当前位置:文档之家› 生物化学第五章生物氧化知识题

生物化学第五章生物氧化知识题

生物化学第五章生物氧化知识题
生物化学第五章生物氧化知识题

第五章生物氧化学习题

(一)名词解释

1.生物氧化(biologicaloxidation)

2.呼吸链(respiratorychain)

3.氧化磷酸化(oxidativephospho叮1ation)

4.磷氧比(P/O)

5.底物水平磷酸化(substratelevelphosphorylation)

6.高能化合物(highenergycompound)

7.呼吸电子传递链(respiratoryelectron–transportchain)

(二)填空题

1.生物氧化有3种方式:、和。

2.生物氧化是氧化还原过程,在此过程中有、和参与。3.原核生物的呼吸链位于。

4,生物体内高能化合物有等类。5.细胞色素a的辅基是与蛋白质以键结合。

6.在无氧条件下,呼吸链各传递体都处于状态。

7.NADH呼吸链中氧化磷酸化的偶联部位是、、。

8.磷酸甘油与苹果酸经穿梭后进入呼吸链氧化,其P/O比分别为和。

9.举出3种氧化磷酸化解偶联剂、、。

10.生物氧化是在细胞中,同时产生的过程。

11.高能磷酸化合物通常指水解时的化合物,其中最重要的是,被称为能量代谢的。

12.真核细胞生物氧化的主要场所是,呼吸链和氧化磷酸化偶联因子都定位于。13.以NADH为辅酶的脱氢酶类主要是参与作用,即参与从到的电子传递作用;以NADPH为辅酶的脱氢酶类主要是将分解代谢中间产物上的转移到反应中需电子的中间物上。

14.在呼吸链中,氢或电子从氧化还原电势的载体依次向氧化还原电势的载体传递。

15.线粒体氧化磷酸化的重组实验证实了线粒体内膜含有,内膜小瘤含有。16.典型的呼吸链包括和两种,这是根据接受代谢物脱下的氢的不同而区别的。

17.解释氧化磷酸化作用机制被公认的学说是,它是英国生物化学家米切尔(Mitchell) 于1961年首先提出的。

18.每对电子从FADH2转移到必然释放出2个H‘进入线粒体基质中。

19.体内CO2的生成不是碳与氧的直接结合,而是。

20.动物体内高能磷酸化合物的生成方式有和两种。

(三)选择题

1.下列物质都是线粒体电子传递链的组分,只有不是。

A.NAD+B.辅酶A C.细胞色素b D.辅酶Q E.铁硫蛋白

2.目前公认的氧化磷酸化机制的假说是。

A.直接合成假说B.化学偶联假说C.构象偶联假说D.化学渗透假说

3.酵母在酒精发酵时,取得能量的方式是。

A.氧化磷酸化B.光合磷酸化C.底物水平磷酸化D.电子传递磷酸化

4.CO是呼吸链的毒害剂,它的作用部位是。

A.电子传递链的最后一步,从细胞色素c氧化酶到O:的途径中

B.电子传递链的第一步,从NADH到NADH还原酶的途径中

C.从细胞色素b到细胞色素c,的途径中

D.从细胞色素c到细胞色素c氧化酶的途径中

E.从细胞色素a到细胞色素a,的途径中

5.肌肉收缩所需的大部分能量在肌肉中的储存形式是。

A.磷酸肌酸B.ATP C.GTP D.NADH

6.呼吸链氧化磷酸化是在。

A.线粒体外膜B.线粒体内膜C.线粒体基质D.细胞浆中进行

7.细胞色素氧化酶除含血红素辅基外,尚含,它也参与氧化还原。

A.镍B.铜C.铁D.锌

8.氰化物引起缺氧是由于。

A.降低肺泡中的空气流量B.干扰氧载体C.使毛细血管循环变慢D.抑制细胞呼吸作用E.上述四种机理都不是

9.下列化合物除哪一个之外都含有高能磷酸键?。

A.ADP B.磷酸肌酸C.6–磷酸葡萄糖D.磷酸烯醇式丙酮酸E.甘油酸3–二磷酸10.下列物质除哪一种外都参与电子传递链?。

A.泛醌(辅酶Q) B.细胞色素c·C.NAD D.FAD E.肉碱

11.动物体活动主要的直接供能物质是。

A.葡萄糖B.脂肪酸C.ATP D.磷酸肌酸

12.脊椎动物体内能量的储存者是。

A.磷酸烯醇式丙酮酸 B.ATP C乳酸D.磷酸肌酸E.都不是

13.活细胞不能利用下列哪些能源来维持它们的代谢?。

A.葡萄糖B.脂肪酸C.ATP' D.周围的热能E.阳光

14.下列化合物中,除了哪一种以外都含有高能磷酸键?。

A.NAD+B.ADP C.NADPH D.FMN

15.下列反应中哪一步伴随着底物水平的磷酸化反应:。

A.苹果酸–草酰乙酸B.甘油酸–1,3–二磷酸–甘油酸–3–磷酸

C.柠檬酸–––40r––酮戊二酸D.琥珀酸–延胡索酸

16.乙酰辅酶A彻底氧化过程中的P/O值是。

A.2.0 B.2.5 C. 3.0 D.3.5

17.肌肉组织中肌肉收缩所需要的大部分能量以哪种形式储存? 。

A.ADP B.磷酸烯醇式丙酮酸C.ATP D.磷酸肌酸

18.呼吸链中的电子传递体中,不是蛋白质而是脂质的组分为。

A.NAD+B.FMN C.CoQ D.Fe·S

19.胞浆中1分子乳酸彻底氧化后,产生ATP的分子数为。

A.9或10 B.11或12 C.15或16 D.14或15

20.下列不是催化底物水平磷酸化反应的酶是。

A.磷酸甘油酸激酶B.磷酸果糖激酶C.丙酮酸激酶,D.琥珀酸硫激酶

21.在生物化学反应中,总能量变化符合。

A.受反应的能障影响B.随辅因子而变 C.与反应物的浓度成正比D.与反应途径无关22.在下列的氧化还原系统中,氧化还原电位最高的是。

A.NAD+/NADH B.细胞色素a(Fe3+)/细胞色素a(Fe2+)

C.延胡索酸/琥珀酸 D.氧化型泛醌/还原型泛醌

23.下列关于化学渗透假说的叙述哪一条是不对的?。

A.呼吸链各组分按特定的位置排列在线粒体内膜上B.各递氢体和递电子体都有质子泵的作用C.H+返回膜内时可以推动ATP酶合成ATP D.线粒体内膜外侧H+不能自由返回膜内24.关于有氧条件下,NADH从胞液进入线粒体氧化的机制,下列描述中正确的是。A.NADH直接穿过线粒体膜而进入线粒体

B.磷酸二羟丙酮被NADH还原成3–磷酸甘油进入线粒体,在内膜上又被氧化成磷酸二羟丙酮,同时生成NADH

C.草酰乙酸被还原成苹果酸,进入线粒体再被氧化成草酰乙酸,停留于线粒体内

D.草酰乙酸被还原成苹果酸进入线粒体,然后再被氧化成草酰乙酸,再通过转氨基作用生成天冬氨酸,最后转移到线粒体外

25.胞浆中形成的NADH+H+经苹果酸穿梭后,每摩尔产生ATP的物质的量是。A.1 B.2 C.2.5 D.4·

26.呼吸链的各细胞色素在电子传递中的排列顺序是。

A.c1–b–c–aa3–O2 B.c–c1–b–aa3–O2C.c1–c–b–aa3–O2 D.b–c1–c–aa3–O2 27.下列化合物中哪一个不是呼吸链的成员?。

A.辅酶QB.细胞色素c C.辅酶I D.FAD E.肉毒碱

28.可作为线粒体内膜标志酶的是。

A.苹果酸脱氢酶B.柠檬酸合成酶C,琥珀酸脱氢酶D.单胺氧化酶E.顺乌头酸酶

29.下列哪一种物质最不可能通过线粒体内膜?。

A.Pi B.苹果酸C.柠檬酸D.丙酮酸E.NADH

30.关于电子传递链的下列叙述中哪个是不正确的?。

A.线粒体内有NADH+H‘呼吸链和FADH2呼吸链

B.电子从NADH传递到氧的过程中有2.5个ATP生成

C.呼吸链上的递氢体和递电子体完全按其标准氧化还原电位从低到高排列

D.线粒体呼吸链是生物体唯一的电子传递体系

(四)问答题

1.在磷酸戊糖途径中生成的NADPH,如果不去参加合成代谢,那么它将如何进一步氧化?

2.在体内ATP有哪些生理作用?

3.什么是铁硫蛋白?其生理功能是什么?

4.氧化作用和磷酸化作用是怎样偶联的?

