当前位置:文档之家› 火灾爆炸指数

火灾爆炸指数

火灾爆炸指数
火灾爆炸指数

火灾爆炸指数评价法简介

1概念

定量分析。

①量化潜在火灾、爆炸和反应性事故的预期损失;

②确定可能引起事故发生或使事故扩大的装置;

③向有关部门通报潜在的火灾、爆炸危险性;

④使有关人员及工程技术人员了解到各工艺部门可能造成的损失,以此确定减轻事故严重性和总损失的有效、经济的途径。

2基本方法介绍

基本程序见下图

1)选择工艺单元

选择恰当工艺单元的重要参数有下列六个:

①潜在的化学能(物质系数);

②工艺单元中危险物质的数量;

③资金密度(每平方米美元数);

④操作压力和操作温度;

⑤导致火灾、爆炸事故的历史资料;

⑥对装置起关键作用的单元。

一般参数值越大,则该工艺单元就越需要评价。该方法是假定工艺单元中所处理的易燃、可燃或化学活性物质的最低量为2270千克或2.27立方米。因此,若单元内物料较少,则评价结果有可能被夸大。一般,所处理的易燃、可燃或者化学活性物质的量至少为454千克或0.454立方米,评价结果才有意义。

3)评价计算

①火灾、爆炸危险指数(F&EI)

a.物质系数(MF)的选取

物质系数是表述物质在燃烧或其他化学反应引起火灾、爆炸时释放能量大小的内在特

性,是一个最基础的数值。它是由美国消防协会规定的NF、NR(分别代表物质的燃烧性和化学活性)决定的。

b.一般工艺危险系数(F1)的选取

选取项包括“基本系数、放热化学反应、吸热反应、物料处理与输送、封闭式或室内工艺单元、通道、排放、泄漏控制”等7个取值项。基本系数取1.00,其它6项根据实际情况具体取值,无危险时系数用0.00。一般工艺危险系数为7项取值之和。

c.特殊工艺危险系数(F2)的选取

选取项包括“基本系数、毒性物质、负压操作、接近易燃范围的操作、粉尘爆炸、压力、低温、物质的量和燃烧热、腐蚀与磨损、泄漏、使用明火设备、热油热交换系统、传动设备”等13个取值项。基本系数取1.00,其它12项根据实际情况具体取值,无危险时系数用0.00。一般工艺危险系数为13个取值之和。

d.工艺单元危险系数(F3)的计算

工艺单元危险系数为一般工艺危险系数和特殊工艺危险系数的乘积。即:F3=F1×F2工艺单元危险系数的范围为1~8。若F3大于8时则按8计。

e.火灾、爆炸危险指数F&EI是工艺单元危险系数F3和物质系数MF的乘积。即:F&EI =F3·MF。

②危险等级

火灾、爆炸指数(F&EI)与危险等级的关系见下表。

暴露半径表明了生产单元危险区域的平面布置,它是一个以工艺设备关键部位为中心,以暴露半径为半径的圆。事实上以泄漏点作为暴露区域的中心。

根据下式计算暴露区域半径:R=0.256·(F&E1)

④暴露区域面积(S)

常以一个围绕着单元的圆柱体体积来表征发生火灾、爆炸事故时生产单元所承受的风险大小,圆柱体的底面积为暴露区域面积,高为暴露半径,有时也用球体体积表征。

根据下式计算暴露区域面积:S=3.14R2

⑤暴露区域内财产价值(M)

由于暴露区域内财产价值估计的难度很大,它一般应包括该区域内的设备价值以及在存物料的价值等。此外,还应考虑随着时间推移、价格上涨而形成的增长系数。这里假设为M 万元。

⑥危害系数

危害系数代表了物料泄漏等引起的火灾、爆炸事故的综合效应。根据道化学公司的规定,危害系数由物质系数(MF)和单元危险系数(F3)确定。查《安全评价》有关图表。

⑦基本最大可能财产损失

暴露区域内财产价值(M)与危害系数相乘的积就是基本最大可能财产损失。

⑧安全措施补偿系数(C)

选择的安全措施应能切实的减少或控制评价单元的危险,提高安全可靠性,最终结果是确定损失减少的金额或使最大可能财产损失降到可接受的程度。

安全措施补偿可以分为3种:工艺控制补偿(C1)、物质隔离补偿(C2)和防火措施补偿(C3)。每一类的各项控制措施取值依据实际情况而定,每一类的安全补偿系数等于该类

各项安全措施选取的补偿系数之积。无安全措施时取值1.00。

安全补偿系数(C)=C1·C2·C3

补偿系数各项取值的依据是相应的设计规范。详细取值内容见报告有关章节及附件。

⑨实际最大可能财产损失

基本最大可能财产损失与安全措施补偿系数相乘的积就是实际最大可能财产损失。

4)道化学危险分析计算结果汇总

完成上述一系列的查图表和计算后,表格的形式对道化学火灾、爆炸计算结果进行汇总。

3适用范围

适合化工生产系统,主要用于评价贮存、处理、生产易然、可燃、活性物质的操作过程的潜在损失。

4实例

应用火灾爆炸指数评价法储罐区进行评价

粗苯储罐区有规格为φ2700×6230的粗苯储罐2台,公称容积36m3。储罐区粗苯的总储量为64吨。

1)火灾、爆炸危险指数(F&EI)

1、物质系数MF的选取

查物质系数和特性表,苯类物质的系数为16,故MF取16。

2、一般工艺危险系数F1的选取

一般工艺危险系数包括“基本系数、防热反应、吸热反应、物料处理与输送、封闭单元或室内单元、通道以及排放和泄漏控制”等7个取值项。F1为7项取值之和。

3、特殊工艺危险系数F2的选取

特殊工艺危险系数包括“基本系数、毒性物质、负压操作、粉尘爆炸、压力释放”等13个取值项。F2为13项取值之和。

4、单元危险系数F3的计算

单元危险系数的值为一般工艺危险系数F1与特殊工艺危险系数F2的乘积(F3=F1×F2)。

注:基本规定:当F3的计算结果大于8时,则该系数取8。

5、火灾、爆炸指数F&EI的计算

火灾、爆炸危险指数是工艺单元危险系数F3和物质系数MF的乘积(F&EI=F3×MF)。

以上各项取值及计算结果见附件表3.6.4.1。

附件表3.6.4.1 道化学计算基本数据取值及计算

《安全评价》给出了火灾、爆炸指数(F&EI)与危险等级的关系,见附件表3.6.4.2。

本项目粗苯储罐区火灾、爆炸指数(F&EI)计算结果为128,对照附件表3.6.4.2可知,粗苯储罐区的危险等级为很大。

3)暴露区域半径(R)

暴露区域半径(R)的计算公式为:R=0.256×(F&E1)

