当前位置:文档之家› 对接焊接接头超声波检测工艺规程

对接焊接接头超声波检测工艺规程

对接焊接接头超声波检测工艺规程
对接焊接接头超声波检测工艺规程

对接焊接接头超声波检测工艺规程

1. 0目的及适用范围

1.1目的

为保证钢接接头的超声波检测工作质量,提供准确可靠的检测数据,特制定本规程。

1.2适用范围

1.2.1本规程规定了承压设备焊接接头的超声波检测和缺陷等级评定;

1.2.2本规程适用于:

a)母材厚度为6mm~400mm全熔化焊对接焊接接着的超声波检测;

b) 管座角焊缝的超声波检测;

1.2.3本规程不适用于:

a)铸钢等粗晶材料对接接头的超声波检测;

b)外径<Φ159mm的焊接接头、内径≤Φ200mm的管座角焊缝的超声波检测;

c)外径<Φ250mm或内外径之比小于80%的纵向对接焊接接头的超声波检测。

2.0编制依据

2.1本程序依据JB/T4730-2005.3《承压设备无损检测》编制;

2.2本程序参照GB11345-1989《钢焊缝手工超声波探伤方法和结果分级》编制;

3.0检测设备和材料

3.1 本工艺规程选定的设备为:

数字式A型脉冲接触式超声波检测仪;

3.2 为保证超声波检测结果的可靠,超声波检测仪及超声波检测要进行定期校验,必要时可进行随机校验;

3.2.1 超声波检测仪和超声波检测用探头的校验方法可依照《数字式超声波检测仪、探头性能测试》程序进行;

3.2.2 超声波检测仪和超声波检测用探头的校验的评定标准为:

a).水平线性误差值ΔL≯1%;

b). 垂直线性误差Δd≯5%;

c). 动态范围>26dB。且保证在达到所检试件最大声程时,其有效灵敏度余量≮10dB;

d). 盲区<7mm;

e).分辨力F:

⑴.直(纵波)探头的分辨力F1≤6mm;

⑵.斜(横波)探头的分辨力F2≤6mm。

3.3超声波检测仪和超声波检测用探头的校验周期可依照《数字式超声波检测仪、探头性能测试》程序的要求进行;

3.4探头的选用见表1:

表1:推荐采用的斜(横波)探头

3.5试块

试块是超声波检测仪器校准的基准,也是缺陷评定参考基准。试块的选用必须满足JB/T4730—2005.3标准的要求。

3.5.1本规程采用标准试块CSK-IA、CSK-IIA、CSK-IIIAT和CSK-IVA。形状、尺寸见图1、图2、图3和图4

图1:CSK-IA标准试块

图2:CSK-IIA标准试块

图3:CSK-IIIA标准试块

图4:CSK-IVA标准试块

表2:CSK-IVA标准试块尺寸 mm

CSK-IVA被检工件厚度对比试块厚度T标准孔位置b标准孔直径d NO:1>120~150135T/4、T/2 6.4(1/4in)NO:2>150~200175T/4、T/27.9(5/16 in)NO:3>200~250225T/4、T/29.5(3/8 in)NO:4>250~300275T/4、T/211.1(7/16 in)NO:5>300~350325T/4、T/212.7(1/2 in)NO:5>350~400375T/4、T/214.3(9/16 in)3.5.2检测曲面工件时,如检测面曲率半径R≤W2/4时(W为探头接

触面宽度,环缝检测时为探头接触面宽度,纵缝检测时为探头接触面长度),应采用与检测面曲率相同的对比试块,反射孔的位置可参照标准试块确定。试块宽度b应满足:

02/b S D λ=

式中:b —试块宽度,mm ;

λ--超声波波长,mm ;

S —声程,mm ;

D 0—声源有效直径,mm 。

4.0检测时机

4.1在进行超声波检测前,受检测工件表面探头移动区域内应平整光滑、经外观检查合格,锈蚀、污物、飞溅应清除,必要时可采取打磨等方法;

4.2若受检工件的材料有延迟裂纹倾向的,超声波检测应在焊接后24小时后或技术文件要求的时间后进行。

5.0超声波检测技术等级

5.1超声波检测技术等级的选择

超声波检测技术等级分为A (低)级、B (中)级、C (高)级三个检测级别。超声波检测技术等级的选择应根据受检测工件、设备的制造、安装、在用等技术标准、规范及设计图样的要求确定;

5.2 A (低)级检测技术等级适用于母材厚度为8mm~46mm 的对接焊接接头。可用一种K 值的探头采用直射波法和一次反射波法对焊接接头进行单面单侧超声波检测。一般不要求进行横向缺陷的检测;

5.3 B(中)级检测技术等级

5.3.1当母材厚度为8mm~46mm时,用一种K值探头采用直射波法和一次反射波法对焊接接头进行单面双侧超声波检测;

5.3.2当母材厚度>46mm~120mm时,用一种K值探头采用直射波法对焊接接头进行双面双侧超声波检测。如受几何条件限制,可在焊接接头的双面单侧或单面双侧采用两种K值探头进行检测;

5.3.3当母材厚度>120mm~400mm时,要用两种K值探头并采用直射波法在焊接接头进行双面双侧超声波检测。且两种探头的折射角相差应≮10°;

5.3.4 B(中)级检测技术等级的超声波检测,应进行横向缺陷的检测。检测时,在焊接接头的两侧边缘使探头与焊缝中心线成10°~20°的夹角作两个方向的斜平行扫查,见图5:

图5:斜平行扫查方法

5.4 C(高)级检测技术等级适用

采用C(高)级检测技术等级检测时应将焊接接头的余高磨平,对接接头两侧斜探头扫查经过的母材区域要用直探头进行检测。

5.4.1当母材厚度为8mm~46mm时,用两种K值探头采用直射波法和一次反射波法对焊接接头进行单面双侧超声波检测。且两种探头的折射角相差应≮10°,并其中一个探头的折射角为45°;

5.4.2当母材厚度>46mm~400mm时,应该用两种K值探头采用直射波法对焊接接头进行双面双侧的超声波检测,且两种探头的折射角相差应≮ 10°。若焊缝单侧坡口角度<5°的窄间隙焊缝,应增加对与坡口表面平行缺陷的检测,检测方法可参照《钢板超声波检测工艺规程》中对坡口位置检测的要求;

5.4.3 C(高)级检测技术等级的超声波检测,应进行横向缺陷的检测。检测时,将探头放在焊缝及热影响区上作两个方向的平行扫查,见图6:

图6:平行扫查方法

6.0检测准备

6.1检测面要求

6.1.1检测区的宽度:焊缝本身再加上焊缝两侧各相当于母材厚度的30%的区域(这个区域最小为5mm,最大为10mm),见图7:

图7:检测探头移动区

6.1.2探头移动区的表面粗糙度应≤6.3μm。区域尺寸为:

a).采用一次反射法检测时,探头移动区域应≥1.25P;

