当前位置:文档之家› 微波传输线理论及应用

微波传输线理论及应用

微波传输线理论及应用
微波传输线理论及应用

微波传输线理论及应用

传输线的种类

凡是能够引导电磁波沿一定方向传输的导体、介质系统均可成为传输线,微波传输线不仅可以用来传输电磁能量,还可以用来构成多种微波元件,传输线的种类繁多,按其传输的电磁波类型可以分为三类:

1.TEM波传输线,其中包括平行双线、同轴线、带状线和微带线等。这类传输线主要用来传输TEM波,具有频带宽的特点。但在高频传输电磁波能量损耗较大。

2.TE波和TM传输线,又称包微波传输线,其中包括矩形波导、圆波导、脊波导和椭圆波导等,这类传输线主要用来传输TE波和TM等色散波,具有损耗小、功率容量大、体积大而带宽窄等特点。

3.表面波传输线,包括介质波导、镜像线、单极线,他主要用于传输表面波,电磁波能量沿传输线表面传输,这类传输线具有结构简单、体积小、功率容量大等特点,主要用于毫米波段,用来制作表面天线及某些微波元件。

一般对微波传输线基本要求是:能量损耗小、传输效率高、功率容量大、工作频带宽、尺寸均匀等。目前,微波波段使用最多的是矩形波导、圆波导、同轴线、带状线和微带线。

分布参数及分布参数电路

传输线有长线和短线之分,所谓长线是指传输线的几何长度与线上传输电磁波的波长比值(电长度)大于或接近于1,反之成为短

线。

长线和短线只是一个相对概念,均相对电磁波波长而言,长线并不意味着几何长度很长,而短线也并不意味着几何长度很短。例如在微波领域中,1M 的传输线对于1000MHZ (波长30cm )的电磁波而言属于长线,在电力系统中1000MHz 的输电线对于频率50Hz (波长为6000KM )的交流而言却是短线。

根据传输线的分布参数,可分为均匀分布参数和不均匀分布参数,本节主要研究长线的分布参数,是沿线均匀分布,不随位置而变化,均匀传输线一般有四个分布参数,分别用单位长度传输线分布电阻0R (m /Ω)、分布电导0G (m S /)、分布电感0L (m

H

/)、分布电容

0C (m

F /)来描述,他们的值取决于传输线的类型、尺寸、导体材

料和周围介质参数,可用静态法求得。

我们把均匀传输线分割成许多微元段dZ (Z ?)(λ

<

,λ为

工作波长),这样每个微元段可看成集中参数电路,用一个T 型网络来等效,于是整个传输线可等效成无穷多个T 型网络纵连如下图:

传输线方程及解 传输线方程

传输线方程式研究传输线上的电压、电流变化规律及其相互关系的方程,它可由均匀传输线的等效电路导出。,取一个微元段dZ ,其集中参数分别为dZ R 0,dZ G 0,dZ L 0,dZ C 0

等效电路如图2所示。传输线的始端接角频率为?的正弦信号源,终端接负载阻抗Z H ,坐标原点选在始端。设距始端Z 处的电压和电流

分别为u 和I ,经过dZ 段后,电压和电流分别为du u -和di i -

图1 均匀传输线及其等效电路

图2

Z

?段传输线的等效电路

传输线上的电压u 电流I ,既是坐标Z 的函数也是时间t 的函数,可分别表示为),(t Z u u =,),(t Z i i =,经过dZ 段后,电压和电流的变化量

di -)

dZ Z +

根据克西可夫定律而知:

dZ

C j G Z U Z dI )(()(00?+= (a ) (1)

[]dZ

L j R Z dI Z I Z dU )()()()(00?++= (b )

展开(b )式得:

[]dZ

L j R Z dI L j R Z I Z dU ))(())(()(0000??+++=

从这个式子可以看到增加得du(Z)是在原I(Z)在(00L j R ?+)上得压降和

dI(Z)在(00

L j R ?+)上得压降之和。由于

dI(Z),dZ 都是小量,故可为:

dZ

L j R Z I Z dU ))(()(00?+= (2)

根据(1)(2),0?→?dZ 时

dZ

C j G Z I Z dI ))(()(00?+=

dZ

L j R Z U Z dU ))(()(00?+= (3)

由(3)得:

))(()(00L j R Z I dZ

Z dU ?+=

))(()(00C j G Z U dZ

Z dI ?+=

(4)

将(4)对Z 求导得:

)

()()(0022

L j R dZ

Z dI Z d Z U d ?+=

)()()(0022C j G dZ

Z dU Z

d Z I d ?+=

(5)

令000

C j G Y ?+=,000L j R Z ?+=

0002

2

)()()(Y Z Z U Z dZ Z dI Z d Z U d ==

00022

)()()(Y Z Z I Y dZ

Z dU Z

d Z I d ==

(6)

(6)为二阶常微分方程 令0

0Y Z r =

解(6)可得:

rZ

rZ

e B e

A Z U -+=11)(

rZ

rZ e

B e

A Z I -+=22)( (7)

将(7)代入(4)得:

)()(110rZ

rZ

e

B e

A Y dZ Z dI -+=

)()(220rZ

rZ

e

B e A Z dZ

Z dU -+= (8)

将(8)变形得:

)()

(11022rZ

rZ

rZ

rZ

e

B e

A Y dZ

e B e

A d --+=+

)()

(22011rZ

rZ

rZ

rZ

e

B e

A Z dZ

e B e

A d --+=+

即 )(11022rZ

rZ

rZ

rZ

e

B e A Y re B re A --+=-

)(22011rZ

rZ

rZ rZ e

B e

A Z re

B re

A --+=-

所以可以得到系数关系:

1012Y Z A r

Y A A =

=

12Y Z B B -

=

令0

Y Z =

ρ

得:

rZ

rZ

e

B e

A Z U -+=

11)(

rZ

rZ

e

B e

A Z I --

=

ρ

ρ

1

1

)( (9)

边界条件:0

=Z

时,2I I

=,2U U =

将边界条件代入(9)得: 112B A U += ρ

)

(112B A I -=

(10)

得: )

(2122

1I U A ρ+= (11)

)(2122

1I U

B ρ-=

将(11)代入(9)得:

rZ

rZ

e

I U e

I U Z U --+

+=

2

)

(2

)

()(2222ρρ

??

?

??