计算得到的暴露区域半径为32.8m。

4)暴露区域面积(S)

根据公式:S=πR2,计算得暴露区域面积为3371.5m2。

5)暴露区域内财产价值

由于暴露区域内财产价值估计的难度很大,它一般应包括该区域内的设备价值以及在存物料的价值等。此外,还应考虑随着时间推移、价格上涨而形成的增长系数。经初步估算,暴露区域内财产的价值为50万元。

6)危害系数

危害系数代表了物料泄漏等引起的火灾、爆炸事故的综合效应。根据道化学公司的规定,危害系数由物质系数(MF)和单元危险系数(F3)确定。《安全评价》一书给出了计算图。查图,粗苯储罐区的危害系数为0.72。

7)基本最大可能财产损失

暴露区域内财产价值(50万元)与危害系数相乘的积就是基本最大可能财产损失。计算得,粗苯储罐区的基本最大可能财产损失为36万元。

8)安全措施补偿系数(C)

安全措施补偿可以分为3种:工艺控制补偿、物质隔离补偿和防火措施补偿。补偿系数各项取值的依据是相应的设计规范。本项目的各项取值和计算结果见附件表3.6.4.8-ABC 表

附件表3.6.4.8-A 工艺控制补偿系数(C1)取值和计算

附件表3.6.4.8-B 物质隔离安全措施补偿系数(C2)取值和计算

安全措施补偿系数C为上述三种补偿系数的乘积,即:

C=C1×C1×C1=0.598

9)补偿后的计算结果

火灾爆炸危险场所采取有效的补偿措施,可以降低该场所的危险等级,缩小暴露区域半径和面积,减少暴露区域内财产损失。本项目补偿后的计算结果及与补偿前的对比情况见附件表3.6.4.9-D。

附件表3.6.4.9-D 补偿后的计算结果及与补偿前的对比

5优缺点

该方法是指数评价法的一种,指数的采用使得系统结构复杂、用概率难以表述其危险性单元的评价有了一个可行的方法。这类方法操作简单,是目前应用较多的评价方法之一。指数的采用,避免了事故概率及其后果难以确定的困难。评价指数值同时含有事故频率和事故后果两个方面的因数。

火灾爆炸事故树分析(一)

火灾爆炸事故树分析(一) 引言 当液相与固相之间,液相与气相之间,液相与另一不相容的液相之间以及固相和气相之间,由于流动、搅拌、沉降、过滤、冲刷、喷射、灌注、飞溅、剧烈晃动以及发泡等接触、分离的相对运动,都会在介质中产生静电。许多石油化工产品都属于高绝缘物质,这类非导电性液体在生产和储运过程中,产生和积聚大量的静电荷,静电聚积到一定程度就可发生火花放电。如果在放电空间还同时存在爆炸性气体,便可能引起着火和爆炸。油库静电引起火灾爆炸是一种恶性事故,因而对于油库中防静电危害具有非常重要的意义。因此,如何安全有效地管理和维修油库,提高油库的安全可靠性,已是当前油库安全管理工作所面临的一个重大课题。故障树分析法(FTA法)是分析复杂、大型系统安全可靠性的有效工具。通过油库静电故障树分析,可找出系统存在的薄弱环节,然后进行相应的整改,从而提高油库系统的安全性。 事故树 1故障树分析法方法 故障树分析方法(FTA)是一种图形演绎法,是从结果到原因描绘事故发生的有向逻辑树分析方法。这种树是一种逻辑分析过程,遵从逻辑

学演绎分析原则(即从结果到原因的分析原则)。把系统不希望出现的事件作为故障树的顶事件,用逻辑“与”或“或”门自上而下地分析导致顶事件发生的所有可能的直接原因及相互间的逻辑关系,并由此逐步深入,直到找出事故的基本原因,即为故障树的基本事件。 2故障树分析的基本程序 FTA法的基本程序:熟悉系统—调查事故—确定顶事件—确定目标—调查原因事件—编制故障树—定性分析—定量分析—安全评价。故障树分析过程大致可分为9个步骤。第1~5步是分析的准备阶段,也是分析的基础,属于传统安全管理;第6步作图是分析正确与否的关键;第7步定性分析,是分析的核心;第8步定量分析,是分析的方向,即用数据表示安全与否;第9步安全性评价,是目的。 3油库静电火灾爆炸故障树的建立 油库静电火花造成油库火灾爆炸的事故树的建立过程,如图1所示。(1)确定顶上事件——“油库静电火灾爆炸”(一层)。 (2)调查爆炸的直接原因事件、事件的性质和逻辑关系。直接原因事件:“静电火花”和“油气达到可燃浓度”。这两个事件不仅要同时发生,而且必须在“油气达到爆炸极限”时,爆炸事件才会发生,因此,用“条件与”门连接(二层)。 (3)调查“静电火花”的直接原因事件、事件的性质和逻辑关系。直接原因事件:“油库静电放电”和“人体静电放电”。这两个事件只要其中一个发生,则“静电火花”事件就会发生。因此,用“或”门连接(三层)。

化学品的火灾与爆炸危害参考文本

化学品的火灾与爆炸危害 参考文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

化学品的火灾与爆炸危害参考文本使用指引:此安全管理资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 近几年来,我国化工系统所发生的各类事故中,由于 火灾爆炸导致的人员死亡为各类事故之首,由此导致的直 接经济损失也相当可观。如1997年北京东方化工厂油品罐 区发生特大火灾爆炸事故,在较短的时间内,整个罐区一 片火海,死亡9人,伤37人,直接经济损失高达亿元以 上。1993年深圳清水河化学危险品仓库发生特大火灾爆炸 事故,死亡15人,200多人受伤,其中重伤25人,直接 经济损失超过2.5亿元。这些事故都是由于化学品自身的火 灾爆炸危险性造成的。因此了解化学品的火灾与爆炸危 害,正确进行危险性评价,及时采取防范措施,对搞好安 全生产,防止事故发生具有重要意义。 1、化学品的燃烧与爆炸危险性

化学品的燃烧与爆炸危险性,根据其状态不同有不同的评价方法。 1.1可燃气体、可燃液体蒸气、可燃粉尘的燃爆危险性 (1)爆炸极限 可燃气体、可燃液体蒸气或可燃粉尘与空气组成的混合物,并非任何混合比例下都可以爆炸,而是固定浓度范围的,不同可燃物有不同的固定浓度范围。这一固定范围通常叫该物质的爆炸范围或爆炸极限,通常用可燃气体、可燃液体蒸气、可燃物粉尘在空气中的体积百分数表示。能够产生爆炸的最低浓度称为爆炸下限,最高浓度为爆炸上限。例如:乙醇爆炸范围为4.3%~19.O%。4.3%称为爆炸下限,19.0%称为爆炸上限。汽油的爆炸极限是 1.0%~6.0%;天然气的爆炸极限是4.8%~13.46%;氢气的爆炸极限是4.0%~75%;一氧化碳的极限是1 2.5%~74.2%;氨气的爆炸极限是15.5%~27%等等。爆炸极限

