当前位置:文档之家› 第九章振动和波动基础9-7惠更斯原理波的衍射

第九章振动和波动基础9-7惠更斯原理波的衍射

第九章振动和波动基础9-7惠更斯原理波的衍射
第九章振动和波动基础9-7惠更斯原理波的衍射

时刻波面,波的传播方向空气玻璃

N'

O

B

2

09-8-驻波示意图.swf

相邻波腹间的距离为:2

2

1

k k x 相邻波节间的距离为:2

x 相邻波腹与波节间的距离为:

4

因此可用测量波腹间的距离,来确定波长。

,2,1,02

k k

x 波腹

,2,1,02

)

21( k k x

波节驻波通常利用入射波与反射波之间的叠加来产生。

09-8-驻波-音叉.swf

09-8-驻波-波密介质.swf

波密媒质

波疏媒质

09-8-驻波-波疏介质.swf

光波从光疏媒质入射到光密媒质而在分界面上反射时,反射点出现波节(有半波损失)。反之出现波腹。

如果入射波是光波:

折射率n 较大的媒质为光密媒质,n 较小的为光疏媒质

例题两波在同一细绳上传播,它们的方程分别为y 1=0.06 cos (x –4t ) y 2=0.06cos (x +4t )

(1)求各波的频率、波长、波速和传播方向

(2)求证细绳作驻波式振动,求节点和波腹的位置

解(1)波动方程的表达式为)

(2cos

x

t A y 将两列波的方程分别改写为

)

2

2(2cos 06.01x

t y )

2

2(2cos 06.02x

t y 比较可得:s

m v m Hz /422

第一列波沿x 轴正向传播,而第二列波沿x 轴负向传播

例题两波在同一细绳上传播,它们的方程分别为

观察者接受到的频率依赖于波源或观察者运动的现象,称为多普勒效应。

振动与波动习题与答案

振动与波动习题与答案 Coca-cola standardization office【ZZ5AB-ZZSYT-ZZ2C-ZZ682T-ZZT18】

第10章 振动与波动 一. 基本要求 1. 掌握简谐振动的基本特征,能建立弹簧振子、单摆作谐振动的微分方程。 2. 掌握振幅、周期、频率、相位等概念的物理意义。 3. 能根据初始条件写出一维谐振动的运动学方程,并能理解其物理意义。 4. 掌握描述谐振动的旋转矢量法,并用以分析和讨论有关的问题。 5. 理解同方向、同频率谐振动的合成规律以及合振幅最大和最小的条件。 6. 理解机械波产生的条件。 7. 掌握描述简谐波的各物理量的物理意义及其相互关系。 8. 了解波的能量传播特征及能流、能流密度等概念。 9. 理解惠更斯原理和波的叠加原理。掌握波的相干条件。能用相位差或波程差概念来分析和确定相干波叠加后振幅加强或减弱的条件。 10. 理解驻波形成的条件,了解驻波和行波的区别,了解半波损失。 二. 内容提要 1. 简谐振动的动力学特征 作谐振动的物体所受到的力为线性回复力,即 取系统的平衡位置为坐标原点,则简谐振动的动力学方程(即微分方程)为 2. 简谐振动的运动学特征 作谐振动的物体的位置坐标x 与时间t 成余弦(或正弦)函数关系,即 由它可导出物体的振动速度 )sin(?+ωω-=t A v 物体的振动加速度 )cos(?+ωω-=t A a 2 3. 振幅A 作谐振动的物体的最大位置坐标的绝对值,振幅的大小由初始条件确定,即 4. 周期与频率 作谐振动的物体完成一次全振动所需的时间T 称为周期,单位时间内完成的振动次数γ称为频率。周期与频率互为倒数,即 ν= 1T 或 T 1=ν 5. 角频率(也称圆频率)ω 作谐振动的物体在2π秒内完成振动的次数,它与周期、频率的关系为 ω π = 2T 或 πν=ω2 6. 相位和初相 谐振动方程中(?+ωt )项称为相位,它决定着作谐振动的物体的状态。t=0时的相位称为初相,它由谐振动的初始条件决定,即 应该注意,由此式算得的?在0~2π范围内有两个可能取值,须根据t=0时刻的速度方向进行合理取舍。

412-惠更斯-菲涅耳原理

412—惠更斯—菲涅耳原理 1. 选择题 1,根据惠更斯-菲涅耳原理,给定波阵面S上,每一面元dS发出的子波在观察点引起的光振动的振幅与以下哪些物理量相关: (A) 面元的面积dS。(B) 面元到观察点的距离。 (C) 面元dS对观察点的倾角。(D) 以上皆是。 [ ] 2,根据惠更斯-菲涅耳原理,给定波阵面S上,每一面元dS发出的子波在观察点引起的光振动的相位与以下哪些物理量相关: (A) 面元的面积dS。(B) 面元到观察点的距离。 (C) 面元dS对观察点的倾角。(D) 以上皆是。 [ ] 3,在研究衍射时,可按光源和所研究的点到障碍物的距离,将衍射分为菲涅耳衍射和夫琅和费衍射两类,其中夫琅和费衍射为: (A)光源到障碍物有限远,所考查点到障碍物无限远。(B) 光源到障碍物无限远,所考查点到障碍物有限远。 (C) 光源和所考察点的到障碍物的距离为无限远。(D) 光源和所考察的点到障碍物为有限远。 [ ] 4,在研究衍射时,可按光源和所研究的点到障碍物的距离,将衍射分为菲涅耳衍射和夫琅和费衍射两类,其中不是菲涅耳衍射为: (A) 光源和所考察的点到障碍物为有限远。(B) 光源和所考察点的到障碍物的距离为无限远。 (C)光源到障碍物有限远,所考查点到障碍物无限远。(D) 光源到障碍物无限远,所考查点到障碍物有限远。 [ ] 2. 判断题 1,在研究衍射时,是惠更斯首先引入子波的概念提出了惠更斯原理。 2,菲涅耳用子波相干叠加的思想补充了惠更斯原理,发展成了惠更斯-菲涅耳原理。 3,根据惠更斯-菲涅耳原理,衍射现象在本质上也是一种干涉现象。 4,惠更斯-菲涅耳原理的基本内容是:波阵面上各面积元所发出的子波在观察点P的相干叠加,决定了P点的合振动及光强.

