当前位置:文档之家› 第六节 空间直角坐标系及空间向量的线性运算(知识梳理)

第六节 空间直角坐标系及空间向量的线性运算(知识梳理)

第六节 空间直角坐标系及空间向量的线性运算(知识梳理)
第六节 空间直角坐标系及空间向量的线性运算(知识梳理)

第六节空间直角坐标系及空间向量的线性运算

复习目标

学法指导

1.会确定空间点的坐标.

2.会求直线方向向量及平面法向量.

3.会进行空间向量的几何运算及代数运算.

4.会进行空间向量的数量积及坐标运算. 1.空间直角坐标系中的点是由横、纵、竖三个数组成的有序数组.

2.直线的方向向量与直线上的向量是共线向量,平面的法向量与平面上的任何直线都垂直.

3.空间向量的几何运算及代数运算与平面向量类似.

4.会通过数量积进行空间向量的坐标运算表达直线、平面位置关系.

一、空间直角坐标系及空间向量的有关概念

1.空间直角坐标系及有关概念

(1)空间直角坐标系

以空间一点O为原点,建立三条两两垂直的数轴:x轴、y轴、z轴.这时我们说建立了一个空间直角坐标系Oxyz,其中点O叫做坐标原点,x 轴、y轴、z轴叫做坐标轴,通过每两个坐标轴的平面叫做坐标平面.

(2)右手直角坐标系

在空间直角坐标系中,让右手拇指指向x 轴的正方向,食指指向y 轴的正方向,如果中指指向z 轴的正方向,则称这个坐标系为右手直角坐标系.

(3)空间一点M 的坐标

空间一点M 的坐标可以用有序实数组(x,y,z)来表示,记作M(x,y,z),其中x 叫做点M 的横坐标,y 叫做点M 的纵坐标,z 叫做点M 的竖坐标. 2.空间两点间的距离公式、中点公式 (1)距离公式

①设点A(x 1,y 1,z 1),B(x 2,y 2,z 2),则

②点P(x,y,z)与坐标原点O 之间的距离为 .

(2)中点公式

设点P(x,y,z)为线段P 1P 2的中点,

其中

P 1(x 1,y 1,z 1),P 2(x 2,y 2,z 2),则有1212

12,2,2.2x x x y y y z z z +?

=??

+?=

??

+?

=??

3.空间向量的有关概念

向量

零向

长度(或模)为0的向量

相等

向量

方向相同且模相等的向量

相反

向量

方向相反且模相等的向量

共线

向量

(或平

向量)

如果表示空间向量的有向线段所在的直线互相平行或重合,

则这些向量叫做共线向量或平行向量,a平行于b记作 a∥b

共面

向量

平行于同一个平面的向量叫做共面向量

概念理解

(1)空间直角坐标系的建立原则是:合理利用几何体中的垂直关系,特别是面面垂直;尽可能地让相关点落在坐标轴或坐标平面上.

(2)直线的方向向量:l是空间一直线,A,B是直线l上任意两点,则称AB

u u u r为直线l的方向向量,与

AB

u u u r平行的任意非零向量也是直线l的方向向量.

(3)平面的法向量可利用方程组求出:设a,b 是平面α内两不共线向

量,n 为平面α的法向量,则求法向量的方程组为0,

0.

n a n b ?=??

?=? (4)共线向量定理中a ∥b ?存在λ∈R,使a=λb,不要忽视b ≠0. (5)一个平面的法向量有无数个,但要注意它们是共线向量,不要误认为是共面向量. 二、数量积与坐标运算 1.数量积及相关概念

(1)两向量的夹角:已知两个非零向量a,b,在空间任取一点O,作

OA u u u r =a,OB u u u r

=b,则∠AOB 叫做向量a 与b 的夹角,记作,其范围是[0,

π].若=π2,则称向量a 与b 互相垂直,记作a ⊥b.若=0,则称向量a 与b 同向共线,若=π,则称向量a 与b 反向共线. (2)两向量的数量积:已知两个非零向量a,b,则|a||b|cos叫做向量a,b 的数量积,记作 a ·b,即a ·b=|a||b|cos. 2.两个向量数量积的性质和结论 已知两个非零向量a 和b.

(1)a ·e=|a|cos(其中e 为单位向量). (2)a ⊥b ?a ·b=0. (3)cos=a b a b

?.

(4)a 2=a ·a=|a|2,|a|=

.

(5)|a ·b|≤|a||b|.

3.空间向量数量积的运算律 (1)数乘结合律:(λa)·b=λ(a ·b).

(2)交换律:a ·b=b ·a.

(3)分配律:a ·(b+c)=a ·b+a

·c. 4.向量坐标的定义

设i,j,k 为空间三个两两垂直的单位向量,如果OP u u u r

=xi+yj+zk,则(x,y,z)叫做向量OP u u u r

的坐标. 5.空间向量运算的坐标表示 设a=(x 1,y 1,z 1),b=(x 2,y 2,z 2),那么

(1)加、减运算:a ±b=(x 1±x 2,y 1±y 2,z 1±z 2). (2)数量积:a ·b=x 1x 2+y 1y 2+z 1z 2. (3)夹角公式:cos=121212

222222

111222

x y z x y z ++++.

(4)模长公式:|a|=

a a ?=222111x y z ++.

(5)数乘运算:λa=(λx 1,λy 1,λz 1)(λ∈R).

(6)平行的充要条件:a ∥b ?x 1=λx 2,y 1=λy 2,z 1=λz 2(λ∈R). (7)垂直的充要条件:a ⊥b ?x 1x 2+y 1y 2+z 1z 2=0.

1.概念理解

(1)探求两向量的夹角时, 必须从两向量共起点来看.

(2)空间向量的数量积运算律与平面向量数量积运算律保持一致. (3)向量OP u u u r

的坐标是终点坐标减去起点坐标.

(4)立体几何中的平行或共线问题一般可以用向量共线定理解决,求两点间距离可以用向量的模解决;解决垂直问题一般可化为向量的数量积为零;求角问题可以转化为两向量的夹角.

2.与数量积及坐标运算相关联的结论

(1)a

a

表示单位向量.

(2)|a|2=a·a.

(3)空间向量不满足结合律,即(a·b)·c≠a·(b·c).

1.在平行六面体ABCD-EFGH中,若AG u u u r=2x

AB

u u u r+3y

BC

u u u r+3z

HD

u u u r,则x+y+z等于( D )

(A)7

6

(B)2

3

(C)5

6

(D)1

2

解析:因为AG u u u r=AB u u u r+BC u u u r-HD u u u r,

所以

21,

31,

31,

x

y

z

=

?

?

=

?

?=-

?

所以

1

,

2

1

,

3

1

,

3

x

y

z

?

=

?

?

?

=

?

?

?

=-

?

?

所以x+y+z=1

2

.故选D.

2.平行六面体ABCD-A1B1C1D1中,向量AB u u u r,AD u u u r,

1

AA

u u u r两两的夹角均为60°,

且|AB u u u r|=1,|AD u u u r|=2,|

1

AA

u u u r|=3,则|

1

AC

u u u u r|等于( A )

(A)5 (B)6 (C)4 (D)8

解析:设AB u u u r=a,AD u u u r=b,

1

AA

u u u r=c,

1

AC

u u u u r=a+b+c,

2

1

AC

u u u u r=(a+b+c)2

=a2+b2+c2+2a·b+2b·c+2c·a

=25,

因此|

1

AC

u u u u r|=5.故选A.

3.在空间四边形ABCD中,AB u u u r·CD u u u r+AC u u u r·DB u u u r +AD u u u r·BC u u u r等于( B )

(A)-1 (B)0

(C)1 (D)不确定

解析:

如图,令AB u u u r=a,AC u u u r=b,AD u u u r=c,

则AB u u u r·CD u u u r+AC u u u r·DB u u u r+AD u u u r·BC u u u r

=a·(c-b)+b·(a-c)+c·(b-a)

=a·c-a·b+b·a-b·c+c·b-c·a

=0.

考点一空间直角坐标系

[例1] 在空间直角坐标系Oxyz中,点A(1,2,2),则|OA|= ;点A到坐标平面yOz的距离是.

