当前位置:文档之家› 8KVA单相逆变器设计与仿真

8KVA单相逆变器设计与仿真

8KVA单相逆变器设计与仿真
8KVA单相逆变器设计与仿真

8KVA单相逆变器设计与仿真

姓名:

班级:

学号:

同组同学:

一.设计

1.1技术要求

1、输出电压V0(相):220V

2、输出功率P0:8KVA

3、输出频率f :60HZ

4、过载倍数:2倍

5、负载功率因数cos φ:0.8-1

1.2单相逆变电路

因为输出功率为8KVA ,所以选择单相全桥逆变电路。单相全桥逆变电路,如图1所示。

图1 单相全桥逆变电路

1.3负载参数计算

负载输出部分电路图,如图2所示

图2 负载输出电路

1.负载电阻最小值计算

当cos φ=1时,负载电阻计算计算公式为公式(3-1);当cos φ=0.8时,负载电阻计算公式为公式(3-2)

Ω===

05.680002202

20P V R (3-1)

Ω=?==5625.78.08000220cos 0

202?S V R (3-2) 2.负载电感最小值计算

负载无功功率1L Q 为

KVA S Q L 8145.437sin 8sin 01=?==o

? (3-3)

负载电感感抗1L Z 为 Ω===053.105

.481422021201L L Q V Z (3-4) 负载电感L1为 mH 667.2660

2053

.10f 211=?==

ππL Z L (3-5) 1.4滤波电容计算

滤波电容与负载并联,对逆变电路输出电流影响较大,所以设计滤波电路时选

择滤波电容取滤波电容容抗等于负载电感感抗的2倍

滤波电容容抗C Z 为

Ω=?==106.20053.10221L C Z Z (4-1) 滤波电容C 为

uF fZ C L 997.131106

.206021

211=??==

ππ (4-2)

实际取值130uF,由13个10uF 的电容构成 电容阻抗实际值 1C Z 为 Ω=???==

-4148.2010

1306021

216

1ππfC Z C (4-3) 1.5无隔离变压器时,逆变器输出电流有效值

长期最大电流(长)O I 为 A =+=

9268.37)4148

.20220()05.6220(

2

2(长)O I (5-1)

短期最大电流短)(0I 为 A =+?=5214.73)4148

.20220()05.62202(

2

2(短)O I (5-2)

1.6无隔离变压器时,逆变器输出电流峰值

长期电流峰值长)(OP I 为 A =?==6366.539268.3722((长)长)O OP I I (6-1)

短期电流峰值短)(OP I 为 A =?==

975.1035214.7322((短)短)O OP I I (6-2)

1.7滤波电感计算

1.滤波电感的作用

1).减小输出电压的谐波电压 2).保证滤波电压的传输

2.设计滤波器时应该注意以下问题

1).滤波电路固有频率应远离输出电压中可能出现的谐波频率(例60倍频) 2).LC 2ω应该远小于1(即12<

R

L

ω应较小 根据设计滤波器时要注意的问题要求而选择6.1=L ω 滤波电感L 为 mH f L 246.460

26

.126.1=?==ππ (7-1) 实际取值为5mH 所以滤波电感感抗L Z 为

Ω=???===-884.110560223

ππωfL L Z L (7-2)

滤波电路的固有频率'f 为 HZ LC

f 511.19710

13010521

216

3

'=???=

=

--ππ (7-3)

10923.02<<=LC ω满足要求

1.8逆变电路输出电压

滤波及负载部分电路图,如图3所以

图3 滤波及负载部分电路图

在过载2倍的情况下:

1.1cos =?时(即纯阻性)

电感电流L I 与R I 间的夹角θ为

4286.8)4148

.20205.6arctan()2arctan(=?==C Z R θ (8-1) 电感电流L I 为

A =?+=+=521.73)05

.62202()4148.20220()2(2

222

R C

L I I I (8-2)

电感L 上的压降L V ?为

V Z I V L L L 514.138884.1521.73=?==? (8-3) 逆变电路的输出电压i V 为

V V i 1835.242)4268.890cos(514.1382202514.13822022=-???-+= (8-4) 2.8.0cos =?时(即阻感性)

负载电感电流1L I 与滤波电容电流C I 之差为 A =-?=-?=-9915.324148

.20220

053.102202220220211C L C L Z Z I I (8-5)

C L I I -1与R I 之间的夹角θ为

555.29)5625

.722029915

.32arctan()arctan(1=?=-=R

C L I I I θ (8-6)

电感电流L I 为

A =+?=-+=8847.66)9915.32()5625

.72202()()2(22

212C L R L I I I I (8-7) 电感L 上的压降为L V ?为

V Z I V L L L 0107.126884.18847.66=?==? (8-8) 逆变电路的输出电压i V 为

V V i 7.302)555.2990cos(0107.12622020107.12622022=+???-+= (8-9)

1.9主开关器件的耐压

主开关器件的耐压根据所有工作情况下的最高电压考虑,主开关器件所承受的最高电压一般出现在输入电压最高、输出负载最轻时,选主开关器件耐压为实际工作电压的2倍。

取逆变电路在过载情况下的输出电压的2倍,即V 4.60527.302=?。在留有一定裕量下,实际选650V 耐压的开关器件。

1.10输出滤波模型

输出滤波电路图,如图4所示

图4 输出滤波电路 根据输出滤波电路写出如下关系式

1ri Vo Vi dt di

L --= (10-1)

01i i dt dVo

C -= (10=2)

将式(9-1)、(9-2)变换形式后的式(9-3)、(9-4)

11ri Vo Vi Lsi --= (10-3) o i i CsVo -=1 (10-4) 根据(9-3)、(9-4)画出输出滤波仿真模型,如图5所示

图5 输出滤波仿真模型 输出电压Vo 与输入电压Vi 的关系式为 o i rCs LCs r

Ls Vi rcs LCs Vo 1

112

2+++-++=

(10-5) 1.11单相逆变器的控制策略

1.电压单闭环控制系统

单闭环控制系统仿真模型,如图6所示

图6 单闭环控制系统仿真模型

在给定输入Vi 与负载扰动输入io 共同作用下下,闭环输出Vo (s )为

)

()1()()

()()1()(23232s Io K s K s K rC LCs r Ls s s Vi K s K s K rC LCs K s K s K Vo i P d i P d i P d ++++++-+++++++= 其闭环特征方程)(s D 为

i P d K K s K rC LCs s D +++++=)1()()(23 (11-2)

主导极点21、S 为

2211r r r r j S ξωωξ-±-=、 (11-3)

非主导极点3S 为

)105(3-=-=n n S r r ωξ (11-4) 期望的特征方程)(s D r 为

))(2())()(()(22321r r r r r r r r r n s s s s s s s s s D ωξωωξ+++=---= (11-5) 根据极点配置法求解,得

rC LC n K r r d -+=ωξ)2( (11-6) 1)12(22-+=LC n K r r P ωξ (11-7) LC n K r r i 3ωξ= (11-8) r ξ是阻尼比 r ω是自然振荡频率 L 为滤波电感 C 为滤波电容