三、习题解答

(一)名词解释

1.生物氧化:生物体内有机物质氧化而产生大量能量的过程称为生物氧化。生物氧化在细胞内进行,氧化过程消耗氧放出二氧化碳和水,所以有时也称之为“细胞呼吸”或“细胞氧化”。生物氧化包括:有机碳氧化变成CO:;底物氧化脱氢、氢及电子通过呼吸链传递、分子氧与传递的氢结合生成水;在有机物被氧化成C02和H20的同时,释放的能量使ADP转变成ATP。

2.呼吸链:有机物在生物体内氧化过程中所脱下的氢原子,经过一系列有严格排列顺序的传

递体组成的传递体系进行传递,最终与氧结合生成水,这样的电子或氢原子的传递体系称为呼吸链或电子传递链。电子在逐步的传递过程中释放出能量被用于合成ATP,以作为生物体的能量来源。

3.氧化磷酸化:在底物脱氢被氧化时,电子或氢原子在呼吸链上的传递过程中伴随ADP磷酸化生成ATP的作用,称为氧化磷酸化。氧化磷酸化是生物体内的糖、脂肪、蛋白质氧化分解合成ATP的主要方式。

4.磷氧比:电子经过呼吸链的传递作用最终与氧结合生成水,在此过程中所释放的能量用于ADP磷酸化生成ATP。经此过程消耗一个原子的氧所要消耗的无机磷酸的分子数(也是生成ATP 的分子数)称为磷氧比值(P/O)。如NADH的磷氧比值是2.5,FADH:的磷氧比值是1.5。

5.底物水平磷酸化:在底物被氧化的过程中,底物分子内部能量重新分布产生高能磷酸键(或高能硫酯键),由此高能键提供能量使ADP(或GDP)磷酸化生成ATP(或GTP)的过程称为底物水平磷酸化。此过程与呼吸链的作用无关,底物水平磷酸化方式只产生少量ATP。

6.高能化合物:在标准条件下水解时,自由能大幅度减少的化合物。一般是指水解释放的能量驱动ADP磷酸化合成ATP的化合物。

7.呼吸电子传递链:由一系列可作为电子载体的酶复合体和辅助因子构成,可将来自还原型辅酶或底物的电子传递给有氧代谢的最终电子受体分子氧(O:)。

(二)填空题

1.脱氢;脱电子;与氧结合2.酶;辅酶;电子传递体3.细胞质膜上

4.焦磷酸化合物;酰基磷酸化合物;烯醇磷酸化合物;胍基磷酸化合物;硫酯化合物;甲硫键化合物

5.血红素A;非共价6.还原7.复合物I;复合物Ⅲ;复合物Ⅳ8.1.5;2.5 9.2,4 –二硝基苯酚;缬氨霉素;解偶联蛋白

10.燃料分子;分解氧化;可供利用的化学能

11.释放的自由能大于20.92kJ/mol;ATP;即时供体

12.线粒体;线粒体内膜上13.呼吸;底物;氧;电子;生物合成14.低;高15.电子传递链的酶系;F1–F0复合体16.NADH;FADH2;初始受体

17.化学渗透学说;18.辅酶Q 19.有机酸脱羧生成的20.氧化磷酸化;底物水平磷酸化

(三)选择题

1.B。2.D。3.C。4.A。5.A。6.B。7.C。8.D。9.C。10.E。11.C。12.D。13.E。14.D。NAD‘和NADPH的内部都含有ADP基团,因此与ADP一样都含有高能磷酸键,烯醇式丙酮酸磷酸也含有高能磷酸键,只有FMN没有高能磷酸键。

15.B。甘油酸–1,3–二磷酸→甘油酸–3–磷酸是糖酵解中的一步反应,此反应中有ATP的合成。16.B。乙酰辅酶A彻底氧化需要消耗两分子O2,4个氧原子,产生10分子ATP,P/O值是10/4:2.5。17.D。当ATP的浓度较高时,ATP的高能磷酸键被转移到肌酸分子之中形成磷酸肌酸。18.C。辅酶Q含有一条由n个异戊二烯聚合而成的长链,具有脂溶性,广泛存在于生物系统,称泛醌。

19.D。1分子乳酸彻底氧化经过由乳酸到丙酮酸的一次脱氢、丙酮酸到乙酰辅酶A和乙酰辅酶A 再经三羧酸循环的五次脱氢,其中一次以FAD为受氢体,经氧化磷酸化可产生ATP为1×2.5+4×2.5+1×1.5=14,此外还有一次底物水平磷酸化产生1个ATP,因此最后产ATP为15个;而在真核生物中,乳酸到丙酮酸的一次脱氢是在细胞质中进行产生NADH,此NADH在经a–磷酸甘油穿梭作用进入线粒体要消耗1分子ATP,因此,对真核生物最后产ATP为14个。20.B。磷酸甘油酸激酶、丙酮酸激酶与琥珀酸硫激酶分别是糖酵解中及三羧酸循环中的催化底物水平磷酸化的转移酶,只有磷酸果糖激酶不是催化底物水平磷酸化反应的酶。

21.D。热力学中自由能是状态函数,生物化学反应中总能量的变化不取决于反应途径。当反应体

系处于平衡系统时,实际上没有可利用的自由能。只有利用来自外部的自由能,才能打破平衡系统。22.B。由于电子是从低标准氧化还原电位向高标准氧化还原电位流动,而题目中所给的氧化还原对中,细胞色素aa3(Fe2+/Fe3+)在氧化呼吸链中处于最下游的位置,所以细胞色素aa3(Fe2+/Fe3+)的氧化还原电位最高。

23.B。化学渗透假说指出在呼吸链中递氢体与递电子体是交替排列的,递氢体有氢质子泵的作用,而递电子体却没有氢质子泵的作用。

24.D。线粒体内膜不允许NADH自由通过,胞液中NADH所携带的氢通过两种穿梭机制被其他物质带人线粒体内。糖酵解中生成的磷酸二羟丙酮可被NADH还原成3–磷酸甘油,然后通过线粒体内膜进入到线粒体内,此时在以FAD为辅酶的脱氢酶的催化下氧化,重新生成磷酸二羟丙酮穿过线粒体内膜回到胞液中。这样胞液中的NADH变成了线粒体内的FADH2。这种a–磷酸甘油穿梭机制主要存在于肌肉、神经组织。

另一种穿梭机制是草酰乙酸–苹果酸穿梭。这种机制在胞液及线粒体内的脱氢酶辅酶:都是NAD+,所以胞液中的NADH到达线粒体内又生成NADH。就能量产生来看,草酰乙酸–苹果酸穿梭优于a–磷酸甘油穿梭机制;但a–磷酸甘油穿梭机制比草酰乙酸–苹果酸穿梭速度要快很多。主要存在于动物的肝、肾及心脏的线粒体中。

25.C。胞液中的NADH经苹果酸穿梭到达线粒体内又生成NADH,因此,1molNADH再经电子传递与氧化磷酸化生成2.5molATP。

26.D。呼吸链中各细胞色素在电子传递中的排列顺序是根据氧化还原电位从低到高排列的。27.E。肉毒碱的生理功能是帮助长链脂肪酸转运到线粒体内,并不是呼吸链的成员。

28.C。苹果酸脱氢酶、柠檬酸合成酶和顺乌头酸酶溶解在线粒体基质中,单胺氧化酶则定位在线粒体外膜上,只有琥珀酸脱氢酶是整合在线粒体内膜上,可作为线粒体内膜的标志酶。29.E。Pi、苹果酸、柠檬酸和丙酮酸都能通过线粒体内膜上相应的穿梭载体被运输到内膜,只有

NADH没有相应的运输载体,所以它最不可能通过线粒体内膜。

30.D。线粒体呼吸链有许多种,并不是生物体唯一的电子传递体系。

(六)问答题(解题要点)

1.答:葡萄糖的磷酸戊糖途径是在胞液中进行的,生成的NADPH具有许多重要的生理功能,其中最重要的是作为合成代谢的供氢体。如果不去参加合成代谢,那么它将参加线粒体的呼吸链进行氧化,最终与氧结合生成水。但是线粒体内膜不允许NADPH和NADH通过,胞液中NADPH 所携带的氢是通过转氢酶催化过程进入线粒体的:

(1)NADPH+NAD‘–+NADP’+NADH

(2)NADH所携带的氢通过两种穿梭作用进入线粒体进行氧化:

a.a–磷酸甘油穿梭作用,进入线粒体后生成FADH:。

b. 苹果酸穿梭作用,进入线粒体后生成NADH。

2.答:ATP在体内有许多重要的生理作用:

(1)是机体能量的暂时储存形式:在生物氧化中,ADP能将呼吸链上电子传递过程中所释放的电化学能以磷酸化生成ATP的方式储存起来,因此ATP是生物氧化中能量的暂时储存形式。

(2)是机体其他能量形式的来源:ATP分子内所含有的高能键可转化成其他能量形式,以维持机体的正常生理机能,例如可转化成机械能、生物电能、热能、渗透能、化学合成能等。体内某些合成反应不一定都直接利用ATP供能,而以其他三磷酸核苷作为能量的直接来源。如糖原合成需UTP供能;磷脂合成需CTP供能;蛋白质合成需GTP供能。这些三磷酸核苷分子中的高能磷酸键并不是在生物氧化过程中直接生成的,而是来源于ATP。