兰州石化公司“2010.1.7”火灾爆炸事故

2010年1月7日17时24分左右,兰州石化公司合成橡胶厂316#罐区发生了一起火灾爆炸事故。事故造成6人死亡、1人重伤、5人轻伤。 一、事故单位简介 兰州石化公司合成橡胶厂主要生产合成橡胶、合成树脂和有机化工原料三大系列化工产品。现有8个联合车间,包括10万t/a丁苯橡胶装置、5.5万t/a丁苯橡胶装置、5万t/a丁腈橡胶装置、1.5万t/a丁腈橡胶装置、 2万t/aABS树脂装置、1.5万t/aSAN树脂装置、6万t/a苯乙烯装置、4.5万t/a碳四抽提装置、8万t/aMTBE 装置、丁钠橡胶装置和液体橡胶装置。 316#罐区位于兰州石化公司橡胶石化区的西北角,东面为24万t/a裂解装置,南面为烯烃装置,北面为丙烯腈装置,西面为公司内部铁路线。316#罐区共分两个区域,分别由合成橡胶厂和石油化工厂使用管理。罐区由储罐、火车装卸栈桥和汽车装卸栈桥组成。现有储罐30具,设计总容量10359.56m3。其中石油化工厂有22具储罐,储存物料主要为甲苯、轻、重碳九、裂解油、加氢汽油、正己烷、抽余油、丙烯、丙烷、1-丁烯、拔头油、轻烃。合成橡胶厂有8具400m3球罐,其中7具球罐主要储存裂解碳四和丁二烯物料,栈桥可装卸丙烯、拔头油、裂解油、加氢汽油、甲苯、抽余油、丁二烯、正已烷、1-丁烯等物料。 316#罐区主要作为24万t/a乙烯装置的中间罐区,接收外购及生产装置转送的原料,将储存在储罐内的原料输送至各装置。

二、事故经过 2010年1月6日零点班开始,合成橡胶厂316岗位开启P201/B泵外送R202(裂解碳四储罐)物料,同时接受来自石油化工厂烯烃装置产出的裂解碳四。此时,其余2具碳四储罐:R201罐内储存物料291m3,R204罐检修后未储存物料。7日15时30分,根据生产调度安排,停送R202(罐内当时有物料230m3)物料,并从烯烃装置接收裂解碳四(接收量约6吨/小时);R201物料打循环。 17时15分左右,316岗位化工三班操作工王某按班长指令到罐区检查卸车流程,准备卸丁二烯汽车槽车。当王某走到罐区一层平台时,突然发现R202底部2号出口管线第一道阀门下弯头附近有大量碳四物料呲出,罐区防火堤内弥漫一层白雾,便立即跑回控制室,向班长孙某汇报。 17时19分,班长孙某向合成橡胶厂调度室报告,称R202底部管线泄漏,请求立即调消防车进行掩护,并同时安排岗位操作人员关闭R202底部第一道阀门,随即孙某带领操作工谢某、马某、丁某等全班人员到现场查看处理,同时安排王某负责疏散4号货位等待卸车的丁二烯槽车。与此同时,与罐区邻近的石油化工厂丙烯腈焚烧炉和1号化污岗位人员分别向石油化工厂调度报告,称橡胶厂316#罐区附近有大量白雾,泄漏及扩散速度很快。 17时22,班长孙某再次与调度联系,报告R202底部物料大量泄漏,人员无法进入。17时24分,泄漏物料沿铁路自备线及环形道路蔓延至石化厂丙烯腈装置焚烧炉区,遇到焚烧炉内明火后引起燃烧,外围火焰在迅速扩张后回烧至橡胶厂316#罐区,8秒钟后,达到爆炸极限的混合爆炸气在316球罐区附近发生空间闪爆。闪爆冲击波造成罐区部分罐底管线断裂,大量可燃物料泄漏燃烧。冲击波造成石油化工厂F1/C、D(拔头油罐)气

火灾爆炸事故树分析(油库静电)——措施(4)

编订:__________________ 审核:__________________ 单位:__________________ 火灾爆炸事故树分析(油库静电)——措施(4)Deploy The Objectives, Requirements And Methods To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. Word格式 / 完整 / 可编辑

文件编号:KG-AO-2700-83 火灾爆炸事故树分析(油库静电) ——措施(4) 使用备注:本文档可用在日常工作场景,通过对目的、要求、方式、方法、进度等进行 具体的部署,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或 活动达到预期的水平。下载后就可自由编辑。 静电放电引起火灾爆炸必须具备以下四个条件:(1)有产生静电的来源;(2)使静电得以积聚,并具有足够大的电场强度和达到引起火花放电的静电电压;(3)静电放电的能量达到爆炸性混合物的最小引燃能量;(4)静电放电火花周围有爆炸性的混合物存在,其浓度必须处于爆炸极限内。反之,防止静电事故的措施是从控制这四个条件着手。控制前三个条件实质上是控制静电的产生和积累,是消除静电危害的直接措施。控制第四条件是消除或减少周围环境爆炸的危险,是防止静电危害的间接措施。 在油品的储运过程中,防止静电事故的安全措施主要有以下几个方面: 1 防止爆炸性气体的形成

大爆炸和火灾危险场所采用通风装置加强通风,及时排出爆炸性气体使浓度不在爆炸范围内,以防止静电火花引起爆炸。同时对应于爆炸浓度范围还与温度密切相关,把温度控制在爆炸温度范围之外也是防止静电引起爆炸的途径。对于油面空间不能采用正压通风的办法来防止爆炸性混合气体的形成,可采用惰性气体覆盖的方法(如氮气覆盖),或采用浮顶罐、内浮顶罐。浮顶罐或内浮顶罐虽可消除浮盘以下的油气空间,尤其是内浮顶罐浮顶上面含有较多可燃气体,但浮盘上部的可燃气体发生火花放电现象也应该予以重视。 2 加速静电泄漏,防止或减少静电聚积 静电的产生本身并不危险。实际的危险在于电荷的积聚,因为这样能储存足够的能量,从而产生火花将可燃性气体引燃。为了加速油品电荷的泄漏,可以接地、跨接以及增加油品的电导率。 2.1 接地和跨接 静电接地和跨接是为了导走或消除导体上的静电,

预防火灾和爆炸事故的基本安全措施

编号:SM-ZD-19656 预防火灾和爆炸事故的基 本安全措施 Through the process agreement to achieve a unified action policy for different people, so as to coordinate action, reduce blindness, and make the work orderly. 编制:____________________ 审核:____________________ 批准:____________________ 本文档下载后可任意修改

