当前位置:文档之家› 圆周运动模型

圆周运动模型

圆周运动模型
圆周运动模型

圆周运动模型

处理圆周运动问题应注意两个关键环节:一是确定轨迹圆,二是分清向心力来源。常见的有两大类型:

一、水平面内的圆周运动(匀速圆周运动)

(1)运动实例:圆锥摆、火车转弯、水平转台等

(2)特点分析:

①运动轨迹是圆,且在水平面内;

②向心力的方向水平,竖直方向的合力为零。

(3)解题方法:

受力分析确定向心力的来源确定圆心和半径应用相应规律列方程求解。

临界状态问题处理时,一定要注意向心力的特点。

例:如图所示,匀速转动的水平圆盘上,放有质量均为m的小物体A、B,A、B间用细线沿半径方向相连,它们到转轴OO′距离分别为R A=20cm,R B=30cm。A、B与盘面间的最大静摩擦力均为重力的0.4倍,试求:

(1)当细线上开始出现张力时,圆盘的角速度ω0。

(2)当A开始滑动时,圆盘的角速度ω。

(3)当即将滑动时,烧断细线,A、B状态如何?

解析:(1)当细线上开始出现张力时,表明B与盘

间的静摩擦力达到最大,设此时圆盘角速度为ω0,

则20B kmg mr ω=

,解得0 3.7rad s rad s ω== (2)当A 开始滑动时,表明A 与盘的静摩擦力也达到最大,设此时盘转动加速度为ω,线上拉力为F T ,则 对A :2fAm T A F F mr ω-=对B :2fBm T B F F mr ω-= 以上两式中,==fAm fBm F F kmg 解以上三式,得=4rad s ω

(3)烧断细线,A 与盘间的静摩擦力减小,继续随盘做半径为

20A r cm =的圆周运动,而B 由于fbm F 不足以提供必要的向心力而作离

心运动。

二、竖直面内的圆周运动(非匀速圆周运动) 求解竖直平面内圆周运动问题的思路是: 1、定模型:判断是轻绳模型还是轻杆模型

2

、确定临界点:对轻绳模型是否通过最高点的临界速度v = 对轻杆模型F N 表现为支持力还是拉力,临界速度0,N v F mg == 3、研究状态:通常情况下竖直平面内的圆周运动只涉及最高点和最低点的运动情况。

4、受力分析:对物体在最高点或最低点时进行受力分析,根据牛顿第二定律列出方程,合向=F F

5、过程分析:应用动能定理或机械能守恒定律将初、末两个状态联系起来列方程。

例:如图所示,半径r=0.5m 的光滑圆轨道被竖直固定在水平地面上,圆轨道最低处有一小球(小球的半径比r 小很多)。现给小球一个水

平向右的初速度v 0,要使小球不脱离轨道运动,v 0应满足()

A 、00v ≥

B 、0v m s ≥

C 、05v m s ≥

D 、0v m s ≤ 解析:小球不脱离圆轨道,有两种情形:

(1)小球能通过最高点,此种情形小球上升到最高点的速度满足条

件v ≥小球从最低点运动到最高点的过程中,根据机械能守恒定律有

22011

222

mv mv mg r =+

解得05v m == (2)小球上升的高度h r ≤

小球从最低点到最高点的过程中,根据机械能守恒定律有

201

2

mv mgr ≤解得0v m s ==

故选 CD

(2017年.全国Ⅱ卷17题)如图,半圆形光滑轨道固定在水平地面上,半圆的直径与地面垂直,一小物块以速度v 从轨道下端滑入轨道,并从轨道上端水平飞出,小物块落地点到轨道下端的

距离与轨道半径有关,此距离最大时对应的轨道半径为(重力加速度为g )()

A 、216v g

B 、28v g

C 、24v g

D 、22v g

解:答案A 。

设轨道半径为R ,物块从轨道上端飞出时的速度为1v ,由于轨道光滑,根据机械能守恒定律有22111

222

mg R mv mv ?=

-, 物块从轨道上端水平飞出后做平抛运动,对运动分解有:

1

,x vt =2

12=2

R gt ,求得x =

因此由数学知识知当2

=8v R g

时,x 取最大值,B 正确,A 、C 、D 错误。

(2016.全国Ⅱ卷。16题)小球P 和Q 用不可伸长的轻绳悬挂在天花

板上,P 球的质量大于Q 球的质量,悬挂P 球的绳比悬挂Q 球的绳短。

将两球拉起,使两球均被水平拉直,如图所示。将两球由静止释放。在各自轨迹的最低点,() A 、P 球的速度一定大于Q 球的速度 B 、P 球的动能一定小于Q 球的动能

C 、P 球所受绳的拉力一定大于Q 球所受绳的拉力

D 、P 球的相信加速度一定大于Q 球的向心加速度

解:答案C

由机械能守恒定律可知,2

12

mgl mv =

,则v =,由题给条件

P Q m m >,P Q l l <,因此P 球的速度一定小于Q 球的速度,A 错误;

小球在最低点的动能为212

mv ,又因P 球质量大于Q 球质量,二速度小于Q 球速度,因此P 球的动能不一定小于Q 球的动能,B 错误;

由向心力公式可得,2

-v F mg m l

=,又v =

,因此=3F mg ,P 球质

量大于Q 球质量,故C 正确;

由向心加速度公式得,2

2v a g l

==,即在最低点P 、Q 两球的向心加速度相等,D 错误。

(2016年.全国Ⅲ。20题)如图,一固定容器的

内壁是半径为R 的半球面;在半球面水平直径的一端有一质量为m 的质点P 。它在容器内壁由静止下滑到最低点的过程中,克服摩擦力做的功为W 。重力加速度大小为g 。设质点P 在最低点时,向心加速度的大小为a ,容器对它的支持力大小为N ,则() A 、2()

mgR W a mR

-= B 、2mgR W

a mR

-= C 、32mgR W

N R -= D 、2()

mgR W N R

-=

解:答案 AC

P 从最高点到最低点,由动能定理可知2

12

mgR W mv -=

,由向心力公式2

v a R

=得,2()mgR W a mR -=,故A 正确,B 错误;

在最低点由牛顿第二定律得-N mg ma =,得32mgR W

N R

-=,故C 正

确,D 错误。

(2016年.全国Ⅲ。24题)如图,在竖直平面内有1

4圆弧AB 和12

圆弧BC 组成的光滑固定轨道,两者在最低点B 平滑连接。AB 弧的半径为R ,BC 弧的半径为2R 。一小球在A 点正上方与A 相距4

R 处由静止开始自由下落,经A 点沿圆弧轨道运动。 (1) 求小球在B 、A 两点的动能之比;

(2) 通过计算判断小球能否沿轨道运动到C 点。

解:(1)设小球的质量为m ,小球在A 点的动能为KA E ,小球在B 点的动能为KB E ,

由机械能守恒得4

KA R

E mg

=○154

KB

R E mg =○

2 由○

1○2式得5KB

KA

E E =○

3 (2)若小球能沿轨道运动到C 点,小球在C 点所受轨道的正压力N 应

满足0N ≥○4设小球在C 点的速度大小为C

v ,由牛顿运动定律和向心加速度公式有+2

C

mv N mg R

=

○5 有○4○5式得,C

v 应满足2

2C v mg m R

≤○

6 由机械能守恒有21

4

2

C R

mg

mv =

○7 由○

6○7式可知,小球恰好可以沿轨道运动到C 点。

(2014年.全国Ⅰ卷。20题)如图,两个质量均为m 的小木块a 和b (可视为质点)放在水平圆盘上,a 与转轴OO '的距离为l ,b 与转轴的距离为2l 。木块与圆盘的最大静摩擦力为木块受到重力的k 倍,重力加速度大小为g 。若圆盘从静止开始绕转轴缓慢的加速转动,用ω表示圆盘转动的加速度,下列说法正确的是() A 、b 一定比a 先开始滑动

