频谱得线性搬移,输出中频信号与输入射频信号得频谱结构相同,唯一不同得就是载频。从时域波形瞧,输出中频信号得波形与输入射频信号得波形相同,不同得也就是载波频率。 输出2端输出信号波形:

分析:滤波前得输出信号波形有毛刺,有失真,说明有噪声干扰;滤波后波形比较光滑。输出信号通过滤波器,利用电路得幅频特性,其通带得范围设为有用信号得范围,而把其她频谱成分过滤掉,从而滤除无用信号与噪声干扰。 4·改变射频信号得功率,在产生射频信号得信号源输出端与输出3端分别测量射频输入信号得幅度VRF与中频放大输出信号得幅度VIF,分析计算混频器得1dB压缩点。 输入信号幅度VRF(单位mV):100,200,300,400,500,600,700,800,900,1000,1100,1200,1300,1400,1500,1600,1700 对应输出信号幅度VIF(单位mV):66,124,176,230,278,320,365,388,408,416,445,448,456,464,464,464,472则计算可得 输入功率PRF(单位*10^4mW):1,4,9,16,25,36,49,64,81,100,121,144,169,196,225,256,289 输出功率PIF(单位*10^3mW):4、356,15、376,30、976,52、9,77、284,102、4,133、225,150、544,166、464,173、056,198、025,200、704,207、936,215、296,215、296,215、296,222、784对应图像:由于其电阻值相同,故功率可直接写成信号幅度得平方,对前四个值进行拟合后得函数为w=3、2414*x+1、1146 转换为dBm后得图像为(w=0、9011*x1+0、3469):

集成电路设计基础_期末考试题

集成电路设计基础 2010-11年第一学期试题 一、填空题(20分) 1、目前,国内已引进了12英寸0.09um 芯片生产线,由此工艺线生产出来的集成 电路特征尺寸是0.009um (大 小),指的是右图中的W (字 母)。 2、CMOS工艺可分为p阱、n阱、双阱 三种。 在CMOS工艺中,N阱里形成的晶体管是p (PMOS,NMOS)。 3、通常情况下,在IC中各晶体管之间是由场氧来隔离的;该区域的形成用到的制造工艺是氧化工艺。 4.集成电路制造过程中,把掩膜上的图形转换成晶圆上器件结构一道工序是指光 刻,包括晶圆涂光刻胶、曝光、显影、烘干四个步骤; 其中曝光方式包括①接触式、②非接触式两种。 5、阈值电压V T是指将栅极下面的si表面从P型Si变成N型Si所必要的电压,根据阈值电压的不同,常把MOS区间分成耗尽型、增强型两种。降低V T 的措施包括:降低杂质浓度、增大Cox 两种。 二、名词解释(每词4分,共20分) ①多项目晶圆(MPW) ②摩尔定律 ③掩膜 ④光刻

⑤外延 三、说明(每题5分共10分) ①说明版图与电路图的关系。 ②说明设计规则与工艺制造的关系。 四、简答与分析题(10分) 1、数字集成电路设计划分为三个综合阶段,高级综合,逻辑综合,物理综合;解释这 三个综合阶段的任务是什么? 2、分析MOSFET尺寸能够缩小的原因。 五、综合题(共4小题,40分) 1、在版图的几何设计规则中,主要包括各层的最小宽度、层与层之间的最小间距、各 层之间的最小交叠。把下图中描述的与多晶硅层描述的有关规则进行分类: (2)属于层与层之间的最小间距的是: (3)属于各层之间的最小交叠是: 2.请提取出下图所代表的电路原理图。画出用MOSFET构成的电路。

射频实验报告一

电子科技大学通信射频电路实验报告 学生姓名: 学号: 指导教师:

实验一选频回路 一、实验内容: 1.测试发放的滤波器实验板的通带。记录在不同频率的输入下输出信号的 幅度,并绘出幅频响应曲线。 2.设计带宽为5MHz,中心频率为39MHz,特征阻抗为50欧姆的5阶带 通滤波器。 3.在ADS软件上对设计出的带通滤波器进行仿真。 二、实验结果: (一)低通滤波器数据记录及幅频响应曲线 频率 1.0k 500k 1M 1.5M 2.0M 2.5M 3.0M 3.5M 4..0M 4.5M 5.0M /Hz Vpp/mv 1000 1010 1020 1020 1020 1050 952 890 832 776 736 频率/Hz 5.5M 6.0M 6.2M 6.4M 6.6M 6.8M 7.0M 7.2M 7.4M 7.6M 7.8M Vpp/mv 704 672 656 640 624 592 568 544 512 480 448 频率/Hz 8.0M 8.2M 8.4M 8.6M 8.8M 9.0M 9.2M 9.4M 9.6M 9.8M 10.0M Vpp/mv 416 400 368 376 320 288 272 256 224 208 192