预防火灾和爆炸事故的基本安全措 施 简介:该方案资料适用于公司或组织通过合理化地制定计划,达成上下级或不同的人员之间形成统一的行动方针,明确执行目标,工作内容,执行方式,执行进度,从而使整体计划目标统一,行动协调,过程有条不紊。文档可直接下载或修改,使用时请详细阅读内容。 建筑施工需要一定数量的可燃板材,这些材料如果处理不妥,防火措施不力极易发生火灾,在施工阶段,也需要用大量的乙炔和氧气,对钢筋进行焊割,如盛装乙炔和氧气体的钢瓶储存方法不当,使用不规范,也容易发生因气体泄露而产生的气瓶爆炸事故。因此,加强对可燃物的易燃物易爆物品的管理是有效防止火灾和爆炸事故的发生,保护员工生命安全,企业利益和国家财产不受损失的有限措施。 1、预防火灾和爆炸事故的基本安全措施 1.1 组织措施 1.1.1 要建立、健全消防机构。公司、项目部要成立义务消防对,并明确公司、项目的消防安全责任人和消防安全管理人,负责管理本单位的消防安全工作。 1.1.2 公司、项目部要加强对员工、外来工进行消防知

储油罐火灾爆炸的原因辨识(正式版)

文件编号:TP-AR-L3952 In Terms Of Organization Management, It Is Necessary To Form A Certain Guiding And Planning Executable Plan, So As To Help Decision-Makers To Carry Out Better Production And Management From Multiple Perspectives. (示范文本) 编订:_______________ 审核:_______________ 单位:_______________ 储油罐火灾爆炸的原因 辨识(正式版)

储油罐火灾爆炸的原因辨识(正式版) 使用注意:该安全管理资料可用在组织/机构/单位管理上,形成一定的具有指导性,规划性的可执行计划,从而实现多角度地帮助决策人员进行更好的生产与管理。材料内容可根据实际情况作相应修改,请在使用时认真阅读。 储油罐是油库的重要设备,储存着大量易燃烧、易爆炸、易挥发、易流失的油品,一旦发生爆炸所造成的损失难以估计,如何辨识储油罐爆炸火灾的危险性,安全有效地加强管理,提高储油罐的安全可靠性,是安全管理工作所面临的一个重大课题。 1 明火 由明火引起的油罐火灾居第1位,其主要原因是在使用电气、焊修储油设备时,动火管理不善或措施不力而引起。例如,检修管线不加盲板;罐内有油时,补焊保温钉不加措施;焊接管线时,事先没清扫管线,管线没加盲板隔断;油罐周围的杂草、可燃物

未清除干净等。另一个重要原因是在油库禁区及油蒸气易积聚的场所携带和使用火柴、打火机、灯火等违禁品或在上述场合吸烟等。 2 静电 所谓静电火灾是指静电放电火花引燃可燃气体、可燃液体、蒸汽等易燃易爆物而造成的火灾或爆炸事故。 静电的实质是存在剩余电荷。当两种不同物体接触或摩擦时,物体之间就发生电子得失,在一定条件下,物体所带电荷不能流失而发生积聚,这就会产生很高的静电压,当带有不同电荷的两个物体分离或接触时,物体之间就会出现火花,产生静电放电(ESD) 静电放电的能量和带电体的性质及放电形式有关。静电放电的形式有电晕放电、刷形放电、火花放电等。其中火花放电能量较大,危险性最大。

火灾爆炸事故的原因分析

火灾爆炸事故的原因分析 储存、运输及生产加工过程中所发生的各种火灾和爆炸事故,都有其必然的原因。某一个由人机器设备物质材料环境构成的储运或生产加工系统,由正常工作状态发展到火灾爆炸,都存在着基础原因、间接原因和直接原因向事故状态,乃至向灾害状态的发展过程。 (一)基础原因 基础原因可认为是产生事故,并导致灾害的最原始最基本的原因。可归纳为下面四个方面的原因: 1、管理的原因 管理的原因包括管理人员不称职;管理体制不适应;各种规章制度不健全;人事管理及安排不当,技术力量不强等。 2、基础教育的原因 基础教育的原因有义务教育;工业教育(企业制度教育、职业道德教育);教育的养成;社会的教育等。 3、社会的原因 社会的原因包括法律、规范的建设;行政管理体制;社会风气;国家的方针、政策等。 4、历史的原因 历史的原因有企业的历史沿革;企业的改造与革新;企业的人员组成及技术力量的历史状况;企业的固有状况等。 (二)间接原因

间接原因可认为是由基础原因诱发出来的原因。可归纳为以下六个方面: 1、技术的原因 技术方面的原因包括设计阶段对安全技术的研究不充分;工艺设计有误,设备计算出现差错,选择材料及结构设计不当等;对化学过程认识不足,灭火设施设计不当;工厂、仓库等的规划、设计不当;装置的布置不符合防火规范要求;安装、制造、维修质量不符合要求;操作规程有误或不够全面;检查、保全没有可靠保证等。 2、管理的原理 管理方面的原因有操作管理不善(如分工不明确,人员分配不当,开车前督促检查不细,命令有误,操作把关不严等);工程管理不严(如对工程设计审核不细,有遗漏,缺乏工艺分析,对装置的环境缺少调查研究等);监督执行法律、规范不严,措施不够得力等。 3、教育的原因 教育方面的原因有缺乏防火安全思想和技术教育;轻视或误解消防法规、条令;业务技术训练不够,有坏习惯,凭不良经验操作;经验不足或技术生疏;擅作主张,缺乏组织纪律性等。 4、身体原因 身体原因有疾病;近视、耳聋等残疾;疲劳;醉酒、睡眠不足;体力与岗位不相适应等。 5、精神的原因