解析:根据空间直角坐标系中两点间的距离公式,

得|OA|=()()()

222

-+-+-=3.

102020

因为A(1,2,2),

所以点A到平面yOz的距离为|1|=1.

答案:3 1

(1)点P(x,y,z)关于各点、线、面的对称点的坐标

点、线、面对称点坐标

原点(-x,-y,-z)

x轴(x,-y,-z)

y轴(-x,y,-z)

z轴(-x,-y,z)

坐标平面xOy (x,y,-z)

坐标平面yOz (-x,y,z)

坐标平面zOx (x,-y,z)

(2)两点间距离公式的应用

①求两点间的距离或线段的长度;

②已知两点间的距离,确定坐标中参数的值;

③根据已知条件探求满足条件的点的存在性.

设点M(2,1,3)是直角坐标系Oxyz中一点,则点M关于x轴对称的点的坐标为( A )

(A)(2,-1,-3) (B)(-2,1,-3)

(C)(-2,-1,3) (D)(-2,-1,-3)

解析:点M关于x轴对称的点与点M的横坐标相同,纵坐标、竖坐标均互为相反数,所以对称点为(2,-1,-3).故选A.

考点二空间向量的线性运算

[例2] 在三棱锥O-ABC中,M,N分别是OA,BC的中点,G是△ABC的重

u u u u r.

心,用基向量OA u u u r,OB u u u r,OC u u u r表示OG u u u r,MG

解:OG u u u r =OA u u u r +AG u u u r

=OA u u u r +23

AN u u u r

=OA u u u r +23(ON u u u r -OA u u u r

)

=OA u u u r

+23

[12

(OB u u u r +OC u u u r )-OA u u u r

]

=13OA u u u r

+13OB u u u r

+1

3

OC u u u r

. MG u u u u r =OG u u u r -OM u u u u r

=OG u u u r -12

OA u u u r

=13OA u u u r +13OB u u u r +13OC u u u r -1

2OA u u u r

=-16OA u u u r

+13OB u u u r

+1

3

OC u u u r

. (1)选定空间不共面的三个向量作基向量,并用它们表示出

指定的向量,是用向量解决立体几何问题的基本要求.如本例用

OA u u u r ,OB u u u r ,OC u u u r 表示OG u u u r ,MG u u u u r

等,另外解题时应结合已知和所求观察图形,联

想相关的运算法则和公式等,就近表示所需向量.

(2)首尾相接的若干个向量的和,等于由起始向量的起点指向末尾向量的终点的向量.所以求若干向量的和,可以通过平移将其转化为首尾相接的向量求和.

如图,已知空间四边形OABC,其对角线为OB,AC,M,N 分别是对边OA,BC 的中点,点G 在线段MN 上,且分MN 所成的比为2,现用基向量

OA u u u r ,OB u u u r ,OC u u u r 表示向量OG u u u r ,设OG u u u r =x OA u u u r +y OB u u u r

+z OC

u u u r ,则x,y,z 的值分别是

( D ) (A)x=13,y=13,z=13

(B)x=13

,y=13

,z=16

(C)x=13,y=16,z=1

3 (D)x=16,y=13,z=13

解析:设OA u u u r =a,OB u u u r =b,OC u u u r

=c, 因为G 分MN 所成的比为2,

所以MG u u u u r =2

3

MN u u u u r

, 所以OG u u u r

=OM u u u u r +MG u u u u r =OM u u u u r +23

(ON u u u r -OM u u u u r

) =12a+23(12b+12c-1

2a) =12a+13b+13c-13a =16a+13b+13c, 即x=16,y=13,z=13

. 考点三 空间向量的数量积与坐标运算

[例3] 已知空间三点A(-2,0,2),B(-1,1,2),C(-3,0,4).设a=AB u u u r ,b=AC u u u r

,

(1)求a 和b 的夹角θ的余弦值;

(2)若向量ka+b 与ka-2b 互相垂直,求k 的值.

解:因为A(-2,0,2),B(-1,1,2),C(-3,0,4),a=AB u u u r

,b=AC u u u r

,

所以a=(1,1,0),b=(-1,0,2). (1)cos θ=a b a b

?=10025

-++?=-1010

,

所以a 和b 的夹角θ的余弦值为-1010

.

解:(2)因为ka+b=k(1,1,0)+(-1,0,2)=(k-1,k,2), ka-2b=(k+2,k,-4)且(ka+b)⊥(ka-2b),

所以(k-1,k,2)·(k+2,k,-4)=(k-1)(k+2)+k 2-8=2k 2+k-10=0. 解得k=-52

或k=2. (1)求空间向量数量积的方法

①定义法.设向量a,b 的夹角为θ,则a ·b=|a||b|cos θ; ②坐标法.设a=(x 1,y 1,z 1),b=(x 2,y 2,z 2),则a ·b=x 1x 2+y 1y 2+z 1z 2. ③基向量法.将所求向量用基向量表示,再进行运算. (2)数量积的应用

①求夹角.设非零向量a,b 的夹角为θ,则cos θ=a b a b

?,进而可求两异

面直线所成的角;

②求长度(距离).运用公式|a|2=a ·a,可将线段长度的计算问题转化为向量数量积的计算问题;

③解决垂直问题.利用a ⊥b ?a ·b=0(a ≠0,b ≠0),可将垂直问题转化为向量数量积的计算问题.

1.如图,在棱长为2的正四面体A-BCD 中,E,F 分别为直线AB,CD 上的动点,且3若记

EF 中点P 的轨迹为L,则|L|等

于 .(

注:|L|表示L 的测度,在本题,L 为曲线、平面图形、空间几何体时,|L|分别对应长度、面积、体积)

解析:为了便于计算,将正四面体放置于如图的正方体中,可知,正方体的棱长为

2,建立如图所示的空间直角坐标系,

设E(0,y 1,y 1),F(2,y 2,2-y 2),P(x,y,z),

|EF|=()()()2

2

2

1

212

22y

y y y +-+-+=3,

即(y 1-y 2)2+(y 1+y 2-2)

2

=1,

又12

12

2,2

2x y y y y y z ????+=

???+-=??

即12122

2,

2x y y y y y z ???

?+=??

+-???

代入上式得22

22

=1,

即2

)22)2=14,即P 的轨迹为半径为1

2

的圆,周长为|L|=2πr=π. 答案:π

2.A,B,C,D 是空间不共面的四点,且满足

AB u u u r ·AC u u u r =0,AC u u u r ·AD u u u r =0,AB u u u r ·AD u u u r

=0,M

为BC 的中点,则△AMD 是( C )

(A)钝角三角形 (B)锐角三角形 (C)直角三角形 (D)不确定 解析:因为M 为BC 的中点, 所以AM u u u u r =12

(AB u u u r +AC u u u r

).

所以AM u u u u r

·AD u u u r =12

(AB u u u r +AC u u u r )·AD u u u r

=12AB u u u r

·AD u u u r +1

2

AC u u u r ·AD u u u r

=0.

所以AM ⊥AD,即△AMD 为直角三角形. 考点四 易错辨析

[例4] 如图所示,在空间直角坐标系中,BC=2,原点O 是BC 的中点,点A 的坐标是(

3

2

,12

,0),点D 在平面yOz 内,且∠BDC=90°,∠DCB=30°.

(1)求OD u u u r

的坐标;

(2)设AD u u u r 和BC u u u r

的夹角为θ,求cos θ的值.

解:(1)如图所示,过D 作DE ⊥BC,垂足为E.在Rt △DCB 中,由∠BDC=90°,∠DCB=30°,BC=2,得BD=1,CD=

3.

所以DE=CDsin 30°3

.

OE=OB-BDcos 60°=1-12

=12

.

所以D 点坐标为(0,-12,3),

即OD u u u r

的坐标为(0,-12,3

).

解:(2)依题意,OA u u u r

=(

3

, 12

,0), OB u u u r =(0,-1,0), OC u u u r

=(0,1,0),

所以AD u u u r =OD u u u r -OA u u u r

=(-

3

,-1,

3),

BC u u u r =OC u u u r -OB u u u r

=(0,2,0).