2

P KT

式中:P—跨距,mm;

T—母材厚度,mm;

K—探头K值;

b). 采用直射法检测时,探头移动区域应≥0.75P;

6.2探头的选择原则

6.2.1 在选择探头时,只要条件允许,应尽量选择较大K值的探头;

6.2.2探头的选择可按照表1的要求进行。

7. 0检测方法

7.1平板对接焊接接头的超声波检测

7.1.1为检测纵向缺陷,斜探头应垂直放置于焊缝中心线的检测在面上,作锯齿型扫查,如图8所示。并保持在探头作前后移动的同时还应作10°~15°的左右转动。

图8:锯齿型扫查方法

7.1.2不同检测技术等级应采用不同的纵向、横向缺陷的检测要求,具体可按第5条的要求进行;

7.1.3为观察缺陷动态波形和区分缺陷信号或伪缺陷信号,确定缺陷位置、方向和形状,可采用前后、左右、转角、环绕等四种探头扫

查方法。如图9所示:

焊缝超声波探伤(第二节平板对接焊缝的超声波探伤方法)

第四章 焊缝超声波探伤 第二节 平板对接焊缝的超声波探伤方法 由于焊缝有增强量、表面凹凸不平,以及焊缝中危险性缺陷(裂缝、未焊透)大多垂直于板面,所以,对接焊缝超声波探伤基本方法一般都利用斜探头在焊缝两侧与钢板直接接触后 所产生的折射横波进行探测,见图4–4所示。 一、探测面的修整 为保证整个焊缝截面都被超声波束扫查到,探头必须在探测面上左 右、前后移动,为此,通常要对探测面进行修整。探测面上的焊接飞溅、氧化皮、锈蚀等应清理掉。清理的方 法可用铲刀、钢丝刷、砂轮等使钢板露出金属光泽。 探测面的修整宽度按GB11345–89标准规定: a. 用一次(直射)波法扫查,则焊缝两测的修整宽度(探头移动区)应大于0.75P : P=2TK (4–1) 式中:T 为母材厚度;K 为斜探头折射角的正切(K=tg β)。 b. 用一次反射波法,在焊缝两面两侧扫查,故修整宽度大于1.25P : 二、耦合剂的选用 为使超声波能顺利传入工件,在探伤前必须在探测面上涂上耦合剂,常用的耦合剂有机油、化学浆糊、水、甘油等。 耦合剂的选用应考虑: ① 工件表面光洁度和倾斜角度 ② 探测频率 ③ 耦合剂的声透性能 ④ 保存和使用的方便性 ⑤ 经济性和安全等 各种耦合剂在工件表面光洁度较高时,其声透性能一般相差不大,当工件表面光洁度较差时,选用声阻抗较大的耦合剂,如甘油,可获得较好的声透性能。 三、探头的选择 探头选择主要指探头角度和频率的选择 1. 探头角度的选择 对于钢质材料,为保证纯横波探测,探头的入射角应在第一临界角(27.5°)和第二临界角(57°)之间,即27.5°<α<57°。国内过去使用的探头均以入射角标称,如、30°、40°、45°、50°、55°等。近年来,考虑到为使缺陷定位计算方便,故均改用K 值探头(K=tg β)如K=0.8、K=1、K=1.5、K=2、K=2.5、K=3等。国外则普遍用折射角标称,如β=35°、β=45°、β=60°、β=70°、β=80°等。 为保证整个焊缝截面为声束覆盖,当用一次波和二次波探测时,探头的K 值尚须满足下式(见图4–5): K ≥ T b a l ++ (4– 2) 图4–4 焊缝探伤一般方法

射线检测工艺规程

射线检测工艺规程 1 适用范围 本射线检测工艺适用于:碳素钢、低合金钢、不锈钢等材料制作的锅炉、压力容器及长输管道、钢质储罐熔化焊对接接头的射线透照检测工作。遇有特殊要求,应按相应的标准、规范执行。 2 引用标准 GB 11533—1989 标准对数视力表 GB 16357—1996 工业X射线探伤放射卫生防护标准 JB/T 7902—1999 线型像质计 JB/T4730-2005《承压设备无损检测》 SY/T4109-2005《石油天然气钢质管道无损检测》 GB50128-2005《立式圆筒形钢制焊接储罐施工及验收规范》 3 射线防护 3、1 X射线对人体有不良影响,应执行《检测作业安全防护指导书》与其它安全防护规定。 3、2 在现场工作人员应随身佩带个人剂量仪、射线个人报警器及防护服。 3、3 带一台射线剂量巡测仪,测定利用现场墙壁房屋及设备选择理想的屏蔽位置。 3、4 拍片现场划定“射线放射区”并放好警戒标记。 3、5 确认工作人员均已完成各自工作并离开辐射区,方可开启射线发生器进行透照。 3、6 每次透照完成后,均应用报警器确认射线就是否停止辐射后,方可进入辐射现场。 3、7 现场作业完成后对仪器进行清点、核对无误后清理现场,撤除警戒标志方可撤离现场。 3、8 从事放射性工作人员应定期进行体检,每年允许接受的剂量量为50 m SV。 4 人员要求 4、1 从事射线检测人员必须经过培训,持证上岗。只有取得质量技术监督部门颁发的射线检测技术等级证书的人员,方可独立从事与该等级相应的射线检测工作。 4、2 射线检测人员应具有良好的身体素质,其校正视力不得低于 5、0,并每年检查一次。从事评片人员应能辨别距离400mm远的一组高为0、5mm、间距为0、5mm