当8.0=r ξ、3500r =ω、10n =、Ω=6.0r 时,代入到(11-6)、(11-7)、(11-8)中求得

8825.108=P K 222950=i K 02176.0=d K 2.电流内环、电压外环双闭环控制系统

将滤波电感电流或滤波电容电流瞬时值作为反馈量引入控制系统,设置电流内化改善系统动态性能

双闭环控制系统仿真模型有三种情况,如图7、图8、图9所示

图7 双闭环控制系统仿真模型1 (负载扰动在内环之外)

图8 双闭环控制系统仿真模型2 (负载扰动在内环之内)

图9 双闭环控制系统仿真模型3 (引入负载电流前馈补偿)

如图7所示,模型1中负载扰动在内环之外,其优点是能方便的实现逆变器的过流保护,但对负载扰动的抗干扰性弱。

如图8所示,模型2中负载扰动在内环之内,其对负载扰动的抗扰性能要强于模型1,但其电感电流不受限制,不能通过限流实现对逆变器的保护。

如图9所示,模型3中引入了负载电流前馈补偿,电感电流受到了限制,系统也能根据负载扰动的变化及时的调整,抗扰性也比较好。

双闭环系统闭环特征方程)(s D 为 (11-9)

四阶系统期望闭环主导极点为

(11-10)

非主导极点、为

(11-11) (11-12) 期望的四阶系统特征方程为

(11-13) 根据极点配置法求解,得

(11-14) (11-15) (11-16)

(11-17) (11-18)

(11-19) (11-20) (11-21) 将 ,代入(11-14)到(11-21)求得

二.仿真

2.1电压单闭环控制系统仿真

电压单闭环控制系统仿真模型,如图10所示

Vi

io

Vo

Sine Wave

Scope5

Scope

Pulse Generator

Product PID(s)PID Controller

1s Integrator1

1s Integrator

-K-Gain3

1/3Gain2

-K-Gain1

-K-Gain

图10 电压单闭环控制系统仿真模型

给定为幅值311V 、频率60HZ 的交流信号时

当在0.0208s 时加入负载最小电阻6.05,0.054s 时去掉负载时,负载电流的波形如图11所示,输出电压的波形如图12所示 错误!

图11 负载电流的波形 错误!

图12 输出电压的波形

当在0.0208s 时加入6.05负载,峰值电压下凹到293V,在0.054s 去掉负载时,峰值电压凸起到328V 。突加、突减负载对系统影响较明显。

当在

0.0208s 时加入3

负载,0.054s

时去掉负载时,输出电压波形如图

13所示

错误

!

图13 输出电压的波形(R=3时)

在加入、

去除负载时,输出电压波形有比较明显的波动。

在0.0208s

加入负载时,波峰电压下凹到了

276.8V ,与峰值相差了

34.2V ;在

0.054s 去除负载时,波峰电压

凸起到了347V ,比峰值电压高了36V

。突加,突减负载对系统影响比较明显。

FFT 分析,如图

14所示

0.02

0.040.06

0.08

0.1

-200

0200Selected signal: 6 cycles. FFT window (in red): 2 cycles

Time (s)

024

6810121416

0.005

0.010.0150.020.025

Harmonic order

Fundamental (60Hz) = 310.9 , THD= 0.02%

M a g (% o f F u n d a m e n t a l )

图14 的FFT 分析

由图14可知,输出电压峰值为310.9V ,存在的主要谐波次数是1.5次谐波。 当负载增加10倍,即在0.0208s 时加入30的负载,在0.054s 时去掉负载,输出电压的波形,如图15所示 错误!

图15 输出电压的波形(R=30时)

由图15知,在0.0208s 时突加负载,波峰电压下凹到307V ;在0.054s 时突减负载,波峰电压凸起到313.2V 。负载越大,突加、突减负载对系统的影响就越小,当负载大到一定时,突加、突减负载对系统基本上没有什么影响。

当负载减小10倍,即在0.0208s 时加入0.3的负载,在0.054s 时去掉,输出电压的波形,如图16所示 错误!

图16 输出电压的波形(R=0.3)

由图16知,在0.0208s 突加负载时,峰值电压最低下凹到125.2V ,在0.054s

突减负载时,峰值电压最高凸起到688.6V 。负载电阻减小10倍时,突加、突减负载对系统影响很大,在突减负载时,峰值电压有正常电压的2倍左右。

给定为幅值311V 、频率60HZ 的交流信号,负载电阻为3,滤波电容为130uF 将滤波电容增大10倍后(即C=1300uF),输出电压的波形,如图17所示 错误

!

图17

输出电压的波形(C=1300uF)

在0.0208s

突加负载时,峰值电压最低下凹到296.8V

;在0.054s 突减负载时,峰值电压凸起到324.4V 。滤波电容增大10倍,使在突加、突减负载时系统更稳定。

改变滤波电容后,的

FFT 分析,如图

18所示

0.02

0.04

0.06

0.08

0.1

-200

0200

Selected signal: 6 cycles. FFT window (in red): 2 cycles

Time (s)

24

6810121416

0.511.522.53x 10-5

Harmonic order

Fundamental (60Hz) = 311.1 , THD= 0.00%

M a g (% o f F u n d a m e n t a l )

图18 输出电压的FFT 分析(C=1300uF)

将滤波电容减小10倍(即C=13uF),输出电压的波形,如图19所示 错误!

图19 输出电压的波形(C=13uF)

在0.0208s 突加负载时,峰值电压最低下凹到223V ;在0.054s 突减负载时,峰值电压最高凸起到422V ;滤波电容减小10倍时,突减、突减负载对系统影响比较大,且在突加、突减时,输出电压波形有明显的振荡。

比较图13、图15、图16可得,加入负载越小,负载电流越大,突加、突减负载时系统波动越大,系统越不稳定;加入负载越大,输出波形越接近于给定信号。比较图17、图19可得,滤波电容对系统的稳定性有很大的影响,滤波电容越小,突加、突减负载时,系统波动越大;滤波电容越大,突加、突减负载时,系统波动较小,比较接近于给定信号。

2.2电流内环、电压外环双闭环控制系统

双闭环控制系统仿真模型,如图20、21、22所示 错误!

图20 双闭环控制系统仿真模型1(负载扰动在内环外) 错误!

图21 双闭环控制系统仿真模型2(负载扰动在内环之内)

错误!

图22 双闭环控制系统仿真模型3(引入负载电流前馈补偿)

给定为幅值311V、频率60HZ的交流信号

当在0.0208s时突减6.05的负载,在0.054s时突减负载,负载电流的波形如图23所示,的波形如图24、25、26所示

错误!

图23 负载电流的波形

在0.0208s时加入负载,加入负载时有一定的波动,在0.054s时去掉负载。

错误!

图24 输出电压的波形(负载扰动在内环外)

在0.0208s加入负载时,峰值电压下凹到了293.3V,在0.054s突减负载时,峰值电压凸起到了330V。突加、突减负载对系统稳定性有一定影响。

错误!

图25 输出电压的波形(负载扰动在内环之内)在0.0208s突加负载时,峰值电压下凹到了307.5V,在0.054s突减负载时,峰值电压凸起到了314V,与给定信号相差不大。比较图24和图25可知,负载扰动在内环之内的系统比负载扰动在内环外的系统,有更好的抗干扰性能。

错误!