?--+=

-rZ

rZ

e

I U

e

I U Z I 2

)(2

)(1)(22

22

ρρρ (12)

即:

)(2

)(2

)(2

2rZ

rZ

rZ

rZ

e

e

I e

e

U Z U ---+

+=

ρ

)(2

)(2)(22rZ

rZ

rZ

rZ

e

e I e e

U Z I --++

-=

ρ

(13)

2

rZ

rZ

e e

chrZ -+=

2

rZ

rZ

e e

shrZ --=

所以

shrZ

I chrZ U Z U 22)(2

2ρ+

=

chrZ

I shrZ U

Z I 2

2)(22

+=

ρ

(14)

由(14)知知道传输线终端电压和电流,能求出长线上任一点电压及电流。

关于r 的讨论

r 定义为传播常数,一般为复数;可表示为:

β

α??j C j G L j R Y Z r +=++=

=

))((000000

其中α为衰减常数,表示行波每经过单位长度后振幅的衰减倍数,单位为分贝/米(m

dB

/),虚部β为相移常数,表示行波每经过单位长度

后相位滞后的弧度。,单位为弧度/米(m

rad

/)

对于低耗传输线,一般满足0000

,C G L R ??<<<<

??

?

???+??????+=)

(1)(100000

0C j G L j R C L j r ???

??

???

?++≈???

???+??????+≈)2()2(21210

0000

000

0000C L G

L C R C L j C j G L j R C L j ?

???

由此可得:

)2()2(

C L G L C R +=α

0C L ?

β=

衰减常数是由传输线的导体电阻损耗a c 和填充介质的漏电损耗a d 两部分组成,对于无耗传输线0

=R ,

0=G ,则有0=α,0

0C L ?

β=

由上面分析,它的瞬时电压和电流分别表示为:

)sin()sin(),(11Z t e

B Z t e

A t Z U Z

Z

α?α?ββ-++=-

)sin()()sin()(),(2

2

Z t e

U

Z t e

U

t Z I Z

Z

α?ρ

α?ρ

βα--+=-

其中

)sin(1Z t e

A Z

α?β+为入射波电压

)sin()(2

Z t e

U Z

α?ρ

β--为反射波电压

特性阻抗

定义为传输线上入射电压U i (Z)与入射电流I i (Z)之比,或反射电压U Z (Z)与反射电流I Z (Z)之比的负值,即:

)

()()

()()

()

(00000C j G L j R Z I Z U Z I Z U Z Z Z i i ??++=

-

==

一般情况下,特性阻抗与频率有关,为复数。对于无耗传输线:

0C L Z =

对于微波传输线,也可以近似等于上式。 传输线的输入阻抗

当终端电压、电流决定后,不同的长度传输线,故有不同的输入阻抗或等效阻抗为:

Z

H Z

H in tg Z tg Z Z I Z U Z Z βρβρρ

++==

)

()()(

反射系数定义和公式表示

传输线上任一点位置Z ,反射波电压或电流与入射波电压或电流之比,称为反射系数,即电压反射系数P U (Z)或电流反射系数P i (Z)。

Z

Z

Z

j j H H Z

j U e

T e

Z Z I U

I U ej I U

e

I U Z U Z U Z P βββρ

ρρ

ρβρρ---+

-=+-=

+-=

+-=

=

22

2222

22)()()

()()(

如果终端Z 处为零时

Z

j H H U e

Z Z Z P βρ

ρ+-=

)(

电流反射系数: Z

j H H i e

Z Z Z I Z I Z P βρ

ρ+-=

=

+

-)

()()(

)()(Z P Z P U i -=

传输线上任一点处的电压反射系数与电流反射系数大小相等,相位相反。传输线上的任一点处的反射系数为复数,其模等于终端反射系数的模,相位比终端反射系数滞后Z π2。

驻波比与反射系数的关系

)

1()1(+-=ρρU P

传输线匹配问题

λ/4波长匹配段 R H 终端负载线电阻 ρ传输线特性阻抗 ρ1加粗段特性阻抗

λ/4

Z H =R H

要求Zin =ρ,λ/4线段a 、b 之间为匹配传输线

λ

πα2=Z ,24πλ=

所以:

H

H H H H R Z tg jR tg j R Z tg jR Z

tg j R Zin 2

1

111)2

(

ραρπ

ρραραρρ=

++=++=

即:H

ZinR

=1

ρ

说明a ,b 上的输入阻抗是ρ1的函数,只要改变ρ1就可得到不同的值,例如,ρ

≠H R ,要得到匹配,任取一段λ/4的传输线使它的

阻抗H

ZinR

=

1

ρ,在特性阻抗等于ρ的线段终端a ,b 所接的负载

ρ

ρρ===H H R Zin R Zin /)(/2

2

1

《微波技术》习题解(一、传输线理论)

机械工业 《微 波 技 术》(第2版) 董金明 林萍实 邓 晖 编著 习 题 解 一、 传输线理论 1-1 一无耗同轴电缆长10m ,外导体间的电容为600pF 。若电缆的一端短路, 另一端接有一 脉冲发生器及示波器,测得一个脉冲信号来回一次需0.1μs ,求该电缆的特性阻抗Z 0 。 [解] 脉冲信号的传播速度为t l v 2=s /m 10210 1.010 286 ?=??= -该电缆的特性阻抗为 0 0C L Z = 00C C L =l C εμ= Cv l = 8 121021060010 ???=-Ω33.83= 补充题1 写出无耗传输线上电压和电流的瞬时表达式。 [解] (本题应注明z 轴的选法) 如图,z 轴的原点选在负载端,指向波源。根据时谐场传输线方程的通解 ()()()()()())1()(1..210...21.??? ? ???+=-= +=+=--z I z I e A e A Z z I z U z U e A e A z U r i z j z j r i z j z j ββββ 。为传输线的特性阻抗式中02. 22.1;;,Z U A U A r i == :(1),,21 2. 2. 的瞬时值为得式设??j r j i e U U e U U -+ == ??? ? ?+--++=+-+++=-+-+)()cos()cos([1),() ()cos()cos(),(21021A z t U z t U Z t z i V z t U z t U t z u ?βω?βω?βω?βω 1-2 均匀无耗传输线,用聚乙烯(εr =2.25)作电介质。(1) 对Z 0=300 Ω的平行双导线,导线的半径 r =0.6mm ,求线间距D 。(2) 对Z 0 =75Ω的同轴线,导体半径 a =0.6mm ,求外导体半径 b 。[解] (1) 对于平行双导线(讲义p15式(2-6b )) 0C L Z = r D r D ln ln πεπμ=r D ln 1εμπ =r D r ln 120ε=300= Ω Z L 补充题1图示