管道对接焊接接头超声波探伤漏检

95管道对接焊接接头超声波探伤漏检 朱春芳 (贵州电力建设第二工程公司金属焊接检验中心,贵州贵阳 550002) 摘要:火电站安装过程中,超声波探伤常应用于壁厚大于20mm对接焊接接头的无损检测,在保 证探伤系统灵敏度的前提下,由于探头选择的不恰当,管道外表面和内表面不能使声束按预计路径 传播,造成焊接缺陷漏检,给设备安全运行带平隐患,希望能引起重视。 关键词:超声波探伤;焊接缺陷;漏检;检测面 超声波探伤对面状缺陷敏感,对焊接接头中的裂纹、未焊透和未熔合等缺陷的检出率高,探测距离大,超声波探伤仪体积小、重量轻、检测速度快,检测中只消耗耦合剂和磨损探头,检测费用低,所以在火电厂安装过程中,大于20mm 的管道对接焊接接头都用超声波探伤。中厚壁压力管道焊接采用氩弧焊打底,电焊填充盖面的焊接方法,对接焊接接头不允许存在裂纹、未焊透和未熔合等面状缺。在保证探伤系统灵敏度满足规定要求的前提下,由于检测面等客观因素和探伤人员判断的主观因素影响,造成焊接缺陷漏检,给设备安全运行带来隐患。 1 探头的影响 1.1 K值选择 1.1.1 探头K值的选择应从以下三个方面考虑(1)使声束能扫查到整个焊接接头截面;(2)使声束中心线尽量与主要危险性缺陷垂直; (3)保证有足够的探伤灵敏度。 用一、二次波单面双侧探测焊接接头截面时,d1=(a+l0)/T,d2=b/K,其中一次波只能扫查到d1以下的部分(受余高限制),二次波只能扫查到d2以上的部分(受根部成形限制)。为保证能扫查整个焊接接头截面,必须满足d1+d2≤T,从而得到:式①K≥(a+b+l0)/T,式中a—上焊接接头宽度的一半;b—下焊接接头宽度的一半;l0—探头的前沿距离;T—管壁厚度;K—探头的K值。 采用单面焊双面成型焊接工艺时,b值很小,可以忽略不计,则K≥(a+l0)/T。从式①中可看出,随着管壁厚度T增大,探头K值减小,也就是说如果管壁越厚,一、二次波探伤,用较小K 值的探头就能保证扫查到整个焊接接头截面,管壁越薄需要使用的探头K值越大。 当选择的探头K<(a+l0)/T时,用一、二次波单面双侧扫查焊接接头截面,从图2中可看出一次波扫查不到焊接接头截面,两侧二次声束都扫查不到E区域,造成该区域漏检。 K值发生变化,探头使用过程中,有机玻璃耦合面被磨损,由于探头前后受力不均,前后磨损程度不一样,引起K值发生变化,如探头前面磨损严重,K值变小,如果K值小于(a+l0)/T,则会造成如图2所示的E区域漏检。如探头后面磨损较大,则K值变大。无论K值变大还是变小都会因为K值变化而引起缺陷定位不准,这会影响对缺陷的分析和判定。 1.2 探头晶片尺寸 探头晶片尺寸的大小会影响近场区的长度和声能传播远近,但会不会影响对接焊接接头超声波探伤呢?对接焊接接头一般用横波超声波探伤,设有机玻璃中入射点至晶片的距离为12mm,钢中声速为3230ms,由公式N’=Fscosβ/πλs2cosα-L1tgα/tgβ,计算出不同探头在钢中的近场长度,见表1。 2008年第12期2008年12月 化学工程与装备 Chemical Engineering & Equipment

焊缝超声波检测工艺规程

焊缝超声波检验规程 1范围 适用于金属材料制承压设备用原材料、零部件和设备的超声检测,也适用于金属材料制在用承压设备的超声检测。 与承压设备有关的支承件和结构件的超声检测,也可参照本部分使用. 2 规范性引用文件 下列文件中的条款通过JB/T 4730的本部分的引用而成为本部分的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本部分,然而,鼓励根据本部分达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本部分。 JB 4730.1—2005 承压设备无损检测第1部分:通用要求 JB/T 7913—1995 超声波检测用钢制对比试块的制作与校验方法 JB/T 9214—1999 A型脉冲反射式超声波探伤系统工作性能测试方法 JB/T 10061—1999 A型脉冲反射式超声波探伤仪通用技术条件 JB/T 10062—1999 超声探伤用探头性能测试方法 JB/T 10063—1999 超声探伤用1号标准试块技术条件 3一般要求 3.1 超声检测人员 超声检测人员的一般要求应符合JB/T 4730.1的有关规定。 3.2 检测设备 3.2.1 超声检测设备均应具有产品质量合格证或合格的证明文件。 3.2.2 探伤仪、探头和系统性能 3.2.2.1 探伤仪 采用A型脉冲反射式超声波探伤仪,其工作频率范围为0.5MHz~10MHz,仪器至少在荧光屏满刻度的80%范围内呈线性显示。探伤仪应具有80dB以上的连续可调衰减器,步进级每档不大于2dB,其精度为任意相邻12dB误差在±1dB以内,最大累计误差不超过1dB。水平线性误差不大于1%,垂直线性误差不大于5%。其余指标应符合JB/T10061的规定。 3.2.2.2 探头 3.2.2.2.1 晶片面积一般不应大于500mm2,且任一边长原则上不大于25mm。 3.2.2.2.2 单斜探头声束轴线水平偏离角不应大于2°,主声束垂直方向不应有明显的双峰。 3.2.2.3 超声探伤仪和探头的系统性能 3.2.2.3.1 在达到所探工件的最大检测声程时,其有效灵敏度余量应不小于10dB。 3.2.2.3.2 仪器和探头的组合频率与公称频率误差不得大于±10%。 3.2.2.3.3 仪器和直探头组合的始脉冲宽度(在基准灵敏度下):对于频率为5MHz的探头,宽度不大于10mm;对于频率为2.5MHz的探头,宽度不大于15mm。 3.2.2.3.4 直探头的远场分辨力应不小于30dB,斜探头的远场分辨力应不小于6dB。 3.2.2.3.5 仪器和探头的系统性能应按JB/T 9214和JB/T 10062的规定进行测试。 3.3 超声检测一般方法 3.3.1 检测准备 3.3.1.1 承压设备的制造安装和在用检验中,检测时机及抽检率的选择等应按法规、产品标准及有关技术文件的要求和原则进行。 3.3.1.2 检测面的确定,应保证工件被检部分均能得到充分检查。 3.3.1.3 焊缝的表面质量应经外观检测合格。所有影响超声检测的锈蚀、飞溅和污物等都应予以清除,其表

碳钢对接焊接接头超声检测

碳钢对接焊接接头超声检测 目录 前言 (2) 1. 课程设计任务书 (3) 2. 碳钢板对接焊接接头超声检测工艺 (4) 2.1超声波探伤的方法 (4) 2.2超声波检测仪器和基本设备 (4) 2.2.1超声波仪器 (4) 2.2.2超声波探头 (5) 2.2.3超声波试块 (6) 2.2.4耦合剂的使用 (6) 2.3超声波检测的过程 (7) 2.3.1检验等级的确定 (7) 2.3.2探头K值的选择 (7) 2.3.3频率选择 (7) 2.3.4晶片尺寸的选择 (7) 2.4实时探伤操作 (7) 2.4.1探伤标准的选择 (7) 2.4.2检验区宽度的确定 (8) 2.4.3探头移动区宽度 (8) 3. 碳钢对接焊缝的超声波检测工艺卡 (9) 4. 根据编制的工艺及工艺卡,进行检测实验 (10) 4.1 探头测定与仪器的调节 (10) 4.1.1 探头测试 (10) 4.2 扫查方式 (11) 5.碳钢对接焊缝的超声波检测报告 (12)