由AD u u u r 和BC u u u r

的夹角为θ,得 cos θ=

AD BC AD BC

?u u u r u u u r

u u u r u u u r

=

()()2

2

2222

33012022

33102022-

?+-?+?????-+-+?++ ? ? ? ?????

=-

10.

所以cos θ=-10.

解答空间向量的计算问题时,以下两点容易造成失分,在备

考时要高度关注:

(1)对向量运算法则特别是坐标运算的法则掌握不熟练导致失误. (2)不能熟练地运用向量共线、垂直的充要条件将问题转化.

类型一 空间直角坐标系

1.在四棱锥O-ABCD 中,底面ABCD 是平行四边形,设OA u u u r

=a, OB u u u r

=b,

OC u u u r =c,则OD u u u r

可表示为(

A )

(A)a+c-b (B)a+2b-c

(C)b+c-a (D)a+c-2b 解析:因为OA u u u r

=a,OB u u u r

=b,OC u u u r

=c,

在?ABCD 中,BA u u u r =OA u u u r -OB u u u r =a-b,OD u u u r - OC u u u r =CD u u u r =BA u u u r

=a-b, 所以OD u u u r

=OC u u u r

+CD u u u r =a-b+c.故选A.

2.已知空间任意一点O 和不共线的三点A,B,C,若

OP u u u r =x OA u u u r +y OB u u u r +z OC u u u r

(x,y,z ∈R),则“x=2,y=-3,z=2”是“P,A,B,C

四点

共面”的( B ) (A)必要不充分条件 (B)充分不必要条件 (C)充要条件

(D)既不充分也不必要条件 解析:当x=2,y=-3,z=2时, 即OP u u u r

=2OA u u u r

-3OB u u u r

+2OC u u u r

.

则AP u u u r -AO u u u r =2OA u u u r -3(AB u u u r -AO u u u r )+2(AC u u u r -AO u u u r

), 即AP u u u r

=-3AB u u u r +2AC u u u r

,

根据共面向量定理知,P,A,B,C 四点共面; 反之,当P,A,B,C 四点共面时,根据共面向量定理, 设AP u u u r =m AB u u u r +n AC u u u r

(m,n ∈R), 即OP u u u r

-OA u u u r

=m(OB u u u r

-OA u u u r

)+n(OC u u u r

-OA u u u r

), 即OP u u u r

=(1-m-n)OA u u u r

+m OB u u u r

+n OC u u u r

,

即x=1-m-n,y=m,z=n,这组数显然不止2,-3,2.故“x=2,y=-3,z=2”是“P,A,B,C 四点共面”的充分不必要条件.故选B.

3.已知a=(2,3,1),b=(-4,2,x),且a ⊥b,则|b|= . 解析:因为a ⊥b,所以-8+6+x=0,解得x=2, 故|b|=()2

22

422-++=26.

答案:2

6

类型二 空间向量线性运算

4.在正方体ABCD-A 1B 1C 1D 1中,向量1

DD u u u u r -AB u u u r +BC u u u r

化简后的结果是( A )

(A)1

BD u u u u r (B)1

D B u u u u r (C)1

B D u u u u r (D)1

DB u u u u r

解析:根据空间向量加法的平行四边形法则,把向量平移到同一起点,得1

DD u u u u r -AB u u u r +BC u u u r =BA u u u r +BC u u u r +1

BB u u u r =1

BD u u u u r

,故选A.

类型三 空间向量数量积及坐标运算

5.点P 是棱长为1的正方体ABCD-A 1B 1C 1D 1的底面A 1B 1C 1D 1上一点,则

PA u u u r

·1PC u u u u r 的取值范围是(

D )

(A)[-1,-14] (B)[-12,-1

4

] (C)[-1,0] (D)[-12,0] 解析:

如图,以D 1为原点,以D 1C 1,D 1A 1,D 1D 方向为x 轴,y 轴,z 轴,建立空间直角坐标系,则A(0,1,1),C 1(1,0,0),P(x,y,0), PA u u u r

=(-x,1-y,1),

1PC u u u u r

=(1-x,-y,0), PA u u u r ·1PC u u u u r =(x-1

2

)2+(y-12

)2-1

2,(其中0≤x ≤1,0≤y ≤1),

所以PA u u u r ·1

PC u u u u r

的取值范围是[-12

,0].

故选D.

6.已知空间四边形ABCD 的每条边和对角线的长都等于a,点E,F 分别是BC,AD 的中点,则AE u u u r ·AF u u u r 的值为( C )

(A)a 2 (B)12a 2 (C)14

a 2

(

a 2

解析:AE u u u r ·AF u u u r =12

(AB u u u r +AC u u u r

12

AD u u u r =14(AB u u u r ·AD u u u r +AC u u u r ·AD u u u r

)=14(a 2cos 60°+a 2cos 60°)=14

a 2

.故选C. 7.在四棱锥P-ABCD 中,AB u u u r =(4,-2,3),AD u u u r

=(-4,1,0),

AP u u u r

=(-6,2,-8),则这个四棱锥的高

h 等于( B )

(A)1 (B)2 (C)13 (D)26

解析:设平面ABCD 的法向量为n=(x,y,z),则

,,

n AB n AD ??

???u u u r

u u u r ⊥⊥?4230,

40,

x y z x y -+=??

-+=? 令y=4,则n=(1,4,43), 则h=

n AP n

?u u u r

=

32683

3

-+-

=2.故选B.

8.OA u u u r

=(1,2,3),OB u u u r

=(2,1,2),OP u u u r

=(1,1,2)(其中O 为坐标原点),点Q 在OP 上运动,当QA u u u r ·QB u u u r

取最小值时,点Q 的坐标为( C )

(A)( 12,34,13) (B)( 12,23,3

4) (C)( 43,43,83) (D)( 43,43,73

) 解析:设OQ u u u r =λOP u u u r

=λ(1,1,2)=(λ,λ,2λ), 则QA u u u r

=(1-λ,2-λ,3-2λ), QB u u u r

=(2-λ,1-λ,2-2λ),

QA u u u r ·QB u u u r

=(1-λ)(2-λ)+(2-λ)(1-λ)+(3-2λ)(2-2λ)

=6λ2-16λ+10 =6(λ-43

)2-23

.

当λ=43

时,QA u u u r ·QB u u u r

取得最小值,此时Q(43

,43

,83

).

故选C.

9.A,B,C,D 是空间不共面的四点,且满足

AB u u u r ·AC u u u r =0,AC u u u r ·AD u u u r =0,AB u u u r ·AD u u u r

=0,则△BCD

是( B )

(A)钝角三角形 (B)锐角三角形 (C)直角三角形 (D)不确定 解析:BC u u u r ·BC u u u r =(AD u u u r -AB u u u r )·(AC u u u r -AB u u u r

) =AD u u u r ·AC u u u r -AD u u u r ·AB u u u r -AB u u u r ·AC u u u r +2

AB u u u r =2

AB u u u r >0,

所以cos ∠DBC>0,∠DBC 为锐角, 同理∠BDC,∠BCD 为锐角. 所以△BCD 为锐角三角形,故选B.