微波技术》习题解(一、传输线理论)

机械工业出版社 《微 波 技 术》(第2版) 董金明 林萍实 邓 晖 编着 习 题 解 一、 传输线理论 1-1 一无耗同轴电缆长10m ,内外导体间的电容为600pF 。若电缆的一端短路, 另一端接有 一脉冲发生器及示波器,测得一个脉冲信号来回一次需s ,求该电缆的特性阻抗Z 0 。 [解] 脉冲信号的传播速度为该电缆的特性阻抗为 补充题1 写出无耗传输线上电压和电流的瞬时表达式。 [解] (本题应注明z 轴的选法) 如图,z 轴的原点选在负载端,指向波源。根据时谐场传输线方程的通解 ()()()()()())1()(1..210...21.??? ????+=-= +=+=--z I z I e A e A Z z I z U z U e A e A z U r i z j z j r i z j z j ββββ 1-2 均匀无耗传输线,用聚乙烯(r =作电介质。(1) r =,求线间距D 。(2) 对Z 0 =75的同轴线,内导体半径 a =,求外导体半径 b 。[解] (1) 对于平行双导线(讲义p15式(2-6b )) 0C L Z = r D r D ln ln πεπμ=r D ln 1εμπ =r D r ln 120ε=300= 得 52.42=r D , 即 mm 5.256.052.42=?=D (2) 对于同轴线(讲义p15式(2-6c )) 0 0C L Z = d D d D ln 2ln 2πεπμ=d D r ln 60ε=a b r ln 60ε=75= 得 52.6=a b , 即 mm 91.36.052.6=?=b 1-3 如题图1-3所示,已知Z 0=100Ω, Z L =Z 0 ,又知负载处的电压瞬时值为u 0 (t)=10sin ωt (V), 试求: S 1 、S 2 、S 3 处电压和电流的瞬时值。 [解] 因为Z L =Z 0 ,负载匹配, 传输线上只有入射行波,无反射波, 即: 以负载为坐标原点,选z 轴如图示,由 )V (sin 10),0()(0t t u t u i ω== 得 ) V ()(sin 10),(),(z t t z u t z u i βω+==, Z L =Z 0 Z L 补充题1图示

实验01_传输线理论

实验一:传输线理论 * (Transmission Line Theory) 一. 实验目的: 1.了解基本传输线、微带线的特性。 2.利用实验模组实际测量以了解微带线的特性。 3.利用MICROWAVE软件进行基本传输线和微带线的电路设计和仿真。 二、预习容: 1.熟悉微波课程有关传输线的理论知识。 2.熟悉微波课程有关微带线的理论知识。 项次设备名称数量备注 1 MOTECH RF2000 测量仪1套亦可用网络分析仪 2 微带线模组1组RF2KM1-1A, 3 50Ω BNC 连接线2条CA-1、CA-2 (粉红色) 4 1MΩ BNC 连接线2条CA-3、CA-4(黑色) 5 MICROWAVE软件1套微波电路设计软件 四、理论分析: (一)基本传输线理论 在传输线上传输波的电压、电流信号会是时间及传输距离的函数。一条单位长度传输线的等效电路可由R、L、G、C等四个元件来组成,如图1-1所示。 假设波的传播方向为+Z轴的方向,则由基尔霍夫电压及电流定律可得下列二个传输线方程式: ) ( ) ( ) ( ) ( ) (2 2 2 = + - - -z V LG RC j z V LC RG dz z V d ω ω ) ( ) ( ) ( ) ( ) (2 2 2 = + - - -z I LG RC j z I LC RG dz z I d ω ω 图1-1单位长度传输线的等效电路

此两个方程式的解可写成: z z e V e V z V γγ--++=)( (1-1) ,z z e I e I z I γγ--+-=)((1-2) 其中V +,V -,I +,I - 分别是信号的电压及电流振幅常数,而+、-则分别表示+Z ,-Z 的传输方向。γ则是传输系数(propagation coefficient ),其定义如下: ))((C j G L j R ωωγ ++= (1-3) 而波在z 上任一点的总电压及电流的关系则可由下列方程式表示: I L j R dz dV ?+-=)(ω V C j G dz dI ?+-=)(ω (1-4) 式(1-1)、(1-2)代入式(1-3)可得: C j G I V ωγ +=++ 一般将上式定义为传输线的特性阻抗(Characteristic Impedance )——Z O : C j G L j R C j G I V I V Z O ωωωγ++=+===--++ 当R=G=0时,传输线没有损耗(Lossless or Loss-free )。因此,一般无耗 传输线的传输系数γ及特性阻抗Z O 分别为: LC j j ωβγ== , C L Z O = 此时传输系数为纯虚数。大多数的射频传输线损耗都很小;亦即R<<ωL 且G<<ωC 。所以R 、G 可以忽略不计,此时传输线的传输系数可写成下列公式: βαωγj C G L R LC LC j +=?? ? ??++≈2 (1-5) 式(1-5)中与在无耗传输线中是一样的,而α定义为传输线的衰减常数(Attenuation Constant ),其公式分别为: LC j ωβ=, )(2 1 2o o GZ RY C G L R LC +=??? ??+= α 其中Y 0定义为传输线的特性导纳(Characteristic Adimttance), 其公式为: L C Z Y O O == 1 (二)负载传输线(Terminated Transmission Line )

传输线理论

《射频电路》期末答辩题目:传输线理论

随着科学技术的飞速发展,微波技术被广泛应用于工业,农业,生物医学,军事,气象探测,遥感遥测,交通管制以及各种通信业务中,学科之间的相互渗透不断加剧,在其他学科中应用微波理论和技术进一步深入研究的范例不断增多。传输线作为传输电磁波的导波系统,对电磁波的传输性能直接关系到电磁波信息能量的传送,越来越受到人们的重视,成为了很有意义的研究对象。但是电磁波在传输线的传播比较抽象,有必要对其进行形象化、直观化研究。 TEM波场对应于电场有一电压波,对应于磁场有一电流波。本次毕业设计针对常用的均匀有耗和无耗传输线,运用分布参数电路法,建立传输线等效电路,即“化场为路”,学习了传输线方程及其解,得出:传输线的电压、电流具有波的形式,由向负载方向传输的入射波和向波源传输的反射波,这两列波叠加。并且对这一特性进行了MATLAB仿真,在代码中通过改变负载阻抗的大小使均匀传输线分别工作在行波状态,驻波状态和行驻波状态,观察并验证电压(电场)和电流(磁场)特性,仿真结果与理论很吻合。有助于对传输线特性的进一步理解。 关键字:传输线微带线特性阻抗终端条件