B 、a 、b 所受的摩擦力始终相等

C 、ωb 开始滑动的临界角速度

D 、当ωa 所受摩擦力的大小为kmg

解:答案 AC

设圆盘转速达到max ω时,圆盘上的物块刚好开始滑动。由牛顿第二定

律和圆周运动的规律有2max max f kmg m r ω==○

1式中,m 是物块的质量,是物块到转轴的距离,max f 是物块与圆盘的最大静摩擦力。

由上式得物块开始滑动的临界角速度为max ω2

由○

2式可知,物块b 开始滑动时圆盘的转速小于物块a 开始滑动时圆盘的转速,选项A 正确,

若圆盘转速max ωω≤,物块所受到的静摩擦力为

2()f r m r kmg ω=≤○

3 它与物块到转轴的距离成正比,选项B 错误;

由○

2式可知,物块b 开始滑动的临界角速度为ωC 正确;

物块a 开始滑动的临界角速度为ω

由○

3式可知,当ω<时,a 所受摩擦力的大小为23kmg f =,

选项D 错误。

(2014年.全国Ⅱ卷。17题)如图,一质量为M 的光滑大圆环,用一细轻杆固定在竖直平面内;套在大环上质量为m 的圆环(可是为质点),从大环的最高处由静止滑下。重力加速度大小为g 。当小环滑到大环的最低点时,大环对轻杆拉力的大小为()

A 、5Mg mg -

B 、+Mg mg

C 、+5Mg mg

D 、10Mg mg +

解:答案 C

小环从最高点下落到最低点时,系统的机械能守恒,根据机械能守恒定律有212=2

mg R mv ,

小环在最低点时,受竖直向下的重力mg ,大环对小环竖直向上的弹

力F ,由牛顿第二定律有2

-=v F mg m R

,解得=5F mg 。

大环共受三个力作用:竖直向下的重力Mg ,小环对大环向下的压力F ',轻杆对大环竖直向上的拉力T ,对大环有=T Mg F '+,有牛顿第三定律=F F ',得=5T Mg mg +,C 正确。

(2013年.全国Ⅱ卷。21题)公路急转弯处通常是交通事故多发地带。如图,某公路急转弯处是一圆弧,当汽车行驶的速度为0v 时,汽

车恰好没有向公路内外两侧滑动的趋势。则在该弯道处()

A 、路面外侧高内侧低

B 、车速只要低于0v ,车辆便会向内侧滑动

C 、车速虽然高于0v ,但只要不超出某一最高限度,车辆便不会向外侧滑动

D 、当路面结冰时,与未结冰时相比,0v 的值变小

解:答案 AC

根据题意,速率为0v 时,汽车恰好没有向公路内外两侧滑动的趋势,可知汽车转弯时所需的水平的向心力,只有汽车所受的重力和地面的支持力的合力提供,且合力要指向弯道的内侧,所以路面外侧高内侧低,选项A 正确;

设拐弯处斜面倾角为θ,弯道的半径为R ,汽车质量为m ,对汽车进行受力分析,汽车受到重力G ,方向竖直向下,斜面对汽车的支持力

N ,方向垂直斜面向上,两力的合力指向水平面圆周的圆心,则由牛

顿第二定律有:20tan v mg m R

θ=。汽车恰好没有向公路的内外两侧滑

动的趋势时,其临界速度为0v ,0v 与弯道半径及斜面倾角有关,弯道半径越小,0v 越小,θ越小,临界速度0v 越小,0v 与路面的粗糙程度无关,选项D 错误;

当车速高于0v 时,紧靠tan mg θ不足以提供所需的向心力,汽车有向外滑动的趋势,此时路面的汽车的静摩擦力不为零,方向沿斜面向下,参与提供向心力;汽车速度越大,所需的静摩擦力越大,如果转弯时速度过大,大于tan mg θ和最大静摩擦力所能提供的向心力,则汽车将做离心运动,因此车速虽然高于0v ,但只要不超过某一最高限度,车辆便不会向外侧滑动,选项C 正确;

若车速低于临界速度,则重力和地面对汽车的支持力的合力大于向心力,汽车有向内侧滑动的趋势,此时路面的汽车的静摩擦力不为零,方向沿斜面向上,抵消一部分多出来的向心力,只要重力和地面对汽车的支持力的合力不大于最大静摩擦力,汽车就不会向内运动,选项B 错误。

