当前位置:文档之家› 无机非金属材料教学设计

无机非金属材料教学设计

无机非金属材料教学设计
无机非金属材料教学设计

第三章化学与材料的发展

第一节无机非金属材料

一、教材分析

《无机非金属材料》是人教版高中化学选修二第三单元《化学与材料的发展》第一节的教学内容,主要学习的是一些常见的传统和新型无机非金属材料,重点了解陶瓷、玻璃,水泥,新型陶瓷的特点、用途、应用情况。本章节内容稳合选修二(化学与技术)课程的设置理念,也暗合STS教育理念,新能源,新材料是当今社会发展的一个主旋律。

《无机非金属材料》被安排在本章内容的第一节,突出表现出这一节内容在实际生产应用中的重要作用。在必修一中我们重点探究学习过了“无机非金属材料的主角---硅”的知识,了解到一些常见的硅酸盐以及它们的相关知识性质,也初步认识到了几种常见的硅酸盐产品---陶瓷,玻璃及水泥,对新型无机非金属材料也有些雏形的了解。

本节内容,在本章的学习中起着统筹作用,为后面两节内容做了铺垫,学生在学完本节内容后,对于化学与材料就有了一个整体上的把握及感性认知。

二、学情分析

【学生“起点能力”分析】

学生在重点学习了必修一“无机非金属材料的主角---硅”的内容后,对于常见的硅酸盐材料陶瓷,玻璃及水泥有了一定的认知,并通过实验探究也掌握了Na2SiO3的性质,有了这些基础,学生接触新知识也比较自然顺畅了。

【学生“生活概念”分析】

由于本节内容较多地渗透了化学物质在生活中的应用,联系实际的面较宽,因此要求学生掌握更多的生活概念。学生在预习时已经按照我先前的引导查阅了相关知识,有了一定的生活基础。

【学生“认知方式”分析】

学生理解能力基本上没问题,但是处理信息能力及对信息联系生活实际加以应用的能力较差,因此在教学中要加强学生这些能力的培养。

三、教学目标

【知识与技能】

1,列举说明我们生活中存在的一些无机非金属材料;

2,知道陶瓷、玻璃和水泥的主要化学成分、生产原料及其用途;

3,熟悉几种应用广泛的新型陶瓷,掌握高纯度单晶硅的工业制备方法,掌握石墨与金刚石的性质差异;

4,举例说明无机非金属材料的特点。

【过程与方法】

1,通过幻灯片列举的生活现象,帮助学生直观感受无机非金属材料,让学生认识到无机非金属材料就在我们身边,正在各方面被广泛应用;

2,通过引导学生观察、分析实验现象,让学生们体会怎样运用观察法进行实验探究;

3,通过观察实验现象,让学生掌握到玻璃等无机非金属材料的主要成分是Na2SiO3和Ca2SiO3。

【情感态度与价值观】

1,通过创设的问题情境,互动的氛围,培养学生严谨的学习态度,使学生体会探究的乐趣。2,激发学生学习化学的兴趣,使学生认识无机非金属材料的广泛用途,帮助学生养成自主关注与化学相关的社会问题的习惯。

3,通过介绍与无机非金属材料有关的正反两面的社会性新闻,譬如触目惊心“豆腐渣”工程,引导学生树立健全正确的情操观,价值观,人生观,做一个正直的化学人,社会人。

四、教学重难点

【教学重点】

1、掌握陶瓷、玻璃和水泥的主要化学成分、生产原料及其用途等;

2、掌握几种新型无机非金属材料的特点、用途和发展;

3、了解工业上高纯硅的制备方法。

【教学难点】

1、理解掌握传统无机非金属材料硅氧结构[SiO4]4-的特殊性对其物理化学性质的影响;

2、通过对新型无机非金属材料的介绍,激发起学生学习积极性,培养学生热爱科学的情感。

五、教学思路

【总体思路】以学生活动为主体,通过情境设置、教师引导,提出生活中常见的无机非金属材料;以探究学习为基本方法,理论与实际相结合,认知了解无机非金属材料的原料,特点及用途;此外利用好“思考与交流”、“科学史话”、“资料卡片”等栏目。

【过程】创设生活情景,引导学生发现——提出问题,引起讨论——实验探究、直观感受——总结深化,交流思考——概括建立无机非金属材料认知体系——实际运用

六、学法指导

直接观察法、讨论探究、合作交流、联系生活实际等,学生要敢思会思、高效合作、学会交

流、乐于探究、善于总结。

七、教学过程设计

第一课时

教师活动学生活动学生活动传统硅酸盐材料

【引言】

陶瓷,玻璃,水泥等材料及它们的制品在我们生活中随处可见,由于这些材料的化学组成大多属于硅酸盐材料,所以一般称为硅酸盐材料。

自然界中的沙石,黏土以及石英、高岭石等矿物的主要成分都是硅酸盐类或硅的氧化物,人们就是以它们为原料制造出了各种多彩炫目的无机非金属材料,广泛应用于生活中,下面就让我们来认识一下它们的世界吧!

【展示图片】原始洞穴

石头村

老北京四合院

【过渡】这些原始简陋朴素的房屋,经过了岁月风雨的洗礼,依然保留的完好无缺,从这里我们可以看出

硅酸盐材料诸如耐腐蚀,稳定性好的特点。【提问】你能举例说明在你自己的生活中有哪些几种常见的无机非金属材料吗?

【展示图片】陶瓷(唐三彩、宋钧瓷),陶瓷制作流程

水泥、玻璃、生活中的无机非金属材料【引导】看到这些图片,是否对无机非金属材料有了全新的认识呢?硅酸盐材料的主要成分是什么呢?

【演示实验1】老师演示实验3-1。

【操作】将少量玻璃粉末放入试管中,向其中加入少量蒸馏水,振荡,加入1~2滴酚酞溶液。

【组织讨论】让同学们根据实验现象在组内讨论。

【提问】通过观察发现玻璃粉部分溶解,溶液逐渐变成淡红色,结合以前学习过的相关知识,猜测其可能组分?【板书】玻璃粉中可能含有可溶性及难溶性的硅酸盐【讲述】玻璃的化学性质很稳定,碾成粉末状后经振荡后微溶于水,水解后,溶液呈碱性

【演示实验2】下面我们来探究变色玻璃的原理

【操作1】打开钠光灯,用强光照射变色玻璃(主要成分联系生活,思考无

机非金属材料的原

料类型及来源

视觉冲击,形成对

无机非金属材料感

性认知

积极思考并回答

实验现象:玻璃粉

末部分溶解,滴加

酚酞后,溶液呈淡

红色或红色

讨论交流,配合教

师引导,得出结论:

玻璃粉中可能含有

可溶性及难溶性的

硅酸盐

实验现象:强光照

下,玻璃呈现暗棕

创设情境导入新

课,激发学生的

学习积极性和主

动性

以展现日常生活

中的实例来拉近

生活与化学知识

的距离

通过回忆以前所

学知识让学生有

一个心理过渡激

发学生的求知欲

培养学生实验操

作能力和观察实

验现象、分析实

验、归纳总结实

验的能力。培养

学生运用观察法

进行实验探究的

能力,让学生体

会试验方法在化

学研究中的作用

通过变色玻璃在

光照和黑暗两条

AgBr,CuO)

【操作2】关闭钠光灯,在黑暗环境中静至一段时间再观察

【组织讨论】让同学们根据实验现象在组内讨论。

【提问】玻璃表面呈现暗棕色可能原因是什么?发生了什么样的化学反应?