高中物理选修3-4知识点整理

选 修3—4 一、知识网络 周期:g L T π2= 机械振动 简谐运动 物理量:振幅、周期、频率 运动规律 简谐运动图象 阻尼振动 受力特点 回复力:F= - kx 弹簧振子:F= - kx 单摆:x L mg F -= 受迫振动 共振 波的叠加 干涉 衍射 多普勒效应 特性 实例 声波,超声波及其应用 机械波 形成和传播特点 类型 横波 纵波 描述方法 波的图象 波的公式:vT =λ x=vt 电磁波 电磁波的发现:麦克斯韦电磁场理论:变化的磁场产生电场,变化的电场产生磁场→预言电磁波的存在 赫兹证实电磁波的存在 电磁振荡:周期性变化的电场能与磁场能周期性变化,周期和频率 电磁波的发射和接收 电磁波与信息化社会:电视、雷达等 电磁波谱:无线电波、红外线、可见光、紫外线、x 射线、ν射线

二、考点解析 考点80 简谐运动 简谐运动的表达式和图象 要求:I 1)如果质点所受的力与它偏离平衡位置位移的大小成正比,并且总是指向平衡位置,质点的运动就是简谐运动。 简谐运动的回复力:即F = – kx 注意:其中x 都是相对平衡位置的位移。 区分:某一位置的位移(相对平衡位置)和某一过程的位移(相对起点) ⑴回复力始终指向平衡位置,始终与位移方向相反 ⑵―k ‖对一般的简谐运动,k 只是一个比例系数,而不能理解为劲度系数 ⑶F 回=-kx 是证明物体是否做简谐运动的依据 2)简谐运动的表达式: ―x = A sin (ωt +φ)‖ 3)简谐运动的图象:描述振子离开平衡位置的位移随时间遵从正弦(余弦)函数的规律变化的,要求能将图象与恰当的模型对应分析。可根据简谐运动的图象的斜率判别速度的方向,注意在振幅处速度无方向。 A 、简谐运动(关于平衡位置)对称、相等 ①同一位置:速度大小相等、方向可同可不同,位移、回复力、加速度大小相等、方向相同. ②对称点:速度大小相等、方向可同可不同,位移、回复力、加速度大小相等、方向相反. 相对论简介 相对论的诞生:伽利略相对性原理 狭义相对论的两个基本假设:狭义相对性原理;光速不变原理 时间和空间的相对性:“同时”的相对性 长度的相对性: 20)(1c v l l -= 时间间隔的相对性:2 )(1c v t -?=?τ 相对论的时空观 狭义相对论的其他结论:相对论速度变换公式:21c v u v u u '+'= 相对论质量: 2 )(1c v m m -= 质能方程2mc E = 广义相对论简介:广义相对性原理;等效原理 广义相对论的几个结论:物质的引力使光线弯曲 引力场的存在使得空间不同位置的时间进程出现差别

冲击和振动

冲击和振动 作者: Jonas Steibert 文件名: Shock and Vibration Basic.doc

1. 什么是冲击和振动? 3 1.2 怎样保护产品以防受到冲击和振动?3 2. 何时冲击?3 2.1 产品易碎性的判定 3 2.2 产品可能遇到的情况判定 4 2.3 振动 5 3. 减震材料 6 3.1 多孔聚乙烯EPE 8 3.1.1 模压材料9 3.1.2 挤压材料9 3.2 多孔聚丙烯EPP 11 3.3 多孔聚苯乙烯EPS 12 3.4 聚亚安酯PU 13 3.5 纤维减震材料15 作者: Jonas Steibert 文件名: Shock and Vibration Basic.doc

1.什么是冲击和振动? 冲击和振动指的是一种环境,在这种环境下产品处于运输当中,或处于包装箱的装卸过程中。 1.2 怎样保护产品以防受到冲击和振动? 为了保护产品,可在冲击和振动有发生可能性的几个地方采取措施。但为了减少冲击和振动发生的可能性,还有些问题需要考虑。产品是否易碎?产品价值是多少?产品是怎样运输的?产品的体积估计有多大?这些都是在选择包装材料前需要考虑的问题。 2. 何时冲击? 当产品的包装箱突然以某种方式掉落,冲击就会发生。大多数时间冲击都发生在意外事件中,但冲击也会在列车更换装运车厢或产品/包装箱的野蛮装卸过程中发生。 2.1 产品易碎性的判定 确定产品需要多大减震量的第一步是确定产品自身所能承受的机械冲击量,对于这一判定有一些常用术语,其中“易碎性”和“G因数”是最常用的。 易碎性通常用单位“G”表示,表明产品在不被损坏的条件下所能承受的最大负加速度。产品越易碎,其G因数越小。 [ G是加速度的单位,其值等于重力加速度:1g=9.81m/s2 。 负加速度是“负的加速度”,指在制动,减速到0,物体下落撞击地面时。 抗冲击垫物作用是通过压缩,延长速度v(m/s)降低的时间t (s),从而减小负加速度a (m/s2):A= v / t 给定质量m(kg)所承受的负加速度a (m/s2) 越小,产品所受的撞击力F (N)就越小: F= m * a] 理论上,易碎性的判定是将产品置于一系列剧烈度递增的冲击中(负加速度)以找出足以破坏产品的最小冲击力。产品在不被损坏条件下所能承受的最大负加速度,即为产品的G因数。 作者: Jonas Steibert 文件名: Shock and Vibration Basic.doc