(3)可生成cAMP参与激素作用:ATP在细胞膜上的腺苷酸环化酶催化下,可生成cAMP,作为许多肽类激素在细胞内体现生理效应的第二信使。

3.答:铁硫蛋白是一种非血红素铁蛋白,其活性部位含有非血红素铁原子和对酸不稳定的硫

原子,此活性部位被称之为铁硫中心。铁硫蛋白是一种存在于线粒体内膜上的与电子传递有关的蛋白质。铁硫蛋白中的铁原子与硫原子通常以等物质的量存在,铁原子与蛋白质的四个半胱氨酸残基结合。根据铁硫蛋白中所含铁原子和硫原子的数量不同可分为三类:Pe–S中心、Fe2–S:中心和Fe4–S:中心。在线粒体内膜上,铁硫蛋白和递氢体或递电子体结合为蛋白复合体,已经证明在呼吸链的复合物I、复合物Ⅱ、复合物Ⅲ中均结合有铁硫蛋白,其功能是通过二价铁离子和三价铁离子的化合价变化来传递电子,而且每次只传递一个电子,是单电子传递体。

4.答:目前解释氧化作用和磷酸化作用如何偶联的假说有三个,即化学偶联假说、结构偶联假说与化学渗透假说。其中化学渗透假说得到较普遍的公认。该假说的主要内容是:

(1)线粒体内膜是封闭的对质子不通透的完整内膜系统。

(2)电子传递链中的氢传递体和电子传递体是交叉排列,氢传递体有质子(H+)泵的作用,在电子传递过程中不断地将质子(H+)从内膜内侧基质中泵到内膜外侧。

(3)质子泵出后,不能自由通过内膜回到内侧,这就形成内膜外侧质子(H‘)浓度高于内侧,使膜内带负电荷,膜外带正电荷,因而也就形成了两侧质子浓度梯度和跨膜电位梯度。这两种跨膜梯度是电子传递所产生的电化学电势,是质子回到膜内的动力,称质子移动力或质子动力势。

(4)一对电子(2e–)从NADH传递到O2的过程中共有3对H+从膜内转移到膜外。复合物I、Ⅲ、Ⅳ起着质子泵的作用,这与氧化磷酸化的三个偶联部位一致,每次泵出2个H+。

(5)质子移动力是质子返回膜内的动力,是ADP磷酸化合成ATP的能量所在,在质子移动力驱使下,质子(H+)通过F1F0–ATP合成酶回到膜内,同时ADP磷酸化合成ATP。

生物化学知识点总整理

一、蛋白质 1.蛋白质的概念:由许多氨基酸通过肽键相连形成的高分子含氮化合物,由C、H、O、N、S元素组成,N的含量为16%。 2.氨基酸共有20种,分类:非极性疏水R基氨基酸、极性不带电荷R基氨基酸、带正电 荷R基氨基酸(碱性氨基酸)、带负电荷R基氨基酸(酸性氨基酸)、芳香族氨基酸。 3.氨基酸的紫外线吸收特征:色氨酸和酪氨酸在280纳米波长附近存在吸收峰。 4.氨基酸的等电点:在某一PH值条件下,氨基酸解离成阳离子和阴离子的趋势及程度相同,溶液中氨基酸的净电荷为零,此时溶液的PH值称为该氨基酸的等电点;蛋白质等电点: 在某一PH值下,蛋白质的净电荷为零,则该PH值称为蛋白质的等电点。 5.氨基酸残基:氨基酸缩合成肽之后氨基酸本身不完整,称为氨基酸残基。 6.半胱氨酸连接用二硫键(—S—S—) 7.肽键:一个氨基酸的α-羧基与另一个氨基酸α-氨基脱水缩合形成的化学键。 8.N末端和C末端:主链的一端含有游离的α氨基称为氨基端或N端;另一端含有游离的 α羧基,称为羧基端或C端。 9.蛋白质的分子结构:(1)一级结构:蛋白质分子内氨基酸的排列顺序,化学键为肽键和二硫键;(2)二级结构:多肽链主链的局部构象,不涉及侧链的空间排布,化学键为氢键, 其主要形式为α螺旋、β折叠、β转角和无规则卷曲;(3)三级结构:整条肽链中,全部氨基 酸残基的相对空间位置,即肽链中所有原子在三维空间的排布位置,化学键为疏水键、离子键、氢键及范德华力;(4)四级结构:蛋白质分子中各亚基的空间排布及亚基接触部位的布局和 相互作用。 10.α螺旋:(1)肽平面围绕Cα旋转盘绕形成右手螺旋结构,称为α螺旋;(2).螺旋上升一圈,大约需要3.6个氨基酸,螺距为0.54纳米,螺旋的直径为0.5纳米;(3).氨基酸的R基分布在 螺旋的外侧;(4).在α螺旋中,每一个肽键的羰基氧与从该羰基所属氨基酸开始向后数第五个氨基酸的氨基氢形成氢键,从而使α螺旋非常稳定。 11.模体:在许多蛋白质分子中可发现两个或三个具有二级结构的肽段,在空间上相互接近,形成一个特殊的空间构象,被称为模体。 12.结构域:大分子蛋白质的三级结构常可分割成一个或数个球状或纤维状的区域,折叠得较为紧密,各行使其功能,称为结构域。 13.变构效应:蛋白质空间结构的改变伴随其功能的变化,称为变构效应。 14.蛋白质胶体结构的稳定因素:颗粒表面电荷与水化膜。 15.什么是蛋白质的变性、复性、沉淀?变性与沉淀关系如何?导致蛋白质的变性因素?举 例说明实际工作中应用和避免蛋白质变性的例子? 蛋白质的变性:在理化因素的作用下,蛋白质的空间构象受到破坏,其理化性质发生改变,生物活性丧失,其实质是蛋白质的次级断裂,一级结构并不破坏。 蛋白质的复性:当变性程度较轻时,如果除去变性因素,蛋白质仍能恢复或部分恢复其原 来的构象及功能,这一现象称为蛋白质的复性。

临床生化检验知识点

临床生化检验 1、糖酵解:指从葡萄糖至乳糖的无氧分解过程,可生成2分子ATP。是体内糖代谢最主要途径。最终产物:乳酸。依赖糖酵解获得能量:红细胞。 2、糖氧化——乙酰CoA。有氧氧化是糖氧化供能的主要方式。1分子葡萄糖彻底氧化为CO2和H2O,可生成36或38个分子的ATP。 3、糖异生:非糖物质转为葡萄糖。是体内单糖生物合成的唯一途径。肝脏是糖异生的主要器官。防止乳酸中毒。 4、血糖受神经,激素,器官调节。 5、升高血糖激素:胰高血糖素(A细胞分泌),糖皮质激素和生长激素(糖异生),肾上腺素(促进糖原分解)。 降低血糖激素:胰岛素(B细胞分泌)(唯一) 6、糖尿病分型: Ⅰ型:内生胰岛素或C肽缺,易出酮症酸中毒,高钾血症,多发于青年人。 Ⅱ型:多肥胖,具有较大遗传性,病因有胰岛素生物活性低,胰岛素抵抗,胰岛素分泌功能异常。 特殊型及妊娠期糖尿病。 7、糖尿病的诊断标准:有糖尿病症状加随意血糖≥11.1 mmol/L;空腹血糖(FVPG)≥7.0 mmol/L;(OGTT)2h血糖≥11.1 mmol/L。初诊需复查后确证。

8、慢性糖尿病人可有:白内障(晶体混浊变形),并发血管病变以心脑肾最重。 9、糖尿病急性代谢并发症有:酮症酸中毒(DKA,高血糖,尿糖强阳性,尿酮体阳性,高酮血症,代谢性酸中毒,多<40岁,年轻人),高渗性糖尿病昏迷(NHHDC,血糖极高,>33.6mmol/L,肾功能损害,脑血组织供血不足,多>40岁,老年人),乳酸酸中毒(LA)。10、血糖测定:葡萄糖氧化酶-过氧化物酶偶联法(GOD-POD法)。己糖激酶法(HK):参考方法 (>7.0mmol/L称为高血糖症。<2.8mmol/L称为低血糖症。) 11、空腹低血糖反复出现,最常见的原因是胰岛β细胞瘤(胰岛素瘤)。胰岛B细胞瘤临床特点:空腹或餐后4—5h发作,脑缺糖比交感神经兴奋明显,有嗜睡或昏迷,30%自身进食可缓解故多肥胖。 12、血浆渗透压=2(Na+K)+血糖浓度。 13、静脉血糖〈毛细血管血糖〈动脉血糖。 14、血糖检测应立即分离出血浆(血清)尽量早检测,不能立即检查应加含氟化钠的抗凝剂。 15、肾糖阈:8.9—10.0mmol/L。 16、糖耐量试验:禁食10—16h,5分钟内饮完250毫升含有75g无水葡萄糖的糖水,每30分钟取血一次,监测到2h,共测量血糖5次(包括空腹一次)。