高中数学 空间向量的线性运算教案

用心 爱心 专心 - 1 - 课题:3.1.1空间向量的线性运算 设计人: 审核人: 班级: 组名: 姓名: 日期: 典型例题 例1.已知平行六面体''''D C B A ABCD -(如图),以图中一对顶点构造向量,使 它们分别等于: ; ⑴BC AB + ;⑵'AA AD AB ++ '2 1CC AD AB + +⑶ .⑷ )'(3 1AA AD AB ++ (5)D D AB BC → → → '-+ 1(6)()2 A B A D D D B C → → → → '++ - (7)AB BC C C C D D A → → → → → '''''++++ 例3.已知平行六面ABCD-A1B1C1D1 ,求满足下列各式的x 的值。 11111 )3(2 )2(AC x AD AB AC AC x BD AD =++=-x C D A AB =++1111 )1( 1 C C ' D ' A ' B ' D A )(21,,.2→ →→+=BC AD MN CD AB ABCD N M 求证:的中点, 的棱分别是四面体例D C B A N M

用心 爱心 专心 - 2 - 四.当堂检测 1.在三棱柱111ABC A B C -中,设M 、N 分别为1,BB AC 的中点,则MN 等于( ) A .11()2A C A B B B ++ B .111111()2 B A B C C C ++ C .11()2A C C B B B ++ D .11()2 B B B A B C -- 2.若A 、B 、C 、D 为空间四个不同的点,则下列各式为零向量的是 ( )①22AB BC CD DC +++ ②2233AB BC CD DA AC ++++ ③AB CA BD ++ ④AB CB CD AD -+- A .①② B .②③ C .②④ D .①④ 3.在空间四边形ABCD 中,点M 、G 分别是BC 、CD 边的中点,化简 4. 如图,在三棱柱111C B A ABC -中,M 是1BB 的中点, 化简下列各式,并在图中标出化简得到的向量: (1)1 BA CB +; (2)1 21AA CB AC + +; (3)CB AC AA --1 五.课后练习 1.四棱锥P-ABCD 的底面ABCD 为平行四边形,,,AB a AD b AP c === ,E 为PC 中点, 则向量C E = _______________________; 2.已知长方体 1111 ABC D A B C D -,化简向量表达式 1CB AC AD AA +++= _____________; 3. 1(1) ()2 1(2) ()2 AB BC BD AG AB AC ++-+ a b AD c a ,b,c C D ,. ABC D AB BC AC BD == 空间四边形中,,=,,试用来表示,

高中数学-空间直角坐标系与空间向量典型例题

高中数学-空间直角坐标系与空间向量 一、建立空间直角坐标系的几种方法 构建原则: 遵循对称性,尽可能多的让点落在坐标轴上。 作法: 充分利用图形中的垂直关系或构造垂直关系来建立空间直角坐标系. 类型举例如下: (一)用共顶点的互相垂直的三条棱构建直角坐标系 例1 已知直四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2,底面ABCD 是直角梯形,∠ A 为直角,A B ∥CD ,AB =4,AD =2,D C =1,求异面直线BC 1与DC 所成角的余弦 值. 解析:如图1,以D 为坐标原点,分别以DA 、DC 、DD 1所在直线为x 、y 、z 轴建立空间直角坐标系,则C 1(0,1,2)、B (2,4,0), ∴1(232)BC =--u u u u r ,,,(010)CD =-u u u r ,,. 设1BC u u u u r 与CD uuu r 所成的角为θ, 则11317 cos 17BC CD BC CD θ== u u u u r u u u r g u u u u r u u u r . (二)利用线面垂直关系构建直角坐标系 例2 如图2,在三棱柱ABC -A 1B 1C 1中,AB ⊥侧面BB 1C 1C ,E 为棱CC 1上异于 C 、C 1的一点,EA ⊥EB 1.已知2AB = ,BB 1=2,BC =1,∠BCC 1= 3 π .求二面角A -EB 1-A 1的平面角的正切值. 解析:如图2,以B 为原点,分别以BB 1、BA 所在直线为y 轴、z 轴,过B 点垂直于平面AB 1的直线为x 轴建立空间直角坐标系. 由于BC =1,BB 1=2,AB = 2,∠BCC 1= 3 π,

空间向量的坐标运算练习

空间向量的坐标运算练 习 SANY标准化小组 #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#

空间向量的坐标运算——1 1、已知向量b ,a 分别平行于x 、y 轴,则它们的坐标各有什么特点 答:a 的__________________________; b 的________________________________ 2、如果的横坐标为0,其它坐标都不为0,则与哪个坐标平面平行答:_________ 4、点P(2,-3,4)在xoy 面上的射影坐标是___________;在xoz 面上的射影坐标是 ___________; 在yoz 面上的射影坐标是___________ 5、点Q (-3,2,5)关于原点对称的点的坐 标是___________;关于xoz 面对称的点的坐标是__________________ 6、已知A (3,4,5),B (0,2,1),若 AB 5 2OC =,则C 点的坐标是______________ 7、写出与原点距离等于3的点所满足的条件________________________________ 8、已知A(2,0,0),B(6,2,2),C(4,0, 2) A :2 D 3C 4B 6ππππ ::: 9、如图,ABC-A 1B 1C 1是正三棱柱(即底面是正三角形,沿着垂直于底面的向量平移所得到的轨迹),若AB =2,AA 1=4,R 是BB 1的中点,取AB 的中点为原点建立坐标系如图,写出下列向量的坐标: ______________= ______________=______________=A A'

空间向量的坐标运算(人教A版)(含答案)

空间向量的坐标运算(人教A版) 一、单选题(共10道,每道10分) 1.已知点的坐标分别为与,则向量的相反向量的坐标是( ) A. B. C. D. 答案:A 解题思路: 试题难度:三颗星知识点:空间向量运算的坐标表示 2.已知空间直角坐标系中且,则点的坐标为( ) A. B. C. D. 答案:A 解题思路:

试题难度:三颗星知识点:空间向量运算的坐标表示 3.若向量,,则向量的坐标是( ) A. B. C. D. 答案:D 解题思路: 试题难度:三颗星知识点:空间向量运算的坐标表示 4.已知向量,,则=( ) A. B. C. D. 答案:C

解题思路: 试题难度:三颗星知识点:空间向量运算的坐标表示 5.已知向量是空间的一组单位正交基底,若向量在基底下的坐标为,那么向量在基底下的坐标为( ) A. B. C. D. 答案:C 解题思路: 试题难度:三颗星知识点:空间向量的基本定理及其意义 6.已知为空间的一组单位正交基底,而是空间的另一组

基底,若向量在基底下的坐标为,则向量在基底下的坐标为( ) A. B. C. D. 答案:A 解题思路: 试题难度:三颗星知识点:空间向量的基本定理及其意义 7.已知三点不共线,点为平面外的一点,则下列条件中,能使得平面成立的是( ) A. B. C. D. 答案:B 解题思路:

试题难度:三颗星知识点:共线向量与共面向量 8.已知,,,若,,三向量共面,则实数=( ) A. B.

C. D. 答案:D 解题思路: 试题难度:三颗星知识点:共线向量与共面向量 9.已知空间三点的坐标为,,,若三点共线,则=( ) A. B. C. D. 答案:D 解题思路:

苏教版高中数学选修2-1《空间向量及其线性运算》教案

空间向量及其线性运算 学习目标: 1.运用类比方法,经历向量及其运算由平面向空间推广的过程; 2.了解空间向量的概念,掌握空间向量的线性运算及其性质; 3.理解空间向量共线的充要条件。 学习重点:空间向量的概念、空间向量的线性运算及其性质; 学习难点:空间向量的线性运算及其性质。 学习过程: 一、创设情景 1、平面向量的概念及其运算法则; 2、物体的受力情况分析(如右图)。 二、建构数学 1.空间向量的概念 在空间,我们把具有大小和方向的量叫做向量。 注:(1)空间的一个平移就是一个向量。 (2)向量一般用有向线段表示,同向等长的有向线段表示同一或相等的向量。 (3)空间的两个向量可用同一平面内的两条有向线段来表示。 2.空间向量的运算 定义:与平面向量运算一样,空间向量的加法、减法与数乘向量运算如下(如图) b a AB OA OB +=+= b a -=-= )(R a ∈=λλ 运算律: (1)加法交换律:a b b a +=+ (2)加法结合律:)()(c b a c b a ++=++ (3)数乘分配律:b a b a λλλ+=+)( 3.平行六面体

O 平行四边形ABCD 平移向量a 到D C B A ''''的轨迹所形成的几何体,叫做平行六面体,并 记作:ABCD -D C B A '''',它的六个面都是平行四边形,每个面的边叫做平行六面体的棱。 4.共线向量 与平面向量一样,如果表示空间向量的有向线段所在的直线互相平行或重合,则这些向 量叫做共线向量或平行向量。a 平行于b 记作b a //。 当我们说向量a 、b 共线(或a //b )时,表示a 、b 的有向线段所在的直线可能是同一 直线,也可能是平行直线。 5.共线向量定理及其推论 共线向量定理:空间任意两个向量a 、b (b ≠0 ),a //b 的充要条件是存在实数λ,使a =λb 。 推论:如果l 为经过已知点A 且平行于已知非零向量a 的直线,那么对于任意一点O , 点P 在直线l 上的充要条件是存在实数t 满足等式 t OA OP +=a ,其中向量a 叫做直线l 的 方向向量。 三、数学运用 1、如图,在三棱柱111C B A ABC -中,M 是1BB 的中点, 化简下列各式,并在图中标出化简得到的向量: (1)1BA CB +; (2)12 1 AA + +; (3)CB AC AA --1。 解:(1)11CA BA =+; (2)AM AA CB AC =+ +12 1 ; (3)11BA CB AC AA =--。