(二)带通滤波器数据记录及幅频响应曲线 频率 /MHz 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 Vpp/mv 0.4 0.8 0.4 0.6 0.8 0.6 0.8 0.8 1.4 1.1 6.0 4.0 23. 8 频率 /MHz 7.0 7.2 7.4 7.6 7.8 8.0 8.2 8.4 8.6 8.8 9.0 9.2 9.4 Vpp/mv 79. 2 72. 8 66. 4 69. 6 77. 6 90. 4 108. 8 137. 6 183. 2 260 364 442 440 频率/MHz 9.6 9.8 10. 10. 2 10. 4 10. 6 10.8 11.0 11.2 11. 4 11. 6 11. 8 12. Vpp/mv 440 403 378 378 406 468 468 548 548 484 412 356 324 频率/MHz 12. 2 12. 4 12. 6 12. 8 13. 13. 2 13.4 13.6 13.8 14.

通信电路实验报告

实验十一包络检波及同步检波实验 一、实验目的 1、进一步了解调幅波的原理,掌握调幅波的解调方法。 2、掌握二极管峰值包络检波的原理。 3、掌握包络检波器的主要质量指标,检波效率及各种波形失真的现 象,分析产生的原因并思考克服的方法。 4、掌握用集成电路实现同步检波的方法。 二、实验内容 1、完成普通调幅波的解调。 2、观察抑制载波的双边带调幅波的解调。 3、观察普通调幅波解调中的对角切割失真,底部切割失真以及检波 器不加高频滤波时的现象。 三、实验仪器 1、信号源模块 1 块 2、频率计模块 1 块 3、 4 号板 1 块 4、双踪示波器 1 台

5、万用表 1 块 三、实验原理 检波过程就是一个解调过程,它与调制过程正好相反。检波器的作用就是从振幅受调制的高频信号中还原出原调制的信号。还原所得的信号,与高频调幅信号的包络变化规律一致,故又称为包络检波器。假如输入信号就是高频等幅信号,则输出就就是直流电压。这就是检波器的一种特殊情况,在测量仪器中应用比较多。例如某些高频伏特计的探头,就就是采用这种检波原理。 若输入信号就是调幅波,则输出就就是原调制信号。这种情况应用最广泛,如各种连续波工作的调幅接收机的检波器即属此类。从频谱来瞧,检波就就是将调幅信号频谱由高频搬移到低频。检波过程也就是应用非线性器件进行频率变换,首先产生许多新频率,然后通过滤波器,滤除无用频率分量,取出所需要的原调制信号。 常用的检波方法有包络检波与同步检波两种。全载波振幅调制信号的包络直接反映了调制信号的变化规律,可以用二极管包络检波的方法进行解调。而抑制载波的双边带或单边带振幅调制信号的包络不能直接反映调制信号的变化规律,无法用包络检波进行解调,所以采 用同步检波方法。 1、二极管包络检波的工作原理 当输入信号较大(大于0、5伏)时,利用二极管单向导电特性对振幅调

《集成电路设计》课程设计实验报告

《集成电路设计》课程设计实验报告 (前端设计部分) 课程设计题目:数字频率计 所在专业班级:电子科 作者姓名: 作者学号: 指导老师:

目录 (一)概述 2 2 一、设计要求2 二、设计原理 3 三、参量说明3 四、设计思路3 五、主要模块的功能如下4 六、4 七、程序运行及仿真结果4 八、有关用GW48-PK2中的数码管显示数据的几点说明5(三)方案分析 7 10 11

(一)概述 在电子技术中,频率是最基本的参数之一,并且与许多电参量的测量方案、测量结果都有十分密切的关系,因此频率的测量就显得十分重要。测量频率的方法有多种,数字频率计是其中一种。数字频率计是计算机、通讯设备、音频视频等科研生产领域不可缺少的测量仪器,是一种用十进制数字显示被测信号频率的数字测量仪器。数字频率计基本功能是测量诸如方波等其它各种单位时间内变化的物理量。在进行模拟、数字电路的设计、安装、调试过程中,由于其使用十进制数显示,测量迅速,精确度高,显示直观,经常要用到频率计。 频率计的基本原理是应用一个频率稳定度高的时基脉冲,对比测量其它信号的频率。时基脉冲的周期越长,得到的频率值就越准确。通常情况下是计算每秒内待测信号的脉冲个数,此时我们称闸门时间是1秒。闸门时间也可以大于或小于1秒,闸门的时间越长,得到的频率值就越准确,但闸门的时间越长则每测一次频率的间隔就越长,闸门时间越短,测的频率值刷新就越快,但测得的频率精度就受影响。 本文内容粗略讲述了我们小组的整个设计过程及我在这个过程中的收获。讲述了数字频率计的工作原理以及各个组成部分,记述了在整个设计过程中对各个部分的设计思路、程序编写、以及对它们的调试、对调试结果的分析。 (二)设计方案 一、设计要求: ⑴设计一个数字频率计,对方波进行频率测量。 ⑵频率测量可以采用计算每秒内待测信号的脉冲个数的方法实现。