机械振动理论基础及其应用

旋转机械振动与故障诊断研究综述 丄、八 1.前言 工业生产离不开回转机械,随着装置规模不断扩大,越来越多的高速回转机械应用于工业生产,诸如高速离心压缩机、汽轮机发电机组。动态失稳造成的重大恶性事故屡见不鲜。急剧上升的振动可在几十秒之内造成机组解体, 甚至祸及厂房,造成巨大的经济损失和人员伤亡。此外,机械振动可能降低设备机械性能,加速机械零部件的磨损,发出的噪声损害操作者的健康。但是振动也能合理运用,如工业上常用的振动筛、振动破碎等都是振动的有效利用。工程技术人员必须认真对待机械振动问题,当机组产生有害的振动时,及时分析原因,坚持用合理的振动测试标准,采取科学的防治措施。 2.旋转机械振动标准 旋转机械分类: I类:为固定的小机器或固定在整机上的小电机,功率小于15KW U类:为没有专用基础的中型机器,功率为15~75KW刚性安装在专用基础上功率小于300KW的机器。 川类:为刚性或重型基础上的大型旋转机械,如透平发电机组。 W类:为轻型结构基础上的大型旋转机械,如透平发电机组。 机械振动评价等级: 好:振动在良好限值以下,认为振动状态良好。 满意:振动在良好限值和报警值之间,认为机组振动状态是可接受的(合格),可长期运行。 不满意:振动在报警限值和停机限值之间,机组可短期运行,但必须加强监测并采 取措施。 不允许:振动超过停机限值,应立即停机。 3.振动产生的原因 旋转机械振动的产生主要有以下四个方面原因,转子不平衡,共振,转子不对中和

机械故障。 4.旋转机械振动故障诊断 4.1 转子不平衡振动的故障特征 当发生不平衡振动时,其故障特征主要表现在如下方面: 1 )不平衡故障主要引起转子或轴承径向振动,在转子径向测点上得到的频谱图, 转速频率成分具有突出的峰值。 2 )单纯的不平衡振动,转速频率的高次谐波幅值很低,因此在时域上的波形是一个正弦波。 3 )转子振幅对转速变化很敏感,转速下降,振幅将明显下降。 4 )转子的轴心轨迹基本上为一个圆或椭圆,这意味着置于转轴同一截面上相互垂直的两个探头,其信号相位差接近90°。 4.2 旋转机械振动模糊诊断 4.2.1 振动模糊诊断基本原理 振动反映了系统状态及变化规律的主要信息,统计资料表明:机械设备的故障有67 % 左右是由于振动引起的,并且能从振动和振动辐射出的噪声反映出来。回转机械的振动信息尤其明显,且振动诊断具有快速、简便、准确和在线诊断等一系列优点,所以振动诊断法是旋转机械状态识别和故障诊断的最有效、最常用的方法。 但是,由于机械系统本身的复杂性以及所摄取的振动信号强烈的模糊性,使故障之间没有清晰的界限,这时利用传统的振动频谱分析,对一个故障可能有多个征兆来表现,一个征兆也可能有多个故障原因的复杂现象,往往难定两者的对应关系进行指导维修。振动模糊法,将模糊数学与振动诊断相结合,利用模糊综合评判技术,较好地处理了回转机械故障的不确定性问题。 4.2.2 旋转机械振动模糊诊断法的实现 隶属函数的确定

振动试验理论基础与方法培训

奥 申 检 测 振动试验理论基础与方法培训 主讲人:洪城明 上海奥申检测科技有限公司 培训目的: (1)基本了解振动试验相关的基础理论(2)掌握理解振动试验相关的核心理论 (3)了解振动试验设备结构、功能,掌握其主要参数范围 (4)了解振动试验传感器关键参数、掌握核查方法与使用注意点(5)理解并掌握正弦振动、随机振动的试验方法(6)理解并掌握冲击试验方法 (7)了解夹具要求、开发验证过程,掌握共振搜寻确认方法(8)掌握GMW17010对零件振动试验的要求、流程和方法