【讲述】

1,当强光照射到玻璃上,溴化银分解为银和溴单质,分解出的银原子聚集成银的微小晶粒,使玻璃呈现暗棕色,能挡住大部分光线

2,光线变暗,银和溴在氧化铜的催化作用下,重新生成溴化银。于是玻璃的颜色自动变浅,透光性增强。

【板书】2.3.1无机非金属材料

一、硅酸盐材料

俗称硅酸盐材料,常见的有陶瓷、玻璃、水泥。

物理性质:硬度大,难溶,绝缘,耐腐蚀,稳定性好二、硅酸盐材料简介

陶瓷优点:

抗氧化,抗酸碱腐蚀,耐高温,绝缘,易成型等

玻璃制造:

CaCO3 +SiO2 CaSiO3 + CO2

Na2CO3+SiO2 Na2SiO3+CO2

水泥特点:

在空气和水中易硬化,是非常强的粘合剂。

【小结】本堂课运用实验法解决了实际问题及课堂实验,使学生了解无机非金属材料的物理性质,掌握无机非金属材料的化学性质。老师发问,让同学简要概括本节课所学的主要内容。

【课堂练习】

1、无机非金属材料一般被称为_______,常见的无机非金属材料有____、____、____,具备的物理性质包括____、____、____、____、____。

2、工业上制造水泥,玻璃时都用的原料是。()

A.纯碱

B.石灰

C.石灰石

D.黏土色;黑暗环境中静

至一段时间后,玻

璃的颜色自动变

浅,透光性增强。

讨论交流,配合教

师引导,得出结论:

变色玻璃变色的可

能原因是在强光照

下,变色玻璃中的

AgBr发生了分解;

黑暗环境中,银和

溴在氧化铜的催化

作用下,重新生成

溴化银。

学生聆听领悟概括

并总结本节课所学

主要内容

通过习题加深对常

见传统无机非金属

材料特点的掌握

件下的实验,让

学生意识到控制

实验条件(变量)

对实验探究的重

要性,培养学生

观察、分析和对

比的能力

培养学生及时反

思、小结、概括

的能力,培养良

好的学习方法和

习惯

第二课时

教师活动学生活动设计意图新型无机非金属材料

【引言】传统无机非金属材料是生产、生活和基本建设所

必须的材料,而新型无机非金属材料则为现代高新技术、

新兴产业和传统工业技术改造等开辟了更为广阔的前景。

【展示图片】新型无机非金属材料、F-117式单座战斗轰炸机、步兵战车、高纯氧化铝透明陶瓷管

【过渡】这些图片展示的是现代的一些高新技术产品,它们的广泛应用,说明了新型无机非金属材料在现代社会发展中的占据着重要地位,想想这是因为什么?

【提问】结构材料,是指利用其强度、硬度、韧性等机械性能制成的各种材料。以往用的最多的结构材料是金属。但现在,它却逐渐让位于高温结构陶瓷,为什么会这样呢?

【展示图片】大规模集成电路、太阳能电池、氧化铝陶瓷制品、光学特性生物特性陶瓷

【提问】新型无机非金属与传统的无机非金属材料相比有哪些特性呢?

【组织讨论】引导学生仔细阅读教材内容,结合生活中的发现,就此问题展开讨论

【讲述】~【过渡】

随着人类社会和科学技术的发展,新型无机非金属材料的应用将越来越广泛,品种也越来越丰富。

【板书】2.3.1无机非金属材料

一、新型陶瓷

应用广泛的有:Al2O3陶瓷,Si3N4陶瓷,SiC陶瓷等

物理性质:熔点高,耐高温高压耐磨耐腐蚀,硬度大二、现代信息基础材料-硅

高纯度硅的炼制:高温条件下

SiO2+2C Si(粗) +2CO↑

Si(粗) +3HCl SiHCl3+H2↑

SiHCl3+ H2Si(纯) +3HCl

三、金刚石、石墨和C60 联系生活,思考新

型无机非金属材料

的视觉冲击,形成

对无机非金属材料

感性认知

讨论交流,配合教

师引导,得出结论:

因为高温结构陶瓷

具有能够经受高

温、不怕氧化、耐

酸碱腐蚀、硬度大、

耐磨损、密度小等

优点,作为高温结

构材料是非常合

适,而金属材料易

受腐蚀,在高温时

不耐氧化,不适合

在高温时使用。

讨论交流,配合教

师引导,得出结论

新型无机非金属与

传统的无机非金属

材料两者相比:

新型无机非金属材

料的优势

1、能承受更高的高

温,强度大

2、具有电学特性

3、具有光学特性

4、具有生物功能

讨论交流,配合教

师引导,得出结论

创设情境引入新

课,激发学生的

积极性和主动性

通过提问的方

式,让学生在讨

论过程中有一个

思维过渡融合,

激发学生的求知

以社会发展中的

实例拉近社会与

化学知识的距离

通过回忆以前所

学知识让学生有

一个心理过渡激

发学生的求知欲

金刚石:天然物质,硬度大,耐磨,绝缘体,不易导热

石墨:质软,润滑材料,导电体,电极材料。

C60:贮氢材料,纳米软件,复合材料。

【小结】本堂课运用提问讨论法解决了实际问题,使学生了解新型无机非金属材料的物理性质,掌握了几种应用较为广泛的新型无机非金属材料。老师发问,让同学简要概括本节课所学的主要内容。

【课堂练习】

1,新型无机非金属材料的特性有、、、,目前较广泛使用的高温结构陶瓷有、、等。2.下列有关材料的说法不正确的是()(A)传统的无机材料虽有不少优点,但质脆,经不起热冲击

(B )新型无机非金属材料虽然克服了传统无机材料的特点,但强度比较差。

(C)高温结构材料具有耐高温、抗氧化、耐酸碱腐蚀、硬度大、耐磨损等优点

(D)新型无机非金属材料的特性之一是具有电化学特性学生聆听领悟概括

并总结本节课所学

主要内容

通过习题加深对新

型无机非金属材料

的认识及特点的掌

培养学生及时反

思、小结、概括

的能力,培养良

好的学习方法和

习惯

八,板书设计

§2.3.1无机非金属材料

一、硅酸盐材料

俗称硅酸盐材料,常见的有陶瓷、玻璃、水泥。

物理性质:硬度大,难溶,绝缘,耐腐蚀,稳定性好二、硅酸盐材料简介

陶瓷优点:

抗氧化,抗酸碱腐蚀,耐高温,绝缘,易成型等

玻璃制造:

CaCO3 +SiO2 CaSiO3 + CO2

Na2CO3+SiO2 Na2SiO3+CO2

水泥特点:

在空气和水中易硬化,是非常强的粘合剂。

§2.3.1 无机非金属材料

一、新型陶瓷

应用广泛的有:Al2O3陶瓷,Si3N4陶瓷,Si陶瓷等物理性质:熔点高,耐高温高压耐磨耐腐蚀,硬度大二、现代信息基础材料-硅

高纯度硅的炼制:高温条件下

SiO2+2C Si(粗) +2CO↑

Si(粗) +3HCl SiHCl3+H2↑

SiHCl3+ H2Si(纯) +3HCl

三、金刚石、石墨和C60

金刚石:天然物质,硬度大,耐磨,绝缘体,不易导热石墨:质软,润滑材料,导电体,电极材料。

C60:贮氢材料,纳米软件,复合材料。

[《无机及分析化学》教学总结]无机及分析化学知识点总结

[《无机及分析化学》教学总结]无机及分析化学知识点总结 本学期担任2015级生物技术及应用班的《无机及分析化学》教学工作,对学生经过近一学期的教学实践,取得了一定的成绩,当然也存在着一些不足之处,现作出总结,总结经验教训,继往开来,以促进教学工作更上一层楼。 一、认真备课 每一节课都做到“有备而来”,每堂课都在课前做好充分的准备,并结合课本内容和专业对口岗位,准备一些学生感兴趣的教学内容,课后及时对该课作出总结,写好教学后记,并认真按收集每课的知识要点,及时整改。 二、增强上课技能,提高教学质量 由于该班二分之一的学生都是文科生,对于高中化学不熟悉,这就需要把教材内容讲解得通俗化、生动化、幽默化,做到线索清晰,层次分明,言简意赅。我还将比较简单的章节让学生自学,自己做PPT并给大家讲,加强学生互动能力,让他们能够说出来。认真关注课堂,使课堂教学紧张有序地进行下去。解决学生提出的棘手问题时要灵活多样。 三、积极推进素质教育 目前的考试模式仍然比较传统,这决定了老师的教学模式要停留在应试教育的层次上,为此,我在教学工作中注重了学生能力的培养,把传授知识、技能和发展智力、能力结合起来,让学生的综合素质均能得到有效的发展和培养。 四、让学生准确掌握各章节的知识点 为了让学生尽快准确地记忆各章节的知识点,我每章节都做一次小结,明确告诉学生哪个知识点是教学重点,哪个是需要务必记住的,哪个是掌握了解就可以的,做到层析分明,让学习基础好能力强的学生掌握全部知识点,让学习基础差的学生掌握重点知识点。对于考试不能达到理想分数的学生,要求学生写出试卷分析,找到自己学习中的不足,改进学习方法,迎头赶上。 以上是近一学期的工作经验积累,当然也存在着一些不足之处,比如学生的成绩还不尽如人意,部分学生学习态度还不端正,学习劲头还不足,部分容易小富即安,不求上进,自我满足。这都需要在今后的工作中加以改进。 感谢您的阅读!