With the rapid development of science and technology, microwave technology is widely used in industry, agriculture, biomedicine, military, meteorological observation, remote sensing telemetering, with the rapid development of science and technology, microwave technology is widely used in industry, agriculture, biomedicine, military, meteorological observation, remote sensing telemetering, traffic control, as well as a variety of communication services rising discipline the mutual infiltration between, theory and application of microwave technology in other disciplines further in-depth study to the rising number of examples. Transmission line as the transmission of electromagnetic wave guided wave system, the electromagnetic wave transmission performance is directly related to the electromagnetic wave information of energy transmission, more and more get people's attention, has become a very meaningful research object. But the spread of electromagnetic waves on transmission lines are abstract, it is necessary to carry out its visualization, visualization research. TEM wave field corresponds to the electric field has a voltage wave, there is a current wave corresponds to the magnetic field. The graduation design in view of the common uniform lossy and no loss of transmission lines, using the method of distributed parameter circuit, build a transmission line equivalent circuit, namely "field to road", the study of transmission line equation and its solution, it is concluded that: transmission line voltage and current wave form, by the direction of the load transmission of incident wave and the waves transmission of reflected wave, the wave superposition. And has carried on the MATLAB simulation, to this feature in the code by changing the size of the load impedance of the uniform transmission line work on wave state respectively, standing wave state line and standing wave state, observe and verify voltage (electric) and current (magnetic) characteristics, the simulation result in accordance with the theory. Help to the further understanding the characteristics of the transmission line. Key words: transmission line microstrip line characteristic impedance Terminal condition

第三章传输线理论

第三章传输线理论 本章的目的是概述由集总电路向分布电路表示法过度的物理前提。在此过程中,推导出一个最有用的公式:一般的射频传输线结构的空间相关阻抗表示公式。正如我们知道的,频率的提高意味着波长的减小,该结论用于射频电路,就是当波长可与分立的电路元件的几何尺寸相比拟时,电压和电流不再保持空间不变,必须把它们看做是传输的波。因为基尔霍夫电压和电流定律都没有考虑到这些空间的变化,我们必须对普通的集总电路分析进行重大的修改。本章重点介绍传输线理论,首先介绍传输线理论的实质,再介绍常用的几种传输线,其中重点介绍微带传输线,以及一般的传输线方程及阻抗的一般定义公式。 3.1传输线的基本知识 传输微波能量和信号的线路称为微波传输线。本节主要介绍传输线理论的实质以及理论基础 3.1.1传输线理论的实质 传输线理论是分布参数电路理论,它在场分析和基本电路理论之间架起了桥梁。随着工作频率的升高,波长不断减小,当波长可以与电路的几何尺寸相比拟时,传输线上的电压和电流将随着空间位置而变化,使电压和电流呈现波动性,这一点与低频电路完全不同。传输线理论用来分析传输线上电压和电流的分布,以及传输线上阻抗的变化规律。在射频阶段,基尔霍夫定律不再成立,因而必须使用传输线理论取代低频电路理论。 现在举例说明:分析一个简单的电路,该电路由内阻为R1的正弦电压源V1通过1.6cm的铜导线与负载电阻R2组成。电路图如下: 图3.1 简单电路

并且我们假设导线的方向与z轴方向一致,且它们的电阻可以忽略。我们假设振荡器的频率是1MHz,由公式 (3.1) 10m/s, rε=10, rμ=1 因此可以得到波长其中是相速度,=9.49×7 λ=94.86m.连接源和负载的1.6cm长的导线,在如此小的尺度内感受的电压空间变化是不明显的。 但是当频率提高到10GHz时情况就明显的不同了,此时波长降低到λ=p v/10 10=0.949cm,近似为导线长度的2/3,如果沿着1.6cm的导线测量电压,确定信号的相位参考点所在的位置是十分重要的。经过测量得知电压随着相位参考点的不同而发生很大的不同。 现在我们面临着不同的选择,在上图所示的电路中,假设导线的电阻可以忽略,当连接源和负载的导线不存在电压的空间变化时,如低频电路情况,才能有基尔霍夫电压定律进行分析。但是当频率高到必须考虑电压和电流的空间特性时,基尔霍夫电路定律将不能直接用。但是这种情况可以补救,假如该线能再细分为小的线元,在数学上称为无限小长度在该小线元上假定电压和电流保持恒定值。对于每一段小的长度的等效电路为: 图3.2 微带线的等效电路 但是具体到什么时候导线或者分立元件作为传输线处理,这个问题不能用简单的数字还给以确切的回答。从满足基尔霍夫要求的集总电路分析到包含有电压和电流的分布电路理论的过度与波长有关。此过度是在波长变得越来越与电路的平均尺寸可比拟的过程中,逐渐发生。根据一般的科研经验,当分立的电路元件平均尺寸长度大于波长的1/10时,就应该用传输线理论。例如在本例中1.6cm的导线我们能估算出频率为:

《微波技术》习题解(一、传输线理论)

微波技术习题 1 机械工业出版社 《微 波 技 术》(第2版) 董金明 林萍实 邓 晖 编著 习 题 解 一、 传输线理论 1-1 一无耗同轴电缆长10m ,内外导体间的电容为600pF 。若电缆的一端短路, 另一端接有一脉冲发生器及示波器,测得一个脉冲信号来回一次需0.1μs ,求该电缆的特性阻抗Z 0 。 [解] 脉冲信号的传播速度为t l v 2=s /m 10210 1.010286?=??=-该电缆的特性阻抗为 0C L Z = 00C C L =l C εμ= Cv l =81210 21060010 ???=-Ω33.83= 补充题1 写出无耗传输线上电压和电流的瞬时表达式。 [解] (本题应注明z 轴的选法) 如图,z 轴的原点选在负载端,指向波源。根据时谐场传输线方程的通解 ()()()()()())1()(1..210...21.??? ? ???+=-= +=+=--z I z I e A e A Z z I z U z U e A e A z U r i z j z j r i z j z j ββββ 。为传输线的特性阻抗式中02. 22.1;;,Z U A U A r i == :(1),,21 2. 2. 的瞬时值为得式设??j r j i e U U e U U -+ == ??? ? ?+--++=+-+++=-+-+)()cos()cos([1),() ()cos()cos(),(21021A z t U z t U Z t z i V z t U z t U t z u ?βω?βω?βω?βω 1-2 均匀无耗传输线,用聚乙烯(εr =2.25)作电介质。(1) 对Z 0=300 Ω的平行双导线,导线的半径 r =0.6mm ,求线间距D 。(2) 对Z 0 =75Ω的同轴线,内导体半径 a =0.6mm ,求外导体半径 b 。 [解] (1) 对于平行双导线(讲义p15式(2-6b )) 0C L Z = r D r D ln ln πεπμ=r D ln 1εμπ =r D r ln 120ε=300= Ω 得 52.42=r D , 即 mm 5.256.052.42=?=D (2) 对于同轴线(讲义p15式(2-6c )) Z L 补充题1图示