生物化学知识点汇总

生物化学知识点486 时间:2011-8-10 18:04:44 点击: 、大多数的蛋白质都是由(碳)、(氢)、(氧)、(氮)等主要1生物化学一、填空题核心提示:折、蛋白质二级结构的主形式是(a-螺旋)、(B-元素组成的,组成蛋白质的基本单位是(氨基酸)。2(疏3、维行蛋白质的空间结稳定的化 学键主要有(氢键)、(盐键)、叠)(B-转角)(无规则卷曲)。... 水键)、(范德华力)等生物化学 一、填空题 、大多数的蛋白质都是由(碳)、(氢)、(氧)、(氮)等主要元素组成的,组成蛋白1 质的基本单位是(氨基酸)。 转角)(无规则卷曲)。、蛋白质二级结构的主形式是(a-螺旋)、(B-折叠)(B-2、维行蛋白质的空间结稳定的化学键主要有(氢键)、(盐键)、(疏水键)、(范德华3 力)等非共价键和(二硫键)。 、使蛋白质沉淀常用的方法有(盐析法)、(有机溶剂沉淀法)、、4 (重金 属盐沉淀法)。、核酸分(核糖核酸)和(脱氧核糖核酸)两大类。构成核酸的基本单位是(氨基酸),5 核酸彻底水解的最终产物是(碳酸)、(戊糖)、(含氮碱),此即组成核酸的基本成分。)、CA)和(鸟嘌呤B)两种,嘧啶碱主要有(胞嘧啶6、核酸中嘌呤碱主要有(腺嘌呤)和(胸腺嘧啶T)三种。(尿嘧啶U、酶是指(由活细胞产生的能够在体内外起催化作用的生物催化剂),酶所催化的反应称7 为(酶促反应),酶的活性是指(酶的催化能力)。 8、酶促反应的特点有(催化效率高)、(高度专一性)(酶活性的不稳定性)。 、酶促反应速度受许多因素影响,这些因素主要有(酶浓度)、(底物浓度)、(温度)、9 )、(激活剂)、(抑制剂)(PH),糖的来源有(食物中糖的消化吸收)、3.9-6.1mmol/L10、正常情况下空腹血糖浓度为((肝糖原的分解)、(糖异生作用),糖的正常去路有(氧化供能)、(合成糖原)、(转化成脂肪等),异常去路有(尿糖)。,反应在(线12)分子ATP411、三羧酸循环中有(2)次脱羧()次脱氧反应,共生成(酮戊二酸脱氢酶粒)中进行,三种关键酶是(柠檬酸合成酶)、(异柠檬酸脱氢酶)、(a- 系)。、由于糖酵解的终产物是(乳酸),因此,机体在严重缺氧情况下,会发生(乳酸)中12 毒。 、糖的主要生理功能是(氧化供能),其次是(构成组织细胞的成分),人类食物中的13 糖主要是(淀粉)。、糖尿病患者,由于体内(胰岛素)相对或绝对不足,可引起(持续)性(高血糖),14 1 甚至出现(糖尿)),并释放能量的过程称(生H2O、营养物质在(生物体)内彻底氧化生成(CO2)和(15 物氧化),又称为(组织呼吸)或(细胞呼吸)。琥珀酸氧化呼吸链),两FADH2、体内重要的两条呼吸链是(NADH氧化呼吸链)和(16 2ATP)。条呼吸链ATP的生成数分别是(3ATP)和()H2O17、氧化磷酸化作用是指代谢物脱下的(氢)经(呼吸链)的传递交给(氧)生成(ATP)的过程相(偶联)的作用。的过程与(ADP)磷酸化生成(ATP的主 要方式为(氧化磷酸化),其次是(底物水平磷酸化)。18、体内生成脱a-CO2是通过(有机物)的脱羧反应生成的,根据脱羧的位置不同,可分为(19、体内脱羧)。羧)和(B-氧化过程包括(脱氢)、(加水)、(再脱氢)、(硫解)四个步每一次B-20、脂酰CoA )。)和比原来少2

生物化学复习重点

绪论 掌握:生物化学、生物大分子和分子生物学的概念。 【复习思考题】 1. 何谓生物化学? 2. 当代生物化学研究的主要内容有哪些 蛋白质的结构与功能 掌握:蛋白质元素组成及其特点;蛋白质基本组成单位--氨基酸的种类、基本结构及主要特点;蛋白质的分子结构;蛋白质结构与功能的关系;蛋白质的主要理化性质及其应用;蛋白质分离纯化的方法及其基本原理。 【复习思考题】 1. 名词解释:蛋白质一级结构、蛋白质二级结构、蛋白质三级结构、蛋白质四级结构、肽单元、模体、结构域、分子伴侣、协同效应、变构效应、蛋白质等电点、电泳、层析 2. 蛋白质变性的概念及本质是什么有何实际应用? 3. 蛋白质分离纯化常用的方法有哪些其原理是什么? 4. 举例说明蛋白质结构与功能的关系 核酸的结构与功能 掌握:核酸的分类、细胞分布,各类核酸的功能及生物学意义;核酸的化学组成;两类核酸(DNA与RNA)分子组成异同;核酸的一级结构及其主要化学键;DNA 右手双螺旋结构要点及碱基配对规律;mRNA一级结构特点;tRNA二级结构特点;核酸的主要理化性质(紫外吸收、变性、复性),核酸分子杂交概念。 第三章酶 掌握:酶的概念、化学本质及生物学功能;酶的活性中心和必需基团、同工酶;酶促反应特点;各种因素对酶促反应速度的影响、特点及其应用;酶调节的方式;酶的变构调节和共价修饰调节的概念。 第四章糖代谢 掌握:糖的主要生理功能;糖的无氧分解(酵解)、有氧氧化、糖原合成及分解、糖异生的基本反应过程、部位、关键酶(限速酶)、生理意义;磷酸戊糖途径的生理意义;血糖概念、正常值、血糖来源与去路、调节血糖浓度的主要激素。 【复习思考题】 1. 名词解释:.糖酵解、糖酵解途径、高血糖和糖尿病、乳酸循环、糖原、糖异生、三羧酸循环、活性葡萄糖、底物水平磷酸化。 2.说出磷酸戊糖途径的主要生理意义。 3.试述饥饿状态时,蛋白质分解代谢产生的丙氨酸转变为葡萄糖的途径。

生物化学知识点整理

生物化学知识点整理(总33 页) -CAL-FENGHAI.-(YICAI)-Company One1 -CAL-本页仅作为文档封面,使用请直接删除

生物化学知识点整理 注: 1.此材料根据老师的PPT及课堂上强调需掌握的内容整理 而成,个人主观性较强,仅供参考。(如有错误,请以课本为主) 2.颜色注明:红色:多为名解、简答(或较重要的内容) 蓝色:多为选择、填空 第八章脂类代谢 第一节脂类化学 脂类:包括脂肪和类脂,是一类不溶于水而易溶于有机溶剂,并能为 机体利用的有机化合物。 脂肪:三脂肪酸甘油酯或甘油三酯。 类脂:胆固醇、胆固醇酯、磷脂、糖脂。 第二节脂类的消化与吸收

脂类消化的主要场所:小肠上段 脂类吸收的部位:主要在十二指肠下段及空肠上段 第三节三酰甘油(甘油三酯)代谢 一、三酰甘油的分解代谢 1.1)脂肪动员:储存在脂肪细胞中的脂肪,被肪脂酶逐步水解为 脂肪酸及甘油,并释放入血以供其他组织氧化利用的过程。 2)关键酶:三酰甘油脂肪酶 (又称“激素敏感性三酰甘油脂肪酶”,HSL) 3)脂解激素:能促进脂肪动员的激素,如胰高血糖素、去甲肾 上腺素、肾上腺素等。 4)抗脂解激素:抑制脂肪动员,如胰岛素、前列腺素、烟酸、 雌二醇等。 2.甘油的氧化 甘油在甘油激酶的催化下生成3-磷酸甘油,随后脱氢生成磷酸二羟丙酮,再经糖代谢途径氧化分解释放能量或经糖异生途径生成糖。 3.脂肪酸的分解代谢 饱和脂肪酸氧化的方式主要是β氧化。 1)部位:组织:脑组织及红细胞除外。心、肝、肌肉最活跃; 亚细胞:细胞质、线粒体。 2)过程: ①脂酸的活化——脂酰CoA的生成(细胞质)