高分子材料与无机非金属、金属材料的区别

高分子材料与无机非金属材料、金属材料的区别有机高分子化合物简称高分子化合物或高分子,又称高聚物,与无机非金属材料、高分子材料并称三大材料。高分子材料一般具有以下特点: (1)力学性能:比强度高,韧性高,耐疲劳性好,但易应力松弛和蠕变; (2)反应性:大多数是惰性的,耐腐蚀,但粘连时要表面处理,加聚合物共混时需要表面处理,另外,有的高分子材料容易吸收紫外线或红外线及可见光发生降解; (3)物理性能:密度小,很高的电阻率,熔点相比金属较低,限制了使用领域高分子化合物的一般具有特殊的结构,使它表现出了非同凡响的特性。例如,高分子主链有一定内旋自由度,可以弯曲,使高分子链具有柔性;高分子结构单元间的作用力及分子链间的交联结构,直接影响它的聚集态结构,从而决定高分子材料的主要性能。 此外高分子材料可用纤维增强(复合材料)制成高性能的新型材料,可设极性大,部分性能超过金属。当前,高分子材料正趋向功能化,合金化发展,比传统材料有更大的发展空间和更广阔使用的领域。 高分子化合物固、液、气三种存在状态的变化一般并不很明显。固体高分子化合物的存在状态主要有玻璃态、橡胶态和纤维态。固体状态的高分子化合物多是硬而有刚性的物体。无定形的透明固体高分子化合物很像玻璃,故称它为玻璃态。在橡胶态下,高分子链处于自然无规则和卷曲状态,在应力作用下被拉伸,去掉应力又恢复卷曲,表现出弹性。纤维是由高分子化合物构成的长度对直径比大很多倍的纤细材料。 通常使用的高分子材料,常是由高分子化合物加入各种添加剂所形成,其基本性能取决于所含高分子化合物的性质,各种不同添加剂的作用在于更好地发挥、保持、改进高分子化合物的性能,满足不同的要求,用在更多的方面。 无机非金属材料(inorganic nonmetallic materials)是以某些元素的氧化物、碳化物、氮

新型无机非金属材料有哪些

新型无机非金属材料有哪些 新材料全球交易网 新型无机非金属材料有哪些?“新材料全球交易网”收集整理最全新型无机非金属材料知识点。更多增值服务,请关注“新材料全球交易网”。 一、重要概念 1、新型无机非金属材料 (1)是除有机高分子材料和金属材料以外的所有材料的统称。 (2)包括以某些元素的氧化物、碳化物、氮化物、卤素化合物、硼化物以及硅酸盐、铝酸盐、磷酸盐、硼酸盐等物质组成的材料。 2、陶瓷 (1)从制备上开看,陶瓷是由粉状原料成型后在高温作用下硬化而形成的制品。 (2)从组分上来看,陶瓷是多晶、多相(晶相、玻璃相和气相)的聚集体。 3、玻璃 (1)狭义:熔融物在冷却过程中不发生结晶的无机非金属物质。 (2)一般:若某种材料显示出典型的经典玻璃所具有的各种特征性质,则不管其组成如何都可称为玻璃(具有玻璃转变温度 Tg)。 玻璃转变温度:玻璃态物质在玻璃态和高弹态之间相互转化的温度。 具有Tg的非晶态新型无机非金属材料都是玻璃。 4、水泥 凡细磨成粉末状,加入适量水后,可成为塑性浆体,能在空气或水中硬化,并能将砂、石、钢筋等材料牢固地胶结在一起的水硬性胶凝材料,通称为水泥。 5、耐火材料 耐火度不低于1580℃的新型无机非金属材料 6、复合材料 由两种或两种以上不同性质的材料,通过物理或化学的方法,在宏观(微观)上组成具有新性能的材料。 通过复合效应获得原组分所不具备的性能。可以通过材料设计使各组分的性能互相补充并彼此关联,从而获得更优秀的性能。 二、陶瓷知识点 1、陶瓷制备的工艺步骤 原材料的制备→坯料的成型→坯料的干燥→制品的烧成或烧结 2、陶瓷的天然原料 (1)可塑性原料:黏土质陶瓷成瓷的基础(高岭石、伊利石、蒙脱石) (2)弱塑性原料:叶蜡石、滑石 (3)非塑性原料:减塑剂——石英;助熔剂——长石 3、坯料的成型的目的

《无机及分析化学》教案

第二章化学热力学初步 化学是研究物质的组成、结构、性质及其变化规律的科学。化学研究的核心部分是化学反应,而化学反应的进行大多伴有能量的变化,包括热能、电能、光能等。一个化学反应能否发生、反应的限度如何以及反应过程中的能量变化情况,正是化学热力学研究的基本问题。 第一节热力学第一定律 1-1 基本概念和术语 1. 1.体系和环境 热力学中,把研究的对象称为体系,把体系之外而与体系有关的部分称为环境。 根据体系与环境之间的关系,可将体系分为三类: 敞开体系:体系和环境之间既有物质交换,又有能量交换。 封闭体系:体系和环境之间没有物质交换,只有能量交换。 孤立体系:体系和环境之间既没有物质交换,也没有能量交换。 在热力学中,我们主要研究封闭体系。 2. 2.状态和状态函数 由一系列表征体系性质的物理量所确定下来的体系的存在形式称为体系的状态。 在热化学中,系统的状态通常是指热力学平衡态。在此状态下,系统的所有性质均不随时间而变化。具体的说,它应该同时满足以下四个条件。 (1)热平衡(thermal equilibrium) (2)力平衡(mechanical equilibruim) (3)相平衡(phase equilibruim) (4)化学平衡(chemicalequilibruim) 籍以确定体系状态的物理量称为体系的状态函数。 状态函数具有如下特点: (1)(1)体系的状态一定,状态函数值就一定; (2)(2)体系的状态改变,状态函数值就可能改变。状态函数的变化值只与体系的始态和终态有关,而与变化的途径无关; (3)(3)在循环过程中,状态函数的变化值为零。 根据体系的性质与体系中物理量之间的关系,可分为广度性质(又称量度性质或广延性质)和强度性质: 广度性质:数值上与体系中物质的量成正比,即具有加合性。如体积V、质量m、物质的量n、热力学能U、焓H、熵S、自由能G等 强度性质:数值上与体系中物质的量无关,即不具有加合性。如温度T、压力P、密度、浓度等。