例题:A 、B 两轮经过皮带传送(不打滑),C 轮与A 轮同轴,它们的半径之比分别为::1:2:3A B C R R R =,如图所示,求: (1)三轮边缘的线速度之比::

A B C v v v ; (2)三轮的角速度之比::A B C ωωω;

(3)三轮边缘的点的向心加速度之比::A B C a a a 。

解:(1)由于A 、B 两轮是通过皮带传送,故:=1:1A B v v ,而A 、C 两轮固定在同一轴上,=A C ωω,则由v R ω=可知,:=:1:3A C A C v v R R =,所以::=1:1:3A B C v v v 。

(2)由于:=1:1A C ωω,而A 、B 两轮边缘线速度大小相等,则由

v R ω=可知,:=:2:1A B A B R R ωω=,所以::=2:1:2A B C ωωω。

(3)因为向心加速度a v ω=,所以::=2:1:6A B C a a a 。

12圆周运动的常见模型

12常考圆周模型及解题思路 一、汽车转弯:车与地面之间的静摩擦提供向心力 二、火车转弯:重力和支持力的合力提供向心力 三、汽过过桥:重力与支持力的合力提供向心力 例1.载重汽车以恒定的速率通过丘陵地,轮胎很旧。如图所示,下列说法中正确的是( ) A.汽车做匀变速运动B.为防止爆胎,车应该在A处减速行驶 C.如果车速足够大,车行驶至A时所受的支持力可能为零 D.当车行驶至B时,向心力等于车所受的重力 四、竖直平面的圆周运动: 1:轻绳模型(无支撑模型):绳子的力只可能是拉力,不可能是推力。 2:轻杆模型(有支撑模型):杆的力可以是拉力也可能是推力。 例2.长度为L=0.5m的轻质细杆OA,A端有一质量为m=3.0kg的小球,如图所示,小 球以O点为圆心在竖直平面内做圆周运动,通过最高点时小球的速率是2.0m/s,g取10m/s2, 则此时细杆OA受到() A.6.0N的拉力B.6.0N的压力C.24N的拉力D.24N的压力 五、圆周运动的解题思路 1.对某一状态进行分析时,列出牛顿第二定律方程(向心力的来源) 2.对某一过程进行分析时,列出动能定理方程(W总=E k2-E k1) 例3.如图所示,一光滑的半径为R的半圆形轨道放在水平面上,一个质量为m的小球以某一速度冲上 轨道,当小球将要从轨道口飞出时,轨道的压力恰好为零,则小球落地点C距A处多 远?求在C点的速度大小. 练习题 l.如图所示,小球在竖直光滑圆环的内槽做圆周运动,关于其加速度说法正确的 是() A.一定指向圆心B.一定不指向圆心 C.只在最高点和最低点位置指向圆心 D.只在最左端和最右端位置指向圆心 2.如图所示,某轻杆一端固定一质量为m的小球,以另一端O为圆心,使小球在竖直平面内做半径为R的圆周运动,以下说法中不正确的是() A.小球过最高点时,杆所受的弹力可以为零 B.小球过最高点时,最小速度为(gR)1/2 C.小球过最高点时,杆对球的作用力可以与球所受重力方向相反,此时重力一定 大于或等于杆对球的作用力 D.小球过最低点时,杆对球的作用力一定与小球所受重力方向相反 3.2008年4月28日凌晨,山东境内发生两列列车相撞事故,造成了大量人员伤亡和财产损失.引发 事故的主要原因是其中一列列车转弯时超速行驶.如图所示是一种新型高速列 车,当它转弯时,车厢会自动倾斜,提供转弯需要的向心力;假设这种新型列 车以360 km/h的速度在水平面内转弯,弯道半径为1.5 km,则质量为75 kg的 乘客在列车转弯过程中所受到的合外力为( ) A.500 N B.1 000 N C.500 2 N D.0 4.司机为了能够控制驾驶的汽车,汽车对桥面的压力一定要大于0,在高速公