传输线理论

实验一:传输线理论 * (Transmission Line Theory ) 一. 实验目的: 1. 了解基本传输线、微带线的特性。 2. 利用实验模组实际测量以了解微带线的特性。 3. 利用MICROWA VE 软件进行基本传输线和微带线的电路设计和仿真。 二、预习内容: 1.熟悉微波课程有关传输线的理论知识。 2.熟悉微波课程有关微带线的理论知识。 四、理论分析: (一)基本传输线理论 在传输线上传输波的电压、电流信号会是时间及传输距离的函数。一条单位长度传输线的等效电路可由R 、L 、G 、C 等四个元件来组成,如图1-1所示。 假设波的传播方向为+Z 轴的方向,则由基尔霍夫电压及电流定律可得下列 二个传输线方程式: 此两个方程式的解可写成: 0)()()()() (22 2=+---z V LG RC j z V LC RG dz z V d ωω0)()()()()(2 2 2=+---z I LG RC j z I LC RG dz z I d ωω 图1-1单位长度传输线的等效电路

z z e V e V z V γγ--++=)( (1-1) ,z z e I e I z I γγ--+-=)((1-2) 其中V +,V -,I +,I - 分别是信号的电压及电流振幅常数,而+、-则分别表示+Z ,-Z 的传输方向。γ则是传输系数(propagation coefficient ),其定义如下: ))((C j G L j R ωωγ++= (1-3) 而波在z 上任一点的总电压及电流的关系则可由下列方程式表示: I L j R dz dV ?+-=)(ω V C j G dz dI ?+-=)(ω (1-4) 式(1-1)、(1-2)代入式(1-3)可得: C j G I V ωγ+=++ 一般将上式定义为传输线的特性阻抗(Characteristic Impedance )——Z O : C j G L j R C j G I V I V Z O ωωωγ++=+===--++ 当R=G=0时,传输线没有损耗(Lossless or Loss-free )。因此,一般无耗传 输线的传输系数γ及特性阻抗Z O 分别为: LC j j ωβγ== , C L Z O = 此时传输系数为纯虚数。大多数的射频传输线损耗都很小;亦即R <<ωL 且G <<ωC 。所以R 、G 可以忽略不计,此时传输线的传输系数可写成下列公式: βαωγj C G L R LC LC j +=?? ? ??++≈2 (1-5) 式(1-5)中与在无耗传输线中是一样的,而α定义为传输线的衰减常数(Attenuation Constant ),其公式分别为: LC j ωβ=, )(2 1 2o o GZ RY C G L R LC +=??? ??+= α 其中Y 0定义为传输线的特性导纳(Characteristic Adimttance), 其公式为: L C Z Y O O ==1 (二)负载传输线(Terminated Transmission Line ) (A )无损耗负载传输线(Terminated Lossless Line ) 考虑一段特性阻抗为Zo 的传输线,一端接信号源,另一端则接上负载,如

高电压传输线理论习题

1.什么是波速?如何计算? 2.均匀传输线的参数为Lo=.Co= .求此传输线在频率为1000HZ时的特性阻抗、相位系数、相速及波长。 3.有一平均高度A为10m,线路半径r为10mm的架空输电线 路,试求线路波阻抗。

4.什么是彼德逊法则?应用它应满足什么条件? 答当一任意波形的行波和,沿一条波阻抗为Z的线路投射到第一节点A时,若要计算电压折射被、和电流折射波的大小.则不管A点后面的电路如何复杂,A点前面的入射波和波阻抗为Z的线路都可用一个集中参数等值电路来代替。代替的法则可以是以下两者之一; (1)电压源集中参数等值电路;电势大小为2的电压源与Z 串联。 (2)电流源集中参数等值电路:电流大小为2的电流源与Z并 联。 这既是彼得逊法则。 彼德逊法则实际上是戴维南定理在波动过程中的应用,它只适用于以下条件: (1)入射波是沿一条分布参数线路传播过来的。 (2)节点A之后的任何一条线路末端产生的反射波尚未回到A

点。

5.一电压入射波500kV由架空线路进入电缆线路,架空、 电缆线路的波阻抗分 别为=500.=50,求折射波和反射波。 6.母线A上接有波阻抗分别为,,的三条出线,从线路 上传来相位为的电压直角波如图6-3(a)所示。试: (1)求在线路上出现的折射彼; (2)求在线路上的电压反射被; (3)设上述过电压被同时沿波阻抗为、的两条线路侵入.求 母线电压幅值。

7.幅值为90kv的长电压波,从波阻抗为500的架空线过结点A 传向集中参数元件,再经节点B传向波阻抗为50的电线线路,如图6—7(a)所示,=400。求, (1)电阻的首、末端电压。 (2)因反射而返回架空线路的功率和所吸收的功率。