图26 输出电压的波形(引入负载电流前馈补偿)在0.0208s突加负载时,峰值电压下凹到了307.5V,在0.054s突减负载时,峰值电压凸起到了314V。引入负载电流前馈补偿的系统和负载扰动在内环之内的系统,具体相差不多的稳定性能,抗干扰性能都比负载电流在内环外的系统要好。

双闭环控制系统三种仿真模型中的FFT分析波形是一样的,如图27所示

0.02

0.04

0.06

0.08

0.1

-200

200

Selected signal: 6 cycles. FFT window (in red): 2 cycles

Time (s)

24

6810121416

0.005

0.010.0150.020.025

Harmonic order

Fundamental (60Hz) = 312 , THD= 0.02%

M a g (% o f F u n d a m e n t a l )

图27 输出电压的FFT 分析

由图中可知,输出电压的主要谐波次数是1.5次谐波。

当负载电阻改成3时,输出电压的波形如图28 错误!

图28 输出电压波形(负载电流扰动在内环外)

当0.0208s 突加负载时,峰值电压下凹到276.3V ,0.054s 突减负载时,峰值电压凸起到348V 。与图24相比,可知突加的负载电阻值减小,负载电流增大,系统的波动也就越大,系统稳定性减弱。

当给定为幅值311V 、频率60HZ 的交流信号时,负载电阻为6.05,将输出滤波电容缩小10(即C=13uF )时,输出电压的波形如图29、30、31所示 错误!

图29 输出电压的波形(负载电流扰动在内环外)

在0.0208s 突加负载是,峰值电压下凹到272.7V,当0.054s 突减负载时,峰值电压凸起到349.5V 。与图24相比知,在突加、突减负载时系统波动大了些。 错误!

图30 输出电压的波形(负载电流扰动在内环之内) 图31 输出电压的波形(引入负载电流前馈补偿)

在0.0208s 突加负载时,峰值电压下凹到287.3V ,在0.054s 突减负载时,峰值电压突起到333.5V 。

的FFT 分析,如图32所示

0.02

0.04

0.06

0.08

0.1

-200

200

Selected signal: 6 cycles. FFT window (in red): 2 cycles

Time (s)

2

4

6810121416

1234x 10

-9

Harmonic order

Fundamental (60Hz) = 311.1 , THD= 0.00%

M a g (% o f F u n d a m e n t a l )

图32 输出电压的FFT 分析

由图知电容减小10倍后,主要谐波次数变成了2k 次谐波,主要是2、4次谐波 比较图12、24、25、26可知,双闭环控制系统的抗干扰性能要好于单闭环控制系统,负载电流扰动在内环之内的系统和引入负载电流前馈补偿的系统抗干扰性能要好于负载电流扰动在内环外的系统。

比较图13、15、16可知,突加、突减的负载越小,相应的负载扰动电流越大,对系统的影响也越大,负载扰动电流越大,系统波动越大。

比较图13、17、19可知,在突加、突减相同负载的前提下,输出滤波电容的大小也会影响系统的抗干扰性能,滤波电容越小,系统抗干扰性能越差,滤波电容越大,系统抗干扰性能越好。

三相PWM逆变器的设计_毕业设计

湖南文理学院 课程设计报告 三相PWM逆变器的设计 课程名称:专业综合课程设计 专业班级:自动化10102班

摘要 本次课程设计题目要求为三相PWM逆变器的设计。设计过程从原理分析、元器件的选取,到方案的确定以及Matlab仿真等,巩固了理论知识,基本达到设计要求。 本文将按照设计思路对过程进行剖析,并进行相应的原理讲解,包括逆变电路的理论基础以及Matlab仿真软件的简介、运用等,此外,还会清晰的介绍各个环节的设计,比如触发电路、控制电路、主电路等,其中部分电路的绘制采用Proteus软件,最后结合Matlab Simulink仿真,建立了三相全控桥式电压源型逆变电路的仿真模型,进而通过软件得到较为理想的实验结果。 关键词:三相PWM 逆变电路Matlab 仿真

Abstract The curriculum design subject requirements for the design of the three-phase PWM inverter. Design process from the principle of analysis, selection of components, to scheme and the Mat-lab simulation, etc., to consolidate the theoretical knowledge, basic meet the design requirements. This article will be carried out in accordance with the design of process analysis, and the corresponding principles, including the theoretical foundation of the inverter circuit and introduction, using Matlab simulation software, etc., in addition, will also clearly introduces the design of every link, such as trigger circuit, control circuit, main circuit, etc., some of the drawing of the circuit using Proteus software, finally combined with Matlab Simulink, established a three-phase fully-controlled bridge voltage source type inverter circuit simulation model, and then through the software to get the ideal results. Keywords: Matlab simulation, three-phase ,PWM, inverter circuit

(完整版)三相逆变器matlab仿真

三相无源逆变器的构建及其MATLAB仿真1逆变器 1.1逆变器的概念 逆变器也称逆变电源,是一种可将直流电变换为一定频率下交流电的装置。相对于整流器将交流电转换为固定电压下的直流电而言,逆变器可把直流电变换成频率、电压固定或可调的交流电,称为DC-AC变换。这是与整流相反的变换,因而称为逆变。 1.3逆变器的分类 现代逆变技术的种类很多,可以按照不同的形式进行分类。其主要的分类方式如下: 1)按逆变器输出的相数,可分为单相逆变、三相逆变和多相逆变。 2)按逆变器输出能量的去向,可分为有源逆变和无源逆变。 3)按逆变主电路的形式,可分为单端式、推挽式、半桥式和全桥式逆变。 4)……………. 2 三相逆变电路 三相逆变电路,是将直流电转换为频率相同、振幅相等、相位依次互差为120°交流电的一种逆变网络。 图 1 三相逆变电路

日常生活中使用的电源大都为单相交流电,而在工业生产中,由于诸多电力能量特殊要求的电气设备均需要使用三相交流电,例如三相电动机。随着科技的日新月异,很多设备业已小型化,许多原来工厂中使用的大型三相电气设备都被改进为体积小、耗能低且便于携带的小型设备。尽管这些设备外形发生了很大的变化,其使用的电源类型——三相交流电却始终无法被取代。在一些条件苛刻的环境下,电力的储能形式可能只有直流电,如若在这样的环境下使用三相交流电设备,就要求将直流电转变为特定要求的三相交流电以供使用。这就催生了三相逆变器的产生。 4MATLAB仿真 Matlab软件作为教学、科研和工程设计的重要方针工具,已成为首屈一指的计算机仿真平台。该软件的应用可以解决电机电器自动化领域的诸多问题。利用其中的Simulink模块可以完成对三相无源电压型SPWM逆变器的仿真,并通过仿真获取逆变器的一些特性图等数据。 图 2 系统Simulink 仿真 所示为一套利用三相逆变器进行供电的系统的Matlab仿真。系统由一个380v的直流电源供电,经过三相整流桥整流为三相交流电,并进行SPWM正弦脉宽调制。输出经过一个三相变压器隔离后通入一个三相的RLC负载模块(Three phase parallel RLC)。加入了两个电压测量单元voltage measurement和voltage measurement1,并将结果输出到示波器模块Scope1.