圆周运动-圆盘模型

圆周运动——圆盘模型 1、如图所示,水平转盘上放有质量为m的物块,当物块到转轴的距离为r时,连接物块和转轴的绳刚好被拉直(绳中张力为零),物块与转盘间最大静摩擦力是其重力的k倍,求: 2、(1)转盘的角速度为时绳中的张力T1; (2)转盘的角速度为时绳中的张力T2。 2、如图所示,在匀速转动的圆盘上,沿直径方向上放置以细线相连的A、B两个小物块。A的质量为,离轴心,B的质量为,离轴心,A、B与盘面间相互作用的摩擦力最大值为其重力的0.5倍,试求:(1)当圆盘转动的角速度为多少时,细线上开始出现张力? (2)欲使A、B与盘面间不发生相对滑动,则圆盘转动的最大角速度为多大?()

3、如图11所示,在匀速转动的圆盘上,沿半径方向放置以细线相连的质量均为 m的A、B两个小物块。A离轴心r 1=20 cm,B离轴心r 2 =30 cm,A、B与圆盘 面间相互作用的最大静摩擦力为其重力的0.4倍,取g=10 m/s2。 (1)若细线上没有张力,圆盘转动的角速度ω应满足什么条件? (2)欲使A、B与圆盘面间不发生相对滑动,则圆盘转动的最大角速度多大? (3)当圆盘转速达到A、B刚好不滑动时,烧断细线,则A、B将怎样运动? 4、如图所示,在水平圆盘上沿半径方向放置用细线相连的质量均为m的A、B

两个物块(可视为质点).A和B距轴心O的距离分别为r A=R,r B=2R,且A、B 与转盘之间的最大静摩擦力都是f m,两物块A和B随着圆盘转动时,始终与圆盘保持相对静止.则在圆盘转动的角速度从0缓慢增大的过程中,下列说法正确的是() A.B所受合外力一直等于A所受合外力 B.A受到的摩擦力一直指向圆心 C.B受到的摩擦力一直指向圆心 D.A、B两物块与圆盘保持相对静止的最大角速度为 5、如图所示,在绕竖直轴匀速转动的水平圆盘盘面上,离轴心r=20cm处放置一小物块A,其质量为m=2kg,A与盘面间相互作用的静摩擦力的最大值为其重力的k倍(k=0.5),试求 ⑴当圆盘转动的角速度ω=2rad/s时,物块与圆盘间的摩擦力大小多大?方向如何? ⑵欲使A与盘面间不发生相对滑动,则圆盘转动的最大 角速度多大?(g=10m/s2)

圆周运动中绳模型和杆模型的一般解析

圆周运动中绳模型和杆模型的一般解析 一:绳模型:若已不可伸长的绳子长L ,其一端栓有一质量m 的小球(可看成质点)。现使绳子拉着小球绕一点O 做匀速圆周运动,则(1)小球恰好通过最高点的速度v 。 (2)当能通过最高点时,绳子拉F 。 解:(1)小球恰能通过最高点的临界条件是绳子没有拉力, 则对小球研究,其只受重力mg 作用, 故,由其做圆周运动得: L v m mg 2= 故 gL v = (2)由分析得,当小球到最高点时速度gL v v =>'时, 则,mg L mv F -=2 ' 而,当gL v v =<'时,那么小球重力mg 大于其所需向心力,因此小球做向心运动。 二:杆模型:若一硬质轻杆长L ,其一端有一质量m 的小球(可看成质点)。现使杆和小球绕一点O 做匀速圆周运动, 则 (1)小球恰好通过最高点的速度v 。 (2)当能通过最高点时,杆对小球的作用力F 。 解:(1)因为杆具有不可弯曲不可伸长的性质,所以小球在最高点,当速度为0时,恰好能通过。 (2)①由绳模型可知,当小球通过最高点速度gL v =时,