奥 申 检 测 1.1振动试验目的 在实验室内模拟一连串实际的振动现象,测试产品在寿命周期中,是否能承受运输、储存或使用过程的振动环境的考验。 1.2应用 (1)耐久测试——获得临界使用条件,确定产品设计和功能的使用边界、制定要求标准。 (2)质控测试——考核产品耐振动性能是否达标、提前筛检出不良品,确认质量和提升产品的可靠性。 (3)失效分析——模拟失效环境,分析失效模式,助力改进。 1.3测试原理 通过振动硬件(振动台、夹具、控制器、传感器),按照目标振动条件输入振动参数,对目标施加外部振动激励,目标产生振动响应,通过采集和分析响应信号,分析目标振动状态和耐振性。 2测试硬件 2.1振动试验台 2.1.1分类 振动试验设备分机械振动试验台、电液振动试验台、电动振动试验台、模拟汽车运输试验台。 (1) 机械式振动试验台:适宜于低频定振试验或低频定位移扫频试验。 (2) 电液式振动试验台:适宜于低频定振试验或中低频扫频试验及随机试验和冲击实验。 (3) 电动式振动试验台:适宜于任何形式的给定信号的振动及冲击试验。 (4) 模拟汽车运输试验台:可代替实际跑车试验 2.1.2电动振动台结构(振动台-振动发生器、控制器、功放、冷却器) 2.1.3电动振动台原理 励磁线圈如图示2-2在振动台台体内建立磁场,励磁线圈与直流电源相连,在环行气隙里产生一个高磁通量。动圈部件,包括台面、骨架和驱动线圈,悬挂在振动台的环行气隙里,当交流电流通过驱动线圈时,电磁力会在驱动线圈的绕组上产生,使得台面产生向上和向下的往复移动,如图示2-2中双向箭头处显示。台面的移动量取决于振动控制器输出的驱动信号的大小和频率以及扩展台面(如果有的话)的质量、所加的负载质量和台面悬挂系统的刚度。

大学物理题库-振动与波动汇总

振动与波动题库 一、选择题(每题3分) 1、当质点以频率ν 作简谐振动时,它的动能的变化频率为( ) (A ) 2v (B )v (C )v 2 (D )v 4 2、一质点沿x 轴作简谐振动,振幅为cm 12,周期为s 2。当0=t 时, 位移为cm 6,且向x 轴正方向运动。则振动表达式为( ) (A) ) (3cos 12.0π π- =t x (B ) ) (3cos 12.0π π+=t x (C ) ) (32cos 12.0π π- =t x (D ) ) (32cos 12.0π π+ =t x 3、 有一弹簧振子,总能量为E ,如果简谐振动的振幅增加为原来的两倍,重物的质量增加为原来的四倍,则它的总能量变为 ( ) (A )2E (B )4E (C )E /2 (D )E /4 4、机械波的表达式为()()m π06.0π6cos 05.0x t y +=,则 ( ) (A) 波长为100 m (B) 波速为10 m·s-1 (C) 周期为1/3 s (D) 波沿x 轴正方向传播 5、两分振动方程分别为x 1=3cos (50πt+π/4) ㎝ 和x 2=4cos (50πt+3π/4)㎝,则它们的合振动的振幅为( ) (A) 1㎝ (B )3㎝ (C )5 ㎝ (D )7 ㎝ 6、一平面简谐波,波速为 μ=5 cm/s ,设t= 3 s 时刻的 波形如图所示,则x=0处的质点的振动方程为 ( ) (A) y=2×10- 2cos (πt/2-π/2) (m) (B) y=2×10- 2cos (πt + π) (m) (C) y=2×10- 2cos(πt/2+π/2) (m) (D) y=2×10- 2cos (πt -3π/2) (m) 7、一平面简谐波,沿X 轴负方向 传播。x=0处的质点 的振动曲线如图所示,若波函数用余弦函数表示,则该波的初位相为( ) (A )0 (B )π (C) π /2 (D) - π /2 8、有一单摆,摆长m 0.1=l ,小球质量g 100=m 。设小球的运动可看作筒谐振动,则该振动的周期为( ) (A) 2π (B )32π (C )102π (D )52π 9、一弹簧振子在光滑的水平面上做简谐振动时,弹性力在半个周期内所做的功为 [ ] (A) kA 2 (B )kA 2 /2 (C )kA 2 /4 (D )0

振动与波动(习题与答案)

第10章振动与波动 一.基本要求 1. 掌握简谐振动的基本特征,能建立弹簧振子、单摆作谐振动的微分方程。 2. 掌握振幅、周期、频率、相位等概念的物理意义。 3. 能根据初始条件写出一维谐振动的运动学方程,并能理解其物理意义。 4. 掌握描述谐振动的旋转矢量法,并用以分析和讨论有关的问题。 5. 理解同方向、同频率谐振动的合成规律以及合振幅最大和最小的条件。 6. 理解机械波产生的条件。 7. 掌握描述简谐波的各物理量的物理意义及其相互关系。 8. 了解波的能量传播特征及能流、能流密度等概念。 9. 理解惠更斯原理和波的叠加原理。掌握波的相干条件。能用相位差或波程差概念来分析和确定相干波叠加后振幅加强或减弱的条件。 10. 理解驻波形成的条件,了解驻波和行波的区别,了解半波损失。 二. 内容提要 1. 简谐振动的动力学特征作谐振动的物体所受到的力为线性回复力,即 取系统的平衡位置为坐标原点,则简谐振动的动力学方程(即微分方程)为 2. 简谐振动的运动学特征作谐振动的物体的位置坐标x与时间t成余弦(或正弦)函数关系,即 由它可导出物体的振动速度) =t A v - ω + ω sin(? 物体的振动加速度) =t A a2 cos(? - + ω ω 3. 振幅A 作谐振动的物体的最大位置坐标的绝对值,振幅的大小由初始条件