《空间向量运算的坐标表示》说课稿

《空间向量运算的坐标表示》——说课稿 各位评委、老师:大家好! 今天我说课的内容是《空间向量运算的坐标表示》的第一课时,我将从教材分析、教学目标、学生情况、教法学法分析、教学过程、教学效果及反思六个方面来介绍: 一、教材分析 (一)地位和作用 本节课内容选自人教数学选修2-1第三章,这节课是在学生学习了空间向量几何形式及其运算、空间向量基本定理的基础上进一步学习的知识内容,是在学生已经学过的二维的平面直角坐标系的基础上的推广,是《空间向量运算的坐标表示》的第一课时,是以后学习“立体几何中的向量方法”等内容的基础。它将数与形紧密地结合起来。这节课学完后,如把几何体放入空间直角坐标系中来研究,几何体上的点就有了坐标表示,一些题目如两点间距离、异面直线成的角等就可借助于空间向量来解答,所以,这节课对于沟通高中各部分知识,完善学生的认知结构,起到了很重要的作用。 (二)目标的确定及分析 根据新课标和我对教材的理解,结合学生实际水平,从知识与技能;过程和方法;情感态度价值观三个层面出发,我将本课的目标定位以下三个:(1)知识与技能:通过与平面向量类比学习并掌握空间向量加法、减法、数乘、数量积运算的坐标表示以及向量的长度、夹角公式的坐标表示,并能初步应用这些知识解决简单的立体几何问题。(2)过程与方法:①通过将空间向量运算与熟悉的平面向量的运算进行类比,使学生掌握空间向量运算的坐标表示,渗透类比的数学方法;②会用空间向量运算的坐标表示解决简单的立体几何问题,体会向量方法在研究空间图形中的作用,培养学生的空间想象能力和几何直观能力。(3)情感态度价值观:通过提问、讨论、合作、探究等主动参与教学的活动,培养学生主人翁意识、集体主义精神。 (三)重难点的确定及分析 本节课的重点是:空间向量运算的坐标表示,应用向量法求两条异面直线所

空间向量及其线性运算(教案)

课 题:空间向量及其线性运算 教学目标: 1.运用类比方法,经历向量及其运算由平面向空间推广的过程; 2.了解空间向量的概念,掌握空间向量的线性运算及其性质; 3.理解空间向量共线的充要条件 教学重点:空间向量的概念、空间向量的线性运算及其性质; 教学难点:空间向量的线性运算及其性质。 教学过程: 一、创设情景 1、蚂蚁爬行的问题引入为什么要研究空间向量. 2、平面向量的概念及其运算法则; 二、建构数学 1.空间向量的概念: 在空间,我们把具有大小和方向的量叫做向量注:⑴空间的一个平移就是一个向量 ⑵向量一般用有向线段表示同向等长的有向线段表示同一或相等的向量 ⑶空间的两个向量可用同一平面内的两条有向线段来表示 2.空间向量的运算 定义:与平面向量运算一样,空间向量的加法、减法与数乘向量运算如下(如图) b a AB OA OB +=+= b a -=-= )(R a ∈=λλ 运算律: ⑴加法交换律:a b b a +=+ ⑵加法结合律:)()(c b a c b a ++=++ ⑶数乘分配律:b a b a λλλ+=+)( 3.平行六面体: 平行四边形ABCD 平移向量a 到D C B A ''''的轨迹所形成的几何体,叫做平行六面体,并记作:ABCD -D C B A '''',它的六个面都是平行四边形,每个面的边叫做平行六面体的棱。 4.共线向量 与平面向量一样,如果表示空间向量的有向线段所在的直线互相平行或重合,则这些向 量叫做共线向量或平行向量.a 平行于b 记作b a //. 当我们说向量a 、b 共线(或a //b )时,表示a 、b 的有向线段所在的直线可能是同 一直线,也可能是平行直线. 5.共线向量定理: 共线向量定理:空间任意两个向量a 、b (b ≠0 ),a //b 的充要条件是存在实数λ,

空间向量的基本运算

第六节 空间向量 1. 空间向量的概念:在空间,我们把具有 和 的量叫做向量。 2. 空间向量的运算。 定义:与平面向量运算一样,空间向量的加法、减法与数乘运算如下(如图)。 OB OA AB a b =+=+;BA OA OB a b =-=-;()OP a R λλ=∈ 运算律:⑴加法交换律:a b b a +=+ ⑵加法结合律:)()(c b a c b a ++=++ ⑶数乘分配律:b a b a λλλ+=+)( 3. 共线向量。 (1)如果表示空间向量的有向线段所在的直线 或 ,那么这些向量也叫做共 线向量或平行向量,a 平行于b ,记作b a //。 (2)共线向量定理:空间任意两个向量a 、b (b ≠0 ),a //b 存在实数λ, 使a = 。 4. 共面向量 (1)定义:一般地,能平移到同一 内的向量叫做共面向量。 说明:空间任意的两向量都是 的。 (2)共面向量定理:如果两个向量,a b 不共线,p 与向量,a b 共面的条件是存在实数,x y ,使 。 5. 空间向量基本定理:如果三个向量,,a b c 不共面,那么对空间任一向量p ,存在一个唯一的有序实数组,,x y z ,使 。 若三向量,,a b c 不共面,我们把{,,}a b c 叫做空间的一个基底,,,a b c 叫做基向量,空间任意三个 的向量都可以构成空间的一个基底。 推论:设,,,O A B C 是不共面的四点,则对空间任一点P ,都存在唯一的三个有序实数,,x y z ,使OP xOA yOB zOC =++。 6. 空间向量的直角坐标系: (1)空间直角坐标系中的坐标: 在空间直角坐标系O xyz -中,对空间任一点A ,存在唯一的有序实数组(,,)x y z ,使zk yi xi OA ++=,有序实数组 (,,)x y z 叫作向量A 在空间直角坐标系O xyz -中的坐标,记作

数学选修空间向量及其运算教案

第三章空间向量与立体几何 §3.1空间向量及其运算 3.1.1 空间向量及其加减运算 师:这节课我们学习空间向量及其加减运算,请看学习目标。 学习目标:⒈理解空间向量的概念,掌握其表示方法; ⒉会用图形说明空间向量加法、减法、数乘向量及它们的运算律; ⒊能用空间向量的运算意义及运算律解决简单的立体几何中的问题. 师:在必修四第二章《平面向量》中,我们学习了平面向量的一些知识,现在我们一起来复习。(不要翻书) (在黑板或背投上呈现或边说边写) 1、在平面中,我们把具有__________________的量叫做平面向量; 2、平面向量的表示方法:

①几何表示法:_________________________ ②字母表示法:_________________________ (注意:向量手写体一定要带箭头) 3、平面向量的模表示_________________,记作____________ 4、一些特殊的平面向量: ①零向量:__________________________,记作___(零向量的方向具有任意性) ②单位向量:______________________________ (强调:都只限制了大小,不确定方向) ③相等向量:____________________________ ④相反向量:____________________________ 5、平面向量的加法: 6、平面向量的减法: 7、平面向量的数乘:实数λ与向量a的积是一个向量,记作λa,其长度和 方向规定如下: (1)|λa|=|λ||a| (2)当λ>0时,λa与a同向; 当λ<0时,λa与a反向; 当λ=0时,λa=0. 8、向量加法和数乘向量满足以下运算律 加法交换律:a+b=b+a 加法结合律:(a+b)+c=a+(b+c) 数乘分配律:λ(a+b)=λa+λb 数乘结合律:λ(aμ)=a) (λμ [师]:刚才我们复习了平面向量,那空间向量会是怎样,与平面向量有怎样的区别和联系呢?请同学们阅读书P84-P86.(5分钟) [师]:对比平面向量,我们得到空间向量的相关概念。(在刚复习的黑板或幻灯片上,只需将平面改成空间) [师]:空间向量与平面向量有什么联系? [生]:向量在空间中是可以平移的.空间任意两个向量都可以用同一平面内的两条有向线段表示.因此我们说空间任意两个向量是共面的.所以凡涉及 空间两个向量的问题,平面向量中有关结论仍适用于它们。