生物化学知识点梳理

生化知识点梳理 蛋白质水解 (1)酸水解:破坏色胺酸,但不会引起消旋,得到的是L-氨基酸。(2)碱水解:容易引起消旋,得到无旋光性的氨基酸混合物。 (3)酶水解:不产生消旋,不破坏氨基酸,但水解不彻底,得到的是蛋白质片断。(P16) 酸性氨基酸:Asp(天冬氨酸)、Glu(谷氨酸) 碱性氨基酸:Lys(赖氨酸)、Arg(精氨酸)、His(组氨酸) 极性非解离氨基酸:Gly(甘氨酸)、Ser(丝氨酸)、Thr(苏氨酸)、Cys(半胱氨酸),Tyr(酪氨酸)、Asn(天冬酰胺)、Gln(谷氨酰胺) 非极性氨基酸:Ala(丙氨酸)、Val(缬氨酸)、Leu(亮氨酸)、Ile(异亮氨酸)、Pro(脯氨酸)、Phe(苯丙氨酸)、Trp(色氨酸)、Met(甲硫氨酸) 氨基酸的等电点调整环境的pH,可以使氨基酸所带的正电荷和负电荷相等,这时氨基酸所带的净电荷为零。在电场中既不向阳极也不向阴极移动,这时的环境pH称为氨基酸的等电点(pI)。 酸性氨基酸:pI= 1/2×(pK1+pKR) 碱性氨基酸:pI=1/2×(pK2+pKR) 中性氨基酸:pI= 1/2×(pK1+pK2) 当环境的pH比氨基酸的等电点大,氨基酸处于碱性环境中,带负电荷,在电场中向正极移动;当环境的pH比氨基酸的等电点小,氨基酸处于酸性环境中,带正电荷,在电场中向负极移动。 除了甘氨酸外,所有的蛋白质氨基酸的α-碳都是手性碳,都有旋光异构体,但组成蛋白质的都是L-构型。带有苯环氨基酸(色氨酸)在紫外区280nm波长由最大吸收 蛋白质的等离子点:当蛋白质在某一pH环境中,酸性基团所带的正电荷预见性基团所带的负电荷相等。蛋白质的净电荷为零,在电场中既不向阳极也不向阴极移动。这是环境的pH称为蛋白质的等电点。 盐溶:低浓度的中性盐可以促进蛋白质的溶解。 盐析:加入高浓度的中性盐可以有效的破坏蛋白质颗粒的水化层,同时又中和了蛋白质分子电荷,从而使蛋白质沉淀下来。 分段盐析:不同蛋白质对盐浓度要求不同,因此通过不同的盐浓度可以将不同种蛋白质沉淀出来。 变性的本质:破坏非共价键(次级键)和二硫键,不改变蛋白质的一级结构。蛋白质的二级结构:多肽链在一级结构的基础上借助氢键等次级键叠成有规则的空间结构。组成了α-螺旋、β-折叠、β-转角和无规则卷曲等二级结构构象单元。α-螺旋α-螺旋一圈有3.6个氨基酸,沿着螺旋轴上升0.54nm,每一个氨基酸残基上升0.15nm,螺旋的直径为2nm。当有脯氨酸存在时,由于氨基上没有多余的氢形成氢键,所以不能形成α-螺旋。 β-折叠是一种相当伸展的肽链结构,由两条或多条多肽链侧向聚集形成的锯齿状结构。有同向平行式和反向平行式两种。以反向平行比较稳定。 β-转角广泛存在于球状蛋白中,是由于多肽链中第n个残基羰基和第n+3个氨基酸残基的氨基形成氢键,使得多肽链急剧扭转走向而致 超二级结构:指多肽链上若干个相邻的二级结构单元(α-螺旋、β-折叠、β-转角)彼此相互作用,进一步组成有规则的结构组合体(p63 )。主要有αα,

生物化学知识点整理

生物化学知识点整理 注: 1.此材料根据老师的PPT及课堂上强调需掌握的内容整理 而成,个人主观性较强,仅供参考。(如有错误,请以课本为主) 2.颜色注明:红色:多为名解、简答(或较重要的内容) 蓝色:多为选择、填空 第八章脂类代谢 第一节脂类化学 脂类:包括脂肪和类脂,是一类不溶于水而易溶于有机溶剂,并能为机体利用的有机化合物。 脂肪:三脂肪酸甘油酯或甘油三酯。 类脂:胆固醇、胆固醇酯、磷脂、糖脂。

第二节脂类的消化与吸收 脂类消化的主要场所:小肠上段 脂类吸收的部位:主要在十二指肠下段及空肠上段 第三节三酰甘油(甘油三酯)代谢 一、三酰甘油的分解代谢 1.1)脂肪动员:储存在脂肪细胞中的脂肪,被肪脂酶逐步水解为 脂肪酸及甘油,并释放入血以供其他组织氧化利用的过程。 2)关键酶:三酰甘油脂肪酶 (又称“激素敏感性三酰甘油脂肪酶”,HSL) 3)脂解激素:能促进脂肪动员的激素,如胰高血糖素、去甲肾

上腺素、肾上腺素等。 4)抗脂解激素:抑制脂肪动员,如胰岛素、前列腺素、烟酸、 雌二醇等。 2.甘油的氧化 甘油在甘油激酶的催化下生成3-磷酸甘油,随后脱氢生成磷酸二羟丙酮,再经糖代谢途径氧化分解释放能量或经糖异生途径生成糖。 3.脂肪酸的分解代谢 饱和脂肪酸氧化的方式主要是β氧化。 1)部位:组织:脑组织及红细胞除外。心、肝、肌肉最活跃; 亚细胞:细胞质、线粒体。 2)过程: ①脂酸的活化——脂酰CoA的生成(细胞质) 脂肪酸 脂酰 消耗了2 ②脂酰CoA进入线粒体 酶:a.肉碱酰基转移酶 I(脂肪酸氧化分解的关键酶、限速酶) b.肉碱酰基转移酶Ⅱ c.脂酰肉碱——肉碱转位酶(转运体) ③脂酸的β氧化 a.脱氢:脂酰

生物化学知识点

生物化学名词解释及基本概念整理 第一章蛋白质化学 Ⅰ基本概念 1、等电点(pI):使氨基酸离解成阳性离子和阴性离子的趋势和程度相等,总带电荷为零(呈电中性) 时的溶液pH值. A溶液pHpI,氨基酸带负电荷,在电泳时向正极运动。 2、修饰氨基酸(稀有氨基酸):蛋白质合成后,氨基酸残基的某些基团被修饰后形成的氨基酸。没有 相应的密码子,如甲基化、乙酰化、羟基化、羧基化、磷酸化等。 3、肽键(peptide bond):合成肽链时,前一个氨基酸的α-羧基与下一个氨基酸的α-氨基通过脱 水作用形成的酰胺键,具有部分双键性质。 4、肽键平面(酰胺平面):参与肽键的六个原子位于同一平面,该平面称为肽键平面。肽键平面不能 自由转动。 5、蛋白质结构: A一级结构:是指多肽链从N端到C端的氨基残基种类、 数量和顺序。主要的化学键:肽键,二硫键。 B 二级结构:是指蛋白质分子中某一段肽链的局部空间结构, 即蛋白质主链原子的局部空间排布(不涉及侧链原子的位置)。 分α-螺旋( α -helix):较重要,为右手螺旋,每圈螺旋含3.6个 氨基酸残基(13个原子),螺距为0.54nm、β-片层(β-折叠, β-pleated sheet)、β-转角(β-turn )、无规则卷曲(random coil)、π-螺旋(π -helix )。维持二级结构的化学键:氢键。 模体:蛋白质分子中,二级结构单元有规则地聚集在一起形成 混合或均有的空间构象,又称超二级结构。 C 结构域:蛋白质三级结构中,折叠紧凑、可被分割成独立的球状或纤维状,具有特定功能的 区域,称为结构域。为构成三级结构的基本单元。 D三级结构:是指整条多肽链中所有氨基酸残基的相对空间位置(肽链上所有原子的相对空间位 置).化学健:疏水键和氢键、离子键、范德华力等来维持其空间结构的相对稳定。 E 四级结构:蛋白质分子中几条各具独立三级结构的多肽链间相互结集和相互作用,排列形成 的更高层次的空间构象。作用力:亚基间以离子键、氢键、疏水力连接。此外,范德华力、二 硫键(如抗体)。 6、分子伴侣:一类在序列上没有相关性但有共同功能,在细胞中能够帮助其他多肽链(或核酸)折 叠或解折叠、组装或分解的蛋白称为分子伴侣。如热休克蛋白。 7、一级结构是形成高级结构的分子基础,蛋白质一级结构的改变,可能引起其功能的异常或丧失(“分 子病”);同功能蛋白质序列具有种属差异与保守性。 蛋白质分子的空间结构是其发挥生物学活性的基础,蛋白质分子构象的改变影响生物学功能或 导致疾病的发生,蛋白质一级结构不变,但由于折叠错误,导致蛋白质构象改变而引起的疾病, 称为蛋白质构象病(折叠病)。 8、蛋白质变性:在某些理化因素的作用下,特定的空间结构被破坏而导致其理化性质改变及生物活 性丧失的过程。为非共价键和二硫键断裂,物理(高温、高压、紫外线),化学(强酸碱、有机溶剂、重金属盐)等因素导致。 9、20种AA名称及缩写: A 非极性疏水性AA:甘氨酸(Gly)、丙氨酸(Ala)、缬氨酸(Val)、亮氨酸(Leu)、异亮氨酸(Ile)、

生物化学知识重点

生物化学知识重点文件排版存档编号:[UYTR-OUPT28-KBNTL98-UYNN208]

生物化学知识重点 第一章绪论 1.生物化学的发展过程大致分为三阶段:叙述生物化学、动态生物化学和机能生物化学。 2.生物化学研究的内容大体分为三部分: ①生物体的物质组成及生物分子的结构与功能②代谢及其调节③基因表达及其调控 第二章糖类化学 1.糖类通常根据能否水解以及水解产物情况分为单糖、寡糖和多糖。 2.单糖的分类: ①按所含C原子的数目分为:丙糖、丁糖...... ②按所含羰基的特点分为:醛糖和酮糖。 3.葡萄糖既是生物体内最丰富的单糖,又是许多寡糖和多糖的组成成分。 4.甘油醛是最简单的单糖。 5.两种环式结构的葡萄糖: 6.核糖和脱氧核糖的环式结构:(见下图) CH 2OH CH 2 OH O O OH HOCH 2 O OH HOCH 2 O OH HO OH OH HO OH OH OH OH OH OH H