确定,即 4. 周期与频率 作谐振动的物体完成一次全振动所需的时间T 称为周期,单位时间内完成的振动次数γ称为频率。周期与频率互为倒数,即 ν = 1T 或 T 1=ν 5. 角频率(也称圆频率)ω 作谐振动的物体在2π秒内完成振动的次数,它与周期、频率的关系为 ω π=2T 或 πν=ω2 6. 相位和初相 谐振动方程中(?+ωt )项称为相位,它决定着作谐振动的物体的状态。t=0时的相位称为初相,它由谐振动的初始条件决定,即 应该注意,由此式算得的?在0~2π范围内有两个可能取值,须根据t=0时刻的速度方向进行合理取舍。 7. 旋转矢量法 作逆时针匀速率转动的矢量,其长度等于谐振动的振幅A ,其角速度等于谐振动的角频率ω,且t=0时,它与x 轴的夹角为谐振动的初相?,t=t 时刻它与x 轴的夹角为谐振动的相位?ω+t 。旋转矢量A 的末端在x 轴上的投影点 的运动代表着质点的谐振动。 8. 简谐振动的能量 作谐振动的系统具有动能和势能,其 动能 )(sin ?+ωω==t A m m E k 22222 12 1v 势能 )(cos ?+ω==t kA kx E p 2222 12 1 机械能 22 1 kA E E E p k =+= 9. 两个具有同方向、同频率的简谐振动的合成 其结果仍为一同频率的简谐振动,合振动的振幅 初相 2 2112211?+??+?= ?cos cos sin sin tan A A A A (1)当两个简谐振动的相差),,,( 210212±±=π=?-?k k 时,合振动振幅最大,为 21A A +,合振动的初相为1?或2?。

机械振动理论基础及其应用(张).

机车传动轴振动分析与仿真优化Vibration Analysis of Commercial Vehicle Driveline 摘要:机车传动轴的振动及噪声直接影响了整车传动的平稳性与乘坐的舒适性,甚至影响到整车的可靠性。作为商用车制造厂,必须对传动轴的振动情况进行研究并对传动轴系进行合理的布置与设计,从根本上控制产生振动与噪声的因素。为了尽快解决某车型传动系振动带来的汽车传动轴中间支承横梁开裂的问题,本文应用了国内外的一些研究成果,从理论和试验两方面分析了某重型机车传动系振动的原因和机理,提出解决措施,并对传动系进行了优化设计。同时,本文还从系统论的观点出发,对传动系振动问题寻求最优解决方案。 关键词:传动轴系振动分析仿真优化 Abstract:The NVH of commercial-vehicle driveline directly affects easiness andsafety of the whole vehicle.In order to reduce the vibration and noise,it isnecessary for the vehicle manufacture to research the NVH of driveline and tocarry out rational layout and design to the driveline which is the fundamentalways of all.In this paper,some research results of the domestic and foreign havebeen applied to analyze the vibration of driveline theoretically andexperimentally.Furthermore,the vehicle chassis intermediate mounting crossmember abruption problem due to the vibration of driveline has been resolvedby optimizing the driveline layout.Based on system theory,this thesis givesout the optimal solution to the driveline vibration. Keywords: Vehicle Drive line;Vibration Analysis;Optimization 第一章引言 1.1课题背景和实际意义 机车是一个复杂的多自由度“质量—刚度—阻尼”振动系统,是由多个具有固有振动特性的子系统组成,如车身的垂直振动、纵向角振动和侧倾振动、发动机曲轴

惠更斯-菲涅耳原理

HUYGENS-FRESNEL PRINCIPLE 惠更斯-菲涅耳原理 目录 The One---The Origin of the Huygens-Fresnel principle The Two ---The Essence of the Huygens-Fresnel principle The Three---The Conclusion of the Huygens-Fresnel principle 一、惠更斯-菲涅耳原理的起源 二、惠更斯-菲涅耳原理的本质 三、惠更斯-菲涅耳原理的结论 The One---The Origin of the Huygens-Fresnel principle 一、惠更斯-菲涅耳原理的起源 The penetration of light waves into the region of a geometrical shadow can be explained with the aid of Huygens'principle.This principle,however,gives no information on the amplitude and ,consequently,on the intensity of waves propagating in different directions. The French physicist Augustin Fresnel (1788~1827) supplemented Huygens'principle with the concept of the interference of secondary waves.Taking into account the amplitudes and phases of the secondary waves makes it possible to find the amplitude of the resultant wave for any point of space .Huygens'principle developed in this way was named the Huygens-Fresnel principle 光波进入几何阴影区的渗透可以用惠更斯原理.这个原理虽然没有给出振幅信息.因此,对在不同方向上传播的波的强度。法国物理学家奥古斯丁-菲涅耳(1788 ~ 1827)补充了惠更斯原理的次波的干涉的概念。考虑到振幅和二次波的相位使得有可能找到任何点的空间所得到的波的振幅。惠更斯原理以这种方式发展被命名为惠更斯-菲涅耳原理。 The Two ---The Essence of the Huygens-Fresnel principle 二、惠更斯-菲涅耳原理的本质 According to the Huygens-Fresnel principle .Every element of wave surface S (Fig.1.1) is the source of a secondary spherical wave whose amplitude is proportional to the size of element dS.The amplitude of a spherical wave diminishes with the distance r from its source according to the law 1/r.Consequently,the oscillation rives from each section dS of a wave surface at point in front of this surface . Is the the phase of the oscillation where wave surface S is ,k is the wave number ,r isthe distance from surface element dS topoint Parrives from each section dS of a wave surface at point P in front of this surface . The factor is determined by theamplitude on the light oscillation at the location of dS .The coeffcient ()00cos a kr wt r d a K dE s +-=0a ?