空间向量的坐标运算

空间向量的坐标运算 第一课时空间直角坐标系 教学目标: ㈠知识目标: ⒈空间直角坐标系; ⒉空间向量的坐标表示; ⒊空间向量的坐标运算; ⒋平行向量、垂直向量坐标之间的关系; 5.中点公式。 ㈡能力目标: ⒈掌握空间右手直角坐标系的概念,会确定一些简单几何体(正方体、长方体)的顶点坐标; ⒉掌握空间向量坐标运算的规律; 3.会根据向量的坐标,判断两个向量共线或垂直; 4.会用中点坐标公式解决有关问题。 教学重点:空间右手直角坐标系,向量的坐标运算 教学难点:向量坐标的确定 教学方法:讨论法. 教具准备:多媒体投影. 教学过程: 复习回顾 空间向量基本定理 探索研究 1、空间右手直角坐标系的概念 ⑴单位正交基底如果空间的一个基底的三个基向量互相垂直,且长都为1,则这个基底叫做单位正交基底,常用{i,j,k}表示。 ⑵空间直角坐标系O-xyz 在空间选定一点O和一个单位正交基底{i,j,k},以点O 为原点,分别以i、j、k的方向为正方向建立三条数轴:x轴、y轴、z轴,它们都叫做坐标轴,这时我们说建立了一个直角坐标系O-xyz,点O叫做原点,向量i,j,k叫做坐标向 量,通过每两个坐标轴的平面叫做坐标平面,分别称为xOy 平面,yOz平面,zOx平面。 ⑶空间直角坐标系的画法作空间直角坐标系O-xyz 时,一般使∠xOy=135°(或45°),∠yOz=90°。 注:在空间直角坐标系O-xyz中,让右手拇指指向x轴 的正方向,食指指向y轴的正方向,如果中指能指向z轴的正 方向,则称这个坐标系为右手直角坐标系。 ⑷空间向量的坐标表示给定一空间直角坐标系和向

向量的直角坐标运算设a=(a 1,a 2,a 3),b=(b 1,b 2,b 3),则a+b=(a 1+b 1,a 2+b 2,a 3+b 3) a -b=(a 1- b 1,a 2-b 2,a 3-b 3)λa=(λa 1,λa 2,λa 3) a ?b=a 1 b 1+a 2b 2+a 2b 2 a//b a 1=λb 1,a 2=λb 2,a 3=λb 3(λ∈R)a ⊥b a 1b 1+a 2b 2+a 3b 3=0设A(x 1,y 1,z 1),B(x 2,y 2,z 2),则 AB =OB -OA =(x 2-x 1,y 2-y 1,z 2-z 1)  量a ,且设i,j,k 为坐标向量(如图),由空间向量基本定理,存在唯一的有序实数组(a 1,a 2,a 3)叫做向量a 在此直角坐标系中的坐标,可简记作a =(a 1,a 2,a 3)。 在空间直角坐标系O -xyz 中,对于空间任一点A ,对应一个向量OA ,若 ,k z j y i x OA ++=则有序数组(x,y,z)叫做点A 在 此空间直角坐标系中的坐标,记为A(x,y,z),其中x 叫做A 的横坐标,y 叫做点A 的纵坐标,z 叫做点A 的竖坐标,写点的坐标时,三个坐标间的顺序不能变。 ⑸空间任一点P 的坐标的确定 过P 分别作三个与坐标平面平行的平面(或垂面),分别交坐标轴于A 、B 、C 三点,|x|=|OA|,|y|=|OB|,|z|=|OC|,当OA 与i 方向相同时,x >0,反之x <0,同理可确定y 、z (如图) 例1已知ABCD -A 1B 1C 1D 1是棱长为2的正方体,E 、F 分别是BB 1和DC 的中点,建立如图所示的空间直角坐标系,试写出图中各点的坐标。 分析:要求点E 的坐标,过点E 与x 轴、y 轴垂直的平面已存在,只要过E 作平面垂直于z 轴交E ‘ 点,此时|x|=|,|DA |y|=|,|DC |z|=||'DE ,当DA 的方向与x 轴正向相同时,x >0,反之x <0,同理确定y 、z 的符号,这样可求得点E 的坐标。 解:D(0,0,0),A(2,0,0),B(0,2,0),C(0,0,2), A 1(2,0,2), B 1(2,2,2), C 1(0,2,2),, D 1(0,0,2),E(2,2,1),F(0,1,0) 2、向量的直角坐标运算 注:3 32 21 1i 321321b a b a b a b //a 1,2,3),0(i b ),b ,b ,(b b ),a ,a ,(a a = = ? =≠==则若

高考试题分类考点空间直角坐标系空间向量及其运算

高考试题分类考点空间直角坐标系空间向量及其运算

————————————————————————————————作者:————————————————————————————————日期:

考点37 空间直角坐标系、空间向量及其运算 一、解答题 1.(2012·北京高考理科·T16)如图1,在Rt △ABC 中,∠C=90°,BC=3,AC=6,D ,E 分别是AC ,AB 上的点,且DE ∥BC ,DE=2,将△ADE 沿DE 折起到△A 1DE 的位置,使A 1C ⊥CD,如图 2. (1) 求证:A 1C ⊥平面BCDE ; (2) 若M 是A 1D 的中点,求CM 与平面A 1BE 所成角的大小; (3) 线段BC 上是否存在点P ,使平面A 1DP 与平面A 1BE 垂直?说明理由. 【解题指南】(1)利用线面垂直的判定定理证明;(2)(3)找出三个垂直关系, 建系,利用向量法求解. 【解析】(1)//,,DE BC AC BC DE AC ⊥∴⊥Q ,1,DE A D DE CD ∴⊥⊥, 111 ,,A D CD D DE ACD DE AC =∴⊥∴⊥Q I 面 又11,,AC CD CD DE D AC BCDE ⊥=∴⊥Q I 面. (2)由(1)可知,1,,CB CD AC 两两互相垂直,分别以它们为x 轴、y 轴、z 轴 建立空间直角坐标系,则1(0,0,23)A ,(0,1,3),(0,1,3),(1,2,0),M CM BE ==-u u u u r u u u r 1(3,0,23)A B =-u u u r ,设平面1A BE 的法向量为1111(,,)n x y z =u r , 由 1111111203230n BE x y n A B x z ??=-+=???=-=??u r u u u r u r u u u r ,令11x =,得113(1,,)22 n =u r , A B C D E C B E D A M 图图

向量的线性运算经典测试题及答案解析

向量的线性运算经典测试题及答案解析 一、选择题 1.若2a b c +=r r ,3a b c -=r r ,而且c r ≠0,a r 与r b 是( ) A .a r 与r b 是相等向量 B .a r 与r b 是平行向量 C .a r 与r b 方向相同,长度不等 D .a r 与r b 方向相反,长度相等 【答案】B 【解析】 【分析】 根据已知条件求得52a c =r r ,1b 2 c =-r r ,由此确定a r 与b r 位置和数量关系. 【详解】 解:由2a b c +=r r ,3a b c -=r r ,而且c r ≠0,得到:52a c =r r ,1b 2 c =-r r , 所以a r 与b r 方向相反,且|a r |=5|b r |. 观察选项,只有选项B 符合题意. 故选:B . 【点睛】 本题考查了平面向量的知识,属于基础题,注意对平面向量这一基础概念的熟练掌握. 2.下列命题中,真命题的个数为( ) ①方向相同 ②方向相反 ③有相等的模 ④ 方向相同 A .0 B .1 C .2 D .3 【答案】C 【解析】 【分析】 直接利用向量共线的基本性质逐一核对四个命题得答案. 【详解】 解:对于①,若,则 方向相同,①正确; 对于②,若,则方向相反,②正确; 对于③,若,则方向相反,但 的模不一定,③错误; 对于④,若 ,则 能推出 的方向相同,但 的方向相同,得到 ④错误. 所以正确命题的个数是2个,故选:C. 【点睛】 本题考查命题的真假判断与应用,考查了向量共线的基本性质,是基础题.