α-D-(+)-砒喃葡萄糖β-D-(+)-砒喃葡萄糖β-D-核糖 β-D-脱氧核糖 7.单糖的重要反应有成苷反应、成酯反应、氧化反应、还原反应和异构反应。 8.蔗糖是自然界分布最广的二糖。 9.多糖根据成分为:同多糖和杂多糖。同多糖又称均多糖,重要的同多糖有淀粉、糖原、纤维素等; 杂多糖以糖胺聚糖最为重要。 10.淀粉包括直链淀粉和支链淀粉。糖原分为肝糖原和肌糖原。 11.糖胺聚糖包括透明质酸、硫酸软骨素和肝素。 第三章脂类化学 1.甘油 脂肪脂肪酸短链脂肪酸、中链脂肪酸和长链脂肪酸(根据C原子数目分类) 脂类饱和脂肪酸和不饱和脂肪酸(根据是否含有碳-碳双键分类) 类脂:磷脂、糖脂和类固醇 2.亚油酸、α亚麻酸和花生四烯酸是维持人和动物正常生命活动所必必需的脂肪酸,是必需脂肪酸。 3.类花生酸是花生四烯酸的衍生物,包括前列腺素、血栓素和白三烯。 4.脂肪又称甘油三酯。右下图是甘油三酯、甘油和脂肪酸的结构式: 5.皂化值:水解1克脂肪所消耗KOH的毫克数。 CH2- OH CHOOC-R 1

生物化学重点知识归纳

生物化学重点知识归纳 酶的知识点总结 一、酶的催化作用 1、酶分为:单纯蛋白质的酶和结合蛋白质的酶,清蛋白属于单纯蛋白质的酶 2、体内结合蛋白质的酶占多数,结合蛋白质酶由酶蛋白和辅助因子组成,辅助因子分为辅酶、辅基;辅酶和酶蛋白以非共价键结合,辅基与酶蛋白结合牢固,一种酶蛋白只能与一种辅助因子结合,所以酶蛋白决定酶反应特异性。结合蛋白质酶;酶蛋白:决定酶反应特异性;辅酶:结合不牢固辅助因子辅基:结合牢固,由多种金属离子;结合后不能分离 3、酶的活性中心:酶分子中直接与底物结合,并催化底物发生化学反应的局部空间结构 4、酶的有效催化是降低反应的活化能实现的。 二、辅酶的种类口诀:1脚踢,2皇飞,辅酶1,NAD, 辅酶2,多个p; 三、酶促反应动力学:1 Km为反应速度一半时的[S](底物浓度),亦称米氏常数,Km增大,Vmax不变。

2、酶促反应的条件:PH值:一般为最适为7.4,但胃蛋白酶的最适PH为1.5,胰蛋白酶的为7.8;温度:37—40℃; 四、抑制剂对酶促反应的抑制作用 1、竞争性抑制:Km增大,Vmax不变;非抑制竞争性抑制:Km不变,Vmax减低 2、酶原激活:无活性的酶原变成有活性酶的过程。 (1)盐酸可激活的酶原:胃蛋白酶原 (2)肠激酶可激活的消化酶或酶原:胰蛋白酶原 (3)胰蛋白酶可激活的消化酶或酶原:糜蛋白酶原 (4)其余的酶原都是胰蛋白酶结合的 3、同工酶:催化功能相同,但结构、理化性质和免疫学性质各不相同的酶。 LDH分5种。LDH有一手(5种),心肌损伤老4(LDH1)有问题,其他都是HM型。 脂类代谢的知识点总结 1、必需脂肪酸:亚麻酸、亚油酸、花生四烯酸(麻油花生油) 2、脂肪的能量是最多的,脂肪是禁食、饥饿是体内能量的主要来源

(完整版)生物化学知识点重点整理

一、蛋白质化学 蛋白质的特征性元素(N),主要元素:C、H、O、N、S,根据含氮量换算蛋白质含量:样品蛋白质含量=样品含氮量*6.25 (各种蛋白质的含氮量接近,平均值为16%), 组成蛋白质的氨基酸的数量(20种),酸性氨基酸/带负电荷的R基氨基酸:天冬氨酸(D)、谷氨酸(E); 碱性氨基酸/带正电荷的R基氨基酸:赖氨酸(K)、组氨酸(H)、精氨酸(R) 非极性脂肪族R基氨基酸:甘氨酸(G)、丙氨酸(A)、脯氨酸(P)、缬氨酸(V)、亮氨酸(L)、异亮氨酸(I)、甲硫氨酸(M); 极性不带电荷R基氨基酸:丝氨酸(S)、苏氨酸(T)、半胱氨酸(C)、天冬酰胺(N)、谷氨酰胺(Q); 芳香族R基氨基酸:苯丙氨酸(F)、络氨酸(Y)、色氨酸(W) 肽的基本特点 一级结构的定义:通常描述为蛋白质多肽链中氨基酸的连接顺序,简称氨基酸序列(由遗传信息决定)。维持稳定的化学键:肽键(主)、二硫键(可能存在), 二级结构的种类:α螺旋、β折叠、β转角、无规卷曲、超二级结构, 四级结构的特点:肽键数≧2,肽链之间无共价键相连,可独立形成三级结构,是否具有生物活性取决于是否达到其最高级结构 蛋白质的一级结构与功能的关系:1、蛋白质的一级结构决定其构象 2、一级结构相似则其功能也相似3、改变蛋白质的一级结构可以直接影响其功能因基因突变造成蛋白质结构或合成量异常而导致的疾病称分子病,如镰状细胞贫血(溶血性贫血),疯牛病是二级结构改变 等电点(pI)的定义:在某一pH值条件下,蛋白质的净电荷为零,则该pH值为蛋白质的等电点(pI)。 蛋白质在不同pH条件下的带电情况(取决于该蛋白质所带酸碱基团的解离状态):若溶液pHpI,则蛋白质带负电荷,在电场中向正极移动。(碱性蛋白质含碱性氨基酸多,等电点高,在生理条件下净带正电荷,如组蛋白和精蛋白;酸性蛋白质含酸性氨基酸多,等电点低,在生理条件下净带负电荷,如胃蛋白酶), 蛋白质稳定胶体溶液的条件:(颗粒表面电荷同性电荷、水化膜), 蛋白质变性:指由于稳定蛋白质构象的化学键被破坏,造成其四级结构、三级结构甚至二级结构被破坏,结果其天然构象部分或全部改变。实质:空间结构被破坏。变性导致蛋白质理化性质改变,生物活性丧失。变性只破坏稳定蛋白质构象的化学键,即只破坏其构象,不破坏其氨基酸序列。变性本质:破坏二硫键 沉降速度与分子量及分子形状有关沉降系数:沉降速度与离心加速度的比值为一常数,称沉降系数 沉淀的蛋白质不一定变性变性的蛋白质易于沉淀 二、核酸化学 核酸的特征性元素:P,组成元素:C、H、O、N、P,核苷酸的组成成分:一分子磷酸、一分子戊糖、一分子碱基(腺嘌呤A、鸟嘌呤G、胞嘧啶C、胸腺嘧啶T、尿嘧啶U),

检验师生化检验(初级)知识点集锦

1、糖酵解:指从葡萄糖至乳糖的无氧分解过程,可生成2分子ATP。是体内糖代谢最主要途径。最终产物:乳酸。依赖糖酵解获得能量:红细胞。 2、糖氧化——乙酰CoA。有氧氧化是糖氧化供能的主要方式。1分子葡萄糖彻底氧化为CO2和H2O,可生成36或38个分子的ATP。 3、糖异生:非糖物质转为葡萄糖。是体内单糖生物合成的唯一途径。肝脏是糖异生的主要器官。防止乳酸中毒。 4、血糖受神经,激素,器官调节。 5、升高血糖激素:胰高血糖素(A细胞分泌),糖皮质激素和生长激素(糖异生),肾上腺素(促进糖原分解)。 降低血糖激素:胰岛素(B细胞分泌)(唯一) 6、糖尿病分型: Ⅰ型:内生胰岛素或C肽缺,易出酮症酸中毒,高钾血症,多发于青年人。 Ⅱ型:多肥胖,具有较大遗传性,病因有胰岛素生物活性低,胰岛素抵抗,胰岛素分泌功能异常。 特殊型及妊娠期糖尿病。 7、糖尿病的诊断标准:有糖尿病症状加随意血糖≥11.1 mmol/L;空腹血糖(FVPG)≥7.0 mmol/L;(OGTT)2h血糖≥11.1 mmol/L。初诊需复查后确证。 8、慢性糖尿病人可有:白内障(晶体混浊变形),并发血管病变以心脑肾最重。 9、糖尿病急性代谢并发症有:酮症酸中毒(DKA,高血糖,尿糖强阳性,尿酮体阳性,高酮血症,代谢性酸中毒,多<40岁,年轻人),高渗性糖尿病昏迷(NHHDC,血糖极高,>33.6mmol/L,肾功能损害,脑血组织供血不足,多>40岁,老年人),乳酸酸中毒(LA)。