课程设计总结 (13) 参考文献 (14) 前言 无损检测(Non-Destructive Testing,NDT)技术已成为控制产品质量、保证设备安全运行等方面极为重要的技术手段,在现代航空工业生产过程中,越来越多地要求对关键部件进行更加有效和准确的检测。 超声检测是指用超声波来检测材料和工件、并以超声检测仪作为显示方式的一种无损检测方法。超声检测是利用超声波的众多特性(如反射和衍射),通过观察显示在超声检测仪上的有关超声波在被检材料或工件中发生的传播变化,来判定被检材料和工件的内部和表面是否存在缺陷,从而在不破坏或不损害被检材料和工件的情况下,评估其质量和使用价值。本次课程设计利用超声检测的方法对对接板材焊缝进行检测。文中针对给定的材质:Q235,钢板厚度:12mm,开坡口手工对接焊接焊缝,通过实验检测该焊缝的缺陷,详细介绍试块选用,设备调试,现场探伤中的常见问题及解决方法。还介绍了现场探伤,缺陷定位和长度测量的具体方法,并通过标准对检测中的缺陷进行了等级评定并得出了检测工艺卡。在焊缝缺陷检测中,超声检测是目前公认的最有效的常规无损检测方法之一,与其它常规检测相比具有明显的优势。基于以上原因,本文重点研究焊缝内部缺陷的超声波检测方法,从而对焊接缺陷进行有效的安全评定。

超声波检测工艺规程

超声波检测工艺规程 1适用范围 1.1 本工艺适用于板厚为6-250mm得板材、碳素钢与低合金钢锻件、母材壁厚8—400mm得全焊透熔化焊对接焊缝及壁厚大于等于4mm,管径为57—1200mm碳素钢与低合金石油天然气长输、集输与其她油气管道环向对接焊缝、钢质储罐对接焊缝得超声波检测等、 1。2 本工艺规定了使用A型脉冲反射式超声波探伤仪进行检测过程中,对受检设备做出准确判定应遵循得一般程序与要求。 1、3 引用标准 JB4730/T—2005《承压设备无损检测》 SY/T4109-2005《石油天然气钢质管道无损检测》 GB11345-89《钢焊缝手工超声波探伤方法与探伤结果得分级》 JB/T9214-1999《A型脉冲反射式超声探伤系统测试方法》 JB/T10062-1999《超声探伤用探头性能测试方法》 GB50128—2005《立式圆筒形钢制焊接储罐施工及验收规范》 2对检测人员得要求 2、1 从事超声波检测人员必须经过培训,持证上岗。只有取得质量技术监督部门颁发得超声波检测技术等级证书得人,方可独立从事与该等级相应得超声波检测工作、 2、2 检测人员应具有良好得身体素质,其校正视力不得低于 5.0,并每年检查一次。 2、3检测人员应严格执行《检测作业安全防护指导书》与其它安全防护规定,确保安全生产。 3检测程序 3、1根据工程特点与本工艺编制具体得《无损检测技术方案》。 3.2受检设备经外观检查合格后,由现场监理或检验员开据《无损检测指令》或《无损检测委托单》到检测中心。 3。3 检测人员按指令或委托单要求进行检测准备,技术人员根据实际情况编制《探伤工艺卡》、 3、4 检测人员按《超声波探伤仪调试作业指导书》等工艺文件进行设备调试。 3.5 外观检查合格后,施加耦合剂,实施检测,做好《超声波检测记录》。 3。7 根据检测结果与委托单,填写相应得回执单或合格通知单、若有返修,还应出据《返修通知单》,标明返修位置等。将回执单与返修通知单递交监理或检验员,同时对受检设备进行检验与试验状态标识。 3。8 返修后,按要求重新进行检测、

完整word版射线检测工艺规程

射线检测通用工艺规程 1. 主题内容与适用范围本规程规定了焊缝射线人员具备的资格、所用器材、检测工艺和验收标准等内容。 本规程依据JB/T4730-2005的要求编写。适用于本公司板厚在2?30 mm钢制压力容器及壁厚T>2mm钢管对接焊接接头的X射线AB级检测技术。满足《压力容器安全技术监察规程》GB150、GB151 的要求。检测工艺卡内容是本规程的补充, 由n级人员按本规程等要求编写,其参数规定的更具体。 2. 引用标准、法规 JB/T4730 —2005《承压设备无损检测》 GB150-1998《钢制压力容器》 GB151-1999《管壳式换热器》 GB18871—2002《电离辐射防护及辐射源安全基本标准》 GB16357-1996《工业X射线探伤放射卫生放护标准》 JB/T7902《线型象质计》 特种设备无损检测人员考核与监督管理规则》 压力容器安全技术监察规程》 3. 一般要求 3.1射线检测人员必须经过技术培训,按《特种设备无损检测人员考核与监督管 理规则》考核并取得与其工作相适应的资格证书。 3.1.1检测人员应每年检查一次视力,校正视力玄1.0。评片人员还应辨别出 400mn距离处 高0.5mm间距0.5mm的一组印刷字母。 3.2 辐射防护 射线防护应符合GB18871 GB16357的有关规定。

透照厚度(W 范围、mm 应识别丝号 丝径(mm 3.3胶片和增感屏 胶片:在满足灵敏度要求的情况下,一般 X 射线选用T3或T2型胶片。 增感屏:采用前屏为0.03mm 后屏为0.03?0.10mm 的铅箔增感屏。. 3.4象质计 3. 4.1底片影像质量采用Fe 线型像质计测定。其型号和规格应符合 JB/T7902 的规定。象质计型号一般按下表 4选定。但对透照外径W 100mn 钢管环缝 时采用 JB/T4730附录F 的专用象质计。 3.4.2底片的象质计灵敏度选用 按透照厚度及不同的透照方法选择表 1至表3中要求达到的象质丝号。 3.4.3透照厚度W 射线照射方向上材料的公称厚度。多层透照时,透照厚度为 通过 的各层材料公称厚度之和。焊缝两侧母材厚度不同时,以薄板计。 表1象质计灵敏度值-单壁透照、象质计置于源側 (AB 级) 表2象质计灵敏度值-双壁双影透照、象质计置于源側 (AB 级) 表3象质计灵敏度值-双壁单影或双壁双影透照、象质计置于胶片側 (AB 级) 3.3.1 3.3.2 3.3.3 胶片和增感屏在透照过程中应始终紧密接触。

射线检测通用工艺规程

射线检测通用工艺规程 1目的 对射线检测作业的工艺作出规程性的规定,以保证射线检 测过程符合有关的法规、标准以及公司《质量保证手册》及 《程序文件与管理制度汇编》的要求。 2 范围 适用于金属材料制容器的原材料、零部件和焊缝射线检测的作业过程。 3 引用标准 JB/T4730.1 -2005 《承压设备无损检测》第1部分通用 要求 JB/T4730.2-2005 《承压设备无损检测》第2部分射线 检测 4人员资格 4.1凡射线检测人员应按《锅炉压力容器无损检测人员资格鉴定考核规则》考核合格,并持有与工作相适应的有效资格证书。 4.2评片人员应每年做一次视力检查,矫正视力不得低于 1.0,并要求距离40mm能读出高为0.5 mm、间距为0.5 mm的印刷字母。