3.如图,已知向量a r ,b r ,c r ,那么下列结论正确的是( ) A .a b c +=r r r B .b c a +=r r r C .a c b +=r r r D .a c b +=-r r r 【答案】D 【解析】 【分析】 【详解】 由平行四边形法则,即可求得: 解:∵CA AB CB +=u u u r u u u r u u u r , 即a c b +=-r r r 故选D . 4.下列判断正确的是( ) A .0a a -=r r B .如果a b =r r ,那么a b =r r C .若向量a r 与b 均为单位向量,那么a b =r r D .对于非零向量b r ,如果()0a k b k =?≠r r ,那么//a b r r 【答案】D 【解析】 【分析】 根据向量的概念、性质以及向量的运算即可得出答案. 【详解】 A. -r r a a 等于0向量,而不是等于0,所以A 错误; B. 如果a b =r r ,说明两个向量长度相等,但是方向不一定相同,所以B 错误; C. 若向量a r 与b 均为单位向量,说明两个向量长度相等,但方向不一定相同,所以C 错误; D. 对于非零向量b r ,如果()0a k b k =?≠r r ,即可得到两个向量是共线向量,可得到//a b r r ,故D 正确. 故答案为D. 【点睛】

空间向量及其运算练习题

空间向量及其运算练习题 一、选择题 1、在空间直角坐标系中,已知点P (x ,y ,z ),下列叙述中正确的个数是 ①点P 关于x 轴对称点的坐标是P 1(x ,-y ,z ) ②点P 关于yOz 平面对称点的坐标是P 2(x ,-y ,-z ) ③点P 关于y 轴对称点的坐标是P 3(x ,-y ,z ) ④点P 关于原点对称的点的坐标是P 4(-x ,-y ,-z ) A.0 B.1 C.2 D.3 2、点(2,3,4)关于xoz 平面的对称点为( ) A 、(2,3,-4) B 、(-2,3,4) C 、(2,-3,4) D 、(-2,-3,4) 3、在空间直角坐标系中,设z 为任意实数,相应的点(3,1,)P z 的集合确定的图形为 ( )A .点 B .直线 C .圆 D .平面 4、在平行六面体ABCD —A 1B 1C 1D 1中,M 为AC 与BD 的交点,若B A 1=a ,11D A =b , A A 1=c .则下列向量中与M B 1相等的向量是( ) A .c b a ++- 21 21 B . c b a ++21 21 C .c b a +-2 1 21 D .c b a +--2 1 21 5、在下列条件中,使M 与A 、B 、C 一定共面的是 ( ) A .OC O B OA OM --=2 B .O C OB OA OM 2 1 3151++= C .=++MC MB MA 0 D .=+++OC OB OA OM 0 5、已知平行六面体''' ' ABCD A B C D -中,AB=4,AD=3,' 5AA =,0 90BAD ∠=, ''060BAA DAA ∠=∠=,则'AC 等于 ( ) A .85 B .85 C .52 D .50 图

最新空间向量运算的坐标表示练习题

课时作业(十七) [学业水平层次] 一、选择题 1.已知a =(1,-2,1),a -b =(-1,2,-1),则b =( ) A .(2,-4,2) B .(-2,4,-2) C .(-2,0,-2) D .(2,1,-3) 【解析】 b =a -(-1,2,-1)=(1,-2,1)-(-1,2,-1)=(2,-4,2). 【答案】 A 2.设A (3,3,1),B (1,0,5),C (0,1,0),则AB 的中点M 到点C 的距离|CM |的值为( ) A.534 B.532 C.532 D.132 【解析】 ∵AB 的中点M ? ? ???2,32,3,∴CM →=? ????2,12,3,故|CM | =|CM → |= 22+? ?? ??122+32=532. 【答案】 C 3.(2014·德州高二检测)已知向量a =(2,3),b =(k,1),若a +2b 与a -b 平行,则k 的值是( ) A .-6 B .-23 C.2 3 D .14 【解析】 由题意得a +2b =(2+2k,5),且a -b =(2-k,2),又因为a +2b 和a -b 平行,则2(2+2k )-5(2-k )=0,解得k =2 3.

【答案】 C 4. (2014·河南省开封高中月考)如图3-1-32,在长方体ABCD -A 1B 1C 1D 1中,AB =BC =2,AA 1=2,E ,F 分别是面A 1B 1C 1D 1、面BCC 1B 1的中心,则E ,F 两点间的距离为( ) 图3-1-32 A .1 B.52 C.62 D.32 【解析】 以点A 为原点,建立如图所示的空间直角坐标系,则 E (1,1,2), F ? ???? 2,1,22,所以|EF |= (1-2)2 +(1-1)2 +? ??? ?2-222 =6 2,故选C. 【答案】 C 二、填空题 5.(2014·青岛高二检测)已知点A (1,2,3),B (2,1,2),P (1,1,2),O (0,0,0),点Q 在直线OP 上运动,当QA →·QB →取得最小值时,点Q 的坐标为________. 【解析】 设OQ →=λOP →=(λ,λ,2λ),故Q (λ,λ,2λ),故QA → =

2020_2021学年新教材高中数学第1章空间向量与立体几何1.1空间向量及其运算1.1.

1.1 空间向量及其运算 1.1.1 空间向量及其线性运算 学习目标核心素养 1.理解空间向量的概念.(难点) 2.掌握空间向量的线性运算.(重点) 3.掌握共线向量定理、共面向量定理及推 论的应用.(重点、难点) 1.通过空间向量有关概念的学习,培养学生的 数学抽象核心素养. 2.借助向量的线性运算、共线向量及共面向量 的学习,提升学生的直观想象和逻辑推理的核 心素养. 国庆期间,某游客从上海世博园(O)游览结束后乘车到外滩(A)观赏黄浦江,然后抵达东方明珠(B)游玩,如图1,游客的实际位移是什么?可以用什么数学概念来表示这个过程? 图1 图2 如果游客还要登上东方明珠顶端(D)俯瞰上海美丽的夜景,如图2,那么他实际发生的位移是什么?又如何表示呢? 1.空间向量 (1)定义:在空间,具有大小和方向的量叫做空间向量. (2)长度或模:空间向量的大小. (3)表示方法: ①几何表示法:空间向量用有向线段表示; ②字母表示法:用字母a,b,c,…表示;若向量a的起点是A,终点是B,也可记作:AB → ,其模记为|a|或|AB → |. 2.几类常见的空间向量 名称方向模记法 零向量任意00 单位向量任意1 相反向量相反相等 a的相反向量:-a AB → 的相反向量:BA →

相等向量相同相等a=b 3.空间向量的线性运算 (1)向量的加法、减法 空间向量的 运算 加法OB→=OA→+OC→=a+b 减法CA→=OA→-OC→=a-b 加法运算律 ①交换律:a+b=b+a ②结合律:(a+b)+c=a+(b+c) ①定义:实数λ与空间向量a的乘积λa仍然是一个向量,称为向量的数乘运算. 当λ>0时,λa与向量a方向相同; 当λ<0时,λa与向量a方向相反; 当λ=0时,λa=0;λa的长度是a的长度的|λ|倍. ②运算律 a.结合律:λ(μa)=μ(λa)=(λμ)a. b.分配律:(λ+μ)a=λa+μa,λ(a+b)=λa+λb. 思考:向量运算的结果与向量起点的选择有关系吗? [提示]没有关系. 4.共线向量 (1)定义:表示若干空间向量的有向线段所在的直线互相平行或重合,则这些向量叫做共线向量或平行向量. (2)方向向量:在直线l上取非零向量a,与向量a平行的非零向量称为直线l的方向向量. 规定:零向量与任意向量平行,即对任意向量a,都有0∥a. (3)共线向量定理:对于空间任意两个向量a,b(b≠0),a∥b的充要条件是存在实数λ使a=λb. (4)如图,O是直线l上一点,在直线l上取非零向量a,则对于直线l上任意一点P,由数乘向量定义及向量共线的充要条件可知,存在实数λ,使得OP → =λa. 5.共面向量 (1)定义:平行于同一个平面的向量叫做共面向量. (2)共面向量定理:若两个向量a,b不共线,则向量p与向量a,b共面的充要条件是存