RFID设备实验报告

RFID实验记录 一、实验目得: 随着射频识别技术(Radio FrequencyIdentification, RFID)得不断发展与传统得道路信息采集方法得效率低成本高,所以此次实验得目得就是将RFID技术运用到改善道路信息收集上、在设计RFID道路系统中,将携带有道路信息得RFID标签铺设在道路或路边单元上、配备有RFID读写器得车辆可以从标签中获取事先存储得道路信息(如,路面信息、沿线设施与沿线环境等),从而快速地掌握道路信息。RFID电子标签主要有两种,无源电子标签自身不带有电源, 其特点就是重量轻、体积小、寿命长、成本低,但就是工作距离短;有源电子标签通过自身带有得电池供电,特点就是识别距离长,但价格较高且寿命短。为了达到道路信息采集得高效性、准确性与经济性。 2016年12月9日在茨坝镇得x003水团段分别对选购得有源RFID设备与无源RFID 设备在车速、识别距离、有无遮挡物得不同变量下进行实验对比分析,最后,通过实验分析选出最合适得运用RFID技术改善道路信息采集方法得RFID设备。测试得有源RFID设备为深圳航天华拓科技有限公司得SAAT-F527全向性读写器与SAAT-T505主动式电子标签,无源得RFID设备为深圳深圳捷通科技有限公司得JT-9292读写器与JT-15532抗金属标签,下面就是本次实验得记录: 二、实验设备参数 1、有源RFID设备参数 SAAT—F527全向读写器 该型号就是工作在2.45GHz频段得有源RFID读写器,该 产品采用外置天线安装方式,可灵活配置各类全向、定向天线,具 有覆盖范围广、识别率高、扩展性强等特点,读取距离在0到2 00米,范围可调、广泛应用于医院、学校、工矿灯单位得人员区 域定位等集成应用领域。 技术指标: 性能指标 工作频率2.4-2.48GHz 输出功率+15dBm (软件可调) 接收灵敏度-95 dBm 天线类型全向天线 通信接口RS—232接口,10M/100M自适应以太网接口

模拟集成电路设计期末试卷

《模拟集成电路设计原理》期末考试 一.填空题(每空1分,共14分) 1、与其它类型的晶体管相比,MOS器件的尺寸很容易按____比例____缩小,CMOS电路被证明具有_ 较低__的制造成本。 2、放大应用时,通常使MOS管工作在_ 饱和_区,电流受栅源过驱动电压控制,我们定义_跨导_来 表示电压转换电流的能力。 3、λ为沟长调制效应系数,对于较长的沟道,λ值____较小___(较大、较小)。 4、源跟随器主要应用是起到___电压缓冲器___的作用。 5、共源共栅放大器结构的一个重要特性就是_输出阻抗_很高,因此可以做成___恒定电流源_。 6、由于_尾电流源输出阻抗为有限值_或_电路不完全对称_等因素,共模输入电平的变化会引起差动输 出的改变。 7、理想情况下,_电流镜_结构可以精确地复制电流而不受工艺和温度的影响,实际应用中,为了抑制 沟长调制效应带来的误差,可以进一步将其改进为__共源共栅电流镜__结构。 8、为方便求解,在一定条件下可用___极点—结点关联_法估算系统的极点频率。 9、与差动对结合使用的有源电流镜结构如下图所示,电路的输入电容C in为__ C F(1-A)__。 10、λ为沟长调制效应系数,λ值与沟道长度成___反比__(正比、反比)。 二.名词解释(每题3分,共15分) 1、阱 解:在CMOS工艺中,PMOS管与NMOS管必须做在同一衬底上,其中某一类器件要做在一个“局部衬底”上,这块与衬底掺杂类型相反的“局部衬底”叫做阱。 2、亚阈值导电效应 解:实际上,V GS=V TH时,一个“弱”的反型层仍然存在,并有一些源漏电流,甚至当V GS

彩灯控制器电路设计报告

西安科技大学高新学院 毕业设计(论文) 题目彩灯控制器电路设计 院(系、部) 机电信息学院 专业及班级电专1202班 姓名张森 指导教师田晓萍 日期 2015年5月28日