10、血糖测定:葡萄糖氧化酶-过氧化物酶偶联法(GOD-POD法)。己糖激酶法(HK):参考方法 (>7.0mmol/L称为高血糖症。<2.8mmol/L称为低血糖症。) 11、空腹低血糖反复出现,最常见的原因是胰岛β细胞瘤(胰岛素瘤)。胰岛B细胞瘤临床特点:空腹或餐后4—5h发作,脑缺糖比交感神经兴奋明显,有嗜睡或昏迷,30%自身进食可缓解故多肥胖。 12、血浆渗透压=2(Na+K)+血糖浓度。 13、静脉血糖〈毛细血管血糖〈动脉血糖。 14、血糖检测应立即分离出血浆(血清),尽量早检测,不能立即检查应加含氟化钠的抗凝剂。 15、肾糖阈:8.9—10.0mmol/L。 16、糖耐量试验:禁食10—16h,5分钟内饮完250毫升含有75g无水葡萄糖的糖水,每30分钟取血一次,监测到2h,共测量血糖5次(包括空腹一次)。 17、糖化血红蛋白:可分为HbAIa,HbAIb,HbAIc(能与葡萄糖结合,占绝大部分),测定时主要测HbAI组份或HbAIc(4%--6%),反映前6~8周血糖水平,主要用于评定血糖控制程度和判断预后。 18、糖化血清蛋白:类似果糖胺,反映前2—3周血糖水平。 19、C肽的测定可以更好地反映B细胞生成和分泌胰岛素的能力。 20、乳酸测定:NADH被氧化为NAD+,可在340nm处连续监测吸光度下降速度。(NADH和NADPH在340nm有特征性光吸收) 21、血脂蛋白电泳图(自阴极起):乳糜微粒,B-脂蛋白,前B脂蛋白,A-脂蛋白。

生物化学期末考试知识点归纳

生物化学期末考试知识点归纳 三羧酸循环记忆方法 一:糖无氧酵解过程中的“1、2、3、4”1:1分子的葡萄糖2:此中归纳为:6个2 2个阶段;经过2个阶段生成乳酸 2个磷酸化; 2个异构化,即可逆反应; 2个底物水平磷酸化;2个ATP消耗,净得2个分子的ATP; 产生2分子NADH 3:整个过程需要3个关键酶4:生成4分子的ATP. 二:糖有氧氧化中的“1、2、3、4、5、6、7”1:1分子的葡萄糖2:2分子的丙酮酸、2个定位3:3个阶段:糖酵解途径生成丙酮酸丙酮酸生成乙酰CO-A三羧酸循环和氧化磷酸化 4:三羧酸循环中的4次脱氢反应生成3个NADH和1个FADH2 5:三羧酸循环中第5步反应:底物水平磷酸化是此循环中唯一生成高能磷酸键的反应6:期待有人总结7:整个有氧氧化需7个关键酶参与:己糖激酶、6-

磷酸果糖激酶、丙酮酸激酶、丙酮酸脱氢酶复合体、拧檬酸合酶、异拧檬酸脱氢酶、a-酮戊二酸脱氢酶复合体一.名词解释: 1.蛋白质的等电点:当蛋白质溶液处在某一pH值时,蛋白质解离成正、负离子的趋势和程度相等,即称为兼性离子或两性离子,净电荷为零,此时溶液的pH值称为该蛋白质的等电点。、 2.蛋白质的一级结构:是指多肽链中氨基酸的排列的序列,若蛋白质分子中含有二硫键,一级结构也包括生成二硫键的半胱氨酸残基位置。维持其稳定的化学键是:肽键。蛋白质二级结构:是指多肽链中相邻氨基酸残基形成的局部肽链空间结构,是其主链原子的局部空间排布。蛋白质二级结构形式:主要是周期性出现的有规则的α-螺旋、β-折叠、β-转角和无规则卷曲等。 蛋白质的三级结构是指整条多肽链中所有氨基酸残基,包括相距甚远的氨基酸残基主链和侧链所形成的全部分子结构。因此有些在一级结构上相距甚远的氨基酸残基,经肽链折叠在空间结构上可以非常接近。 蛋白质的四级结构是指各具独立三级结构多肽链再以各自特定形式接触排布后,结集所形成的蛋白质最高层次空间结构。 3..蛋白质的变性:在某些理化因素的作用下,蛋白质的空间结构受到破坏,从而导致其理化性质的改变和生物学活性的丧失,这种现象称为蛋白质的变性作用。蛋白质

生物化学检验考试重点知识总结教学提纲

生物化学检验考试重点知识总结

临床生物化学与检验 第一章 临床生物化学的概念:临床生物化学与是在人体正常的生物化学代谢基础上,研究疾病状态下生物化学病理性变化的基础理论和相关代谢物的质与量的改变,从而为疾病的临床实验诊断,治疗监测、药物疗效和预后判断、疾病预防等方面提供信息和决策依据的一门学科。(选择题) 第二章 1.血浆蛋白质电泳区带顺序:前清蛋白、清蛋白、α1-球蛋白、α2-球蛋白、β1-球蛋白、β2-球蛋白、γ-球蛋白 2.急性时相反应:当人体因感染、自身免疫性等组织损伤(如创伤、手术、心肌梗死、肿瘤等)侵害,诱导炎症,使单核细胞和巨噬细胞等细胞释放紧急反应性因子,再经血液循环,刺激肝脏细胞产生Hp、Cp、CRP等,使其血浆中浓度显著升高,而血浆前清蛋白、清蛋白、转铁蛋白浓度则出现相应下降,此炎症反应过程,称之为急性时相反应(APR),该过程出现的蛋白质统称为急性时相反应蛋白(APP)。各APP升高的速度和幅度有所不同,C-反应蛋白首先升高,在12小时内α1-酸性糖蛋白也升高,尔后α1-抗胰蛋白酶、触珠蛋白、C4和纤维蛋白原升高,最后是C3

和铜蓝蛋白升高,通常在2至5天内这些APP达到最高值。 3.M蛋白→多发性骨髓瘤 4.清蛋白(Alb)的生理功能:①保持血浆胶体渗透压:以维持血管内外体液的平衡。②重要的营养蛋白:用于组织蛋白的补充和修复③血浆中主要的载体蛋白:许多水溶性差的物质,可以通过与Alb的结合而运输④具有缓冲酸碱的能力:蛋白质是两性电解质 5.CRP的临床意义: CRP是第一个被认识的APP。CRP是非特异性指标,主要用于结合临床检测疾病:①筛查微生物感染;②评估炎症性疾病的活动度;③检测系统性红斑狼疮、白血病和外科手术后并发的感染(血清中浓度再次升高)④新生儿败血症和脑膜炎的监测;⑤监测肾移植后的排斥反应等(简答题) 6.体液总蛋白测定的方法:凯氏定氮法是经典的蛋白质测定方法(参考方法);双缩脲法是常规方法。 7.清蛋白可与阴离子染料溴甲酚绿(BCG)或溴甲酚紫(BCP)结合,而球蛋白基本不结合这些染料。 8.前清蛋白(PA):在正常血清蛋白电泳(SPE)中显示在清蛋白前方故而得名,生理功能:PA为运载蛋白和组织修

生物化学知识点总结

生物化学知识点总结 一、蛋白质 蛋白质的元素组成:C、H、O、N、S 大多数蛋白质含氮量较恒定,平均16%,即1g氮相当于6.25g蛋白质。6.25称作蛋白质系数。 样品中蛋白质含量=样品中含氮量×6.25 蛋白质紫外吸收在280nm,含3种芳香族氨基酸,可被紫外线吸收 等电点(pI):调节氨基酸溶液的pH值,使氨基酸所带净电荷为零,在电场中,不向任何一极移动,此时溶液的pH叫做氨基酸的等电点。 脯氨酸和羟脯氨酸与茚三酮反应产生黄色物质,其余的氨基酸与茚三酮反映均产生蓝紫色物质。氨基酸与茚三酮反应非常灵敏,几微克氨基酸就能显色。 肽平面:肽键由于C-N键有部分双键的性质,不能旋转,使相关的6个原子处于同一平面,称作肽平面或酰胺平面。 生物活性肽:能够调节生命活动或具有某些生理活动的寡肽和多肽的总称。 1)谷胱甘肽:存在于动植物和微生物细胞中的一种重要三肽,由谷氨酸(Glu)、半胱氨酸(Cys)和甘氨酸(Gly)组成,简称GSH。由于GSH含有一个活泼的巯基,可作为重要的还原剂保护体内蛋白质或酶分子中的巯基免遭氧化,使蛋白质或酶处在活性状态。 寡肽:10个以下氨基酸脱水缩合形成的肽 多肽:10个以上氨基酸脱水缩合形成的肽 蛋白质与多肽的区别: 蛋白质:空间构象相对稳定,氨基酸残基数较多 多肽:空间构象不稳定,氨基酸残基数较少 蛋白质的二级结构:多肽链在一级结构的基础上,某局部通过氢键使肽键平面进行盘曲,折叠,转角等形成的空间构象。 α?螺旋的结构特点: 1)以肽键平面为单位,以α?碳原子为转折盘旋形成右手螺旋;肽键平面与中心轴平行。2)每3.6个氨基酸残基绕成一个螺圈,螺距为0.54nm,每个氨基酸上升0.15nm。

生物化学知识点整理

生物化学知识点整理 注: 1.此材料根据老师的PPT及课堂上强调需掌握的内容整理 而成,个人主观性较强,仅供参考。(如有错误,请以课本为主) 2.颜色注明:红色:多为名解、简答(或较重要的内容) 蓝色:多为选择、填空 第八章脂类代谢 第一节脂类化学 脂类:包括脂肪和类脂,是一类不溶于水而易溶于有机溶剂,并能为机体利用的有机化合物。 脂肪:三脂肪酸甘油酯或甘油三酯。 类脂:胆固醇、胆固醇酯、磷脂、糖脂。