火灾爆炸事故树分析

火灾爆炸事故树分析(油库静电) ——引言(1) 当液相与固相之间,液相与气相之间,液相与另一不相容的液相之间以及固相和气相之间,由于流动、搅拌、沉降、过滤、冲刷、喷射、灌注、飞溅、剧烈晃动以及发泡等接触、分离的相对运动,都会在介质中产生静电。许多石油化工产品都属于高绝缘物质,这类非导电性液体在生产和储运过程中,产生和积聚大量的静电荷,静电聚积到一定程度就可发生火花放电。如果在放电空间还同时存在爆炸性气体,便可能引起着火和爆炸。油库静电引起火灾爆炸是一种恶性事故,因而对于油库中防静电危害具有非常重要的意义。因此,如何安全有效地管理和维修油库,提高油库的安全可靠性,已是当前油库安全管理工作所面临的一个重大课题。故障树分析法(FTA法)是分析复杂、大型系统安全可靠性的有效工具。通过油库静电故障树分析,可找出系统存在的薄弱环节,然后进行相应的整改,从而提高油库系统的安全性。 火灾爆炸事故树分析(油库静电)——事故树(2) 1 故障树分析法方法 故障树分析方法(FTA)是一种图形演绎法,是从结果到原因描绘事故发生的有向逻辑树分析方法。这种树是一种逻辑分析过程,遵从逻辑学演绎分析原则(即从结果到原因的分析原则)。把系统不希望出现的事件作为故障树的顶事件,用逻辑“与”或“或”门自上而下地分析导致顶事件发生的所有可能的直接原因及相互间的逻辑关系,并由此逐步深入,直到找出事故的基本原因,即为故障树的基本事件。 2 故障树分析的基本程序 FTA法的基本程序:熟悉系统—调查事故—确定顶事件—确定目标—调查原因事件—编制故障树—定性分析—定量分析—安全评价。故障树分析过程大致可分为9个步骤。第1~5步是分析的准备阶段,也是分析的基础,属于传统安全管理;第6步作图是分析正确与否的关键;第7步定性分析,是分析的核心;第8步定量分析,是分析的方向,即用数据表示安全与否;第9步安全性评价,是目的。 3 油库静电火灾爆炸故障树的建立

发生器(乙炔)火灾爆炸事故树分析

发生器(乙炔)火灾爆炸事故树分析 唐俊岩王海瑜 一、前言 乙炔发生器是一种有火灾爆炸危险的设备。采用事故树分析法对电石入水式低压乙炔发生器火灾、爆炸事件进行分析,进而提出了相应的对策措施,为企业消除事故及安全生产提供可靠保障。 乙炔是一种无色的气体,俗称电石气,是最简单的炔烃。乙炔的用途很广,常见的溶解乙炔用于焊接或切割金属材料。目前国内溶解乙炔的生产主要采用电石法。电石法生产乙炔又可分为排水式、联合式、电石入水式和沉浮式等几种。乙炔发生器是利用电石和水相互作用制取乙炔的设备,是乙炔生产的关键设备。由于乙炔的危险性,乙炔发生器有燃烧爆炸危险。本文采用事故树分析法对电石入水式低压乙炔发生器火灾、爆炸事件进行分析,并提出相应的安全对策措施,为企业消除事故及安全生产提供可靠保障。 二、方法简介 事故树(Fault Tree Analysis, FTA),也称故障树,是一种描述事故因果关系的有方向的“树”,是安全系统工程中重要的分析方法之一。它能对各种系统的危险性进行识别评价,既适用于定性分析,又能进行定量分析。 事故树分析是对既定的生产系统或作业中可能出现的事故条件及可能导致的灾害后果,按工艺流程、先后次序和因果关系绘成程序方框图,表示导致灾害、伤害事故(不希望事件)的各种因素之间的逻辑关系,它由输入符号或关系符号组成,用以分析系统的安全问题或系统的运行功能问题,并为判断灾害、伤害的发生途径及与灾害、伤害之间的关系,提供一种最形象、最简洁的表达形式。 三、分析步骤 事故树分析步骤见图1。 图1 FTA步骤

四、重点解决的技术问题 1 绘制事故树 我在广泛收集、整理有关事故资料,认真消化了相关安全规程、操作规程和众多事故案例的基础上作出乙炔发生器发生爆炸事故树。 绘制事故树时,重点注意了以下问题: (1)尽可能全面收集有关的事故案例及规程、标准。 (2)系统、全面地发掘事故的发生原因及事件相互间的逻辑关系。作图过程中充分尊重生产、工艺、操作、安全等方面富有经验的同志的意见。 2 求最小割集 由于事故树较为复杂,计算最小割集时如全部具体到基本事件,则割集十分庞大,既不便于表达,也不便企业采取控制措施。因此,实际处理时本文视情况对事故树取到某一便于采取措施的中间事件作为基本分析单元。 3 结构重要度分析 结构重要度分析,是从事故树结构上分析各基本事件(这里指基本分析单元)的重要程度。即在不考虑各基本事件的发生概率,或者说假定各基本事件的发生概率都相等的情况下,分析各基本事件的发生对顶上事件发生所产生的影响程度。 4 控制措施 从理论上讲,每一组最小割集是反映事故树中可能引起顶上事件发生的一个基本事件组合,据此可有的放矢地制定预防控制措施,但因FTA推出的割集往往数目繁多,实际无法根据它们将应采取的所有措施一一列出。因此,根据目前所掌握的情况,考虑安全生产管理的实际状况及实施的验易程度,针对一些较为重大的问题提出了控制措施。 五、事故树分析 1事故树 乙炔发生器发生爆炸事故树见图2。

火灾和爆炸的类型及特点(标准版)

( 安全管理 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 火灾和爆炸的类型及特点(标准 版) Safety management is an important part of production management. Safety and production are in the implementation process

火灾和爆炸的类型及特点(标准版) 备注说明:安全管理是生产管理的重要组成部分,安全与生产在实施过程,两者存在着密切的联系,存在着进行共同管理的基础。 生产加工和储存运输过程中发生的火灾和爆炸灾害是多种多样的,为了便于探讨防火和灭火的有效对策,需要对火灾和爆炸灾害进行分类。在此火灾是指那些火焰传播速度(或燃烧速度)较慢的燃烧型火灾,爆炸则包括火焰传播速度很快的化学性爆炸和某些物理性爆炸。在火场上,火灾有时会引起爆炸,爆炸有时会引起火灾。火灾和爆炸可大致分成由点火源直接点燃而引起的和不需要点火源直接点燃而引起的两种情况。火灾和爆炸类型划分见表(略)。 火源型、蓄热型火灾和爆炸的特点是发生了燃烧、分解等反应的化学变化过程,而潜热型蒸气爆炸特点是发生了液相向气相急剧相变而急剧升高压力的物理变化过程,亦即发生了物理性爆炸。发生潜热型蒸气爆炸的物质若为不燃气体,爆炸后则可能造成设备损坏或人员伤亡,一般不会进一步造成火灾;若为可燃气体,爆炸后则可能被点火源点燃,从而发生化学性爆炸或造成大范围的火灾。