摘要 随着微电子技术的发展,人民的生活水平不断提高,人们对周围环境的美化和照明已不仅限于单调的白炽灯,彩灯已成为时尚的潮流。彩灯控制器的实用价值在日常生产实践,日常生活中的作用也日益突出。基于各种器件的彩灯也都出现,单片机因其价格低廉、使用方便、控制简单而成为控制彩灯的主要器件。 目前市场上更多用全硬件电路实现,电路结构复杂,结构单一,一旦制成成品就只能按固定模式,不能根据不同场合,不同时段调节亮度时间,模式和闪烁频率等动态参数,而且一些电路存在芯片过多,电路复杂,功率损耗大,亮灯样式单调缺乏可操作性等缺点,设计一种新型彩灯已迫不及待。 近年来,彩灯对于美化、亮化城市有着不可轻视的重要作用。因此作为城市装饰的彩灯需求量越来越大,对于彩灯的技术和花样也越来越高。目前市场上各种式样的LED彩灯多半是采用全硬件电路实现,存在电路结构复杂、功能单一等局限性,因此有必要对现有的彩灯控制器进行改进。 关键词:LED彩灯;STC-89C52单片机;彩灯控制器。

目录 1前言 (1) 1.1设计目的 (1) 1.2设计要求 (1) 1.3总体方案设计与选择的论证 (2) 2节日彩灯控制器的设计 (4) 2.1核心芯片及主要元件功能介绍 (4) 2.1.1 AT89S52芯片 (4) 表1 (5) 2.1.2 74HC377芯片 (5) 2.1.3 74HC138芯片 (6) 2.2硬件设计 (7) 2.2.1直流电源电路 (7) 2.2.2按键电路 (8) 2.2.3时钟复位电路 (8) 2.2.4 LED显示电路 (9) 2.2.5硬件调试 (9) 2.3软件设计 (10) 3 总结 (15) 3.1实验方案设计的可行性、有效性 (15) 3.2设计内容的实用性 (15) 3.3心得 (16) 附录 (16) 参考文献 (18) 致谢 (19)

通信电路实验报告

第一次实验报告 实验一高频小信号放大器 一、实验目的 1、掌握高频小信号谐振电压放大器的电路组成与基本工作原理。 2、熟悉谐振回路的调谐方法及测试方法。 3、掌握高频谐振放大器处于谐振时各项主要技术指标意义及测试技能。 二、实验内容 (1)单调谐高频小信号放大器仿真

图1.1 单调谐高频小信号放大器(2)双调谐高频小信号放大器

(a) (b) 图1.2 双调谐高频小信号放大器

三、实验结果 (1)单调谐高频小信号放大器仿真 1、仿真电路图 2、根据电路中选频网络参数值,计算该电路的谐振频率ωp。 ωp ==2.94Mrad/s fp 467kHz 由于三极管的电容会对谐振回路造成影响,因此我适当增大了谐振回路 中的电容值(减小电感),ωp的误差减小,仿真中实际fp464kHz 3、通过仿真,观察示波器中的输入输出波形,计算电压增益A v0。

A = = 11.08 db v0 4、利用软件中的波特图仪观察通频带,并计算矩形系数。 f0.7 : 446kHz~481kHz f0.1 : 327kHz~657kHz 矩形系数约为:9.4 5、改变信号源的频率(信号源幅值不变),通过示波器或着万用表测量输 出电压的有效值,计算出输出电压的振幅值,完成下列表,并汇出f~Av 相应的图,根据图粗略计算出通频带。

通频带:446kHz~481kHz 带宽:35kHZ 6、 在电路的输入端加入谐振频率的2、4、6次谐波,通过示波器观察图形, 体会该电路的选频作用。 二次谐波: 加入四次谐波 f 0(KHz ) 65 75 165 265 365 465 1065 1665 2265 2865 3465 4065 U 0(mv) 0.012 9 0.0155 0.0404 0.0858 0.2150 1.274 0.0526 0.0301 0.0216 0.0173 0.0144 0.0126 A V (db) -28.8 9 -27.38 -19.06 -12.60 -4.894 11.43 -16.46 -21.36 -24.22 -26.22 -27.73 -28.93