PWM 控制的单相逆变电路的设计及其研究

电力电子技术课程设计 班级 学号 姓名 电气工程及其自动化 二零一五年一月

目录 1 绪论 (2) 1.1 电力电子简介 (2) 1.2 课程设计的目的与要求 (2) 1.3 课程设计题目 (3) 1.4 仿真软件的使用 (3) 2 工作原理 (4) 2.1 逆变电路原理 (4) 2.1.1 电压型逆变电路 (4) 2.1.2 电流型逆变电路 (6) 2.2单相桥式PWM逆变电路的基本原理 (10) 2.2.1 单极调制法 (11) 2.2.2 双极调制法 (12) 3 电路的设计过程 (13) 3.1 逆变控制电路的设计 (13) 3.2 正弦波输出变压变频电源调制方式 (14) 3.2.1 正弦脉宽调制技术 (14) 3.2.2单极性调制方式 (15) 3.2.3 双极性调制方式 (15) 3.2.4 单极性倍频调制方式 (15) 3.3 3种调制方式下逆变器输出电压谐波分析 (16) 4 仿真实验与结果 (17) 4.1 单相桥式PWM逆变主电路原理图 (17) 4.2 仿真所得波形 (17) 5 仿真结果分析 (19) 6 心得体会 (20) 7 参考文献 (21)

1 绪论 1.1 电力电子简介 随着电力电子技术的飞速发展,正弦波输出变压变频电源已被广泛应用在各个领域中,与此同时对变压变频电源的输出电压波形质量也提出了越来越高的要求。对逆变器输出波形质量的要求主要包括两个方面:一是稳态精度高;二是动态性能好。因此,研究开发既简单又具有优良动、静态性能的逆变器控制策略,已成为电力电子领域的研究热点之一。电力电子器件的发展经历了晶闸管(SCR)、可关断晶闸管(GTO)、晶体管(BJT)、绝缘栅晶体管(IGBT)等阶段。目前正向着大容量、高频率、易驱动、低损耗、模块化、复合化方向发展,与其他电力电子器件相比,IGBT具有高可靠性、驱动简单、保护容易、不用缓冲电路和开关频率高等特点,为了达到这些高性能,采用了许多用于集成电路的工艺技术,如外延技术、离子注入、精细光刻等。IGBT最大的优点是无论在导通状态还是短路状态都可以承受电流冲击。它的并联不成问题,由于本身的关断延迟很短,其串联也容易。尽管IGBT模块在大功率应用中非常广泛,但其有限的负载循环次数使其可靠性成了问题,其主要失效机理是阴极引线焊点开路和焊点较低的疲劳强度,另外绝缘材料的缺陷也是一个问题。在现有的正弦波输出变压变频电源产品中,为了得到SPWM波,一般都采用双极性调制技术。该调制方法的最大缺点是它的4个功率管都工作在较高频率(载波频率),从而产生了较大的开关损耗,开关频率越高,损耗越大。本次课程设计研究单相桥式PWM逆变电路,通过该电路实现逆变电源变压、变频输出。 1.2 课程设计的目的与要求 1. 进一步熟悉和掌握电力电子原器件的特性; 2. 进一步熟悉和掌握电力电子电路的拓扑结构和工作原理; 3. 掌握电力电子电路设计的基本方法和技术,掌握有关电路参数的计算方 法;

三相SVPWM逆变电路MATLAB仿真

基于电压空间矢量控制的三相逆变器的研究 1、SVPWM逆变电路的基本原理及控制算法 图1.1中所示的三相逆变器有6个开关,其中每个桥臂上的开关工作在互补状态,三相桥臂的上下开关模式得到八个电压矢量,包括6个非零矢量(001)、()、(011)、(100)、(101)、(110)和两个零矢量(000)、(111). 图1.-1 三相桥式电压型有源逆变器拓扑结构 在平面上绘出不同的开关状态对应的电压矢量,如图1.2所示。由于逆变器能够产生的电压矢量只有8个,对与任意给定的参考电压矢量,都可以运用这8个已知的参考电压矢量来控制逆变器开关来合成。 图1.2 空间电压矢量分区 图1.2中,当参考电压矢量在1扇区时,用1扇区对应的三个空间矢量U sv1 、U sv2 、U sv3来等效参考电压矢量。若1.2 合成矢量 ref U所处扇区N的判断 三相坐标变换到两相β α-坐标: ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? = ? ? ? ? ? ? ? ? ) ( ) ( ) ( 2 3 - 2 3 2 1 - 2 1 - 1 3 2 ) ( ) ( t t t t t u u u u u co bo ao β α (1.1) 根据u α 、u β 的正负及大小关系就很容易判断参考电压矢量所处的扇区位

置。如表1.1所示。 表1.1 参考电压矢量扇区位置的判断条件 可以发现,扇区的位置是与u β、 u u βα-3及u u βα--3的正负有关。为 判断方便,我们设空间电压矢量所在的扇区N N=A+2B+3C (1.2) 其中,如果u β >0,那么A=1,否则A=0 如果u u βα-3 >0,那么B=1,否则B=0 如果u u βα--3 >0,那么C=1,否则C=0 1.3 每个扇区中基本矢量作用时间的计算 在确定参考电压矢量的扇区位置后,根据伏秒特性等效原理,采用该扇区三个顶点所对应的三个电压空间矢量来逼近参考电压矢量。以参考电压矢量位于3扇区为例,如图1.3所示,参考电压U ref 与U 4的夹角为γ。

单相逆变器的软件设计

单相逆变器的软件设计

摘要 随着电力电子技术的迅猛发展,逆变技术广泛应用于航空、航海等国防领域和电力系统,交通运输、邮电通信、工业控制等民用领域。特别是随着石油、煤和天然气等主要能源日益紧张,新能源的开发和利用越来越受到人们的重视。利用新能源的关键技术--逆变技术,能将蓄电池、太阳能电池和燃料电池等其他新能源转化的直流电能变换成交流电能与电网并网发电。因此,逆变技术在新能源的开发和利用领域有着至关重要的地位。理论联系实际,将书本上所学到的知识与实际设计结合起来,学习电力电子基本理论,掌握单相电压型逆变器的工作原理和SPWM原理,并进行详细的设计分析,掌握其控制方式及在电力系统中的重要作用。 关键词:逆变技术,单相电压型逆变器,SPWM原理

ABSTRACT With the rapid development of power electronics technology, the inverter technology is widely used in aviation, navigation and other fields of national defense and the electric power system, transportation, telecommunications, industrial control and other civilian areas. Especially with the oil, coal and natural gas and other major energy shortage, the development and utilization of new energy has been paid more and more attention. The key technology of new energy, inverter technology, the battery, DC can be converted into AC power grid connected power generation solar cell and fuel cell and other new energy conversion. Therefore, inverter technology plays a very important role in the field of new energy development and utilization. The theory with practice, apply on the books knowledge and practical design combine learning power electronics basic theory, master the working principle and the principle of SPWM single-phase voltage type inverter, and design a detailed analysis, palm Hold the control mode and the important role in the power system. Keywords: Inverter technology ,Single phase voltage source inverter ,SPWM principle