恰好有绳子拉力为0,则同理可知,当杆拉小球到最高点时, 若小球速度gL v =时,小球所需向心力恰好等于重力mg , 故,此时杆对小球没有作用力。 ②当小球通过最高点时速度gL v >时, 则小球所需向心力比重力mg 大,所以此时杆对小球表现为拉力,使小球不至于做离心运动 故对小球有, L mv mg F 2=+ ③同理,当小球通过最高点时速度gL v <时, 则小球所需向心力小于重力mg ,所以此时小球对杆有压力作用,有牛顿第三定律得,杆对小球表现为支持力作用, 故对小球有, L mv F mg 2=-

圆周运动的三种模型

圆周运动的三种模型 一、圆锥摆模型: 如图所示:摆球的质量为m,摆线长度为L ,摆动后摆球做圆周运动,摆线与竖直方向成θ角,对小球受力分析, 正交分法解得:竖直方向:水平方向:F X=最终得F合=。 用力的合成法得F合=。半径r=,圆周运动F向==,由F合=F向可得V=,ω= 圆锥摆是物理学中一个基本模型,许多现象都含有这个模型。分析方法同样适用自行车, 摩托车,火车转弯,飞机在水平面内做匀速圆周飞行等在水平面内的匀速圆周运动的问题。共同点是由重力和弹力的合力提供向心力,向心力方向水平。 1、小球在半径为R 的光滑半球内做水平面内的匀速圆周运动,试分析图中θ(小球与半球球心连线跟竖直方向的夹角)与线速度V ,周期T 的关系。(小球的半径远小于R) 2、如图所示,用一根长为l=1m的细线,一端系一质量为m=1kg的小球(可视为质点),另一端固定在一光滑锥体顶端,锥面与竖直方向的夹角θ=37°,当小球在水平面内绕锥体的轴做匀速圆周运动的角速度为ω时,细线的张力为T。求(取g=10m/s2,结果可用根式表示): (1)若要小球离开锥面,则小球的角速度ω0至少为多大? (2)若细线与竖直方向的夹角为60°,则小球的角速度ω'为多大?

二.轻绳模型 (一)轻绳模型的特点: 1. 轻绳的质量和重力不计; 2. 只能产生和承受沿绳方向的拉力; (二)轻绳模型在圆周运动中的应用 小球在绳的拉力作用下在竖直平面内做圆周运动的临界问题: 1. 临界条件:小球通过最高点,绳子对小球刚好没有力的作用,由重力提供向心力: = ,v 临界 = 2. 小球能通过最高点的条件: v v 临界(此时,绳子对球产生 力) 3. 不能通过最高点的条件: v v 临界 (实际上小球还没有到最高点时,就脱离了轨道) 练习: 质量为m 的小球在竖直平面内的圆形轨道的内侧运动,经过最高点而不脱离轨道的临界速度为v ,当小球以2v 的速度经过最高点时,对轨道的压力是( ) A . 0 B. mg C .3mg D 5mg 三.轻杆模型: (一)轻杆模型的特点: 1.轻杆的质量和重力不计; 2.能产生和承受各方向的拉力和压力 (二)轻杆模型在圆周运动中的应用 轻杆的一端连着一个小球在竖直平面内做圆周运动,小球通过最高点时,轻杆对小球产生弹力的情况: 1. 小球能通过最高点的最小速度v= ,此时轻杆对小球的作用力N= ( N 为 力) 2. 当 =R v m 2临界 ( 轻杆对小球的作用力N= 0 ),gR v 临界 3 当 (即0v 临界)时,有 =R v m 2 (轻杆对小球的作用力N 为 力) 练习: 半径为R=0.5m 的管状轨道,有一质量为m=3kg 的小球在管状轨道内部做圆周运动,通过最高点时小球的速率是2m/s ,g=10m/s2 ,则( ) A. 外轨道受到24N 的压力 B. 外轨道受到6N 的压力 C. 内轨道受到24N 的压力 D. 内轨道受到 6N 的压力