4.3取得不同射线检测资格级别的人员,只能从事与资格级 别相应的无损检测工作。检测原始记录应由相应□级或口级 以上资格人员核对,射线检测检测报告须经相应H级或□级 以上资格人员复核并签字后方能生效。 4.4从事射线检测人员上岗前应经辐射安全知识培训,并取 得放射工作人员证。 5检测设备、器材和材料 5.1检测设备 按本公司《无损检测仪器使用、维护管理规定》执行。 5.2射线胶片 5.2.1 胶片系统按照GB/T19384.1 - 2003《无损检测工业射 线照相胶片第一部分工业射线胶片系统的分类》分为四类, 即T1、T2、T3、T4。T1为最高类别,T4为最低类别。 5.2.2射线检测技术为A级、AB级时,应采用T3及以上类别的胶片,射线检测技术为B级时,应采用T2及以上类别的胶片。 5.3观片灯 —95 —

钢结构焊缝超声波检测实施细则

1 引用标准 《无损检测人员资格鉴定与认证》GB/T 9445-2008 《焊缝无损检测超声检测技术检测等级和评定》GB/T 11345-2013 《焊缝无损检测超声检测焊缝中的显示特征》GB/T 29711-2013 《焊缝无损检测超声检测验收等级》GB/T 29712-2013 《钢结构超声波探伤及质量分级法》JG/T 203-2007 《钢结构工程施工质量验收规范》GB 50205-2001 2 适用范围 本细则适用于母材厚度为不小于8mm铁素体钢全熔透焊缝(包括对接接头、T型接头和角接接头)的超声波探伤。如母材厚度小于8mm且不小于4mm,则按照标准JG/T 203-2007进行超声波探伤。 3 主要仪器设备 3.1 超声检测仪器应定期进行性能测试。除另有约定外,超声检测仪宜符合下列要求: 3.1.1 温度的稳定性:环境温度变化5℃,信号的幅度变化不大于全屏高度的±2%,位置变化不大于全屏宽度的±1%。 3.1.2 显示的稳定性:频率增加约1Hz,信号幅度变化不大于全屏高度的±2%,位置变化不大于全屏宽度的±1%。 3.1.3 水平线性的偏差不大于全屏宽度的±2%。 3.1.4 垂直线性的测试值与理论值的偏差不大于±3%。 3.2 系统性能测试 至少在每次检测前,应按JB/T9214推荐的方法,对超声检测系统工作进行性能试。除另有约定外系统性能宜符合下列要求: 3.2.1 用于缺欠定位的斜探头入射点的测试值与标称值的偏差不大于±1mm; 3.2.2 用于缺欠定位的斜探头折射角的测试值与标称值的偏差不大于±2o; 3.2.3 灵敏度余量、分辨力和盲区,视实际应用需要而定。 系统性能的测试项目、时机、周期及其性能要求,应在书面检测工艺规程中予以详细规定。 3.3 探头 3.3.1 检测频率应在2MHz~5MHz范围内,同时应遵照验收等级要求选择合适的频

焊缝超声波探伤

焊缝手动超声波探伤 锅炉压力容器和各种钢结构主要采用焊接方法制造。射线探伤和超声波探伤是对焊缝进行无损检测的主要方法。对于焊缝中的裂纹、未熔合等面状危害性缺陷,超声波比射线有更高的检出率。随着现代科技快速发展,技术进步。超声仪器数字化,探头品种类型增加,使得超声波检测工艺可以更加完善,检测技术更为成熟。但众所周知:超声波探伤中人为因素对检测结果影响甚大;工艺性强;故此对超声波检测人员的素质要求高。检测人员不仅要具备熟练的超声波探伤技术,还应了解有关的焊接基本知识;如焊接接头形式、坡口形式、焊接方法和可能产生的缺陷方向、性质等。针对不同的检测对象制定相应的探伤工艺,选用合适的探伤方法,从而获得正确的检测结果。 射线检测局限性: 1.辐射影响,在检测场地附近,防护不当会对人体造成伤害。 2.受穿透力等局限影响,对厚截面及厚度变化大的被检物检测效果不好。 3.面状缺陷受方向影响检出率低。 4.不能提供缺陷的深度信息。 5.需接近被检物体的两面。 6.检测周期长,结果反馈慢。设备较超声笨重。成本高。 常规超声波检测不存在对人体的危害,它能提供缺陷的深度信息和检出射线照相容易疏漏的垂直于射线入射方向的面积型缺陷。能即时出结果;与射线检测互补。 超声检测局限性: 1.由于操作者操作误差导致检测结果的差异。 2.对操作者的主观因素(能力、经验、状态)要求很高。 3.定性困难。 4.无直接见证记录(有些自动化扫查装置可作永久性记录)。 5.对小的(但有可能超标的缺陷)不连续性重复检测结果的可能性小。 6.对粗糙、形状不规则、小而薄及不均质的零件难以检查。 7.需使用耦合剂使波能量在换能器和被检工件之间有效传播。

焊缝超声波检测技术总结知识讲解

一、超声波探伤常见缺陷回波类型显示 1、气孔:单个气孔回波高度低,波形稳定,从各个方向探测,反射波大致相同,稍一移动探头就消失。密集气孔为一族反射波,其波高随气孔的大小而不同,当探头作定点转动时,会出现此起彼落的现象。 2、夹渣:点状夹渣的回波信号与点状气孔相似。条状夹渣回波信号多呈锯齿状,反射率低,一般波幅不高,波形常呈树枝状,主峰边上有小峰,探头平移时波幅有变动,从各个方向探测,反射波幅高度不相同。 3、未焊透:在板厚双面焊缝中,未焊透位于焊缝中部,声波在未焊透缺陷表面上类似镜面反射,用单斜探头探测时有漏检的危险。对于单面探测根部未焊头,类似端角反射。探头平移时,未焊透波形稳定。焊缝两侧探伤时,均能得到人致相同的反射波幅。 4、未熔合:当超声波垂直入射到其表面时,回波高度大,当探头平移时,波形较稳定,两侧探测时,反射波幅不同,有时只能从一面探测。 5、裂纹:一般来说,裂纹回波较大,波幅宽,会出现多峰。探头平移时,反射波连续出现,波幅有变化,探头转动时,波峰有上下错位的现象。 常见的缺陷回波图片 常见的缺陷类型图片 未熔合、未焊透 裂纹 气孔