3KVA三相逆变器的设计

3KVA三相逆变器设计 1概述 随着各行各业自动化水平及控制技术的发展和其对操作性能要求的提高,许多行业的用电设备(如通信电源、电弧焊电源、电动机变频调速器等)都不是直接使用交流电网作为电源,而是通过形式对其进行变换而得到各自所需的电能形式,它们所使用的电能大都是通过整流和逆变组合电路对原始电能进行变换后得到的。 当今世界逆变器应用非常广泛。逆变器是将直流变为定频定压或调频调压交流电的变换器,传统方法是利用晶闸管组成的方波逆变电路实现,但由于其含有较大成分低次谐波等缺点,近十余年来,由于电力电子技术的迅速发展,全控型快速半导体器件BJT,IGBT,GTO 等的发展和PWM 的控制技术的日趋完善,使SPWM 逆变器得以迅速发展并广泛使用。PWM 控制技术是利用半导体开关器件的导通与关断把直流电压变成电压脉冲列,并通过控制电压脉冲宽度和周期以达到变压目的或者控制电压脉冲宽度和脉冲列的周期以达到变压变频目的的一种控制技术,SPWM 控制技术又有许多种,并且还在不断发展中,但从控制思想上可分为四类,即等脉宽PWM 法,正弦波PWM 法(SPWM 法),磁链追踪型PWM 法和电流跟踪型PWM 法,其中利用SPWM 控制技术做成的SPWM 逆变器具有以下主要特点:(1)逆变器同时实现调频调压,系统的动态响应不受中间直流环节滤波器参数的影响。 (2)可获得比常规六拍阶梯波更接近正弦波的输出电压波形,低次谐波减少,在电气传动中,可使传动系统转矩脉冲的大大减少,扩大调速范围,提高系统性能。 (3)组成变频器时,主电路只有一组可控的功率环节,简化了结构,由于采用不可控整流器,使电网功率因数接近于1,且与输出电压大小无关。 本次课程设计要完成的是设计容量为3KVA的三相逆变器。初始条件为:输入直流电压220V。要求输出220V三相交流电,完成总电路的设计,并计算电路中各元件的参数。

(完整版)单相光伏并网逆变器的研究40本科毕业设计41

单相光伏并网逆变器的研究

轮机工程学院

摘要 能源危机和环境问题的不断加剧,推动了清洁能源的发展进程。太阳能作为一种清洁无污染且可大规模开发利用的可再生能源,具有广阔应用前景。并且伴随“智能电网”理论的兴起,分布式电力系统正日益受到关注,光伏逆变系统作为分布式电力系统的一种重要形式,使得对该领域的研究具有重要的理论与现实意义。 论文在分析光伏逆变系统发展现状与研究热点的基础上,探讨了光伏逆变系统的主要关键技术,对直接影响光伏逆变系统的工作效率以及工作状态的最大功率点跟踪控制、光伏逆变器控制等技术进行了详细研究。 为研究光伏逆变系统,本文建立了一套完整的光伏逆变系统模型,主要包括光伏电池模块,前级DCDC变换器,后级DCAC逆变器,以及相应的控制模块。为了提高系统模型的准确性及稳定性,论文设计了一种输出电压随温度光照改变的光伏电池模型,提出了一种基于Boost 升压变换器的最大功率点跟踪(MPPT)控制策略,并且将正弦脉冲宽度调制技术(SPWM)应用于逆变器控制。最后在MatlabSimulink软件环境下搭建了光伏逆变系统的整体模型,完成系统性的实验验证。 经过仿真实验验证,所提出的光伏逆变系统设计方案正确可行,且输出达到了设计要求,为进一步实现并网功能提供了条件,具有较高的实用参考价值。 关键词:光伏电池;最大功率点跟踪;光伏逆变系统;正弦脉冲调制技术

ABSTRACT With intensify of the energy crisis and environmental problems, the development of clean energy . The solar energy because of its friendly-environmental advantage and renewable property. With the proposition of the Smart Grid, Distributed Power System . As an important form of Distributed Power System, photovoltaic inverter system is the key of the research in this field. This paper discusses the key techniques of photovoltaic inverter system on the basis of analysis of development and research techniques such as maximum power point tracking (MPPT) which work efficiency and work condition and technology of PV inverter. In order to research PV inverter system, this paper builds an integral model, including PV battery model and DCDC converter and DCAC single phase inverter as well as corresponding control models. In order to improve the validity and the stability of the system, the paper

最新三相逆变器Matlab仿真精编版

2020年三相逆变器M a t l a b仿真精编版

三相无源电压型SPWM逆变器的构建及其MATLAB仿真 09 电气工程及其自动化邱迪 摘要:本文简要介绍了三相无源电压型SPWM输出的逆变器的构建和工作方式及其MATLAB仿真。 关键词:三相逆变器正弦脉宽调制(SPWM)技术 MATLAB仿真 Abstract: This paper introduces briefly the construction of 3-phase inverter which output SPWM wave and the MATLAB-based simulation. Key word: Three-phase inverter Sinusoidal Pulse Width Modulation Power electronic technology 1逆变器 1.1逆变器的概念 逆变器也称逆变电源,是一种可将直流电变换为一定频率下交流电的装置。相对于整流器将交流电转换为固定电压下的直流电而言,逆变器可把直流电变换成频率、电压固定或可调的交流电,称为DC-AC变换。这是与整流相反的变换,因而称为逆变。 [1] 1.2逆变器涉及的技术 逆变器的构建应用了电力电子学科中的很多关键技术。电路中电流的可控流通断开的过程中应用了多种可控硅类型的电力电子器件;开关的控制过程应用了基于微处理

器的现代控制技术;对于正弦波形的仿制过程应用了正弦波脉宽调制(SPWM)技术等等。 1.3逆变器的分类 现代逆变技术的种类很多,可以按照不同的形式进行分类。其主要的分类方式如下: 1)按逆变器输出的相数,可分为单相逆变、三相逆变和多相逆变。 2)按逆变器输出能量的去向,可分为有源逆变和无源逆变。 3)按逆变主电路的形式,可分为单端式、推挽式、半桥式和全桥式逆变。 4)按逆变主开关器件的类型,可分为晶闸管逆变、晶体管逆变、场效应管 逆变等等。 5)按输出稳定的参量,可分为电压型逆变和电流型逆变。 6)按输出电压或电流的波形,可分为正弦波输出逆变和非正弦波输出逆 变。 7)按控制方式,可分为调频式(PFM)逆变和调脉宽式(PWM)逆变。[2] 2 三相逆变电路 三相逆变电路,是将直流电转换为频率相同、振幅相等、相位依次互差为120°交流电的一种逆变网络。