3.1.4空间向量的直角坐标运算 自制 2014年

3.1.4空间向量的直角坐标运算(课前预习案) 班级:___ 姓名:______ 一、新知导学 1、空间向量的直角坐标运算律: (1)若123(,,)a a a a =,(,,)123b b b b =,则 a b += , a b -= , a λ= , a b ?= , //a b ? a b ⊥? . (2)若(,,)111A x y z ,222(,,)B x y z ,则AB = . 一个向量在直角坐标系中的坐标等于表示这个向量的有向线段的______的坐标减去_________的坐标 2、模长公式: 若123(,,)a a a a =,123(,,)b b b b =, 则||a a a = ?= ,||b b b =?= . 3、夹角公式:2cos ||||a b a b a b a ??== ?+ 4、两点间的距离公式: 若111(,,)A x y z ,222(,,)B x y z ,则2 ||(AB AB x ==, 或,A B d =

;,,i j k ??,求下列向量的坐标:)346a i j k =+- ()2 323 b i j k =--+ 若(2,1,3),(5,3,2)a b =-=-,则a +b =____________,32a b -=___________, a b ?=_____,(2)(3)a b a b +?-=______________1)(0,0,4),(0,0,7) (2)((3,4,0),(0,0,6) (2)(-2,1,,-5,7) 已知(1,1,1),(1,0,1)a b =--=-,则______,a =,a b <>=____________3.1.4 空间向量的直角坐标运算(课堂探究案)一、空间向量的直角坐标 向量(,,a a a a =二、向量的坐标运算 已知(1,1,0),(0,1,1),(1,0,1)a b c ===,,2p a b q a b c =-=+-,求: ,p q ,p q ?。

空间向量的直角坐标及其运算

课 题:9 6 空间向量的直角坐标及其运算 (一) 教学目的: ⒈掌握空间右手直角坐标系的概念,会确定一些简单几何体(正方体、长方体)的顶点坐标; ⒉掌握空间向量坐标运算的规律; 3.会根据向量的坐标,判断两个向量共线或垂直; 4.会用中点坐标公式解决有关问题 教学重点:空间右手直角坐标系,向量的坐标运算 教学难点:空间向量的坐标的确定及运算 内容分析: 本节有两个知识点:向量和点的直角坐标及向量的坐标运算、夹角和距离公式这一小节,我们在直角坐标系下,使向量运算完全坐标化去掉基底,使空间一个向量对应一个三维数组,这样使向量运算更加方便在上一小节已学习向量运算的基础上,把向量运算完全坐标化,对学生已不会感到抽象和困难在第2个知识点中,我们给出空间解析几何两个最基本的公式:夹角和距离公式在这个知识点中,作为向量坐标计算的例题,还顺便证明了直线与平面垂直的“性质定理”通过解一些立体几何的应用题,就可为学生今后进一步学习空间解析几何、高维向量和矩阵打下基础 要求学生理解空间向量坐标的概念,掌握空间向量的坐标运算,掌握两点的距离公式垂直于平面的性质定理 教学过程: 一、复习引入: 平面向量的坐标表示 分别取与x 轴、y 轴方向相同的两个单位向量i 、j 作为基底任作一个向量a ,由平面向量基本 定理知,有且只有一对实数x 、y ,使得j y i x a += 把),(y x 叫做向量a 的(直角)坐标,记作),(y x a = 其中x 叫做a 在x 轴上的坐标,y 叫做a 在y 轴上的坐 标, 特别地,)0,1(=i ,)1,0(=j ,0,0(0= 2.平面向量的坐标运算 若),(11y x a = ,),(22y x b = , 则b a +),(2121y y x x ++=,b a -),(2121y y x x --=,,(y x a λλλ= 若),(11y x A ,),(22y x B ,则()1212,y y x x --= 3.a ∥b (b ≠0)的充要条件是x 1y 2-x 2y 1=0 4平面两向量数量积的坐标表示 已知两个非零向量),(11y x a = ,),(22y x b = ,试用a 和b 的坐标表示b a ? 设i 是x 轴上的单位向量,j 是y 轴上的单位向量,那么 j y i x a 11+=,j y i x b 22+= 所以))((2211j y i x j y i x b a ++=?2211221221j y y j i y x j i y x i x x +?+?+= 又1=?i i ,1=?j j ,0=?=?i j j i 所以b a ?2121y y x x += 这就是说:两个向量的数量积等于它们对应坐标的乘积的和 5.平面内两点间的距离公式 (1)设),(y x a = ,则222||y x a += 或||a = (2)如果表示向量a 的有向线段的起点和终点的坐标分别为),(11y x 、),(22y x ,那么 221221)()(||y y x x a -+-= (平面内两点间的距离公式) 6.向量垂直的判定 设),(11y x a = ,),(22y x b = ,则b a ⊥ ?02121=+y y x x 7.两向量夹角的余弦(πθ≤≤0) cos <a ,b >= co s θ=||||b a b a ?? 8.空间向量的基本定理:若{,,}a b c 是空间的一个基底,p 是空间任意一向量,存在唯一的实数 组,,x y z 使p xa yb zc =++ . 二、讲解新课: 1 空间直角坐标系: (1)若空间的一个基底的三个基向量互相垂直,且长为1, 这个基底叫单位正交基底,用{,,}i j k 表示;

空间向量及其线性运算

空间向量及其线性运算 目标认知 学习目标: 1.了解空间向量的概念,体会向量由平面向空间的推广过程。 2.掌握空间向量的线性运算,掌握向量共线的充要条件. 3.掌握空间向量的数量积,能运用向量的数量积判断向量的共线与垂直. 重点: 空间向量的线性运算和空间向量的数量积;空间向量共线与垂直的充要条件. 难点: 空间向量的数量积,空间向量共线与垂直的充要条件. 学习策略: 把向量的研究范围从平面扩大到空间,就得到空间向量,因此,空间向量是平面向量的推广,学习空间向量的相关概念及其运算时,完全类比平面向量的概念及其运算。 知识要点梳理 知识点一:空间向量的相关概念 1.空间向量的定义: 在空间,我们把具有大小和方向的量叫做向量。 与平面向量一样,空间向量也用有向线段表示;记作:或。 注意: (1)空间中点的一个平移就是一个向量; (2)数学中讨论的向量与向量的起点无关,只与大小和方向有关,只要不改变大小和方向,空间向量 可在空间内任意平移,故我们称之为自由向量。 2.空间向量的长度(模): 表示空间向量的有向线段的长度叫做向量的长度或模,记作或 3.空间向量的有关概念: 零向量:长度为0或者说起点和终点重合的向量,记为。 单位向量:长度为1的空间向量,即. 相等向量:方向相同且模相等的向量。 相反向量:方向相反但模相等的向量。 共线向量:如果表示空间向量的有向线段所在的直线互相平行或重合,则这些向量叫做共线向量或平 行向量.平行于记作.

共面向量:平行于同一个平面的向量,叫做共面向量。 两个规定: (1)与任意向量平行; (2)与任意向量垂直。 注意: ①当我们说向量、共线(或//)时,表示、的有向线段所在的直线可能是同一直线,也可 能是平行直线. ②向量在空间中是可以平移的.空间任意两个向量都可以平移到同一个平面内,因此我们说空间任意两 个向量是共面的. 4.两个向量的夹角 已知两非零向量,在空间任取一点O,作向量,,则叫做与的夹角,记作。 规定: 当或时,向量与平行,记作 当时,向量与垂直,记作 知识点二:空间向量的加减法 因为空间任意两个向量是共面的.定义空间向量的加法、减法、数乘向量及运算律与平面向量一样。 (1)空间向量的加减法运算 ①如图,若, 则= ②如图,若

相关主题
文本预览
相关文档 最新文档