高频设计性实验及考查任务书

通信电路实验设计性实验及考查任务书 题目一、集成模拟乘法器在通信中的应用设计 1.设计目的:掌握模拟乘法器的功能及应用;综合运用射频通信电路的理论知识,加 强电路设计、仿真和调试能力。 2.设计任务:用集成模拟乘法器MC1496设计其应用电路。 3.设计要求: (1) 进行电路设计、并用multisim进行电路仿真和电路调试。至少实现如下功能: a)单音普通调幅波,调制度可调;双边带调幅波。 b)混频功能 c)二倍频。 d)自行设计其他功能 (仿真时,必须充分仿真电路的各个指标和参数,如静态工作点的影响,温度特性、 频率特性、重要元件对电路的影响、交流分析等等。) (2) 在设计电路的基础上,自行设计实验步骤,测出试验数据和指标,并与仿真数据比较,写出调试碰到的问题和体会 (3)自行设计实现其他功能,要求实用合理. (4)写出实验报告,实验报告必须符合设计(综合)性实验要求,有原理图,设计思想,方案比较或可行性,设计指标仿真与实验的比较等 报告要求 报告包括以下几个部分内容: 1.概述,论述你所做的设计的内容,技术要求,难点或者特色等等 2.给出整体方案,简述优势 3.设计模块电路,给出参数计算和分析,性能指标, 4.给出仿真内容或者实验数据,包括静态工作点的计算,交流分析,功能仿真等等 5.总结 6.参考书目和文章

通信电路实验设计性实验及考查任务书 题目二 .调幅系统实验 1. 设计目的:掌握高频系统设计的概念,掌握调幅发射接收和整机组成原理,加强电路 设计和仿真能力,掌握系统联调的方法,培养解决实际设计问题的能力 1. 任务:设计一调幅发射接收系统 2. 设计要求 (1)进行电路设计、并用multisim进行电路仿真和电路调试。至少实现如下功能: a)自行设计产生载波,发射载波频率任意 b)设计调幅发射和接收模块,并联合仿真。 c)调制信号可以自行产生,也可以用音频信号,, d)发射功率最好在50mW以内。 e)自行设计仿真其它功能 (仿真时,必须充分仿真电路的各个指标和参数,如静态工作点的影响,温度特性、频率特性、重要元件对电路的影响、交流分析等等。) (2) 在设计电路的基础上,自行设计实验步骤,实现发射与接收联调,测出试验数据和 指标,并与仿真数据比较,写出调试碰到的问题和体会 (3)自行设计实现其他功能,要求实用合理. (4)写出实验报告,实验报告必须符合设计(综合)性实验要求,有原理图,设计思想,方 案比较或可行性,设计指标仿真与实验的比较等 报告要求 报告包括以下几个部分内容: 1.概述,论述你所做的设计的内容,技术要求,难点或者特色等等 2.给出整体方案,简述优势 3.设计模块电路,给出参数计算和分析,性能指标, 4.给出仿真内容或者实验数据,包括静态工作点的计算,交流分析,功能仿真等等 5.总结 6.参考书目和文章

cmos模拟集成电路设计实验报告

北京邮电大学 实验报告 实验题目:cmos模拟集成电路实验 姓名:何明枢 班级:2013211207 班内序号:19 学号:2013211007 指导老师:韩可 日期:2016 年 1 月16 日星期六

目录 实验一:共源级放大器性能分析 (1) 一、实验目的 (1) 二、实验内容 (1) 三、实验结果 (1) 四、实验结果分析 (3) 实验二:差分放大器设计 (4) 一、实验目的 (4) 二、实验要求 (4) 三、实验原理 (4) 四、实验结果 (5) 五、思考题 (6) 实验三:电流源负载差分放大器设计 (7) 一、实验目的 (7) 二、实验内容 (7) 三、差分放大器的设计方法 (7) 四、实验原理 (7) 五、实验结果 (9) 六、实验分析 (10) 实验五:共源共栅电流镜设计 (11) 一、实验目的 (11) 二、实验题目及要求 (11) 三、实验内容 (11) 四、实验原理 (11) 五、实验结果 (14) 六、电路工作状态分析 (15) 实验六:两级运算放大器设计 (17) 一、实验目的 (17) 二、实验要求 (17) 三、实验内容 (17) 四、实验原理 (21) 五、实验结果 (23) 六、思考题 (24) 七、实验结果分析 (24) 实验总结与体会 (26) 一、实验中遇到的的问题 (26) 二、实验体会 (26) 三、对课程的一些建议 (27)

实验一:共源级放大器性能分析 一、实验目的 1、掌握synopsys软件启动和电路原理图(schematic)设计输入方法; 2、掌握使用synopsys电路仿真软件custom designer对原理图进行电路特性仿真; 3、输入共源级放大器电路并对其进行DC、AC分析,绘制曲线; 4、深入理解共源级放大器的工作原理以及mos管参数的改变对放大器性能的影响 二、实验内容 1、启动synopsys,建立库及Cellview文件。 2、输入共源级放大器电路图。 3、设置仿真环境。 4、仿真并查看仿真结果,绘制曲线。 三、实验结果 1、实验电路图

RFID通讯技术实验报告

· RFID通讯技术试验 专业: 物流工程 班级: 物流1201 学生: 学号: 指导教师:

一.前言 射频识别(RFID)是一种无线通信技术,可以通过无线电讯号识别特定目标并读写相关数据,而无需识别系统与特定目标之间建立机械或者光学接触。 无线电的信号是通过调成无线电频率的电磁场,把数据从附着在物品上的标签上传送出去,以自动辨识与追踪该物品。某些标签在识别时从识别器发出的电磁场中就可以得到能量,并不需要电池;也有标签本身拥有电源,并可以主动发出无线电波(调成无线电频率的电磁场)。标签包含了电子存储的信息,数米之都可以识别。与条形码不同的是,射频标签不需要处在识别器视线之,也可以嵌入被追踪物体之。 许多行业都运用了射频识别技术。将标签附着在一辆正在生产中的汽车,厂方便可以追踪此车在生产线上的进度。仓库可以追踪药品的所在。射频标签也可以附于牲畜与宠物上,方便对牲畜与宠物的积极识别(积极识别意思是防止数只牲畜使用同一个身份)。射频识别的身份识别卡可以使员工得以进入锁住的建筑部分,汽车上的射频应答器也可以用来征收收费路段与停车场的费用。 某些射频标签附在衣物、个人财物上,甚至于植入人体之。由于这项技术可能会在未经本人许可的情况下读取个人信息,这项技术也会有侵犯个人隐私忧患。 二.实验目的 1. 了解RFID相关知识,了解RFID模块读写IC卡数据的原理与方法(电子钱包试验);

2. 模拟企业生产线上的物料跟踪情况,掌握RFID的应用(企业物流采集跟踪系统演示)。 三.实验原理 1. 利用RFID模块完成自动识别、读取IC卡信息,实现RFID电子钱包的功能,给IC卡充值、扣款(电子钱包试验); 2.利用4个RFID模块代替4个工位,并与软件系统绑定(添加,删除),由IC卡模拟物料的移动,并对物料在生产线上所经过的工位的记录进行查询,而且可以对物料的当前工位定位。 四.实验设备 《仓库状态数据检测开发系统》试验箱、IC卡、、锂电池、ZigBee通讯模块、RFID阅读器,ID卡、条码扫描器。 五.实验过程 5.1电子钱包试验 (1)先用电源线将试验箱连上电源,打开电源开关,然后打开Contex-A8电源开关,如图1所示。

《模拟集成电路设计》复习

《模拟集成电路设计》复习 答疑安排: 第13周星期二(5月29日),上午9:00-11:30,下午14:30-17:00,工三310 考试题型: 七道大题:第2章一题,第3、4章各两题,第5章一题,第6、7章共一题 考试注意事项: 所有题目采用课本P32表2.1的数据,V DD=3V,C OX=3.84 10-7F/cm2,忽略漏/源横向扩散长度L D。试题会给出所需参数值。 时刻区分大信号、小信号。 时刻注意是否考虑二级效应。 题目有“推导”两字时,需给出求解过程。 必考:画小信号等效电路 复习题 例2.2补充问题:(1)分析MOS工作区间变化情况;(2)画出I D-V DS 曲线;(3)推导线性区跨导表达式。 习题2.2注意:跨导的单位。

习题2.3补充问题:给定参数值,计算本征增益的数值。注意:画曲线时需考虑λ与L的关系。 例3.5 补充问题:画出图3.21(b)电路的小信号等效电路,推导增益表达式。 习题3.2问题(b)删去。补充问题:求R out。 习题3.12解题思路:I1→V out→V GS2→(W/L)2→A v 习题3.14 输出摆幅=V DD-V OD1-|V OD2|。 解题思路:A v,R out→g m1→(W/L)1→V OD1→|V OD2|→(W/L)2 第4章课件第49页的题目差模增益-g m1(r o1||r o3),共模增益0,共模抑制比+∞ 例4.6 习题4.18 只要求图4.38(a)-(d)。补充问题:画出半边电路。注意:画半边电路时去掉电流源M5。 习题4.25 计算过驱动电压V OD时忽略沟道长度调制效应。注意双端输出摆幅为单端时的2倍。 习题5.1问题(e)删去。问题(c)和(d)有简单的计算方法。 习题5.5问题(b)(c)删去。λ=0。 例6.4补充问题:画出低频小信号等效电路,推导低频小信号增益;写出C D、C S分别包含哪些MOS电容。 习题6.9 只要求图6.39(a)(b)(c)。 例7.11只计算热输入参考噪声电压。 习题7.11补充问题:推导小信号增益。

RLC串联谐振电路(Multisim仿真实训)