爆炸评价模型及伤害半径计算

爆炸评价模型及伤害半径计算 1、蒸气云爆炸(VCE )模型分析计算 (1)蒸气云爆炸(VCE )模型 当爆炸性气体储存在贮槽内,一旦泄漏,遇到延迟点火则可能发生蒸气云爆炸,如果遇不到火源,则将扩散并消失掉。用TNT 当量法来预测其爆炸严重度。其原理是这样的:假定一定百分比的蒸气云参与了爆炸,对形成冲击波有实际贡献,并以TNT 当量来表示蒸气云爆炸的威力。其公式如下: W TNT = 式中W TNT ——蒸气云的TNT 当量,kg ; β——地面爆炸系数,取β=1.8; A ——蒸气云的TNT 当量系数,取值范围为0.02%~14.9%; W f ——蒸气云中燃料的总质量:kg ; Q f ——燃料的燃烧热,kJ/kg ; Q TNT ——TNT 的爆热,QTNT=4120~4690kJ/kg 。 (2)水煤气储罐蒸气云爆炸(VCE )分析计算 由于合成氨生产装置使用的原料水煤气为一氧化碳与氢气混合物,具有低闪点、低沸点、爆炸极限较宽、点火能量低等特点,一旦泄漏,极具蒸气云爆炸概率。 若水煤气储罐因泄漏遇明火发生蒸气云爆炸(VCE ),设其贮量为70%时,则为2.81吨,则其TNT 当量计算为: 取地面爆炸系数:β=1.8; 蒸气云爆炸TNT 当量系数,A=4%; 蒸气云爆炸燃烧时燃烧掉的总质量, Wf=2.81×1000=2810(kg ); 水煤气的爆热,以CO 30%、H 2 43%计(氢为1427700kJ/kg,一氧化碳为10193

kJ/kg):取Q f =616970kJ/kg; TNT的爆热,取Q TNT =4500kJ/kg。 将以上数据代入公式,得 W TNT 死亡半径R1=13.6(W TNT/1000) =13.6×27.740.37 =13.6×3.42=46.5(m) 重伤半径R 2 ,由下列方程式求解: △P2=0.137Z2-3+0.119 Z2-2+0.269 Z2-1-0.019 Z2=R2/(E/P0)1/3 △P2=△P S/P0 式中: △P S ——引起人员重伤冲击波峰值,取44000Pa; P ——环境压力(101300Pa); E——爆炸总能量(J),E=W TNT ×Q TNT 。 将以上数据代入方程式,解得: △P2=0.4344 Z2=1.07 R2=1.07×(27739×4500×1000/101300)1/3 =1.07×107=115(m) 轻伤半径R 3 ,由下列方程式求解: △P3=0.137Z3-3+0.119 Z3-2+0.269 Z3-1-0.019 Z3=R3/(E/P0)1/3

火灾爆炸事故树分析正式样本

文件编号:TP-AR-L2741 In Terms Of Organization Management, It Is Necessary To Form A Certain Guiding And Planning Executable Plan, So As To Help Decision-Makers To Carry Out Better Production And Management From Multiple Perspectives. (示范文本) 编制:_______________ 审核:_______________ 单位:_______________ 火灾爆炸事故树分析正 式样本

火灾爆炸事故树分析正式样本 使用注意:该解决方案资料可用在组织/机构/单位管理上,形成一定的具有指导性,规划性的可执行计划,从而实现多角度地帮助决策人员进行更好的生产与管理。材料内容可根据实际情况作相应修改,请在使用时认真阅读。 引言 当液相与固相之间,液相与气相之间,液相与另 一不相容的液相之间以及固相和气相之间,由于流 动、搅拌、沉降、过滤、冲刷、喷射、灌注、飞溅、 剧烈晃动以及发泡等接触、分离的相对运动,都会在 介质中产生静电。许多石油化工产品都属于高绝缘物 质,这类非导电性液体在生产和储运过程中,产生和 积聚大量的静电荷,静电聚积到一定程度就可发生火 花放电。如果在放电空间还同时存在爆炸性气体,便 可能引起着火和爆炸。油库静电引起火灾爆炸是一种 恶性事故,因而对于油库中防静电危害具有非常重要

的意义。因此,如何安全有效地管理和维修油库,提高油库的安全可靠性,已是当前油库安全管理工作所面临的一个重大课题。故障树分析法(FTA法)是分析复杂、大型系统安全可靠性的有效工具。通过油库静电故障树分析,可找出系统存在的薄弱环节,然后进行相应的整改,从而提高油库系统的安全性。 事故树 1 故障树分析法方法 故障树分析方法(FTA)是一种图形演绎法,是从结果到原因描绘事故发生的有向逻辑树分析方法。这种树是一种逻辑分析过程,遵从逻辑学演绎分析原则(即从结果到原因的分析原则)。把系统不希望出现的事件作为故障树的顶事件,用逻辑“与”或“或”门自上而下地分析导致顶事件发生的所有可能

火灾爆炸危险性与防护(标准版)

火灾爆炸危险性与防护(标准 版) Security technology is an industry that uses security technology to provide security services to society. Systematic design, service and management. ( 安全管理 ) 单位:______________________ 姓名:______________________ 日期:______________________ 编号:AQ-SN-0618

火灾爆炸危险性与防护(标准版) 国家安全生产监督管理总局在安监总管一字[2008]7号文件《关于印发陆上石油天然气建设项目安全设施设计专篇编写指导书的通知》中,明确规定了天然气处理厂建设项目初步设计《安全设施设计专篇》的编写内容。其中,包括危险有害因素分析、初步设计中采取的主要防护技术措施、安全设施设计后的风险状况分析等。 天然气及其处理过程产品都是易燃、易爆物质,故主要危险有害因素是火灾、爆炸事故,同时也存在毒性、噪声、高温或低温、机械伤害和高空坠落等职业危害。本节仅重点介绍生产过程火灾、爆炸和噪声等危险有害因素与防护。 1.天然气火灾爆炸因素 天然气及其处理过程产品均为易燃、易爆物质,只要存在空气(或氧气)等助燃物及火源,就可燃烧甚至爆炸。

天然气处理过程一旦发生火灾爆炸事故,不仅直接损失巨大,而且对周围环境和公共安全构成严重威胁,危害程度极大。设计不合理、施工质量、外力破坏、违章作业、设备和设施质量、腐蚀等原因,都可能引起设备、机械、管线、阀门、仪器仪表等出现泄漏。泄漏的天然气及其凝液等遇雷击火、电气或静电火花、机动车排烟喷火、明火或其他散发火时,将会引发火灾事故。如果气体浓度达到爆炸极限,还将发生爆炸事故。 天然气处理过程中存在的导致火灾爆炸的因素主要如下; (1)管线和压力容器破裂、泄漏引发火灾爆炸。 天然气处理过程中的管线和压力容器,在运行时可能因窜气、超压、腐蚀、选材不当和制造缺陷等导致破裂和泄漏,如遇火源即可发生火灾爆炸。 (2)静电火花引起火灾爆炸。 火灾爆炸是静电火花引发的最为严重的危害。静电电量虽然不大,但因其电压很高而容易发生火花放电。如果所在场所存在天然气与空气形成的爆炸性混合物,即可由静电火花引起火灾爆炸。当

火灾爆炸事故树分析(新编版)

火灾爆炸事故树分析(新编版) Security technology is an industry that uses security technology to provide security services to society. Systematic design, service and management. ( 安全管理 ) 单位:______________________ 姓名:______________________ 日期:______________________ 编号:AQ-SN-0676