传输线理论

传输线理论 1 引言 传输电磁能量和信号的线路称为传输线。传输线包括TEM 波传输线、波导传输线和表面波传输线。本教材讨论TEM 波传输线(如双线、同轴线)的基本理论。这些理论不仅适用于TEM 波传输线,而且也是研究TEM波传输线的理论基础。 TEM波即横电磁波,其特征是E z=0、H z=0,因此电磁场只有横向分量E T、H T,即TEM波只有垂直于传输方向的横向分量。但应注意到TEM波的场不是静场,而是随时间t及纵座标z波动变化的场。 研究传输线上所传输电磁波的特性的方法有两种。一种是“场”的分析方法,即从麦氏方程组出发,解特定边界条件下的电磁场波动方程,求得场量(和)随时间和空间的变化规律,由此来分析电磁波的传输特性;另一种方法是“路”的分析方法,它将传输线作为分布参数来处理,得到传输线的等效电路,然后由等效电路根据克希霍夫定律导出传输线方程,再解传输线方程,求得线上电压和电流随时间和空间的变化规律,最后由此规律来分析电压和电流的传输特性。这种“路”的分析方法,又称为长线理论。事实上,“场”的理论和“路”的理论既是紧密相关的,又是相互补充的。 1.1 分布参数及其分布参数电路 传输线可分为长线和短线,长线和短线是相对于波长而言的。所谓长线是指传输线的几何长度和线上传输电磁波的波长的比值(即电长度)大于或接近于1。反之称为短线。在微波技术中,波长以m或cm计,故1m长度的传输线已长于波长,应视为长线;在电力工程中,即使长度为1000m的传输线,对于频率为50Hz(即波长为6000km)的交流电来说,仍远小于波长,应视为短线。传输线这个名称均指长线传输线。有些传输线宜用“场”的理论去处理,而有些传输线在满足一定条件下可以归结为“路”的问题来处理,这样就可以借用熟知的电路理论和现成方法,使问题的处理大为简化。长线和短线的区别还在于:前者为分布参数电路,而后者是集中参数电路。在低频电路中常常忽略元件连接线的分布参数效应,认为电场能量全部集中在电容器中,而磁场能量全部集中在电感器中,电阻元件是消耗电磁能量的。由这些集中参数元件组成的电路称为集中参数电路。随着频率的提高,电路元件的辐射损耗,导体损耗和介质损耗增加,电路元件的参数也随之变化。当频率提高到其波长和电路的几何尺寸可相比拟时,电场能量和磁场能量的分布空间很难分开,而且连接元件的导线的分布参数已不可忽略,这种电路称为分布参数电路。 下面以对称线为例讨论它的分布参数: 频率提高后,导线中所流过的高频电流会产生趋肤效应,使导线的有效面积减小,高

微波技术第三章TEM波传输波

第三章 TEM波传输波 低频传输线由于工作波长很长,一般都属“短线”范围,分布参数效应均被忽略,它们在电路中只起连接线的作用。因此在低频电路中不必要对传输线问题加以专门研究。当频率达到微波波段以上,正象我们在上章所述那样,分布参数效应已不可忽视了,这时的传输线不仅起连接线能量或信息由一处传至另一处的作用,还可以构成微波元器件。同时,随着频率的升高,所用传输线的种类也不同。但不论哪种微波传输线都有一些基本要求,它们是: (1)损耗要小。这不仅能提高传输效率,还能使系统工作稳定。 (2)结构尺寸要合理,使传输线功率容量尽可能地大。 (3)工作频带宽。即保证信号无畸变地传输的频带尽量宽。 (4)尺寸尽量小且均匀,结构简单易于加工,拆装方便。 假如传输线呼处的横向尺寸、导体材料及介质特性都是相同的,这种传输线就称为均匀传输线,反之则为非均匀传输线。 均匀传输线的种类很多。作为微波传输线有平行双线、同轴线、波导、带状线以及微带等等不同形式。本章将对几种常用的TEM波传输线作系统论述。 §3-1 双线传输线 所谓双线传输线是由两根平行而且相同的导体构成的传输系统。导体横截面是圆形,直径为d,两根导体中心间距为D,如图3-1-1所示。

图3-1-1 平行双线传输线 一、电磁场分布 关于双线上的电压、电流分布规律,已在前章详细讨论过。本章将给出沿线电场和磁场的分布。 电磁波在自由空间是由自由自在地传播着,电、磁场在时间上保持同相位,而在空间上是相互交并垂直于传播方向,如图3-1-2所示。 若电磁波沿传输线传播,就要受到传输线的限制和约束。在双线传输线上流有交变的高频电流,因而导线上积累有瞬变的正负电荷。线上电磁场可用下式表示(向+z方向传播的行波) (3-1-1)

高频传输线管理知识理论

高頻傳輸線理論(High-Speed Transmission Line Theory) 檢測部

頻寬及信號完整性術語與說明 高頻傳輸線 引言:CPU的速率由50MHz以上升到200MHz以上,連I/O週邊的速率也 由33MHz提升至100MHz以上。原 本扮演「連接傳導」的銅線、銅箔、導 線等變成高頻傳輸線。這些傳線類似天 線,會把流經信號的能量「耦合」或「輻 射」出去,造成電磁串音(訊號線之間的 干擾)及EMI(對外界的干擾)、也有阻抗 匹配的問題等. . . ,以下將就高頻傳輸 線的特性作討論與分析。

基本單位 1. 介電常數(,Dielectric Constant): 介電常數定義為電力線密 度與電場強度的比值(E D = ε),在dielectric material(一般用的塑膠)中,介電常數越小,電容的效應越小,電磁波通過的速率越快,量測的方法如下: Dielectric Constant V V C C o o = = ε 一些常見物質的介電常數: Material Dielectric Constant Air 1 Glass 4-10 Oil 2.3 Paper 2-4

Polyethylene (PE) 2.3 Polystyrene (PS) 2.6 Porcelain 5.7 Teflon 2.1 LCP 3.2 Polyvinyl Chloride (PVC) 3.5~4 SPS 2.9 PCT 2.72~2.87 PPS 3.8~3.9 TPE 2.1~2.3 2. Velocity :電磁波在介質內的傳遞速度取決於介質的介電係數 permittivity,ε)及導磁係數(permeability, )。如下式: εμ 1 V = 在真空中 Where o r εεε= & o r μμμ= 9o 10361 -?= π ε F/m 7o 104-?=πμ H/m 8o o o 1031 V ?== με m/s 可見電磁波在真空中是以光速在前進。假如電磁波在介質中傳播,我們必需知道介質的相對介電係數(r ε)及相對導磁係數(r μ),以推算電磁波在介質內的傳遞速度。 舉例而言,電磁波在SCSI Cable (TPO, r ε= 2.3, r μ =1)內的傳遞速度為