机械振动理论基础及其应用

旋转机械振动与故障诊断研究综述 1.前言 工业生产离不开回转机械,随着装置规模不断扩大,越来越多的高速回转机械应用于工业生产,诸如高速离心压缩机、汽轮机发电机组。动态失稳造成的重大恶性事故屡见不鲜。急剧上升的振动可在几十秒之内造成机组解体,甚至祸及厂房,造成巨大的经济损失和人员伤亡。此外,机械振动可能降低设备机械性能,加速机械零部件的磨损,发出的噪声损害操作者的健康。但是振动也能合理运用,如工业上常用的振动筛、振动破碎等都是振动的有效利用。工程技术人员必须认真对待机械振动问题,当机组产生有害的振动时,及时分析原因,坚持用合理的振动测试标准,采取科学的防治措施。 2.旋转机械振动标准 ●旋转机械分类: Ⅰ类:为固定的小机器或固定在整机上的小电机,功率小于15KW。 Ⅱ类:为没有专用基础的中型机器,功率为15~75KW。刚性安装在专用基础上功率小于300KW的机器。 Ⅲ类:为刚性或重型基础上的大型旋转机械,如透平发电机组。 Ⅳ类:为轻型结构基础上的大型旋转机械,如透平发电机组。 ●机械振动评价等级: 好:振动在良好限值以下,认为振动状态良好。 满意:振动在良好限值和报警值之间,认为机组振动状态是可接受的(合格),可长期运行。 不满意:振动在报警限值和停机限值之间,机组可短期运行,但必须加强监测并采取措施。 不允许:振动超过停机限值,应立即停机。 3.振动产生的原因 旋转机械振动的产生主要有以下四个方面原因,转子不平衡,共振,转子不对中和

机械故障。 4.旋转机械振动故障诊断 4.1转子不平衡振动的故障特征 当发生不平衡振动时,其故障特征主要表现在如下方面: 1 )不平衡故障主要引起转子或轴承径向振动,在转子径向测点上得到的频谱图, 转速频率成分具有突出的峰值。 2 )单纯的不平衡振动,转速频率的高次谐波幅值很低,因此在时域上的波形是一个正弦波。 3 )转子振幅对转速变化很敏感,转速下降,振幅将明显下降。 4 )转子的轴心轨迹基本上为一个圆或椭圆,这意味着置于转轴同一截面上相互垂直的两个探头,其信号相位差接近90°。 4.2旋转机械振动模糊诊断 4.2.1 振动模糊诊断基本原理 振动反映了系统状态及变化规律的主要信息,统计资料表明:机械设备的故障有67 % 左右是由于振动引起的,并且能从振动和振动辐射出的噪声反映出来。回转机械的振动信息尤其明显,且振动诊断具有快速、简便、准确和在线诊断等一系列优点,所以振动诊断法是旋转机械状态识别和故障诊断的最有效、最常用的方法。 但是,由于机械系统本身的复杂性以及所摄取的振动信号强烈的模糊性,使故障之间没有清晰的界限,这时利用传统的振动频谱分析,对一个故障可能有多个征兆来表现,一个征兆也可能有多个故障原因的复杂现象,往往难定两者的对应关系进行指导维修。振动模糊法,将模糊数学与振动诊断相结合,利用模糊综合评判技术,较好地处理了回转机械故障的不确定性问题。 4.2.2旋转机械振动模糊诊断法的实现 隶属函数的确定

§3—2惠更斯-菲涅耳原理

§3—2惠更斯-菲涅耳原理
一、惠更斯-菲涅耳原理
1、惠更斯原理
惠更斯原理的表述:在波动传播过程中的任一时刻,波面上的每一点都可以 看作是一个新的波源,各自发射球面子波。所有子波的 包络面,形成下一时刻的新波面。两个波面的空间间隔 等于波的传播速度与传播时间间隔的乘积。
光的直线传播定律的解释:
平面波的直线传播
球面波的直线传播
惠更斯原理与波动的直线传播

衍射现象的定性解释:
光波的衍射

2、惠更斯-菲涅耳原理
(1) 惠更斯原理的局限性
没有涉及波动的时空周期特性,即波长、振幅、相位等。虽然可以用 于确定光的传播方向,但无助于确定沿不同方向传播的光波的振幅和相位 大小。
(2) 惠更斯-菲涅耳原理
菲涅耳对惠更斯原理的贡献:将不同子波的干涉叠加引入惠更斯原
理,并赋予其以相应的相位和振幅表达式。
ev
ΔS θ r P
*
S:t时刻波阵面 ΔS:波阵面上面元
S
(子波波源)

Σ

θ0 n
θ
S
RQ
r
惠更斯-菲涅耳原理
S:光源
Σ :光源S发出的光波的任一波面
dΣ :波面Σ上位于Q点的面元
P
n:面元d Σ 的法线方向单位矢量
θ0:光源S到点Q连线与面元法线夹角
θ:Q点到场点P的连线与面元法线夹角
惠更斯-菲涅耳原理的表述:
波面Σ 上的每个面元dΣ 都可以看作是新的波源,它们均发射球面子
波,在与波面相距为r处的P点的光振动ê0(P),等于所有球面子波在该点的 光振动ê0(P)的相干叠加:
E~(P) = ∫∫ d E~(P) Σ

机械振动理论基础及应用

东北大学 研究生考试试卷 考试科目:机械振动理论基础及应用 课程编号: 阅卷人: 考试日期: 2012.06 姓名:黄孙进 学号: 1100487 注意事项 1.考前研究生将上述项目填写清楚 2.字迹要清楚,保持卷面清洁 3.交卷时请将本试卷和题签一起上交 东北大学研究生