PWM逆变器Matlab仿真设计

PWM逆变器MATLAB仿真 1设计方案的选择与论证 从题目的要求可知,输入电压为110V直流电,而输出是有效值为220V的交流电,所以这里涉及到一个升压的问题,基于此有两种设计思路第一种是进行DC-DC升压变换再进行逆变,另一种是先进行逆变再进行升压。除此之外,要得到正弦交流电压还要考虑滤波等问题,所以这两种方案的设计框图分别如下图所示: 图1-1方案一:先升压再逆变 图1-2方案二:先逆变,再升压 方案选择: 方案一:采用DC-DC升压斩波电路其可靠性高、响应速度、噪声性能好,效率高,但不适用于升压倍率较高的场合,另外升压斩波电路在初期会产生超调趋势(这一点将在后文予以讨论),在与后面的逆变电路相连时必须予以考虑,我们可以采用附加控制策略的办法来减小超调量同时达到较短的调节时间,但这将增加逆变器的复杂度和设计成本。 方案二:采用变压器对逆变电路输出的交流电进行升压,这种方法效率一般可达90%以上、可靠性较高、抗输出短路的能力较强,但响应速度较慢,体积大,波形畸变较重。 从以上的分析可以看出两种方案有各自的优缺点,但由于方案二设计较为简便,因此本论文选择方案二作为最终的设计方案,但对于方案一的相关容也会在后文予以讨论。 2逆变主电路设计 2.1逆变电路原理及相关概念

逆变与整流是相对应的,把直流电变为交流电的过程称为逆变。根据交流侧是否与交流电网相连可将逆变电路分为有源逆变和无源逆变,在不加说明时,逆变一般指无源逆变,本论文针对的就是无源逆变的情况;根据直流侧是恒流源还是恒压源又将逆变电路分为电压型逆变电路和电流型逆变电路,电压型逆变电路输出电压的波形为方波而电流型逆变电路输出电流波形为方波,由于题目要求对输出电压进行调节,所以本论文只讨论电压型逆变电路;根据输出电压电流的相数又将逆变电路分为单相逆变电路和三相逆变电路,由于题目要求输出单相交流电,所以本论文将只讨论单相逆变电路。 2.2逆变电路的方案论证及选择 从上面的讨论可以看出本论文主要讨论单相电压型无源逆变电路,电压型逆变电路的特点除了前文所提及的之外,还有一个特点即开关器件普遍选择全控型器件如IGBT,电力MOSFET等,有三种方案可供选择,下面分别予以讨论: 方案一:半桥逆变电路,如下图所示,其特点是有两个桥臂,每个桥臂有一个可控器件和一个反并联二极管组成。在直流侧接有两个相互串联的足够大的电容,两个电容的连接点为直流电源的中点。反并联二极管为反馈电感中储存的无功能量提供通路,直流侧电容正起着缓冲无功能量的作用。其优点为简单,使用器件少,缺点为输出交流电压的幅值仅为直流电源电压的一半,且直流侧需要两个电容器串联,工作时还要控制两个电容器电压的均衡,因此它只适用于几千瓦以下的小功率逆变电路。 VD2 图2-1 半桥逆变电路 方案二:全桥逆变电路,如下图所示:其特点是有四个桥臂,相当于两个半桥电路的组合,其中桥臂1和4作为一对,桥臂2和3作为一对,成对的两个桥臂同时导通,两对

3KVA三相逆变电源设计

课程设计 题目3KVA三相逆变电源设计学院自动化学院 专业自动化 班级 姓名 指导教师朱国荣 2014 年 1 月 2 日

课程设计任务书 学生姓名:专业班级:自动化1102 指导教师:朱国荣工作单位:自动化学院 题目: 3KVA三相逆变电源设计 初始条件: 输入直流电压110V。 要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰写等具体要求) 设计容量为3KVA的三相逆变器,要求达到: 1、输出380V,频率50Hz三相交流电。 2、完成总电路设计。 3、完成电路中各元件的参数计算。 时间安排: 课程设计时间为两周,将其分为三个阶段。 第一阶段:复习有关知识,阅读课程设计指导书,搞懂原理,并准备收集设计资料,此阶段约占总时间的20%。 第二阶段:根据设计的技术指标要求选择方案,设计计算。 第三阶段:完成设计和文档整理,约占总时间的40%。 指导教师签名:年月日 系主任(或责任教师)签名:年月日

目录 摘要 (1) 1 设计要求、意义及思路 (2) 1.1 设计意义 (2) 1.2 设计要求 (2) 1.3 设计思路 (3) 2 方案设计及原理 (3) 2.1逆变电路 (3) 2.2 SPWM采样方法选择 (4) 2.3 LC滤波 (5) 2.4 升压变压器 (6) 3 主电路设计及参数设计 (7) 3.1 IGBT三相桥式逆变电路 (7) 3.2 脉宽控制电路的设计 (9) 3.2.1 SG3524芯片 (9) 3.2.2 调制波及载波的产生 (10) 3.3 触发电路的设计 (11) 3.3.1 IR2110芯片构成的触发 (11) 3.3.2 M57962L芯片构成的触发电路 (12) 3.4其他部分的参数设计 (13) 结束语 (15) 参考文献 (16) 附录一: (17) 附录二:主电路图 (18)

(整理)三相逆变器Matlab仿真.

三相无源电压型SPWM逆变器的构建及其MATLAB仿真 09 电气工程及其自动化邱迪 摘要:本文简要介绍了三相无源电压型SPWM输出的逆变器的构建和工作方式及其MATLAB 仿真。 关键词:三相逆变器正弦脉宽调制(SPWM)技术MATLAB仿真 Abstract: This paper introduces briefly the construction of 3-phase inverter which output SPWM wave and the MATLAB-based simulation. Key word:Three-phase inverter Sinusoidal Pulse Width Modulation Power electronic technology 1逆变器 1.1逆变器的概念 逆变器也称逆变电源,是一种可将直流电变换为一定频率下交流电的装置。相对于整流器将交流电转换为固定电压下的直流电而言,逆变器可把直流电变换成频率、电压固定或可调的交流电,称为DC-AC变换。这是与整流相反的变换,因而称为逆变。[1] 1.2逆变器涉及的技术 逆变器的构建应用了电力电子学科中的很多关键技术。电路中电流的可控流通断开的过程中应用了多种可控硅类型的电力电子器件;开关的控制过程应用了基于微处理器的现代控制技术;对于正弦波形的仿制过程应用了正弦波脉宽调制(SPWM)技术等等。 1.3逆变器的分类 现代逆变技术的种类很多,可以按照不同的形式进行分类。其主要的分类方式如下: 1)按逆变器输出的相数,可分为单相逆变、三相逆变和多相逆变。

2)按逆变器输出能量的去向,可分为有源逆变和无源逆变。 3)按逆变主电路的形式,可分为单端式、推挽式、半桥式和全桥式逆变。 4)按逆变主开关器件的类型,可分为晶闸管逆变、晶体管逆变、场效应管逆变等等。 5)按输出稳定的参量,可分为电压型逆变和电流型逆变。 6)按输出电压或电流的波形,可分为正弦波输出逆变和非正弦波输出逆变。 7)按控制方式,可分为调频式(PFM)逆变和调脉宽式(PWM)逆变。[2] 2 三相逆变电路 三相逆变电路,是将直流电转换为频率相同、振幅相等、相位依次互差为120°交流电的一种逆变网络。 图 1 三相逆变电路 日常生活中使用的电源大都为单相交流电,而在工业生产中,由于诸多电力能量特殊要求的电气设备均需要使用三相交流电,例如三相电动机。随着科技的日新月异,很多设备业已小型化,许多原来工厂中使用的大型三相电气设备都被改进为体积小、耗能低且便于携带的小型设备。尽管这些设备外形发生了很大的变化,其使用的电源类型——三相交流电却始终无法被取代。在一些条件苛刻的环境下,电力的储能形式可能只有直流电,如若在这样的环境下使用三相交流电设备,就要求将直流电转变为特定要求的三相交流电以供使用。这就催生了三相逆变器的产生。