二、焊缝探伤中常见的伪缺陷回波 6、仪器杂波:在不接探头的情况下,由于仪器性能不良,灵敏度调节过高,荧光屏上出现单峰或者多峰波形,接上探头工作时,此波仔荧光屏上的位置固定不变。一般情况下,降低灵敏度后,此波即消失。 7、探头杂波:仪器接上探头后,在荧光屏上显示山脉冲波幅很高、很宽的信号,无论探头是否接触好,它都存在且位置不随探头移动而移动,即固定不变。 8、耦合剂反射回波:如果探头的折射角度大,而探伤灵敏度有调得较高,则有一部分能量转换成表面波,这种表面波传播到探头前沿耦合剂堆积处,造成反射信号。只要探头固定不动,随着耦合剂的流大、波幅慢慢降低,很不稳定,用手擦掉探头前面的耦合剂时,信号就会消失。 9、焊缝表面和沟槽反射波:在多到焊缝表面形成一道道沟槽。当超声波扫查到沟槽时,会引起沟槽反射。鉴别的方法是,一般出现在一次、二次波处或稍偏后的位置,这种反射信号的特点是不强烈、迟钝。 10、焊缝上下错位引起的反射波:由于焊缝上下焊偏,在一侧探伤时,焊角反射波很像焊缝内的缺陷,当探头移到另一侧时,在一次波前没有反射波或测得探头的水平距离的焊缝的母材上。 11 、焊角回波:焊缝一般都有一定的余高,余高与母材的交界处称为焊角,由焊角产生的回波称为焊角回波。在阶梯试块上做试验:如下图A、图B所示,从A、B两个相反的方向检测同一个台阶,探头在A位置时会有回波,在B位置时没有回波。角焊回波的特点是:探头在工件上A位置处会有焊角回波产生,在B位置处则无焊角回波产生。焊角回波高度与余高高度有关,余高高时焊角回波高度高,余高低时焊角回波高度低,余高到一定程度时,无焊角回波。当探头沿焊缝平行移动时,焊角回波的位置不会改变,当探头垂直焊缝作前后移动时,焊角回波的位置会相应的移动一段距离,如果根据最高焊角回波的位置计算出它的水平位置和垂直距离,计算出的焊角位置与工件上的实际焊角位置相同;如果用手沾油轻轻敲击工件的焊角处,焊角回波会上下跳动。 (图A)(图B)

超声波检测规程

超声波检测规程 1校准与复核 校准应在试块上进行,校准中应使超声主声束垂直对准反射体的轴线,以获得稳定和最大的反射信号。 在开始使用仪器时,应对仪器的水平线性和垂直线性进行测定,在使用过程中,每隔三个月至少应对仪器的水平线性和垂直线性进行一次测试。 在探头开始使用时,应对探头进行一次全面的性能校准。斜探头在使用前应进行前沿距离、折射角、主声束偏离、灵敏度余量和分辨力的校准。使用过程中,每次使用前应校准前沿距离、折射角和主声束偏离。直探头的始脉冲占宽、灵敏度余量和分辨力应根据使用的频度每隔一个月或三个月检查一次。 2检测工艺 对于具体部件的检测,中级或高级检验人员应根据相应的标准编制检测工艺卡,经审批后实施。工艺卡应包括如下内容:检验等级、材料种类、规格、检验时机、坡口形式、焊接工艺方法、表面状态及灵敏度补偿、耦合剂、仪器型号、探头及扫查方式、灵敏度、试块、缺陷位置标定方法、报告要求、操作人员资格、执行标准等。 3检验程序 工件准备一表面检查、委托检验一接受委托、指定检验员一了解焊接情况一确定检测工艺卡一选定无损检测方法、仪器、探头、试块一校准仪器和探头一制作距离波幅曲线一调整无损检测灵敏度一校准与复核一涂布耦合剂一粗无损检测一标示缺陷位置一精无损检测一评定缺陷一复核一记录一报告一审核一存档。对于不合格焊缝的重新无损检测,仍然遵从此程序的要求。 4检验前的准备 根据被检部件的材质、规格、性质和结构形状选定无损检测标准,确定检验等级,确定检测工艺卡。 对选定的仪器、探头的性能及其组合性能应进行测试,并符合要求。 制作距离一波幅曲线及综合补偿测定: 斜探头前沿距离、K值的测定应在SGB-4试块上进行,前沿距离、K值至少应测量三次,取其平均值。 调节扫描速度、扫描比例,按照选定的标准要求制作距离波幅曲线,并计入综合补偿,绘制在坐标纸上。 综合补偿测定按选定的标准进行。 检测面和检测范围的确定应保证检查到工件被检部分的整个体积,检验前应用80#或100#砂纸去除检测面上的毛刺等,以利于声耦合和探头的移动并减少探头磨损。 5检验 按照选定标准的规定确定无损检测灵敏度,并对扫描线和灵敏度进行复核。 扫查时应尽量扫查到工件的整个被检区域,探头移动速度不应大于 150mm/S。 可以采用不同的扫查方式,以检测不同走向的缺陷。检测纵向缺陷时,探头沿焊缝在母材上均匀做锯齿形或矩形扫查,在保持探头移动方向与焊缝中心线基本垂直的同时,还要作10°-15°的摆动;检测焊缝和热影响去的横向缺陷应采用平行扫查。初探时,如发现评定线及以上的反射波时,可先用记号笔在部件上

射线探伤工艺规程

长沙天鹅工业泵股份有限公司 X射线探伤操作规程 TEJY8.2.4-2007A-09 1、目的 该项操作规程,对焊接件纵向焊缝的射线探伤实施有效控制。 2、适用范围 本规程适用于对焊接件纵向焊缝进行无损检测射线探伤前应做的准备工作和射线探伤中全过程的管理。 3、选择的前提 对给定工件进行射线探伤时,应根据有关规程和标准要求选择适当的探伤条件。应以国标ISO17636为选择条件的依据,焊缝透照按底片影像质量由低而高的要求分A级、AB级和B 级三种检验等级。焊接件纵向焊缝焊缝的射线探伤,至少应满足AB级的要求。 不同的象质等级对底片的黑度、灵敏度与不清晰度有不同的规定。要满足规定等级的象质要求,从探伤器材、方法、条件及程度等各个方面都要预先进行全面地部署。 4、照相规范的确定 在照相过程中,除了合理地选择透照方法外,还必须选择好透照规范,使小缺陷能够在底片上明显地辨别出来,从而达到高灵敏度。有关规范的选择: 1)、射线源的选择,应选择小尺寸的射线源; 2)、透照距离的选择。在透照中,焦距选择大多在600~700mm间; 3)、胶片与增感屏的选择。通常照相时将原度为0.01~0.13mm的铅箔增感屏与非增感形胶片一起使用。 5、几何参数的选择 几何参数是影响射线照相灵敏度的重要因素,因此必须综合考虑与合理选择。 1)、焦点或射线源尺寸:焦点大小对缺陷影响在射线底片上的显示对比度和清晰度都有很大影响; 2)、焦点尺寸和几何布置会引起的影像模糊及放大; 3)、焦点尺寸与射线底片对比度; 4)、照射场内的X射线强度分布; 5)、透照距离L1的选择——对Uy值和满足K值的有效长度要综合考虑。

对接焊缝超声检测作业指导书(范本)