摘要 机械振动理论是研究机械振动的理论、技术及设备的一门的学科。它是机械振动学、振动利用工程等的理论基础。其理论应用在人类生活与生产等各个方面均获得广泛应用,并已扩展到生物工程与社会经济等众多领域,目前它日趋完善,由于该学科所涉及的有关技术与工农业生产及人类生活联系十分密切,已正真成为人类生产活动与生活过程中一种不可缺少的理论与必要的机制。 本文主要简要的介绍了如下几方面: (1) 介绍了机械振动的基本理论,振动的简史,振动的模型和振动的分类。 (2) 机械振动理论基础在新兴课程振动利用工程中的应用,以及非线性动力学在机械振动中的应用。 (3) 机械振动的实际应用。 关键词:机械振动理论基础;非线性振动;振动利用;机械振动的应用

目录 摘要 ...................................................................... I 绪论 (1) 第1章机械振动简介 (2) 1.1 机械振动发展简史 (2) 1.2 机械振动系统的模型 (3) 1.3 机械振动的种类 (4) 第二章机械振动理论基础衍生分支学科—振动利用工程 (6) 2.1“振动利用工程”的概念和理论框架 (6) 2.1.1提出了“振动利用工程”的概念 (6) 2.1.2构建了该学科的理论框架 (6) 2.1.3完善了该学科某些分支的理论 (7) 2.2振动利用工程中的若干新工艺理论与技术 (7) 2.3非线性动力学理论在振动机械中的应用 (8) 2.3.1提出了惯性力项为非线性力学新模型 (8) 2.3.2提出了不对称的软式的分段线性的非线性的力学模型 (10) 2.3.3构建了带有间隙的滞回非线性的力学模型 (12) 2.3.4构建了振动机分段慢变与双参数慢变的非线性动力学模型 (15) 2.3.5研究了大长度振动机弹性弯曲的理论 (15) 第三章机械振动应用状况 (16) 3.1振动时效 (16) 3.2利用微振动的台阵记录研究浅部S波速度结构。 (16) 展望 (21)

光的衍射及其应用

光的衍射及其应用 摘要:光在传播的过程中能绕过障碍物边缘,偏离直线传播,而进入几何阴影,并出现光强分布不均匀的现象称为光的衍射。光波的波长比声波的波长短很多,这也是为什么人们最先意识到声波的衍射而往往把光波的衍射当成直线的传播,直到1814年,法国物理学家费涅尔注意到光在传播过程中,遇到障碍物,并且障碍物的线度和光的波长可以比拟时,就会出现偏离原来直线传播的路径,在障碍物背后本该出现阴影的地方出现亮纹,而在本该亮的地方出现暗纹的现象,才有了今天的光的衍射并加以研究。 关键词:费涅尔,惠更斯原理,惠更斯—费涅尔原理,柏松亮点,夫琅和费单缝衍射。 一、常见衍射实验的分析。 最常见的光的衍射实验就是单缝衍射和圆孔衍射两种。 单缝衍射即是用一束平行光射到单缝上,在紧贴单缝后放一面凸透镜,注意单缝要很窄,因为要保证光波的波长与狭缝的宽度可比拟,然后在透镜的焦点出放一白板,则可以看到明暗相间的的条纹。这就是光的衍射。 圆孔衍射就是将单缝换成圆孔,当然一样要保证圆孔的直径大小与光的波长可比拟,则可以在物板上看到中间是亮斑而周围是亮环的图形。 上面两个实验我们在高中的就接触过,但没有在单缝或是圆孔后面加一个透镜,而现在,将圆孔后的透镜移走,则可以看到明暗相间的同心圆。 而如果把圆孔换成圆板,当圆板的大小远远大于光的波长时,只能看见物屏上的圆形阴影,而渐渐减小圆环的大小,则可以在圆板大小与光波波长可比拟时看到“柏松亮点”,即在圆形阴影中心的亮点,而圆形的阴影周围是明暗相间的同心圆。 总结以上实验可知:光波在哪个方向受限制,就往哪个方向衍射;当障碍物的大小与光波的波长可比拟时,光的衍射现象最明显;光具有波动性(类比声波)。 如果说上述的实验是光的衍射实验的入门,那么夫琅和费单缝衍射则是光的衍射实验中最常见的仪器。它与之前用的仪器最大的不同就是光源和衍射场到物屏的距离都是无限远,听起来向无法实现似的,但这实质上只是想把入射的光线看成是平行光且在无限远处相干叠加兵形成衍射。其实验装置是一束平行光射在小圆孔s上,再经凸透镜变成,垂直于单缝的光线,光线射到单缝上,根据惠更斯—费涅尔原理,单缝上每一个点都是子波波源,发出衍射波,它们相干叠加形成明暗相间的衍射图样,也