新疆大学 实习(实训)报告 实习(实训)名称: __________ 电工电子实习(EDA __________ 学院: __________________ 专业班级_________________________________ 指导教师______________________ 报告人____________________________ 学号 ______ 时间: 实习主要内容: 1. 运用Multisim仿真软件自行设计一个RLC串联电路,并自选合适的参数。 2. 用调节频率法测量RLC串联谐振电路的谐振频率f 0 ,观测谐振现象。 3. 用波特图示仪观察幅频特性。 4?得出结论并思考本次实验的收获与体会。 主要收获体会与存在的问题: 本次实验用Multisim 仿真软件对RLC串联谐振电路进行分析,设计出了准确的电路模型,也仿真出了正确的结果。通过本次实验加深了自己对RLC振荡电路的理解与应用,更学习熟悉了Multisim 仿真软件,达到了实验的目

的。存在的问题主要表现在一些测量仪器不熟悉,连接时会出现一些错误,但最终都实验成功了。 指导教师意见: 指导教师签字: 年月日 备注: 绪论 Multisim仿真软件的简要介绍 Multisim是In terctive Image Tech no logies公司推出的一个专门用于电子电 路仿真和设计的软件,目前在电路分析、仿真与设计等应用中较为广泛。该软件以图形界面为主,采用菜单栏、工具栏和热键相结合的方式,具有一般Windows 应用软件的界面风格,用户可以根据自己的习惯和熟练程度自如使用。尤其是多种可放置到设计电路中的虚拟仪表,使电路的仿真分析操作更符合工程技术人员的工作习惯。下面主要针对Multisim11.0软件中基本的仿真与分析方法做简单介绍。 EDA就是“ Electronic Design Automation ”的缩写技术已经在电子设计领 域得到广泛应用。发达国家目前已经基本上不存在电子产品的手工设计。一台电子产品的设计过程,从概念的确立,到包括电路原理、PCB版图、单片 机程序、机内结构、FPGA的构建及仿真、外观界面、热稳定分析、电磁兼容分析在内的物理级设计再到PCB钻孔图、自动贴片、焊膏漏印、元器件清 单、总装配图等生产所需资料等等全部在计算机上完成。EDA已经成为集成 电路、印制电路板、电子整机系统设计的主要技术手段。 功能: 1. 直观的图形界面 整个操作界面就像一个电子实验工作台,绘制电路所需的元器件和仿真所需的测试仪器均可直接拖放到屏幕上,轻点鼠标可用导线将它们连接起来,软件仪器的控制面板和操作方式都与实物相似,测量数据、波形和特性曲线如同在真实仪器上看到的;

射频ADS微波HFSS相关 射频电路基础实验教学大纲改

《射频电路基础实验》教学大纲 一、课程名称 射频电路基础实验 Experiment of Basis of RF Circuit 二、学时与学分 32学时;2学分 三、授课对象 电信系四年级本科生 四、先修课程 微波技术基础 五、教学目的 本实验课是一门独立设置实验课,旨在通过课堂的讲解和现场实验操作,使学生了解射频电路设计的基础知识,掌握主要射频器件的基本原理和工作特性及其测试方法,熟悉射频测试仪器矢量网络分析仪和频谱仪的工作原理和使用方法。通过实验,培养学生的实践动手能力,促进对专业理论知识的理解,提高学生的综合技术素质,培养其创新能力。 六、主要内容、基本要求及学时分配 实验一网络分析仪和频谱仪的原理及其使用 主要内容:了解网络分析仪和频谱仪的工作原理及熟悉使用操作方法。 基本要求:了解矢量网络分析仪工作原理,掌握正确的操作步骤,并理解网络分析仪测量的射频电路的S参数的物理意义;了解频谱分析仪的一般功能原理,初步掌握 AT5011频谱分析仪的使用方法,学会使用AT5011频谱分析仪观察简单信号的频 谱特性。 学时分配:4学时 实验二射频电路设计辅助软件ADS的使用方法 主要内容:学习射频电路仿真软件ADS(Advance Design System)的初步使用、构造原理图及仿真的方法。 基本要求:学会使用射频电路仿真软件ADS进行基本射频电路设计与仿真的操作方法。