无机非金属材料的主角——硅重点知识归纳及典型习题

重 点 突 破 锁定高考热点 探究规律方法 熔沸点高,硬度大,其中金刚石为硬度最大的物质。 2.一般情况,非金属元素单质为绝缘体,但硅为半导体,石墨为电的良导体。 3.一般情况,较强氧化剂+较强还原剂===较弱氧化剂+较弱 还原剂,而碳却能还原出比它更强的还原剂:SiO 2+2C===== 高温Si +2CO ↑,FeO +C===== 高温Fe +CO ↑。 4.硅为非金属,却可以和强碱溶液反应,放出氢气: Si +2NaOH +H 2O===Na 2SiO 3+2H 2↑。 5.一般情况,较活泼金属+酸===盐+氢气,然而Si 是非金属,却能与氢氟酸发生反应:Si +4HF===SiF 4↑+2H 2↑。 6.一般情况,碱性氧化物+酸===盐+水,SiO 2是酸性氧化物,却能与氢氟酸发生反应:SiO 2+4HF===SiF 4↑+2H 2O 。 7.一般情况,较强酸+弱酸盐===较弱酸+较强酸盐。虽然酸 性:H 2CO 3>H 2SiO 3,却能发生如下反应:Na 2CO 3+SiO 2===== 高温Na 2SiO 3+CO 2↑。 8.一般情况,非常活泼金属(Na 、K 等)才能够置换出水中的氢, 但C +H 2O(g)=====高温CO +H 2 。 9.一般情况,非金属氧化物与水反应生成相应的酸,如SO 3+H 2O===H 2SO 4,但SiO 2不溶于水,不与水反应。 题组训练

1.某短周期非金属元素的原子核外最外层电子数是次外层电子数的一半,该元素() A.在自然界中只以化合态的形式存在 B.单质常用作半导体材料和光导纤维 C.最高价氧化物不与酸反应 D.气态氢化物比甲烷稳定 解析该短周期非金属元素为Si,硅在自然界中只以化合态形式存在,A项正确;单质硅可用作半导体材料,而光导纤维的主要成分是SiO2,B项错误;Si的最高价氧化物为SiO2,其可以与氢氟酸反应,C项错误;由于非金属性Si

第四节 无机非金属材料的结构

首页 >> 网络课程 >> 第二章 >> 第四节 绪论 第一章第一章 工程材料的分工程材料的分类类及性能 第二章第二章 材料的材料的结结构 第三章第三章 材料制材料制备备的基本知的基本知识识 第四章第四章 二元相二元相图图及应用 第五章第五章 材料的材料的变变形 第六章第六章 钢的热处热处理理 第七章第七章 工业用钢 第八章第八章 铸铁 第九章第九章 有色金有色金属属及其合金 第十章第十章 常用非金常用非金属属材料 第十一章第十一章 工程材料的工程材料的选选用 第四节 无机非金属材料的结构 一、陶瓷材料的结构特点 对工程师来说,陶瓷包括种类繁多的物质,例如玻璃、砖、石头、混凝土、磨料、搪瓷、介 磁性材料、高温耐火材料和许多其它材料。所有这些材料的共同特征是:它们是金属和非金 合物由离子键和共价键结合在一起。陶瓷材料的显微组织由晶体相、玻璃相和气相组成,而且很大,分布也不够均匀。 与金属相比,陶瓷相的晶体结构比较复杂。由于这种复杂性以及其原子结合键强度较大,所以 例如,正常冷却速率的玻璃没有充分时间使其重排为复杂的晶体结构,所以它在室温下可长 二、陶瓷晶体 1. AX型陶瓷晶体 AX型陶瓷晶体是最简单的陶瓷化合物,它们具有数量相等的金属原子和非金属原子。它们可以 如MgO,其中两个电子从金属原子转移到非金属原子,而形成阳离子(Mg3+)和阴离子(O2-)是共价型,价电子在很大程度上是共用的。硫化锌(ZnS)是这类化合物的一个例子。 AX化合物的特征是:A原子只被作为直接邻居的X原子所配位,且X原子也只有A原子作为第一或离子是高度有序的,在形成AX 化合物时,有三种主要的方法能使两种原子数目相等,且有如 位。属于这类结构的有: (1)CsCl型 这种化合物的结构见图2-25。A原子(或离子)位于8个X原子的中心,X原子(或离子)也处但应该注意的是,这种结构并不是体心立方的。确切的说,它是简单立方的,它相当于把简单 子晶格相对平移a/2,到达彼此的中心位置而形成。 重庆大学精品课程-工程材料

无机非金属材料物理化学知识点整理完整版

无机非金属材料物理化学知识点整理无机非金属材料为北航材料学院2009年考研新加科目,考试内容包括大三金属方向限选课《无机非金属材料物理化学》(60%左右)和大四金属方向限选课《特种陶瓷材料》(40%左右)。参考书:陆佩文主编《无机材料科学基础》,武汉理工大学出版社,1996年。本资料由陆晨整理录入。祝愿大家考出好成绩。 第一章无机非金属材料的晶体结构 第一节:概述 一、晶体定义:晶体是内部质点在三维空间呈周期性重复排列的固体。 二、晶体结构=空间点阵+结构单元 三、晶体的基本性质: 1、均一性 2、各向异性 3、自限性 4、对称性 5、稳定性 四、对称性、对称元素、七大晶系、十四种布拉菲格子 结晶符号1、晶面符号——米勒指数(hkl) 2、晶棱符号[ uvw] PS:其实只要看了金属学,这些就都会了,懒得写了… 第二节:晶体化学 一、离子键、共价键、金属键、分子间力、氢键定义、特点(大家都知道的东西…) 二、离子极化: 三、鲍林规则(重点): 鲍林第一规则──配位多面体规则,其内容是:“在中,在正离子周围形成一个负离子多面体,正负离子之间的距离取决于离子半径之和,正离子的配位数取决于离子半径比”。 鲍林第二规则──电价规则指出:“在一个稳定的离子晶体结构中,每一个负离子电荷数等于或近似等于相邻正离子分配给这个负离子的静电键强度的总和,其偏差≤1/4价”。静电键强度S=正离子数Z+/正离子配位数n ,则负离子数Z

=∑Si=∑(Zi+/ni)。 鲍林第三规则──多面体共顶、共棱、共面规则,其内容是:“在一个配位结构中,共用棱,特别是共用面的存在会降低这个结构的稳定性。其中高电价,低配位的正离子的这种效应更为明显”。 鲍林第四规则──不同配位多面体连接规则,其内容是:“若晶体结构中含有一种以上的正离子,则高电价、低配位的多面体之间有尽可能彼此互不连接的趋势”。例如,在镁橄榄石结构中,有[SiO4]四面体和[MgO6]八面体两种配位多面体,但Si4+电价高、配位数低,所以[SiO4]四面体之间彼此无连接,它们之间由[MgO 6]八面体所隔开。 鲍林第五规则──节约规则,其内容是:“在同一晶体中,组成不同的结构基元的数目趋向于最少”。例如,在硅酸盐晶体中,不会同时出现[SiO4]四面体和[[Si2 O7]双四面体结构基元,尽管它们之间符合鲍林其它规则。这个规则的结晶学基础是晶体结构的周期性和对称性,如果组成不同的结构基元较多,每一种基元要形成各自的周期性、规则性,则它们之间会相互干扰,不利于形成晶体结构。 第三节:典型的晶体结构(参考课件或复印的资料) 型 型 型 和A2X5型 型 型 型 8.硅酸盐晶体结构 第二章无机非金属材料的晶体缺陷 第一节:晶体缺陷:点缺陷、线缺陷、面缺陷(参考金属学吧…) 第二节:缺陷化学反应表示法(重点) 一、点缺陷符号: 克罗格-明克(Kroger-Vink)符号 ①主符号,表明缺陷种类; ②下标,表示缺陷位置;“i”表示填隙位置 ③上标,表示缺陷有效电荷,“?”表示有效正电荷,用“'”表示有效负电荷,用“?”表示有效零电荷,零电荷可以省略 ①空位:V VM ——M 原子空位 VX ——X 原子空位 在金属材料中,只有原子空位 对于离子晶体,如果只是M2+ 离子离开了格点形成空位,而将 2 个电子留在

无机非金属材料总结(完整版)