机械振动理论及工程应用

机械振动学学习报告 摘要:简述了机械振动学的发展历程,振动利用中的若干新工艺理论与技术,振动机械及其相关技术的应用与发展,介绍了振动在人类生活工作中起到了非常重要的作用。通过对具体实例——单电机振动给料机的计算分析,得出机械振动对机器工作性能的影响。并介绍了单自由度、多自由度的线性振动系统振动的基本理论和隔振的基本原理。关键词:机械振动;振动给料机;线性振动系统 Abstract:This paper describes the development course of study of mechanical vibration and the utilization of some new technology theory and technology. The vibration has played a very important role in human life and work. By analyzing the practical example-single motor , vibrating feeder calculation and analysis of mechanical vibration machine has influence on the performance. And introduced the single-degree-of-freedom, multi-freedom system vibration of the linear vibration of the basic theory and the basic principle of vibration isolation. Keywords:Mechanical vibration; Vibrates the feeding machine; Linear vibration system 第一章绪论 1.1振动振动学的发展 振动振动学科是20世纪后半期逐渐形成和发展起来的一门新学科。目前正处在迅速发展过程中,由于该学科所涉及的有关技术与工业生产及人类生活联系十分密切,它能为社会创造重大的经济效益和社会效益,能为人类生活提供极大的方便和良好的服务,目前已成为人类生产活动与生活过程中一种不可缺少的手段与必要的机制。国内以闻邦椿院士为首的科研团队一直以极大的精力从事这一领域的研究,在振动利用工程这一学科的多个领域取得了一系列的研究成果,促进了该学科的形成与发展。自然界和人类社会中的某一个量随时间或大或小的变化即称为振动。振动是物质世界运动的一种基本形式,物质世界中的每一个物体及其中的每一个分子都始终处于振动之中。毫无例外,人类自身的每一器官也每时每刻都处在振动之中,例如,心脏的搏动、血液的循环、肺部的张缩呼吸、脑细胞的思维以及耳膜的振动和声带的振动等,前面所列举的这些振

振动与冲击 JOURNAL OF VIBRATION AND SHOCK

第26卷第4期 Vol. 26 No. 4 2007 振 动与冲击 JOURNAL OF VIBRATION AND SHOCK 运用小波分析方法进行结构模态参数识别 朱宏平,翁顺 (1.华中科技大学土木工程与力学学院,武汉430074) 摘要结构的模态参数反映了结构自身特性,是基于动态特性的结构损伤识别和健康评估的重要因子。本文首 先介绍了环境激励下基于小波分析的模态参数识别方法,针对土木工程结构的前几阶自振频率处于低频区域以及环境激 励下结构响应信号信噪比很低的特点,着重论述了采用小波方法抑制原始测量信号中的高频成分(即噪音),从而突出结 构低频特性的降噪处理方法的基本原理。通过比较传统傅里叶变换、短时傅里叶变换和小波变换三种方法对一实际高层 建筑结构现场测试信号的处理结果以及有限元分析结果,认为小波分析方法可以更精确、更有效地识别工程结构的模态 参数。 关键词:傅里叶变换,短时傅里叶变换,小波变换,降噪,模态参数 中图分类号:TN911.6; TU311.4 文献标识码:A 在高层建筑抗震、抗风、健康监测及损伤诊断等研 究中,结构模态参数是非常重要的设计参数之一,基于 环境激励的模态参数识别方法越来越受到人们的重 视[1] 。目前国内外在结构模态参数识别方面的研究方 法有很多,主要可以分为:①频域方法:它是建立在频 响函数的理论基础上的,频域法的最大优点是利用频 域平均技术,最大限度地抑制了噪声影响,使模态定阶 问题容易解决,但也存在着如功率泄露、频率混叠、离 线分析等问题)②时域方法:是直接利用响应的时域信 号进行模态参数识别。与频域法相比,时域法对于分 离密集模态有更好的效果;③小波分析法[2( :比短时傅 里叶变换具有更好的时频窗口特性,克服了傅里叶变 换中时-频分辨率恒定的弱点,因此它能在具有足够 时间分辨率的前提下分析信号中的短时高频成分,又 能在很好的频率分辨率下估计信号中的低频。④基于 H HT 变换的非平稳信号的处理方法:它以瞬时频率 为基本量,以固有模态信号为基本信号,用于非平稳 信号处理;⑤基于模拟进化的模态参数识别的方法: 该方法实现了基于达尔文进化理论的整体优化算法 用于识别线性振动结构的模态参数。基于模拟进化 的模态参数识别方法用于测试噪音是很可靠的,但该 方法用于识别更复杂模态的现实问题上,还需要更进 一步研究。 本文针对实际工程,对环境激励下的高层建筑振 动响应信号采用小波方法进行分析[3 ( ,有效地识别高 层建筑固 有模态参数,并同传统傅里叶变换、短时傅里 叶变换的结果相比较,证实了小波分析方法在处理随 基金项目:国家自然科学基金(50378041)和教育部新世纪优秀人才基金 (2004年)资助 收稿日期:2006 -06 -21修改稿收到日期:2006 -07 -27 第一作者朱宏平博士,教授,博士生导师,1965年11月生 机信号方面的优 越性。由于环境激励下的振动测试信 号信噪比低[4(,对信号分析造成一定的干扰,本文用小 波分析方法对测试信号进行降噪处理,结果表明小波 方法能有效抑制噪音,还原真实信号,提取更多有用 信息。 1小波分析方法基本理论 傅里叶变换的实质是把波形分解成许多不同频率 正弦 波的叠加,是傅里叶级数在连续情况下的推广,函 数!") "L 1 ($)的傅里叶变换为: %(!) = fV ! /( ( D ⑴ J — A 短时傅里叶变换在傅里叶分析基础上引入时域信 息的最初尝试,它的基本思想是:把信号划分成许多小 的时间间隔,用傅里叶变换分析每一个时间间隔,以便 确定该时间间隔存在的频率。以高斯函数g a (/)= 为窗的短时傅里叶变换可定义为[;( :

相关主题
文本预览
相关文档 最新文档