火灾爆炸事故树分析(新编版) 引言 当液相与固相之间,液相与气相之间,液相与另一不相容的液相之间以及固相和气相之间,由于流动、搅拌、沉降、过滤、冲刷、喷射、灌注、飞溅、剧烈晃动以及发泡等接触、分离的相对运动,都会在介质中产生静电。许多石油化工产品都属于高绝缘物质,这类非导电性液体在生产和储运过程中,产生和积聚大量的静电荷,静电聚积到一定程度就可发生火花放电。如果在放电空间还同时存在爆炸性气体,便可能引起着火和爆炸。油库静电引起火灾爆炸是一种恶性事故,因而对于油库中防静电危害具有非常重要的意义。因此,如何安全有效地管理和维修油库,提高油库的安全可靠性,已是当前油库安全管理工作所面临的一个重大课题。故障树分析法(FTA法)是分析复杂、大型系统安全可靠性的有效工具。通过油库

静电故障树分析,可找出系统存在的薄弱环节,然后进行相应的整改,从而提高油库系统的安全性。 事故树 1故障树分析法方法 故障树分析方法(FTA)是一种图形演绎法,是从结果到原因描绘事故发生的有向逻辑树分析方法。这种树是一种逻辑分析过程,遵从逻辑学演绎分析原则(即从结果到原因的分析原则)。把系统不希望出现的事件作为故障树的顶事件,用逻辑“与”或“或”门自上而下地分析导致顶事件发生的所有可能的直接原因及相互间的逻辑关系,并由此逐步深入,直到找出事故的基本原因,即为故障树的基本事件。 2故障树分析的基本程序 FTA法的基本程序:熟悉系统—调查事故—确定顶事件—确定目标—调查原因事件—编制故障树—定性分析—定量分析—安全评价。故障树分析过程大致可分为9个步骤。第1~5步是分析的准备阶段,也是分析的基础,属于传统安全管理;第6步作图是分析正

预防火灾和气体爆炸的注意事项通用版

管理制度编号:YTO-FS-PD821 预防火灾和气体爆炸的注意事项通用 版 In Order T o Standardize The Management Of Daily Behavior, The Activities And T asks Are Controlled By The Determined Terms, So As T o Achieve The Effect Of Safe Production And Reduce Hidden Dangers. 标准/ 权威/ 规范/ 实用 Authoritative And Practical Standards

预防火灾和气体爆炸的注意事项通 用版 使用提示:本管理制度文件可用于工作中为规范日常行为与作业运行过程的管理,通过对确定的条款对活动和任务实施控制,使活动和任务在受控状态,从而达到安全生产和减少隐患的效果。文件下载后可定制修改,请根据实际需要进行调整和使用。 为了预防一旦发生火灾爆炸事故而造成设备和厂房的破坏、物资的损失及人员的伤亡,必须研究发生火灾爆炸后,阻止火势蔓延、泄放爆炸压力以及阻挡爆炸冲击波和热辐射作用对周围的危害等预防火灾爆炸危害扩大化的基本对策。 (一)检测报警 1、检测报警控制 在工业生产尤其是石油化工等有火灾爆炸危险的生产过程中,为了预防火灾爆炸危害扩大化,就应尽早检测出发生燃烧和爆炸的征兆和现象。遇到温度上升、压力上升、产生气体、产生碳化物、冒烟、发光、异常臭味及异常声音等异常现象,应及时采取相应的控制措施消除火险隐患。 检测发生燃烧和爆炸的征兆和现象,除了依靠操作人员到现场观察之外,还要大量借用控制工艺参数的有关检测仪器和仪表。常见的检测仪器和仪表有压力计、真空

储罐区火灾爆炸-事故树(分析方法与重要度计算)

灌区火灾爆炸――事故树(分析方法与重要度计算) 图-1 贮罐的事故火灾爆炸事故树 将贮罐的事故火灾爆炸事故树转化为成功树如图-2

图-2 贮罐的事故火灾爆炸事故树转化为成功树 贮罐火灾爆炸事故树的分析评价 1 、结构函数式 Tˊ=AˊBˊa=a(Aˊ+Bˊ)=a(X1ˊX2ˊX3ˊX4ˊCˊ+DˊEˊ)=a(X1ˊX2ˊX3ˊX4ˊFˊX5ˊ+X8ˊX9ˊX10ˊX11ˊX12ˊ)=a{X1ˊX2ˊX3ˊX4ˊ(X6ˊ+X7ˊ)X5ˊ+X8ˊX9ˊX10ˊX11ˊX12ˊ}= a(X1ˊX2ˊX3ˊX4ˊX5ˊX6ˊ+X1ˊX2ˊX3ˊX4ˊX5ˊX7ˊ+X8ˊX9ˊX10ˊX11ˊX12ˊ) 2、最小径集 通过计算分析该事故树12个基本事件,可以得出下列3个最小径集:

P1={a,X1ˊ,X2ˊ,X3ˊ,X4ˊ,X5ˊ,X6ˊ} P2={a,X1ˊ,X2ˊ,X3ˊ,X4ˊ,X5ˊ,X7ˊ} P3={a,X8ˊ,X9ˊ,X10ˊ,X11ˊ,X12ˊ} 3、结构重要度分析 根据以上结果,运用结构重要度近似判别式,可以计算出12个基本事件和一个条件事件的结构重要度系数。计算结果如下:由于条件事件a存在于每一个径集中,因此其结构重要度系数I Φ(a)最大; 事件X8、X9、X10、X11、X12是3个径集中基本事件最少的一个径集中出现,其结构重要度系数IΦ(8)、IΦ(9)、IΦ(10)、IΦ(11)、I Φ(12)相等; 事件X1、X2、X3、X4、X5是3个径集中出现两次的基本事件,其结构重要度系数IΦ(1)、IΦ(2)、IΦ(3)、IΦ(4)、IΦ(5)相等; 事件X6、X7是3个径集中只出现一次的基本事件,其结构重要度系数IΦ(6)、IΦ(7)相等; 由此得出结构重要度顺序: IΦ(a)>IΦ(8)=IΦ(9)=IΦ(10)=IΦ(11)=IΦ(12)>IΦ(1)=IΦ(2)=IΦ(3)=IΦ(4)=I Φ(5)> IΦ(6)=IΦ(7) 评价结果分析及其对策措施建议 由事故树分析可知,火源与达到爆炸极限的混合物蒸气构成了液化气贮罐燃爆事故发生的要素。条件事件a(达到爆炸极限)结构重要度最大,是液化气贮罐燃爆事故发生的最重要条件,结合事故案例分析,要求采取以下针对性的措施: 1)贮罐罐体设计应采用不易产生蒸气的内浮顶罐或固定的喷淋冷却系统,最大可能地减少液化气蒸气在空气中达到爆炸极限; 2)在罐附近安装气体报警装置,对混合气浓度进行检测,一旦接