实验01_传输线理论

实验一:传输线理论* (Transmission Line Theory) 一.实验目的: 1.了解基本传输线、微带线的特性。 2.利用实验模组实际测量以了解微带线的特性。 3.利用MICROWA VE软件进行基本传输线和微带线的电路设计和仿真。 二、预习容: 1.熟悉微波课程有关传输线的理论知识。 2.熟悉微波课程有关微带线的理论知识。 项次设备名称数量备注 1 MOTECH RF2000 测量仪1套亦可用网络分析仪 2 微带线模组1组RF2KM1-1A, 3 50ΩBNC 连接线2条CA-1、CA-2 (粉红色) 4 1MΩBNC 连接线2条CA-3、CA-4(黑色) 5 MICROWA VE软件1套微波电路设计软件 四、理论分析: (一)基本传输线理论 在传输线上传输波的电压、电流信号会是时间及传输距离的函数。一条单位长度传输线的等效电路可由R、L、G、C等四个元件来组成,如图1-1所示。 假设波的传播方向为+Z轴的方向,则由基尔霍夫电压及电流定律可得下列二个传输线方程式: 此两个方程式的解可写成: ) ( ) ( ) ( ) ( ) (2 2 2 = + - - -z V LG RC j z V LC RG dz z V d ω ω ) ( ) ( ) ( ) ( ) (2 2 2 = + - - -z I LG RC j z I LC RG dz z I d ω ω 图1-1单位长度传输线的等效电路

z z e V e V z V γγ--++=)( (1-1) ,z z e I e I z I γγ--+-=)((1-2) 其中V +,V -,I +,I -分别是信号的电压及电流振幅常数,而+、-则分别表示+Z ,-Z 的传输方向。γ则是传输系数(propagation coefficient ),其定义如下: ))((C j G L j R ωωγ++= (1-3) 而波在z 上任一点的总电压及电流的关系则可由下列方程式表示: I L j R dz dV ?+-=)(ω V C j G dz dI ?+-=)(ω (1-4) 式(1-1)、(1-2)代入式(1-3)可得: C j G I V ωγ+=++ 一般将上式定义为传输线的特性阻抗(Characteristic Impedance )——Z O : C j G L j R C j G I V I V Z O ωωωγ++=+===--++ 当R=G=0时,传输线没有损耗(Lossless or Loss-free )。因此,一般无耗传 输线的传输系数γ及特性阻抗Z O 分别为: LC j j ωβγ== , C L Z O = 此时传输系数为纯虚数。大多数的射频传输线损耗都很小;亦即R <<ωL 且G <<ωC 。所以R 、G 可以忽略不计,此时传输线的传输系数可写成下列公式: βαωγj C G L R LC LC j +=?? ? ??++≈2 (1-5) 式(1-5)中与在无耗传输线中是一样的,而α定义为传输线的衰减常数(Attenuation Constant ),其公式分别为: LC j ωβ=, )(2 1 2o o GZ RY C G L R LC +=??? ??+= α 其中Y 0定义为传输线的特性导纳(Characteristic Adimttance), 其公式为: L C Z Y O O ==1 (二)负载传输线(Terminated Transmission Line ) (A )无损耗负载传输线(Terminated Lossless Line ) 考虑一段特性阻抗为Zo 的传输线,一端接信号源,另一端则接上负载,如

微波技术习题解一、传输线理论(供参考)

1文档收集于互联网,已整理, 机械工业出版社 《微 波 技 术》(第2版) 董金明 林萍实 邓 晖 编著 习 题 解 一、 传输线理论 1-1 一无耗同轴电缆长10m ,内外导体间的电容为600pF 。若电缆的一端短路, 另一端接有一脉冲发生器及示波器,测得一个脉冲信号来回一次需0.1μs ,求该电缆的特性阻抗Z 0 。 [解] 脉冲信号的传播速度为该电缆的特性阻抗为 补充题1 写出无耗传输线上电压和电流的瞬时表达式。 [解] (本题应注明z 轴的选法) 如图,z 轴的原点选在负载端,指向波源。根据时谐场传输线方程的通解 ()()()()()())1()(1..210...21.??? ????+=-=+=+=--z I z I e A e A Z z I z U z U e A e A z U r i z j z j r i z j z j ββββ1-2 均匀无耗传输线,用聚乙烯(εr =2.25)导线的半径 r =0.6mm ,求线间距D 。(2) 对Z 0 =75Ω的同轴线,内导体半径 a =0.6mm ,求外导体半径 b 。 [解] (1) 对于平行双导线(讲义p15式(2-6b )) 000C L Z =r D r D ln ln πεπμ=r D ln 1εμπ =r D r ln 120ε=300= Ω 得 52.42=r D , 即 mm 5.256.052.42=?=D (2) 对于同轴线(讲义p15式(2-6c )) 000C L Z =d D d D ln 2ln 2πεπμ=d D r ln 60ε=a b r ln 60ε=75= Ω 得 52.6=a b , 即 mm 91.36.052.6=?=b 1-3 如题图1-3所示,已知Z 0=100Ω, Z L =Z 0 ,又知负载处的电压瞬时值为u 0 (t)=10sin ωt (V), 试求: S 1 、S 2 、S 3 处电压和电流的瞬时值。 [解] 因为Z L =Z 0 ,负载匹配, 传输线上只有入射行波,无反射波, 即: 以负载为坐标原点,选z 轴如图示,由 )V (sin 10),0()(0t t u t u i ω== 得 )V ()(sin 10),(),(z t t z u t z u i βω+==, Z L =Z 0 Z L 补充题1图示

微波传输线理论及应用

第一章:引言 随着时代的发展,微波技术以及工艺在近年来等到了飞速的发展,这主要是得益于新的微波器件以及新一代的微波传输线的发展。 在微波系统中,单刀双掷开关作为最简单,最常用的微波控制器件在大型的微波设计中起着很重要的作用,我在指导老师刘老师和何老师的悉心指导下,我参阅了一些有关的设计资料,完成了对单刀双掷开关的研制。 在本文中,我将从原理开始,具体分析和介绍研制的过程。在第二章中,主要介绍单刀双掷开关的基本构造,主要参数,匹配网络等等。在第三章中,主要介绍本次设计所使用的软件MicroWave Office,其操作形式,优化方法和自己的一些使用心得。第四章,将着重介绍本次设计的图形,参数的测量、优化指标。 第三章微波固态电路介绍 微波固态电路的发展与微波集成电路技术密切相关,而微型化技术则是以提高集成度为基础的。目前对雷达,电子战和通讯等电子设备中微波电路“微型化”的呼声甚高;“微型化”的含义远比其名词本身寓意要广泛,它至少还意味着:一致性,低价格和高可靠。微波集成电路(MIC)的概念来自低频集成电路(IC),其发展也是遵循着低频的途径。60年代后期随着各种微波半导体器件的问世以及微带传输线理论和薄膜工艺的成熟,以混合集成电路(HMIC)的形式出现。