中国机械工程学会无损检测学会 无损检测2级人员对接焊缝超声检测作业指导书 姓名:身份证号码: 分数: (范本) 一、前言 1、适用范围 本作业指导书依据本公司超声检测工艺规程(符合GB/T 11345-1989 钢焊缝手工超声波探伤方法和探伤结果分级)的要求规定了超声检测中对人员、设备器材、检测方法和步骤、数据记录、结果分类与评定等项内容。 本作业指导书适用于厚度范围在8~50mm的钢熔化对接焊焊缝的手工超声波检测。 2、参考文件 JB/T 4730.3-2005 承压设备无损检测第3部分:超声检测 二、人员 具有中国无损检测学会无损检测人员超声1、2、3级(结果评定需有2级或3级)资格; 三、超声检测系统 1、仪器:模拟超声波探伤仪CTS22或数字式超声探伤仪HS600; 仪器水平线性误差≤1%,垂直线性误差≤5%; 2、探头:1~5M、1~2.5K超声斜探头; 声束轴线水平偏离角≤2°,主声束垂直方向无明显双峰; 3、仪器和探头其他性能必须符合CSK-ⅠA标准要求; 4、试块:CSK-ⅠA、CSK-ⅢA; 5、耦合剂:机油或化学浆糊; 四、工件参数与检测要求

五、检测程序 1、检测系统调节 (1)探头入射点、前沿、K值测量(测三次平均值); (2)水平时基线调节(用CSK-ⅠA试块); 2、检测准备 (1)试样准备(表面清理,去除影响检测的油污、毛刺等); (2)按JB/T 4730.3-2005灵敏度绘制DAC曲线; (3)设备的调整(加各项补偿、仪器旋钮调至需要位置); 3、检测 (1)检测方法:斜探头横波法;扫查方法:锯齿,扫查速度≤ 100 mm/s,覆盖 10 mm; (2)扫描量程修正:DAC曲线上任意一点在扫描线上的偏移超过扫描读数的10%,则应予以修正; (3)扫查缺陷: ·将DAC曲线调到评定线(EL)对焊缝作单面双侧扫查,对超过EL线的显示作出标记; ·将DAC曲线调到定量线(SL)对焊缝作单面双侧扫查(重点扫查超过EL线的显示),对超过SL线的显示进行测长、定位和当量计算; ·对超过RL线的显示直接判废。 (4)复核时机:每次检测前对扫描线、灵敏度复核,有下述情况应随时重新核查: a.探头耦合剂或调节旋纽改变时; b.开路电压波动或检测者怀疑灵敏度有变时; c.连续工作4小时以上时; d.工作结束时。 (5)检测过程中将检测对象、探头参数、DAC曲线以及缺陷位置、缺陷当量等相关参数如实填入《焊缝超声波检测记录》; 4、结果评定 (1)根据JB/T 4730.3-2005Ⅱ级对缺陷定级; (2)将评定结果填入《焊缝超声波检测记录》; 5、报告编制 (1)根据《焊缝超声波检测记录》,编制《焊缝超声波检测报告》; (2)由相关人员审核和批准报告; 六、检测后处理 (1)被检工件清洁和维护; (2)检测记录和检测报告签发、归档。 编制:审核:批准: 日期:日期:日期:

超声波检测工艺规程(DOC 148页)

超声波检测工艺规程

1 超声检测通用工艺规程 2 承压设备用钢板超声检测专用工艺 3 承压设备用锻件超声检测专用工艺 4 承压设备用奥氏体钢超声检测专用工艺 5 承压设备用无缝钢管超声检测专用工艺 6 承压设备用复合钢板超声检测专用工艺 7 承压设备对接焊接接头超声检测专用工艺 8 承压设备T型焊接接头超声检测专用工艺 9 钢制承压设备管子和管道环向对接焊接接头超声检测专用 10 承压设备用钢螺栓坯件超声检测专用工艺 11 在用承压设备超声检测专用工艺 12 超声测厚检测通用工艺 13 模拟式超声检测仪操作规程 14 数字式超声检测仪操作规程 15超声波探伤仪系统自校规程 16 超声测厚仪操作规程

1 超声检测通用工艺规程 1.1 范围 1.1.1 本工艺规定了承压设备采用A型脉冲反射式超声波探伤仪检测工件缺陷的超声检测方法。 1.1.2 本工艺适用于金属材料制承压设备用原材料、零部件和焊接接头的超声检测,也适用于金属材料制在用承压设备的超声检测。 1.2 引用标准 1.2.1 GB150-98《钢制压力容器》。 1.2.2劳部发[1996]276号《蒸汽锅炉安全技术监察规程》。 1.2.3 JB/T4730-2005《承压设备无损检

测》 1.3 一般要求 1.3.1 检测人员 (1)凡从事超声波检测的人员,必须经过国家劳动部门考核,取得各级资格的人员是能从事与其资格相适应的工作。(2)检测人员必须掌握仪器的综合性能,并能独立进行检测。 (3)检测人员必须熟悉超声波检测有关标准,能按标准要求选择适当方法校正仪器,并能进行熟练的检测操作。 (4)检测人员应能根据被检工件的材质、规格、加工工艺过程、材料曲率等,预计缺陷可能产生的部位和类型,并能进行正确的定位和定量。

射线检测工艺规程

工艺规程 1.编写铸钢件射线检测工艺规程 2.液化气钢瓶环焊缝射线检测工艺规程 3.管板焊缝射线检测工艺规程 4.锅炉筒体焊缝射线检测工艺规程 5.T形接头焊缝射线检测工艺规程 6.天然气输气管道对接环焊缝射线检测工艺规程 7.有一管线工程要做射线检测工作,其有关施工说明除依照合约NDT-RT-003的规定外,均依()。合约NDT-RT-003的规定如下:(1)检测范围:对接环缝,φ28x3mm、φ83x12mm、φ127x14mm的碳钢管线及管件;(2)检测时机:焊接完成冷至室温后;(3)检测比率:对接焊缝100%;(4)射源:照相厚度18mm以下用X光机,超过18mm者可用铱192;(5)胶片:杜邦65(Du Pont 65),尺寸300x80mm;(6)像质计:线条型,置于底片侧,双壁照像双壁判读应置于底片中央焊缝上。双壁照像单壁判读则放置与底片两端的焊缝上,距底片边缘15mm,细线靠外;(7)检测方法:外径89mm以下双壁照像双壁判读,超过89mm 时双壁照像单壁判读;(8)黑度:1.5-3.0;(9)灵敏度:1.5%以下;(10)标志:左上角为工程编号及位置编号;右上角为检测厚度,T之后加以mm为单位的阿拉伯数字;左下角为焊工编号及射线检测人员编号,分别以W及R表示;下中为同一焊口的张数编号及中心点符号,以A、B、C表示;右下角为照像日期,年月日均以两位数字表示,不足两位数者以零填补;(11)底片两边重叠时最少重叠25mm;(12)接受基准:()级。试编写其X射线透照的工艺规程。 8.右图所示中:板厚32mm,存在有 a.夹渣, b.气孔, c.夹渣与气孔, d.未焊透(熔穿不足),尺寸大小 如图示,按()判定,该焊道应 判定为几级? 9.右图所示中:板厚32mm,存在有 a.夹渣, b.夹渣, c.气孔, d.裂缝, 尺寸大小如图示,按()判定, 该焊道应判定为几级? 10.承上题,右图所示中的b夹渣 和c气孔应各自独立判为几级? 11.母材厚度5mm的钢板对接焊缝射线照相底片中发现长3mm,宽2mm的缺陷,按()判定,应为第几级? 12.母材厚度30mm的钢板对接焊缝射线照相底片中发现:a.一处长8mm,宽2mm的缺陷和相隔40mm处的b.一处密集点状缺陷(直径1mm,计有10个),按()判定,两处缺陷应各自独立判为几级? 13.母材厚度22mm的钢板对接焊缝射线照相底片中发现:a.一处长8mm,宽2mm的缺陷和相