第二节脂类的消化与吸收 脂类消化的主要场所:小肠上段 脂类吸收的部位:主要在十二指肠下段及空肠上段 第三节三酰甘油(甘油三酯)代谢 一、三酰甘油的分解代谢 1.1)脂肪动员:储存在脂肪细胞中的脂肪,被肪脂酶逐步水解为 脂肪酸及甘油,并释放入血以供其他组织氧化利用的过程。 2)关键酶:三酰甘油脂肪酶 (又称“激素敏感性三酰甘油脂肪酶",HSL) 3)脂解激素:能促进脂肪动员的激素,如胰高血糖素、去甲肾上

腺素、肾上腺素等. 4)抗脂解激素:抑制脂肪动员,如胰岛素、前列腺素、烟酸、雌 二醇等。 2.甘油的氧化 甘油在甘油激酶的催化下生成3—磷酸甘油,随后脱氢生成磷酸二羟丙酮,再经糖代谢途径氧化分解释放能量或经糖异生途径生成糖。 3.脂肪酸的分解代谢 饱和脂肪酸氧化的方式主要是β氧化. 1)部位:组织:脑组织及红细胞除外。心、肝、肌肉最活跃; 亚细胞:细胞质、线粒体. 2)过程: ①脂酸的活化-—脂酰CoA的生成(细胞质) 脂肪酸+ HSCo 脂酰~SCoA + AMP + Pi 消耗了2个高能磷酸键 ②脂酰CoA进入线粒体 酶:a.肉碱酰基转移酶 I(脂肪酸氧化分解的关键酶、限速酶)b。肉碱酰基转移酶Ⅱ c。脂酰肉碱-—肉碱转位酶(转运体)

生物化学考试重点_总结

第一章蛋白质的结构与功能 第一节蛋白质的分子组成 一、蛋白质的主要组成元素:C、H、O、N、S 特征元素:N(16%)特异元素:S 凯氏定氮法:每克样品含氮克数×6.25×100=100g样品中蛋白质含氮量(g%) 组成蛋白质的20种氨基酸 (名解)不对称碳原子或手性碳原子:与四个不同的原子或原子基团共价连接并因而失去对称性的四面体碳 为L-α-氨基酸,其中脯氨酸(Pro)属于L-α-亚氨基酸 不同L-α-氨基酸,其R基侧链不同 除甘氨酸(Gly)外,都为L-α-氨基酸,有立体异构体 组成蛋白质的20种氨基酸分类 非极性氨基酸:甘氨酸(Gly)、丙氨酸(Ala)、缬氨酸(Val)、 亮氨酸(Leu)、异亮氨酸(Ile)、脯氨酸(Pro) 极性中性氨基酸:丝氨酸(Ser)、半胱氨酸(Cys)、蛋氨酸(Met) 天冬酰胺(Asn)、谷氨酰胺(Gln)、苏氨酸(Thr) 芳香族氨基酸:苯丙氨酸(Phe)、色氨酸(Trp)、酪氨酸(Tyr) 酸性氨基酸:天冬氨酸(Asp)、谷氨酸(Glu) 碱性氨基酸:赖氨酸(Lys)、精氨酸(Arg)、组氨酸(His) 其中:含硫氨基酸包括:半胱氨酸、蛋氨酸 四、氨基酸的理化性质 1、两性解离及等电点 ①氨基酸分子中有游离的氨基和游离的羧基,能与酸或碱类物质结合成盐,故它是一种两性电解质。 ②氨基酸是两性电解质,其解离程度取决于所处溶液的酸碱度。 ③(名解)等电点(pI点):在某一pH的溶液中,氨基酸解离成阳离子和阴离子的趋势及程度相等,成为兼性离子,呈电中性,此时溶液的pH称为该氨基酸的等电点。 pHpI 阴离子氨基酸带净正电荷,在电场中将向负极移动 ④在一定pH范围内,氨基酸溶液的pH离等电点越远,氨基酸所携带的净电荷越大 2、含共轭双键的氨基酸具有紫外吸收性质 色氨酸、酪氨酸的最大吸收峰在280 nm 附近 大多数蛋白质含有这两种氨基酸残基,所以测定蛋白质溶液280nm的光吸收值是分析溶液中蛋白质含量的快速简便的方法 3、氨基酸与茚三酮反应生成蓝紫色化合物 在pH5~7,80~100℃条件下,氨基酸与茚三酮水合物共热,可生成蓝紫色化合物,其最大吸收峰在570nm处。此吸收峰值与氨基酸的含量存在正比关系,因此可作为氨基酸定量分析方法 五、蛋白质是由许多氨基酸残基组成的多肽链 (一)氨基酸通过肽键连接而形成肽 1、(名解)肽键(peptide bond)是由一个氨基酸的α-羧基与另一个氨基酸的α-氨基脱水缩合而形成的化学键 2、肽是由氨基酸通过肽键缩合而形成的化合物 3、10个以内氨基酸连接而成多肽称为寡肽;由更多的氨基酸相连形成的肽称多肽 肽链中的氨基酸分子因为脱水缩合而基团不全,被称为氨基酸残基

临床生化检验基础知识培训教材

临床生化检验基础知识培训 一、生化基础知识 二、生化仪器基础知识 三、部分生化项目的临床意义 本文档仅供生化应用工程师参考阅览,更多专业知识请查阅后附参考文献。 肖自强 2014-3-19

一、生化基础知识 1.1生化诊断试剂盒为由一定的化学品或者酶类组成的多成分混合试剂(Reagent),最终以水溶液的方式与待测物发生一系列化学或者生化反应,通过生成物或反应物中某物质的吸光度变化,测量待检测物中某种特定物质的含量。 1.2生化诊断试剂用于检测样本,包括:人体血清(主要)、血浆及尿液中的各种酶类和代谢产物,用于预测,诊断以及治疗监测,协助临床医生诊治疾病提供数据参考。 1.3按功能分为:肝功、血脂、肾功、心肌、代谢、免疫&风湿、离子&其他。 1.4试剂性能评价指标: 1 试剂外观 2批间差 3准确度 4精密度 5线性(灵敏度) 6抗干扰能力(特异性) 7稳定性 1.5试剂检测原理(朗伯比尔定律):A=Kbc

式中,A 为吸光度;K 为吸收系数,是与入射辐射的波长及吸收物质的性质有关的常数;b为液层厚度,单位为cm;c 为吸收物质的浓度。当浓度的单位为mol/L 时,K 的单位为L/mol·cm,称为摩尔吸收系数,通常用ε表示。摩尔吸收系数ε表示物质对某一波长的辐射的吸收特性。ε愈大,表示物质对某波长辐射的吸收力愈强,因而分光光度法测定的灵敏度就愈高. 1.6理论值与实测值偏差的解释:实测值偏离了朗伯比尔定律。 偏离Lambert-Beer定律的因素: 1复合光对Beer 定律的偏离:吸收定律要求入射光为单色光,而分光光度计单色光的纯度主要决定于色散元件及光路设计,即使高精度的仪器,也得不到纯单色光,而是波长宽度的复合光,其结果导致偏离Lambert Beer 定律。 2杂散光的影响:杂散光(stray light) 是进入检测器待测波长以外的光。主要来源于仪器色散元件表面的散射、单色器内壁尘埃等。 3狭缝宽度的影响:单色器设有进、出口狭缝,狭缝愈窄,单色光愈纯,吸光度增加,但辐射能减小,对弱吸收带的测量有一定影响。定性分析时,为提高分辨能力常采用较小的狭缝,而定量分析时,在灵敏度允许的情况下,宜采用较大狭缝。当出、入射狭缝宽度相等时,狭缝宽度引起的误差最小。 4非吸收作用引起的误差: 1.散射效应:光吸收定律只适用于均匀的吸收体系,如待测溶液是混浊的,当 光通过时,将产生散射效应。其结果使光通过吸收物质的光程不固定,散射光的一部分和透射光一起进入检测器,导致偏离Beer 定律。因此,免疫比浊法常用多点校准来做标准曲线。 2. 荧光效应:分子吸收辐射能后产生的激发态分子以重新发射辐射的方式回 到基态而发射荧光。由于多数显色体系荧光效应很小,而且荧光发射是各向同性,只有一部分沿透射光方向进入检测器,使测量吸光度偏低。一般情况下,荧光效应对分光光度法产生的影响较小。目前,多数光度计设有两个样品室,对有荧光试样可置于离检测器较远的样品室,或在光路中插入适当的滤光片以消除荧光效应。 5测定过程中产生的误差:化学反应引起的误差,人为的误差等,在此不作详细解释。 1.7生化测定方法:临床化学自动分析仪所涉及的测定方法包括终点测定法、连续监测法、固定时间法等。 1.8.1生化分析基本术语概述: 1双波长:由主波长和副波长构成的两个波长,测定样品采用双波长可以消除对实验的影响。主波长是指测定某物质时,生成的产物颜色对光吸收的特有波长。副波长是指测定某物质时,为消除其他干扰物质在主波长造成测定干扰所设定的波长。 2反应杯空白:在特定波长下,光通过以蒸馏水或空气为反应体系所测得的吸光度值。 3试剂空白:在各特定波长下,光通过以蒸馏水或生理盐水为样品和相应测定项目

相关主题
文本预览
相关文档 最新文档