学时分配:4学时 实验三射频滤波器实验 主要内容:学习射频低通、带通滤波器的工作原理和使用ADS软件设计滤波器的方法,并使用网络分析仪测量射频滤波器的幅频特性参数。 基本要求:掌握微带线低通和带通滤波器的工作原理、设计方法与测量方法。 学时分配:4学时 实验四射频功率分配器实验 主要内容:学习射频功率分配器的工作原理和使用ADS软件设计功率分配器的方法,并使用网络分析仪测量功率分配器的特性参数。 基本要求:掌握射频功率分配器的工作原理、设计方法与测量方法。 学时分配:4学时 实验五GSM可调增益放大器实验 主要内容:学习射频放大器的工作原理和使用ADS软件设计射频放大器的方法,介绍GSM 标准对射频放大器的设计要求以及可调增益放大器的设计方法,并使用网络分析 仪测量已有的GSM可调增益放大器的性能参数。 基本要求:掌握射频放大器的工作原理,并初步掌握射频放大器的设计方法和测量方法,并了解GSM标准的射频放大器的要求以及可调增益放大器的设计方法。 学时分配:4学时 实验六CDMA频段平衡式放大器实验 主要内容:学习射频平衡放大器的工作原理,介绍CDMA-IS95标准对射频放大器的设计要求以及平衡放大器的设计方法,并使用网络分析仪测量已有的CDMA频段平 衡放大器的性能参数。 基本要求:掌握射频平衡放大器的工作原理,并初步掌握射频放大器的设计方法和测量方法,并了解CDMA-IS95标准的射频放大器的要求。 学时分配:4学时 实验七射频PLL锁相环实验 主要内容:学习射频PLL锁相环的工作原理,并利用频谱仪测试射频PLL锁相环的主要性能

收音机实验报告..

《高频电子线路》课程设计报告 题目SD-105 七管半导体收音机 学院(部)信息学院 专业通信工程 班级2011240401 学生姓名张静 学号33 指导教师宋蓓蓓,利骏

目录 一、概括……………………………………页码 二、收音机工作原理……………………………………页码 三、各部分设计及原理分析……………………页码 四、实验仿真及结果……………………………页码 五、结论…………………………………………页码 六、心得体会……………………………………页码 七、参考文献……………………………………页码

调幅半导体收音机原理及其调试 一概述:收音机的发明人类自从发现能利用电波传递信息以来,就不断研究出不同的方法来增加通信的可靠性、通信的距离、设备的微形化、省电化、轻巧化等。接收信息所用的接收机,俗称为收音机。目前的无线电接收机不单只能收音,且还有可以接收影像的电视机、数字信息的电报机等。 随着广播技术的发展,收音机也在不断更新换代。自1920年开发了无线电广播的半个多世纪中,收音机经历了电子管收音机、晶体管收音机、集成电路收音机的三代变化,功能日趋增多,质量日益提高。20世纪80年代开始,收音机又朝着电路集成化、显示数字化、声音立体化、功能电脑化、结构小型化等方向发展。 1947年、美国贝尔实验室发明了世界上第一个晶体管,从此以后.开始了收音机的晶体管时代.并且逐步结束了以矿石收音机、电子管收音机为代表的收音机的初级阶段。 调幅收音机:由输入回路、本振回路、混频电路、检波电路、自动增益控制电路(AGC)及音频功率放大电路组成输入回路由天线线圈和可变电容构成,本振回路由本振线圈和可变电容构成,本振信号经内部混频器,与输入信号相混合。混频信号经中周和455kHz陶瓷滤波器构成的中频选择回路得到中频信号。至此,电台的信号就变成了以

数字集成电路设计实验报告

哈尔滨理工大学数字集成电路设计实验报告 学院:应用科学学院 专业班级:电科12 - 1班 学号:32 姓名:周龙 指导教师:刘倩 2015年5月20日

实验一、反相器版图设计 1.实验目的 1)、熟悉mos晶体管版图结构及绘制步骤; 2)、熟悉反相器版图结构及版图仿真; 2. 实验内容 1)绘制PMOS布局图; 2)绘制NMOS布局图; 3)绘制反相器布局图并仿真; 3. 实验步骤 1、绘制PMOS布局图: (1) 绘制N Well图层;(2) 绘制Active图层; (3) 绘制P Select图层; (4) 绘制Poly图层; (5) 绘制Active Contact图层;(6) 绘制Metal1图层; (7) 设计规则检查;(8) 检查错误; (9) 修改错误; (10)截面观察; 2、绘制NMOS布局图: (1) 新增NMOS组件;(2) 编辑NMOS组件;(3) 设计导览; 3、绘制反相器布局图: (1) 取代设定;(2) 编辑组件;(3) 坐标设定;(4) 复制组件;(5) 引用nmos组件;(6) 引用pmos组件;(7) 设计规则检查;(8) 新增PMOS基板节点组件;(9) 编辑PMOS基板节点组件;(10) 新增NMOS基板接触点; (11) 编辑NMOS基板节点组件;(12) 引用Basecontactp组件;(13) 引用Basecontactn 组件;(14) 连接闸极Poly;(15) 连接汲极;(16) 绘制电源线;(17) 标出Vdd 与GND节点;(18) 连接电源与接触点;(19) 加入输入端口;(20) 加入输出端口;(21) 更改组件名称;(22) 将布局图转化成T-Spice文件;(23) T-Spice 模拟; 4. 实验结果 nmos版图

相关主题
文本预览
相关文档 最新文档