三相电压型逆变器课程设计

三相电压型逆变器 一.电力电子器件的发展: 1.概述: 1957年可控硅(晶闸管)的问世,为半导体器件应用于强电领域的自动控制迈出了重要的一步,电力电子开始登上现代电气传动技术舞台,这标志着电力电子技术的诞生。20世纪60年代初已开始使用电力电子这个名词,进入70年代晶闸管开始派生各种系列产品,普通晶闸管由于其不能自关断的特点,属于半控型器件,被称作第一代电力电子器件。随着理论研究和工艺水平的不断提高,以门极可关断晶闸管(GTO)、电力双极性晶体管(BJT)和电力场效应晶体管(Power-MOSFET)为代表的全控型器件迅速发展,被称作第二代电力电子器件。80年代后期,以绝缘栅极双极型晶体管(IGBT)为代表的复合型第三代电力电子器件异军突起,而进入90年代电力电子器件开始朝着智能化、功率集成化发展,这代表了电力电子技术发展的一个重要方向 电子技术被认为是现代科技发展的主力军,电力电子就是电力电子学,又称功率电子学,是利用电子技术对电力机械或电力装置进行系统控制的一门技术性学科,主要研究电力的处理和变换,服务于电能的产生、输送、变换和控制。(电力电子的发展动向)电力电子技术包括功率半导体器件与IC 技术、功率变换技术及控制技术等几个方面,其中电力电子器件是电力电子技术的重要基础,也是电力电子技术发展的“龙头”。电力电子器件(Power Electronic Device)又称为功率半导体器件,用于电能变换和电能控创电路中

的大功率(通常指电流为数十至数千安,电压为数百伏以上)电子器件。广义上电力电子器件可分为电真空器件(Electron Device)和半导体器件(Semiconductor Device)两类。 2.发展: A.整流管: 整流管是电力电子器件中结构最简单、应用最广泛的一种器件。目前主要有普通整流管、快恢复整流管和肖特基整流管三种类型。电力整流管在改善各种电力电子电路的性能、降低电路损耗和提高电源使用效率等方面发挥着非常重要的作用。目前,人们已通过新颖结构的设计和大规模集成电路制作工艺的运用,研制出集PIN整流管和肖特基整流管的优点于一体的具有MPS、SPEED和SSD等结构的新型高压快恢复整流管。它们的通态压降为IV 左右,反向恢复时间为PIN整流管的1/2,反向恢复峰值电流为PIN整流管的1/3。 B.晶闸管: 自1957年美国通用电气公司GE研制出第一个晶闸管开始,其结构的改进和工艺的改革,为新器件开发研制奠定了基础,其后派生出各种系列产品。1964年,GE公司成功开发双向晶闸管,将其应用于调光和马达控制;1965年,小功率光触发晶闸管问世,为其后出现的光耦合器打下了基础;60年代后期,出现了大功率逆变晶闸管,成为当时逆变电路的基本元件;逆导晶闸管和非对称晶闸管于1974年研制完成。 C.门极可关断晶闸管: GTO可达到晶闸管相同水平的电压、电流等级,工作频率也可扩展到

单相全桥逆变电路毕业设计

2008级应用电子技术 毕业设计报告 设计题目单相电压型全桥逆变电路设计姓名及 学号 学院 专业应用电子技术 班级2008级3班 指导教师老师 2011年05月1日

题目:单相电压型全桥逆变电路设计

目录 第一章绪论 1.1整流技术的发展概况 (4) 第二章设计方案及其原理 2.1电压型逆变器的原理图 (5) 2.2电压型单相全桥逆变电路 (6) 第三章仿真概念及其原理简述 3.1 系统仿真概述 (6) 3.2 整流电路的概述 (8) 3.3 有源逆变的概述 (8) 3.4逆变失败原因及消除方法 (9) 第四章参数计算 4.1实验电路原理及结果图 (10) 第五章心得与总结 (14) 参考文献 (15)

第一章绪论 1.1整流技术的发展概况 正电路广泛应用于工业中。整流与逆变一直都是电力电子技术的热点之一。桥式整流是利用二极管的单向导通性进行整流的最常用的电路。常用来将交流电转化为直流电。从整流状态变到有源逆变状态,对于特定的实验电路需要恰到好处的时机和条件。基本原理和方法已成熟十几年了,随着我国交直流变换器市场迅猛发展,与之相应的核型技术应用于发展比较将成为业内企业关注的焦点。 目前,整流设备的发展具有下列特点:传统的相控整流设备已经被先进的高频开关整流设备所取代。系统的设计已经由固定式演化成模块化,以适应各种等级、各种模块通信设备的要求。加上阀控式密封铅酸蓄电池的广泛应用,为分散供电创造了条件。从而大大提高了通信网运行可靠和通信质量。高频开关整流器采用模块化设计、N1配置和热插拨技术,方便了系统的扩展,有利于设备的维护。由于整流设备和配电设备等配备了微机监控器,使系统设备具有了智能化管理功能和故障保护及自保护功能。新旗舰、新技术、新材料的应用,使高频开关整流器跃上了一个新台阶。

PWM逆变器Matlab仿真解析

课程设计任务书 学生姓名:专业班级: 指导教师:工作单位: 题目: PWM逆变器Matlab仿真 初始条件: 输入110V直流电压; 要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰写等具体要求) 1、得到输出为220V、50Hz单相交流电; 2、采用PWM斩波控制技术; 3、建立Matlab仿真模型; 4、得到实验结果。 时间安排: 课程设计时间为两周,将其分为三个阶段。 第一阶段:复习有关知识,阅读课程设计指导书,搞懂原理,并准备收集设计资料,此阶段约占总时间的20%。 第二阶段:根据设计的技术指标要求选择方案,设计计算。 第三阶段:完成设计和文档整理,约占总时间的40%。 指导教师签名:年月日 系主任(或责任教师)签名:年月日

目录 摘要 (1) 1设计方案的选择与论证 (2) 2逆变主电路设计 (2) 2.1逆变电路原理及相关概念 (2) 2.2逆变电路的方案论证及选择 (3) 2.3建立单相桥式逆变电路的S IMULINK的仿真模型 (4) 2.3.1模型假设 (5) 2.3.2利用MATLAB/Simulink进行电路仿真 (5) 3正弦脉宽调制(SPWM)原理及控制方法的SIMULINK仿真 (6) 3.1正弦脉冲宽度调制(SPWM)原理 (6) 3.2SPWM波的控制方法 (7) 3.2.1双极性SPWM控制原理及Simulink仿真 (7) 3.2.2单极性SPWM控制原理及Simulink仿真 (9) 4升压电路的分析论证及仿真 (11) 4.1B OOST电路工作原理 (11) 4.2B OOST电路的S IMULINK仿真 (12) 5滤波器设计 (13) 6 PWM逆变器总体模型 (15) 7心得体会 (18) 参考文献 (19)