第一章 1. 粘土的定义:是一种颜色多样,细分散的多种含水铝硅酸盐矿物的混合体。 粘土是自然界中硅酸盐岩石(主要是长石)经过长期风化作用而形成的一种疏松的或呈胶状致密的土状或致密块状矿物,是多种微细矿物和杂质的混合体。 2. 粘土的成因:各种富含硅酸盐矿物的岩石经风化,水解,热液蚀变等作用可变为粘土。一次粘土(原生粘土)风化残积型:母岩风化后残留在原地所形成的粘土。(深层的岩浆岩(花岗岩、伟晶岩、长石岩)在原产地风化后即残留在原地,多成为优质高岭土的矿床,一般称为一次粘土)。 二次粘土(次生粘土)沉积型:风化了的粘土矿物借雨水或风力的迁移作用搬离母岩后,在低洼地方沉积而成的矿床,成为二次粘土。 一次粘土与二次粘土的区别: 分类化学组成耐火度成型性 一次粘土较纯较高塑性低 二次粘土杂质含量高较低塑性高 3. 高岭土、蒙脱土的结构特点: 高岭土晶体结构式:Al4[Si4O10](OH)8,1:1型层状结构硅酸盐,Si-O四面体层和Al-(O,OH)八面体层通过共用氧原子联系成双层结构,构成结构单元层。层间以氢键相连,结合力较小,所以晶体解理完全并缺乏膨胀性。 蒙脱土(叶蜡石)是2:1型层状结构,两端[SiO4]四面体,中间夹一个[AlO6]八面体,构成单元层。单元层间靠氧相连,结合力较小,水分子及其它极性分子易进入晶层中间形成层间水,层间水的数量是可变的。 4. 粘土的工艺特性:可塑性、结合性、离子交换性、触变性、收缩、烧结性。 1)可塑性:粘土—水系统形成泥团,在外力作用下泥团发生变形,形变过程中坯泥不开裂, 外力解除后,能维持形变,不因自重和振动再发生形变,这种现象称为可塑性。 表示方法:可塑性指数、可塑性指标 可塑性指数(w):W=W2-W1W降低——泥浆触变厚化度大,渗水性强,便于压滤榨泥。 W1塑限:粘土或(坯料)由粉末状态进入塑性状态时的含水量。 W2液限:粘土或(坯料)由粉末状态进入流动状态时的含水量。 塑限反映粘土被水润湿后,形成水化膜,使粘土颗粒能相对滑动而出现可塑性的含水量。 塑限高,表明粘土颗粒的水化膜厚,工作水分高,但干燥收缩也大。 液限反映粘土颗粒与水分子亲和力的大小。W2上升表明颗粒很细,在水中分散度大,不易干燥,湿坯强度低。 可塑性指标:在工作水分下,粘土(或坯料)受外力作用最初出现裂纹时应力与应变的乘积,也可以以这时的相应含水率表示。 反应粘土的成型性能:应力大,应变小——挤坯成型;应力小,应变大——旋坯成型根据粘土可塑指数或可塑指标分类: i.强塑性粘土:指数>15或指标>3.6 ii.中塑性粘土:指数7~15,指标2.5~3.6 iii.弱塑性粘土:指数l~7,指标<2.5 iv.非塑性粘土:指数<1。 2)结合性:粘土的结合性是指粘土能够结合非塑性原料而形成良好的可塑泥团,并且有一

《无机及分析化学》第八章课后题答案教案资料

第八章思考题与习题参考答案 一、选择题 1. 在给出的4个选项中,请选出1个正确答案。 (1)已知sp K (AB)=4.0×10-10;sp K (A 2B)=3.2×10-11,则两者在水中的溶解度关系为( A ) A. S (AB )< S (A 2 B ) B. S (AB )>S (A 2 B ) C. S (AB )=S (A 2 B ) D. 不能确定 (2)Mg (OH )2沉淀在下列溶液中溶解度最大的是( B ) A. 纯水 B. 在0.1mol ·L -1 HCl 中 C. 在0.1mol ·L -1 NH 4Cl 中 D. 在0.1mol ·L -1 Mg Cl 2 中 (3)莫尔法测定Cl -和Ag +时,所用滴定剂分别为( B ) A. AgNO 3,Na Cl B. AgNO 3,AgNO 3 C. AgNO 3,KSCN D. AgNO 3,NH 4SCN (4)用佛尔哈德法测定溶液中Cl -时,所选用的指示剂为( D ) A. K 2CrO 4 B. 荧光黄 C. 曙红 D. 铁铵矾 (5) 佛尔哈德法测定Cl -时,溶液中没加有机溶剂,在滴定过程中使结果( A ) A. 偏低 B.偏高 C.无影响 D. 正负误差不定 二、填空题 2.相同温度下,HAc 在N a Ac 溶液中的解离度小于纯水中的解离度,CaCO 3在Na 2CO 3溶液中的溶解度小于其在纯水中的溶解度,这种现象可用_同离子效应__来解释。 3.分步沉淀的次序不仅与溶度积常数及沉淀的 类型 有关,而且还与溶液中相应离子 浓度 有关。; 4.BaSO 4和Mg(OH)2的θsp K 分别为1.1×10-10和5.6×10-12,两者在水中溶解度 为 1.05×10-5 , 1.1×10-4 。; 三、简答题

无机非金属材料知识点

无机非金属材料知识点 一、重要概念 1、无机非金属材料 ①以某些元素的氧化物、碳化物、氮化物、卤素化合物、硼化物以及硅酸盐、铝酸盐、磷酸盐、硼酸盐等物质组成的材料。 ②是除有机高分子材料和金属材料以外的所有材料的统称。 2、陶瓷 ①从制备上开看,陶瓷是由粉状原料成型后在高温作用下硬化而形成的制品。 ②从组分上来看,陶瓷是多晶、多相(晶相、玻璃相和气相)的聚集体。 3、玻璃 ①狭义:熔融物在冷却过程中不发生结晶的无机物质 ②一般:若某种材料显示出典型的经典玻璃所具有的各种特征性质,则不管其组成如何都可称为玻璃(具有玻璃转变温度 Tg)。 玻璃转变温度:热膨胀系数和比热等物理性质的突变温度。 具有Tg的非晶态材料都是玻璃。 4、水泥 凡细磨成粉末状,加入适量水后,可成为塑性浆体,既能在空气中硬化,又能在水中硬化,并能将砂、石、钢筋等材料牢固地胶结在一起的水硬性胶凝材料,通称为水泥。 5、耐火材料 耐火度不低于1580℃的无机非金属材料 6、复合材料 复合材料是两种或两种以上物理、化学性质不同的物质组合而成的一种新的多相固体材料。 通过复合效应获得原组分所不具备的性能。可以通过材料设计使各组分的性能互相补充并彼此关联,从而获得更优秀的性能。 二、陶瓷知识点 1、陶瓷制备的工艺步骤 原材料的制备→坯料的成型→坯料的干燥→制品的烧成或烧结 2、陶瓷的天然原料 ①可塑性原料:黏土质陶瓷成瓷的基础(高岭石、伊利石、蒙脱石) ②弱塑性原料:叶蜡石、滑石 ③非塑性原料:减塑剂:石英助熔剂:长石