是采用薄膜或厚膜工艺在介质衬底表面制作以分布参数为主的微波电路,其中有源器件和集总参数元件(电容,电阻等)通过键合,焊接或压接加到衬底表面。70年代HMIC发展迅速,应用广泛,使原先用分立元件实现的微波系统在小型化,轻量化方面起了变革,性能与价格方面也有所得益,而且逐渐出现了集成度提高的多功能HMIC。HMIC的发展对微波技术本身起了推动作用,并为单片微波集成电路的研制奠定了基础。MMIC的含义是采用半导体多层工艺(如外延,离子注入,溅射,蒸发,扩散等方法或这些方法与其他方法的结合)将所有的微波或毫米波有源器件或无源元件(包括连接线)制成一整体或制作于半绝缘衬底表面以实现单个芯片的功能部件或整件。近10年来,MMIC事业蓬勃发展,归因于:性能优良的GaAs 半绝缘衬底材料的大量应用及外延,离子注入等工艺的成熟,MESFET的大力开发并已成为多用途器件;肖特基势垒二极管与各种MESFET(包括双栅FET)可用相同工艺在同一衬底上制作;特别是可进行精确定模和优化设计的CAD工具日臻完善。与功能相同的HMIC相比,MMIC的体积,重量可减至1/100或更小(频率愈低,减少愈多,在L波段可减至1/1000,或更小)。因MMIC适于批加工,在材料均匀性好和工艺成熟的前提下可实现良好的电性能一致。由于大大减少接插件,联线和外接元器件,可靠性改善因数可达20---100,由于寄生参量减至最小,MMIC具有宽带本能,其抗辐射能力也较强。但MMIC也有其缺点。首先。采用半导体工艺在衬底上制成的电路,从占有面积来看,无源元件比有源元件大,因此不仅价格高,也不利

微波传输线的总结及实际中的应用

微波传输线的总结及实际中的应用 传输线是指能够引导电磁波沿一定方向传输的导体、介质或有它们构成的导波系统的总称,其所引导的电磁波称为导行波。按其所传输电磁波的性质可分为双导体传输线、单导体传输线和介质传输线。 把导行波传播的方向称为纵向,垂直于导行波传播的方向称为横向。一般将截面尺寸、形状、媒介分布、材料及边界条件均不变的规则导波系统称为均匀传输线。传输线本身的不连续性可以构成各种形式的微波无源元器件,这些元器件和均匀传输线、有源元件及天线一起构成微波系统。 应用 传输线不仅用于传送电能和电信号,还可以构成电抗性的谐振元件。例如,长度小于 1/4波长的终端短路或开路的传输线,其输入阻抗是感抗或容抗;长度可变的短路线可用作调配元件(短截线匹配器)。又如长度为1/4波长的短路线或开路线分别等效于并联或串联谐振电路,称为谐振线;其中1/4波长短路线的输入阻抗为无穷大,可用作金属绝缘支撑等。此外,还可利用分布参数传输线的延时特性制成仿真线等电路元件。 电压驻波比 传输线上的反射波与入射波叠加后形成驻波,即沿线各点的电压和电流的振幅不同,以1/2波长为周期而变化。电压(或电流)振幅具有最大值的点,称为电压(或电流)驻波的波腹点;而振幅具有最小值的点,称为驻波的波谷点;振幅值等于零的点称为波节点。线上某电压波腹点与相邻波谷点的电压振幅之比称为电压驻波比,简称驻波比;其倒数称为行波系数。 阻抗匹配 目的是使传输线向负载有最大的功率转移,即要求负载阻抗与传输线的特性阻抗相等,相应地有|Γ|=0(或ρ=1)。如果负载阻抗与传输线的特性阻抗并不相等,就需要在传输线的输出端与负载之间接入阻抗变换器,使后者的输入阻抗作为等效负载而与传输线的特性阻抗相等,从而实现传输线上|Γ|=0。阻抗变换器的作用实质上是人为地产生一种反射波,使之与实际负载的反射波相抵消。在实际问题中,还需要考虑传输线输入端与信号源之间的阻抗匹配。

微波复习题(答案)

微波技术与天线复习提纲(2010级) 一、思考题 1. 什么是微波?微波有什么特点? 答:微波是电磁波谱中介于超短波与红外线之间的波段,频率范围从300MHZ 到3000GHZ ,波长从0.1mm 到1m ;微波的特点:似光性、穿透性、宽频带特性、热效应特性、散射特性、抗低频干扰特性、视距传播性、分布参数的不确定性、电磁兼容和电磁环境污染。 2. 试解释一下长线的物理概念,说明以长线为基础的传输线理论的主要物理现 象有哪些?一般是采用哪些物理量来描述? 答:长线是指传输线的几何长度与工作波长相比拟的的传输线; 以长线为基础的物理现象:传输线的反射和衰落; 主要描述的物理量有:输入阻抗、反射系数、传输系数、和驻波系数。 3. 微波技术、天线与电波传播三者研究的对象分别是什么?它们有何区别和联 系? 答:微波技术、天线与电磁波传播史无线电技术的一个重要组成部分,它们共同的基础是电磁场理论,但三者研究的对象和目的有所不同。微波技术主要研究阴道电磁波在微波传输系统中如何进行有效的传输,它希望电磁波按一定要求沿传输系统无辐射地传输;天线是将微波导行波变成向空间定向辐射的电磁波,或将空间的电磁波变成微波设备中的导行波;电波传播研究电波在空间的传播方式和特点。 4. 试解释传输线的工作特性参数(特性阻抗、传播常数、相速和波长) 答:传输线的工作特性参数主要有特征阻抗Z 0,传输常数错误!未找到引用源。,相速及波长。 1)特征阻抗即传输线上入射波电压与入射波电流的比值或反射波电压与反射波电流比值的负 值,其表达式为0Z =它仅由自身的分布参数决定而与负载及信号源无关;2)传输常数j γαβ=+是描述传输线上导行波的衰减和相移的参数,其中,α和β分别称为衰减 常数和相移常数,其一般的表达式为γ=传输线上电压、电流入射波(或反射波)的等相位面沿传播方向传播的速度称为相速,即P w v β=;4)传输线上电磁 波的波长λ与自由空间波长0λ 的关系2π λβ==。 5. 传输线状态参量输入阻抗、反射系数、驻波比是如何定义的,有何特点,并 分析三者之间的关系 答:输入阻抗:传输线上任一点的阻抗Z in 定义为该点的电压和电流之比,与导波

相关主题
文本预览
相关文档 最新文档