三相桥式spwm逆变电路的设计及仿真课程设计

院(系):电气工程学院

摘要 根据三相桥式SPWM逆变电路的工作原理以及特点,采用Simulink中的相关模块建立仿真模型,仿真分析其典型电流、电压波形和工作过程,得到了三相桥式SPWM控制波、负载线电压、负载相电压、负载相电流、负载中性点电压、电源电流波形,解决了三相桥式SPWM逆变电路教学中的难点问题。利用该模型辅助三相桥式SPWM逆变电路教学,直观生动,交互性强,动态显示传真波形。论述了单项正弦波逆变器的工作原理,介绍了SG3524的功能及产生SPWM波的方法,对逆变器的控制及保护电路做了详细介绍,给出了输出电压波形的实验结果。 关键词:三相桥式SPWM逆变;Simulink;仿真;波形;

目录 第1章绪论 (1) 第2章课程设计的方案 (2) 2.1三相桥式SPWM逆变电路的设计内容及要求....... 错误!未定义书签。 2.2SPWM逆变器的工作原理 ....................... 错误!未定义书签。第3章 SPWM逆变器的工作原理. (4) 3.1工作原理 (4) 3.2 控制方式 (5) 3.2.1单极性正弦脉宽调制 (5) 3.2.2双极性正弦脉宽调制 (6) 3.3 正弦脉宽调制的调制算法 (7) 3.3.1 自然采样法 (7) 3.3.2规则采样法 (7) 3.3.3 双极性正弦波等面积法 (7) 第四章MATLAB仿真设计 (8) 4.1 主电路 (8) 4.2 控制电路设计 (9) 4.3仿真结果与分析 (10) 第五章课程设计总结 (15) 参考文献 (16)

第1章绪论 电力电子技术是跨越电力技术、电子技术和控制技术理论三个领域的一门新兴交叉学科,它主要研究应用了电路领域的各种电力半导体器件及其装置,以实现对电能的变换和控制。它可以看成是弱电控制强电的技术,是弱电和强电之间的接口。电力电子技术广泛应用于一般工业、交通运输、电力系统、通信系统、计算机系统、新能源系统等。该课程已成为电气工程与自动化、自动化、电力系统自动化等电类专业的重要专业基础课。 正弦逆变电源作为一种可将直流电能有效地转换为交流电能的电能变换装置被广泛地应用于国民经济生产生活中,其中有:针对计算机等重要负载进行断电保护的交流不间断电源UPS (Uninterruptle Power Supply);针对交流异步电动机变频调速控制的变频调速器;针对智能楼宇消防与安防的应急电源EPS ( Emergence Power Supply);针对船舶工业用电的岸电电源 SPS(Shore Power Supply);还有针对风力发电、太阳能发电等而开发的特种逆变电源等等.随着控制理论的发展与电力电子器件的不断革新,特别是以绝缘栅极双极型晶体管IGBT( Insulated Gate Bipolar Transistor)为代表的自关断可控型功率半导体器件出现,大大简化了正弦逆变电源的换相问题,为各种 PWM 型逆变控制技术的实现提供了新的实现方法,从而进一步简化了正弦逆变系统的结构与控制。 IGBT最大的优点是无论在导通状态还是短路状态都可以承受电流冲击。它的并联不成问题,由于本身的关断延迟很短,其串联也容易。尽管IGBT模块在大功率应用中非常广泛,但其有限的负载循环次数使其可靠性成了问题,其主要失效机理是阴极引线焊点开路和焊点较低的疲劳强度,另外,绝缘材料的缺陷也是一个问题。 在现有的正弦波输出变压变频电源产品中,为了得到SPWM波,一般都采用双极性调制技术。该调制方法的最大缺点是它的6个功率管都工作在较高频率,从而产生了较大的开关损耗,开关频率越高,损耗越大。本文针对正弦波输出变压变频电源 SPWM调制方式及数字化控制策略进行了研究,以SG3524为主控制芯片,以期得到一种较理想的调制方法,实现逆变电源变压、变频输出。

基于MATLAB的三相桥式PWM逆变电路资料

交流调速系统课程设计题目:三相桥式SPWM逆变器的仿真设计 班级:0 姓名: 学号: 指导老师:

目录 摘要 (2) 关键词 (2) 绪论 (2) 三相桥式SPWM逆变器的设计内容及要求 (3) SPWM逆变器的工作原理 (3) 1 工作原理 (5) 2 控制方式 (6) 3 正弦脉宽调制的算法 (9) MATlAB仿真设计 (12) 硬件实验 (19) 实验总结 (23) 附录 Matab简介 (24) 参考文献 (24)

三相桥式SPWM逆变电路设计 摘要: 随着电力电子技术的飞速发展,正弦波输出变压变频电源已被广泛应用在各个领域中,与此同时对变压变频电源的输出电压波形质量也提出了越来越高的要求。对逆变器输出波形质量的要求主要包括两个方面:一是稳态精度高;二是动态性能好。因此,研究开发既简单又具有优良动、静态性能的逆变器控制策略,已成为电力电子领域的研究热点之一。 在现有的正弦波输出变压变频电源产品中,为了得到SPWM波,一般都采用双极性调制技术。该调制方法的最大缺点是它的6个功率管都工作在较高频率(载波频率),从而产生了较大的开关损耗,开关频率越高,损耗越大。本实验针对正弦波输出变压变频电源SPWM调制方式及数字化控制策略进行了研究,以SG3525为主控芯片,以期得到一种较理想的调制方法,实现逆变电源变压、变频输出。 关键词:逆变器SPWM逆变器的工作原理正弦脉宽调制的调制算法单极性正弦脉宽调制双极性正弦脉宽调制自然采样法规则采样法双极性正弦波等面积法 一、绪论 正弦逆变电源作为一种可将直流电能有效地转换为交流电能的电能变换装置被广泛地应用于国民经济生产生活中,其中有:针对计算机等重要负载进行断电保护的交流不间断电源UPS (Uninterruptle Power Supply) ;针对交流异步电动机变频调速控制的变频调速器;针对智能楼宇消防与安防的应急电源EPS ( Emergence Power Supply) ;针对船舶工业用电的岸电电源SPS(Shore Power Supply) ;还有针对风力发电、太阳能发电等而开发的特种逆变电源等等.随着控制理论的发展与电力电子器件的不断革新,特别是以绝缘栅极双极型晶体管IGBT( Insulated Gate Bipolar Transistor)为代表的自关断可控型功率半导体器件出现,大大简化了正弦逆变电源的换相问题,为各种PWM 型逆变控制技术的实现提供了新的实现方法,从而进一步简化了正弦逆变系统的结构与控制. 电力电子器件的发展经历了晶闸管(SCR)、可关断晶闸管(GTO)、晶体管(BJT)、绝缘栅晶体管(IGBT)等阶段。目前正向着大容量、高频率、易驱动、低损耗、模块化、复合化方向发展,与其他电力电子器件相比,IGBT具有高可靠性、驱动简单、保护容易、不用缓冲电路和开关频率高等特点,为了达到这些高性能,采用了许多用于集成电路的工艺技术,如外延技术、离子注入、精细光刻等。 IGBT最大的优点是无论在导通状态还是短路状态都可以承受电流冲击。它

相关主题
文本预览
相关文档 最新文档