3、坯料的成型的目的 将坯料加工成一定形状和尺寸的半成品,使坯料具有必要的机械强度和一定的致密度 4、陶瓷的成型方法 ①可塑成型:在坯料中加入水或塑化剂,制成塑性泥料,然后通过手工、挤压或机加工成型;(传统陶瓷) ②注浆成型:将浆料浇注到石膏模中成型 ③压制成型:在金属模具中加较高压力成型;(特种陶瓷) 5、烧结 将初步定型密集的粉块(生坯)高温烧成具有一定机械强度的致密体。 固相烧结:烧结发生在单纯的固体之间 液相烧结:有液相参与,加助溶剂产生液相 好处:降低烧结温度,促进烧结 6、陶瓷的组织结构:晶相、玻璃相、气相 ①晶相:陶瓷的主要组成;分为主晶相和次晶相 ②玻璃相:玻璃相对陶瓷的机械强度、介电性能、耐热性等不利,不能成为陶瓷的主导组成部分。 玻璃相在陶瓷中的作用:粘结:粘结晶粒,填充空隙,提高致密度 降低烧成温度,促进烧结 ③气相:气孔;降低强度,造成裂纹。 7、陶瓷力学性能的特点 ①硬度:高②强度:抗拉强度很低、抗压强度非常高 ③塑性:塑性极差④韧性:韧性差、脆性大 8、陶瓷热学性能的特点 ①导热性:差,良好的绝热材料 ②热稳定性(抗热震性):概念:材料承受温度的急剧变化而不至于被破坏的能力。陶瓷抗热震性一般较差 9、结构陶瓷 ①概念:能作为工程结构材料使用的陶瓷,一般具有高强度、高硬度、高弹性模量、耐磨损、耐高温、耐腐蚀、抗氧化等优异性能,可以承受金属材料和高分子材料难以胜任的严酷工作环境。 ②常见种类:Al2O3、ZrO2、SiC、Si3N4…陶瓷 ③应用:…… 10、陶瓷增韧技术:【机理:阻碍裂纹的扩展】 ①相变增韧:相变可吸收能量;体积膨胀可松弛裂纹尖端的拉应力,甚至产生

“无机及分析化学”课程教学与体会

“无机及分析化学”课程教学与体会 摘要:本文详细介绍了与化学密切相关的非化学专业本科生公共基础课“无机及分析化学”课程的教学过程和体会。作者根据教学过程中遇到的学时少、内容多及新生学化学基础薄弱等问题提出了相应的措施和办法。教学过程详细实际,教学方法实用有效。 关键词:无机及分析化学;非化学专业;公共基础课程;教学过程;教学方法 “无机及分析化学”课程是化学专业开设的传统课程,主要面向非化学专业本科生。现在已成为与化学密切相关且必需开设化学课的非化学专业如药学、生物学、医学等专业的本科生重要公共基础化学课程。该课程是上述专业所有化学课程的基础,对于化学基础知识的掌握和化学知识的深入了解及专业课程的学习都起到基石的作用,即“无机及分析化学”是基础的基础。 在武汉大学,自从设置生物专业以来就有此课程,目前是药学、生物学、环境科学及医学等专业的本科生公共基础课。而目前的实际情况是上述专业的院系安排化学课程学时逐年减少,比如药学专业,开始是108学时(包括化学实验),后减为90学时,目前再减为72学时(不包括化学实验课)。学时少或学时逐渐减少,而专业所需化学基础知识内容很多,再加上由于高中课程或高考科目的不断改革,除个别参加过化学奥赛的学生外,这些专业本科新生大多数化学知识基础薄弱。由于“无机及分析化学”课程是化学基础课的基础,所以上述专业的各院系多年来都是放在第一学期开设“无机及分析化学”课程。由于专业科研创新的深入和研究热点的涌现,对这些专业本科生的化学知识与化学教学不断提出新的挑战和要求。除化学基础理论知识必须扎实外,还要有熟练的实验操作技术。如果基础知识不扎实和不系统,学生创造能力就成为无本之木和无源之水。所以教好和学好这门课程对新生的学习兴趣、知识积累和科研素质培养至关重要。 本课程的教学不仅是完成教学任务,最重要的是要为学生打下良好的化学基础,为其他化学课和专业课的学习奠定基石。该课程教学时间紧,任务重,责任大,还要效果好。我们根据学生的现状和专业特点对化学知识的要求,提出我们的教学目标:打下扎实化学基础,掌握化学实验技能,强调效果和分数的统一。 下面根据我们多年来教授“无机及分析化学”课程的亲身经历,谈谈非化学专业本科生“无机及分析化学”这一基础课的教学过程、教学方法与体会,与兄弟院校同类课程交流,以期抛砖引玉。 一、教学过程 该课程以教师讲授为主,辅以课堂提问与练习,师生互动,结合化学实验课,进行教学。

无机非金属材料的现状与前景

无机非金属材料的现状与前景 【摘要】无机非金属材料是以某些元素的氧化物、碳化物、氮化物、卤素化合物、硼化物以及硅酸盐、铝酸盐、磷酸盐、硼酸盐等物质组成的材料。是除有机高分子材料和金属材料以外的所有材料的统称。在材料学飞速发展的今天,无机非金属材料有这广阔的应用前景和良好的就业形势。 【关键字】无机非金属材料方向前景智能 1. 无机非金属材料的特点及应用 无机非金属材料(inorganic nonmetallic materials)是以某些元素的氧化物、碳化物、氮化物、卤素化合物、硼化物以及硅酸盐、铝酸盐、磷酸盐、硼酸盐等物质组成的材料。是除有机高分子材料和金属材料以外的所有材料的统称。无机非金属材料的提法是20世纪40年代以后,随着现代科学技术的发展从传统的硅酸盐材料演变而来的。无机非金属材料是与有机高分子材料和金属材料并列的三大材料之一。 在晶体结构上,无机非金属的晶体结构远比金属复杂,并且没有自由的电子。具有比金属键和纯共价键更强的离子键和混合键。这种化学键所特有的高键能、高键强赋予这一大类材料以高熔点、高硬度、耐腐蚀、耐磨损、高强度和良好的抗氧化性等基本属性,以及宽广的导电性、隔热性、透光性及良好的铁电性、铁磁性和压电性。 无机非金属材料品种和名目极其繁多,用途各异,因此,还没有一个统一而完善的分类方法。通常把它们分为普通的(传统的)和先进的(新型的)无机非金属材料两大类。 普通无机非金属材料的特点是:耐压强度高、硬度大、耐高温、抗腐蚀。此外,水泥在胶凝性能上,玻璃在光学性能上,陶瓷在耐蚀、介电性能上,耐火材料在防热隔热性能上都有其优异的特性,为金属材料和高分子材料所不及。但与金属材料相比,它抗断强度低、缺少延展性,属于脆性材料。与高分子材料相比,密度较大,制造工艺较复杂。

高一化学人教版必修第二册 第五章 第三节 无机非金属材料

无机非金属材料 核心知识点一: 一、硅酸盐材料 硅酸盐是由盐、氧和金属组成的化合物的总称,在自然界分布极广。硅酸盐是一大类结构复杂的固态物质,大多不溶于水,化学性质很稳定。 1. 硅酸 (1)物理性质 不溶于水、无色透明、胶状(硅胶)。 硅胶多孔,吸附水分能力强,常用作实验室和袋装食品、瓶装药品等的干燥剂,也可以用催化剂的载体。 (2)化学性质 ①弱酸性:所以在与碱反应时只能与强碱反应

H2SiO3 + 2NaOH=Na2SiO3 + H2O H2SiO3 + 2OH-=SiO32-+ 2H2O 比碳酸酸性弱:Na2SiO3+CO2+H2O=Na2CO3+ H2SiO3 ②硅酸的热稳定性较弱,受热易分解为SiO2和水:H2SiO3H2O+SiO2 (3)制备方法 由于SiO2不溶于水,所以硅酸只能用间接的方法制取,一般用可溶性硅酸盐+酸制得。 Na2SiO3 + 2HCl=2NaCl + H2SiO3 ↓ SiO32-+ 2H+=H2SiO3 ↓ 【注意】①硅酸不溶于水,不能用SiO2与水反应制取硅酸 ②硅酸的酸性比碳酸的酸性还弱,所以往可溶性硅酸盐溶液中通入CO2也可以制取硅酸: Na2SiO3+CO2+H2O=Na2CO3+H2SiO3 ↓ SiO32-+CO2+H2O=CO32-+H2SiO3 ↓ ③如前所述, SiO2+Na2CO3Na2SiO3+CO2↑,该反应在高温条件下进行,有利于CO2从体系中挥发出来,而SiO2为高熔点固体,不能挥发,所以反应可以进行,符合难挥发性酸酐制取易挥发性酸酐的原理;而上述反应“Na2SiO3+CO2+H2O=Na2CO3+ H2SiO3↓”可以进行,是因为该反应是在溶液中进行的,符合复分解反应的原理,两者反应原理不矛盾【想一想】碳酸和硅酸的酸性比较 2. 硅酸钠 (1)物理性质:最简单的硅酸盐是硅酸钠(Na2SiO3),可溶于水,其水溶液俗称水玻璃,是制备硅胶和木材防火剂等的原料。 【注意】①硅酸钠溶液可用玻璃瓶盛装,但是不能用玻璃塞,应用橡胶塞或木塞。 ②玻璃中含有二氧化硅,盛放氢氟酸不用玻璃瓶而用塑料瓶。 (2)化学性质