爆炸与火灾危险场所的分类与分级

安全管理编号:LX-FS-A21282 爆炸与火灾危险场所的分类与分级 In the daily work environment, plan the important work to be done in the future, and require the personnel to jointly abide by the corresponding procedures and code of conduct, so that the overall behavior or activity reaches the specified standard 编写:_________________________ 审批:_________________________ 时间:________年_____月_____日 A4打印/ 新修订/ 完整/ 内容可编辑

爆炸与火灾危险场所的分类与分级 使用说明:本安全管理资料适用于日常工作环境中对安全相关工作进行具有统筹性,导向性的规划,并要求相关人员共同遵守对应的办事规程与行动准则,使整体行为或活动达到或超越规定的标准。资料内容可按真实状况进行条款调整,套用时请仔细阅读。 (一)爆炸危险场所的分类和分级 1.爆炸危险场所的分类 爆炸危险场所按爆炸性物质的物态,分为气体爆炸危险场所和粉尘爆炸危险场所。 2.爆炸危险场所的分级 爆炸危险场所的分级原则是按爆炸性物质出现的频度、持续时间和危险程度而划分为不同危险等级的区域。 (1)气体爆炸危险场所的区域等级 爆炸性气体、易燃或可燃液体的蒸汽与空气混合形成爆炸性气体混合物的场所,按其危险程度的大小

道化学火灾爆炸危险指数评价法

道化学火灾、爆炸指数评价法 1 目的 美国道化学公司自1964年开发“火灾、爆炸危险指数评价法”(第一版)以来,历经29年,不断修改完善;在1993年推出了第七版,以已往的事故统计资料及物质的潜在能量和现行安全措施为依据,定量地对工艺装置及所含物料的实际潜在火灾、爆炸和反应危险性行分析评价,可以说更趋完善、更趋成熟。其目的是: (1)量化潜在火灾、爆炸和反应性事故的预期损失; (2)确定可能引起事故发生或使事故扩大的装置; (3)向有关部门通报潜在的火灾、爆炸危险性; (4)使有关人员及工程技术人员了解到各工艺部门可能造成的损失,以此确定减轻事故严重性和总损失的有效、经济的途径。 2 评价计算程序 评价计算程序如下: 火灾、爆炸危险指数评价法风险分析计算程序如图1所示。 图1 风险分析计算程序 3 火灾、爆炸危险指数及补偿系数

火灾、爆炸危险指数及补偿系数见表1、表2、表3及表4。

表1 火灾、爆炸指数(F&EI)表

4 DOW方法计算说明 4.1 选择工艺单元 确定评价单元:进行危险指数评价的第一步是确定评价单元,单元是装置的一个独立部分,与其他部分保持一定的距离,或用防火墙。 定义: 工艺单元——工艺装置的任一主要单元。 生产单元——包括化学工艺、机械加工、仓库、包装线等在内的整个生产设施。 恰当工艺单元——在计算火灾、爆炸危险指数时,只评价从预防损失角度考虑对工艺有影响的工艺单元,简称工艺单元。 选择恰当工艺单元的重要参数有下列6个。一般,参数值越大,则该工艺单元就越需要评价。

(1)潜在化学能(物质系数); (2)工艺单元中危险物质的数量; (3)资金密度(每平方米美元数); (4)操作压力和操作温度; (5)导致火灾、爆炸事故的历史资料; (6)对装置起关键作用的单元。 选择恰当工艺单元时,还应注意以下几个要点: (1)由于火灾、爆炸危险指数体系是假定工艺单元中所处理的易燃、可燃或化学活性物质的最低量为2268kg或2.27m3,因此,若单元内物料量较少,则评价结果就有可能被夸大。一般,所处理的易燃、可燃或化学活性物质的量至少为454kg或

液化气罐区火灾爆炸事故树

T A1—形成混合气 A2—遇火源 A3—液态烃泄露A4—未报警A5—静电火花 A6—附近有机动车通行A7—罐爆裂 A8—静电未消除A9—罐超压A10—安全阀未起作用A11—未报警A12—未报警A 13 —无显示 A14—液面无显示 A15—压力无显示 X1—烟头未掐灭X2—阀门泄露X3—法兰片断裂X4—报警器故障X5—无报警器 X6—收油或油排入事故罐过快X7—未安装阻火器X8—阻火器故障X9—无接地线X10—接地线断开X11—收油过量X12—安全阀下部阀门未开 X13—安全阀故障X14—无报警器 X15—报警器故障X16—液面计上下阀门未开X17—液面计故障X18—无液面计 X19—无压力表X20—压力表故障 液化石油气储罐区 火灾爆炸事故树分析

该事故树的结构函数为:T = A1·A2 T= A1·A2 = A3·A4(X1+A5 + A6)= (X2+X3+A7)(X4+X5) (X1+X6+A8+X7+X8)= (X2+X3+A9·A10)(X4+X5) (X1+X6+X9+X10+X7+X8)= [X2+X3+X11·A11·(X12+X13)] (X4+X5)(X1+X6+X7+X8+X9+X10)=[X2+X3+X11·A12·A13 (X12+X13)](X4+X5)(X1+X6+X7+X8+X9+X10) = [X2+X3+X11(X14+X15)(A14+A15)(X12+X13)](X4+X5) (X1+X6+X7+X8+X9+X10) =[X2+X3+X11(X14+X15)(X16+X17+X18+X19+X20)(X12+X13)] (X4+X5)(X1+X6+X7+X8+X9+X10) =[X2+X3+(X11X14+X11X15)(X16+X17+X18+X19+X20)(X12+X13)] (X4+X5) (X1+X6+X7+X8+X9+X10) = [X2+X3+(X11X14X12+X11X14X13+X11X15X12+X11X15X13) (X16+X17+X18+X19+X20)](X4+X5)(X1+X6+X7+X8+X9+X10) = (X2+X3+X11X12X14X16+X11X12X14X17+X11X12X14X18+X11X12X14X19 +X11X12X14X20+X11X12X15X16+X11X12X15X17+X11X12X15X18 +X11X12X15X19+X11X12X15X20+X11X13X14X16+X11X13X14X17 +X11X13X14X18+X11X13X14X19+X11X13X14X20+X11X13X15X16 +X11X13X15X17+X11X13X15X18+X11X13X15X19+X11X13X15X20) (X4X1+X4X6+X4X7+X4X8+X4X9+X4X10+X5X1+X5X6+X5X7+X5X8 +X5X9+X5X10) =X2X4X1+X2X4X6+……+X2X5X10+X3X4X1+X3X4X6+……+X3X5X10

相关主题
文本预览
相关文档 最新文档