焊缝探伤超声波探头的选择方案参考

焊缝探伤超声波探头的选择方案参考 编号被测工件厚度选择探头和斜率选择探头和斜率 14—5mm6×6 K3 不锈钢:1.25MHz 铸铁:0.5—2.5 MHz 普通钢:5MHz 26—8mm8×8 K3 39—10mm9×9 K3 411—12mm9×9 K2.5 513—16 mm9×9 K2 617—25 mm13×13 K2 726—30 mm13×13 K2.5 831—46 mm13×13 K1.5 947—120 mm13×13( K2—K1) 10121—400 mm18×18 ( K2—K1) 20×20 ( K2—K1) 超声波探伤在无损检测焊接质量中的作用 焊缝检验方法: 1,外观检查. 2,致密性试验和水压强度试验. 3,焊缝射线照相. 4,超声波探伤. 5,磁力探伤. 6,渗透探伤.关于返修规定:具体情况具体对待,总之要力争减少返修次数在厂房建设及设备安装中大量使用钢结构,钢结构的焊接质量十分重要,无损检测是保证钢结构焊接质量的重要方法。 无损检测的常规方法有直接用肉眼检查的宏观检验和用射线照相探伤、超声波探伤、磁粉探伤、渗透探伤、涡流探伤等仪器检测。肉眼宏观检测可以不使用任何仪器和设备,但肉眼不能穿透工件来检查工件内部缺陷,而射线照相等方法则可以通过各种各样的仪器或设备来进行检测,既可以检查肉眼不能检查的工件内部缺陷,也可以大大提高检测的准确性和可靠性。至于用什么方法来进行无损检测,这需根据工件的情况和检测的目的来确定。 那么什么又叫超声波呢?声波频率超过人耳听觉,频率比20千赫兹高的声波叫超声波。用于探伤的超声波,频率为0.4-25兆赫兹,其中用得最多的是1-5兆赫兹。利用声音来检测物体的好坏,这种方法早已被人们所采用。例如,用手拍拍西瓜听听是否熟了;医生敲敲病人的胸部,检验内脏是否正常;用手敲敲瓷碗,看看瓷碗是否坏了等等。但这些依靠人的听觉来判断声响的检测法,比声响法要客观和准确,而且也比较容易作出定量的表示。由于超声波探伤具有探测距离大,探伤装置体积小,重量轻,便于携带到现场探伤,检测速度快,而且探伤中只消耗耦合剂和磨损探头,总的检测费用较低等特点,目前建筑业市场主要采用此种方法进行检测。

工艺管道对接焊缝超声波检测

摘要:本文针对工艺管道对接焊缝的特点,对焊接方法、焊接位置及易产生的缺陷进行了分析,由于工艺管道对接焊缝壁厚范围大,又多是直管与直管、直管与弯头、法兰、阀门等管件对接,采用单面焊接双面成型工艺,这种特殊结构型式和焊接工艺,使超声波检测只能进行单面双侧扫查或单面单侧扫查;为了提高缺陷的检出率,对不同规格、不同结构的焊缝选择扫查面、探头数量、探头型号和探头尺寸应有针对性;根部缺陷的判定对仪器扫描线调节精度提出了较高要求;通过对典型缺陷的回波特征进行了分析;通过以上分析和采取的措施,能有效提高工艺管道对接焊缝超声波检测质量。 关键词:工艺管道对接焊缝超声波检测 Ultrasonic Test for the Process Piping Butt Weld LI Zhao-tai, WANG Cheng-sen, HUANG Zhi Nanjing Jinling Inspection Engineering Co.,Ltd Abstract: Considering the characteristics of the process piping butt weld, this article analyses the welding methods, the welding positions and the defects which are easily produced. As the range of thickness of the process piping butt weld is large, furthermore, the joints are almost among pipe fittings, such as straight pipes, elbows, flanges and valves, so we choose one formation welding. Due to the special structure and welding craft, UT only conducts single-sided bilateral scanning or single-sided unilateral scanning; in order to raise the defect inspection rate, we should choose scanning surface, probe quantity, models and size for different scales and structures of welding joints with pertinence. It puts forward higher requirement for the linear adjustable accuracy of apparatus scanning to judge the root defect. We analyses the characteristics of the waves of typical defects. By the analyses and measures above, it improves the test quality of the process piping butt weld effectively. Keywords: Process piping butt weld; Ultrasonic test 0 前言 石化装置工艺管道对接焊缝超声波检测具有一定的难度。早期的模拟超声波探伤机由于定位精度不高,对于根部缺陷的识别和判定存在较大难度,每次更换不同角度的探头,时间基线都要重新调节,非常不便,这为工艺管道对接焊缝推广超声波检测造成了很大的困难。近些年,超声波检测设备发生了巨大改变,且更新很快,数字式探伤机代替了模拟机,数字式探伤机较原先使用的模拟机具有显著的优点,首先,其定位精度高,定位精度可达0.1mm,为管道焊缝根部信号的判定提供了可靠依据;第二,可存贮多种探头参数及其距离波幅曲线,为现场采用多种角度的探头进行检测提供了方便,提高了不同角度缺陷的检测灵敏度,可方便的变换探头(角度),为辨识真、伪信号提供了方便;第三,可以存贮动态波形和缺陷包络线,并可作为电子文件存档备查。数字式超声波探伤机较好地解决了管道焊缝超声波探伤的难题。本文推荐管道焊缝探伤采用数字式超声波探伤仪。通过专业培训和严格考核,可以筛选出合格的管道对接焊缝超声波检测人员,完全能保证管道焊缝的超声波检测质量。 本文通过对超声波检测方法、扫查面、探头数量、探头型号和探头尺寸的控制、通过理论分析和实际验证,表明超声波检测能有效保证管道焊缝的检测质量。 超声波检测操作灵活方便,对厚壁管道检测灵敏度和检测效率均高于射线检测,成本低于射线检测,且对人体无害,是一种科学、环保的检测方法。 1 管道对接焊缝与容器对接焊缝的不同点

相关主题
文本预览
相关文档 最新文档