最新无机非金属材料工学知识点总结

1.为什么北方常采用烧氧化焰而南方烧还原焰? 答:我国北方制瓷原料大多采用二次高岭土与耐火粘土,含铁较少而含氧化钛、有机物较多,坯体粘性和吸附性较强,适宜用氧化气氛烧成。 南方制瓷原料大多采用原生高岭土和瓷石,含铁量较多而含氧化钛、有机物较少,粘性和吸附性较小,适宜用还原气氛烧成。 2.与金属材料相比,无机非金属材料在性能上有那些特点?原因是什么? 答:无机非金属材料的化学组分主要由元素的氧化物、碳化物、氮化物、卤素化合物、硼化物、以及硅酸盐、铝酸盐、磷酸盐、硼酸盐和非氧化物等物质,其化学键主要为离子键或离子—共价混合键。因此,无机非金属材料的基本属性主要体现为高熔点、高硬度、耐腐蚀、耐磨损、高抗压良好的抗氧化性、隔热性,优良的介电、压电、光学、电磁性能及其功能转换特性等。但大多数无机非金属材料具有抗拉强度低、韧性差等缺点。 3.玻璃浮法成型的原理? 答:玻璃液从池窑连续流入并浮在有还原气氛保护的锡液上,由于各物相界面张力和重力的综合作用,摊成厚度均匀,上下两平面平行,平整和火抛光的玻璃带,经冷却硬化后脱离锡液,再经退火、切割而得到浮法玻璃。 4.采用陶瓷注浆成型时坯料应满足哪些要求?为什么? 答:1)流动性好。保证泥浆浇注成形时要能充满模型的各个部位。 2)悬浮性好。浆料中各种固体颗粒能在较长的一段时间悬浮而不沉淀的性质称为泥浆的悬浮性。它是保证坯体组分均匀和泥浆正常输送、贮放的重要性能之一。 3)触变性适当。受到振动和搅拌时,泥浆粘度会降低而流动性增加,静置后又恢复原状,此外,泥浆放置一段时间后,在维持原有水分的情况下也会变稠,这种性质称为触变性。泥浆触变性过大,容易堵塞泥浆管道,且坯体脱模后易塌落变形;触变性过小,生坯强度较低,影响脱模和修坯。 4)滤过性好。滤过性也称渗 模性,是指泥浆能够在石膏模中滤水成坯的性能。滤过性好,则成坯速率较快。当细颗粒过多时,易堵塞石膏模表面的微孔脱水通道,不利于成坯。熟料和瘠性原料较多时有利于泥浆的脱水成坯。 5.陶瓷制品开裂的主要原因? 答:生坯在搬运过程中因被碰而产生的细微裂纹;坯体入窑水分过高、升温过急;高温阶段生温太快,收缩过大;坯体在晶体型转化阶段冷却过快;器形设计不合理。 6.实际生产中应该如何选择陶瓷的成型方法? 答:1)产品的形状、大小、厚薄等。一般形状复杂或较大,壁较薄的产品,可采用注浆法成形;而具有简单回转体形状的器皿可采用最常用的旋压、滚压法可塑成形。

无机及分析化学课程教学大纲

《无机及分析化学B》课程教学大纲 课程名称(中文):无机及分析化学B 课程名称(英文):Inorganic and Analytical Chemistry 课程编码:1103108 开课学期:第 1 学期 学时数、学分数:48学时,3.0学分 适用专业:农业科技类(中药学、生物科学)、动物科学、园艺、植保、旅游管理、木工、生物技术、梁希班 先修课程: 后续课程:有机化学 一、教学目的与任务 《无机及分析化学》是阐述化学基本知识、基本原理的一门基础性学科,是农科类、理科类、食品科学与工程类及生物类等各专业本科生的必修基础课程。 本课程全面、系统地介绍化学的基础知识和基本理论,为学生进一步学习相关专业基础课和专业课打下基础,同时训练学生掌握分析测量的基本要求。 本课程教学以提高人才素质为核心,以培养学生创新能力为目的,密切联系现代科技前沿和农业科技实践,注重培养学生的科学思维方法和树立辩证唯物主义世界观,提高学生分析问题和解决问题的能力。 二、教学内容与基本要求 通过本课程的学习,使学生了解化学科学的发展历程,了解化学与工农业及人类生活的关系,了解化学学科的前沿知识,了解某些重要生命元素的性质,了解某些现代测试手段;重点掌握平衡的原理、溶液中的各种化学平衡及其在分析化学中的应用,使学生建立准确的“量”的概念和掌握各种化学分析方法;掌握化学热力学、化学反应速率、物质结构、分散体系等方面的基本理论和基本知识;会运用基本理论和基本知识解释化学现象,会运用基本分析方法和测试手段进行一般的化学分析,能够运用所学知识解决生产生活中的实际问题,能将化学知识与专业实际相结合。 (一)理论知识方面 Ⅰ.结构化学部分 一、微观粒子的运动特性

无机非金属材料中的常见结构类型

无机非金属材料中的常见结构类型
尹从岭
(北京大学化学与分子工程学院)
摘要:本文综述了无机非金属材料中的常见结构类型,介绍了它们之间的联系与区别。 关键词:钙钛矿;钨青铜;尖晶石;六方密堆积;立方密堆积 无机化合物的结构型式复杂多样,本文选择一些简单而重要的结构型式加以讨论。 1. MX 型化合物的结构 1. NaCl 型的晶体结构 在 NaCl 的晶体中,Na+和 Cl-交替排列,具有正八面体配位,晶体属于面心立方点阵 Oh 点群。 NaCl 晶体结构可看作 Cl-作立方最密堆积, 在这堆积的每个八面体空隙中填入 Na+。 晶体结构示于图 1 中。属于 NaCl 型结构的化合物有离子键型的 碱金属卤化物和氢化物,碱土金属的氧化物和硫化物;有过渡 键型的金属氧化物、硫化物以及间隙型的碳化物和氮化物。 LiVO2 是与 NaCl 结构相关的化合物。LiVO2 结构中氧离子 构成立方密堆积,金属离子沿体对角线方向交替占据八面体空 隙,形成锂原子层和钒原子层。图 2 Li+ 给出了 LiVO2 的晶体结构。LiVO2 可 以看作是有序的 NaCl 结构,具有三 图 1 NaCl 的结构 2O 方对成行,空间群为 R32/m。在较高 的温度下,LiVO2 结构中的两种阳离子趋于无序分布,LiVO2 转 变成典型的 NaCl 立方结构。 3+ NbO 是另外一个与 NaCl 结构相关的化合物。 NbO 结构中, 在 V 有 1/4 的铌和氧格位未被占据, 因而可以看作 NaCl 的有序缺陷结 构。 NbO 结构中, 是平面四方配位。 在 Nb NbO 结构也可以看作是由八面体金属原 子簇 Nb6 共用顶点而形成的骨架结构。 NbO 的结构如图 3 所示。 CaC2 是另外一个与 NaCl 结构相关的 图2. LiVO2的结构 化合物。CaC2 有多种晶型,四方晶系的 图 3. NbO 的结构 22+ CaC2 由 Ca 和 C2 组成,Ca2+和 C22-的分布和 NaCl 相似,但由于 C22-离子是哑铃状,而不是球形,使结构沿 c 轴方向拉长成四方晶系。结构的图形示于图 4。 2.CsCl 型的晶体结构 在 CsCl 的晶体结构中,Cl-作简单立方堆积,Cs+填入 立方体空隙中,正、负离子的配位数均为 8,其结构示于 图 5。 CsCl 型结构属于简单立方点 阵,Oh 点群。属于 CsCl 型的例子 化合物有 CsCl, CsBr, CsI, RbCl, ThCl, TlCl, TlBr, 4Cl, 4Br, NH NH
图 5. CsCl 的结构
C2
Ca2
图 4. CaC2 的结构

无机非金属材料的分类

无机非金属材料的分类 (1)传统陶瓷(其中,瓷是在陶的基础上上一层釉) 陶瓷在我国有悠久的历史,是中华民族古老文明的象征。从西安地区出土的秦始皇陵中大批陶兵马俑,气势宏伟,形象逼真,被认为是世界文化奇迹,人类的文明宝库。唐代的唐三彩、明清景德镇的瓷器均久负盛名。 传统陶瓷材料的主要成分是硅酸盐,自然界存在大量天然的硅酸盐,如岩石、土壤等,还有许多矿物如云母、滑石、石棉、高岭石等,它们都属于天然的硅酸盐。此外,人们为了满足生产和生活的需要,生产了大量人造硅酸盐,主要有玻璃、水泥、各种陶瓷、砖瓦、耐火砖、水玻璃以及某些分子筛等。硅酸盐制品性质稳定,熔点较高,难溶于水,有很广泛的用途。 硅酸盐制品一般都是以黏土(高岭土)、石英和长石为原料经高温烧结而成。黏土的化学组成为Al?O3·2SiO?·2H?O,石英为SiO?,长石为K?O·Al?O3·6SiO?(钾长石)或Na2O·Al2O3·6SiO2(钠长石)。这些原料中都含有SiO2,因此在硅酸盐晶体结构中,硅与氧的结合是最重要也是最基本的。 硅酸盐材料是一种多相结构物质,其中含有晶态部分和非晶态部分,但以晶态为主。硅酸盐晶体中硅氧四面体[SiO4]是硅酸盐结构的基本单元。在硅氧四面体中,硅原子以sp杂化轨道与氧原子成键,Si—O键键长为162 pm,比起Si和O的离子半径之和有所缩短,故Si—O键的结合是比较强的。 (2)精细陶瓷 精细陶瓷的化学组成已远远超出了传统硅酸盐的范围。例如,透明的氧化铝陶瓷、耐高温的二氧化锆(ZrO2)陶瓷、高熔点的氮化硅(Si3N4)和碳化硅(SiC)陶瓷等,它们都是无机非金属材料,是传统陶瓷材料的发展。精细陶瓷是适应社会经济和科学技术发展而发展起来的,信息科学、能源技术、宇航技术、生物工程、超导技术、海洋技术等现代科学技术需要大量特殊性能的新材料,促使人们研制精细陶瓷,并在超硬陶瓷、高温结构陶瓷、电子陶瓷、磁性陶瓷、光学陶瓷、超导陶瓷和生物陶瓷等方面取得了很好的进展,下面选择一些实例做简要的介绍。 高温结构陶瓷汽车发动机一般用铸铁铸造,耐热性能有一定限度。由于需要用冷却水冷却,热能散失严重,热效率只有30%左右。如果用高温结构陶瓷制造陶瓷发动机,发动机的工作温度能稳定在1 300 ℃左右,由于燃料充分燃烧而又不需要水冷系统,使热效率大幅度提高。用陶瓷材料做发动机,还可减轻汽车的质量,这对航天航空事业更具吸引力,用高温陶瓷取代高温合金来制造飞机上的涡轮发动机效果会更好。 目前已有多个国家的大的汽车公司试制无冷却式陶瓷发动机汽车。我国也在1990年装配了一辆并完成了试车。陶瓷发动机的材料选用氮化硅,

无机非金属材料结构知识点整理

一概述 1.材料是人类社会所能接受的、可经济地制造有用物品的物质。材料性能关系到材料的应用材料含义在于应用,材料的什么决定应用的概念和设计,决定了应用的基础——综合的性能决定最终产品的形态和应用…… 2.材料研究的核心问题:以材料的结构和性能为研究对象,并重点研究结构与材料性能之间的关系,为材料性能的改进和新材料的开发提供指导。 3材料结构层次:原子结构,晶体结构——功能材料密切相关;显微结构,微观组织——结构材料密切相关;宏观结构——复合材料相关;、 4材料的电子结构——指材料中的电子分布和状态,它不同于单个的分子和原子的电子结构,因为这两者不是长程的完整的材料。它是决定材料晶体结构的主要和本质原因。 5. 电子波动反映到原子中,为驻波。 6.现代材料结构和性能测量的重要原理和基础:X光衍射和电子显微技术——微观结构,磁性分布和能隙空间分布等等,其中大都以微观过程或性能直接体现了量子效应和作用…… 7.量子理论是解决电子结构的惟一工具。是以能量的量子化和波函数概念为核心的,可依照薛定额方程确定的第一性原理分析方法。 二、晶体结构 1晶体的特征:均匀性;各向异性;自发地形成多面体外形;晶体具有明显确定的熔点;晶体的对称性;晶体对X射线的衍射; 2晶体的宏观特性是由晶体内部结构的周期性决定的,即晶体的宏观特性是微观特性的反映。 3晶体结构即晶体的微观结构,是指晶体中实际质点(原子、离子或分子)的具体排列情况 4晶体与非晶体的最本质差别在于组成晶体的原子、离子、分子等质点是规则排列的(长程序),而非晶体中这些质点除与其最近邻外,基本上无规则地堆积在一起(短程序)。晶体与非晶体之间的主要差别在于它们是否有三维长程点阵结构。 5晶体――原子或原子团、离子或分子在空间按一定规律呈周期性地排列构成的固体 6固体分类(按结构)――晶体:长程有序;非晶体:不具有长程序的特点,短程有序;准晶体:有长程取向性,而没有长程的平移对称性。 7在晶体中适当选取某些原子作为一个基本结构单元,这个基本结构单元称为基元,基元是晶体结构中最小的重复单元,基元在空间周期性重复排列就形成晶体结构。晶格+基元=晶体结构 8晶体的内部结构可以概括为是由一些相同的点子在空间有规则地做周期性无限分布,通过这些点做三组不共面的平行直线族,形成一些网格,称为晶格(或者说这些点在空间周期性排列形成的骨架称为晶格)。9取一格点为顶点,由此点向近邻的三个格点作三个不共面的矢量,以此三个矢量为边作平行六面体即为固体物理学(简称原胞)。 10结晶学原胞(简称单胞)构造:使三个基矢的方向尽可能地沿着空间对称轴的方向,它具有明显的对称性和周期性。 11维格纳--塞茨原胞构造:以一个格点为原点,作原点与其它格点连接的中垂面(或中垂线),由这些中垂面(或中垂线)所围成的最小体积(或面积)即为W--S原胞。特点:它是晶体体积的最小重复单元,每个原胞只包含1个格点。其体积与固体物理学原胞体积相同。 12原胞与分类—7大晶系 晶系晶轴轴间夹角实例 立方 a = b = c α=β=γ= 900Cu, NaCl 四方 a = b ≠ c α=β=γ= 900Sn, SiO2 正交 a = ≠ b ≠ c α=β=γ= 900I2, BaCO3 三方 a = b = c α=β=γ≠ 900As, Al2O3 a = b ≠ c α=β= 900,γ = 1200 单斜 a ≠ b ≠ c α= γ= 900,β≠ 900KClO3 三斜 a ≠ b ≠ c α≠ β≠ γ≠ 900 K2CrO7 六方 a = b ≠ c α=β= 900,γ =1200 Mg,CuS

相关主题
文本预览
相关文档 最新文档