圆周运动的三种模型

一、圆锥摆模型: 如图所示:摆球的质量为 m ,摆线长度为L ,摆动后摆球做圆周运动,摆线与竖直方向成 分析, 正交分法解 得: 竖直方向: ________________ 水平方向: F<= _______ 最终得 F 合= _________ 用力的合成法得 F 合= _________ 。半径 r = _______ ,圆周运动 F 向= _________ = ________ , 由F 合=卩向可得V= ________ , 3= ______ 圆锥摆是物理学中一个基本模型,许多现象都含有这个模型。分析方法同样适用自行车, 摩托车,火车转弯,飞机在水平面内做匀速圆周飞行等在水平面内的匀速圆周运动的问题。 力的合力提供向心力,向心力方向水平。 1、小球在半径为 R 的光滑半球内做水平面内的匀速圆周运动,试分析图中 的夹角)与线速度 V ,周期T 的关系。(小球的半径远小于 R ) 2、如图所示,用一根长为 1= 1m 的细线,一端系一质量为 m = 1kg 的小球(可视为质点),另一端固定在一光 滑锥体顶端,锥面 9 3时, 圆周运动的三种模型 共同点是由重力和弹 0 (小球与半球球心连线跟竖直方向 细线的张力为T 。求(取g = 10m/s 2,结果可用根式表示): (1 )右要小球离开锥面,则小球的角速度 30至少为多大? (2)若细线与竖直方向的夹角为 60°则小球的角速度 3Z 为多大?

二.轻绳模型 (一)轻绳模型的特点: 1. 轻绳的质量和重力不计; 2. 只能产生和承受沿绳方向的拉力; (二)轻绳模型在圆周运动中的应用 小球在绳的拉力作用下在竖直平面内做圆周运动的临界问题: 1?临界条件:小球通过最高点,绳子对小球刚好没有力的作用,由重力提供向心力: ______ = _____ ,v 临界= 2?小球能通过最高点的条件: v ____ v 临界(此时,绳子对球产生 —力) 3. 不能通过最高点的条件: v v 临界(实际上小球还没有到最高点时,就脱离了轨道) 练习: 质量为m 的小球在竖直平面内的圆形轨道的内侧运动,经过最高点而不脱离轨道的临界速度为 v ,当小球以2v 的速度经过最高点时,对轨道的压力是( ) A . 0 B. mg C .3mg D 5mg (一)轻杆模型的特点: 1. 轻杆的质量和重力不计; 2. 能产生和承受各方向的拉力和压力 (二 )轻杆模型在圆周运动中的应用 轻杆的一端连着一个小球在竖直平面内做圆周运动,小球通过最高点时,轻杆对小球产生弹力的情况: 1. 小球能通过最高点的最小速度 v= ___ ,此时轻杆对小球的作用力 N= ___ ( 2 2. 当 _______ =m v 临界(轻杆对小球的作用力 N= 0 ), V 临界 __ j gR (即0v 临界)时,有

高中物理圆周运动中的“双星模型”

圆周运动中的“双星模型” 宇宙中往往会有相距较近,质量可以相比的两颗星球,它们离其它星球都较远,因此其它星球对它们的万有引力可以忽略不计。在这种情况下,它们将各自围绕它们连线上的某一固定点O做同周期的匀速圆周运动。如图6所示,这种结构叫做双星.双星问题具有以下两个特点: ⑴由于双星和该固定点O总保持三点共线,所以在相同时间内转过的角度必相等,即双星做匀速圆周运动的角速度必相等,因此周期也必然相同。 ⑵由于每颗星的向心力都是由双星间相互作用的万有引力提供的,因此大小必然相等,由 可得,可得,,即固定点O离质量大的星较近。 列式时须注意:万有引力定律表达式中的r表示双星间的距离,按题意应该是L,而向心力表达式中的r表示它们各自做圆周运动的半径,在本题中为r1、r2,千万不可混淆。 【例1】神奇的黑洞是近代引力理论所预言的一种特殊天体,探寻黑洞的方案之一是观测双星系统的运动规律.天文学家观测河外星系大麦哲伦云时,发现了LMCX-3双星系统,它由可见星A和不可见的暗星B构成。两星视为质点,不考虑其它天体的影响,A、B围绕两者连线上的O点做匀速圆周运动,它们之间的距离保持不变,如图1所示。引力常量为G,由观测能够得到可见星A的速率v和运行周期T。 如图1 (1)可见星A所受暗星B的引力F A可等效为位于O点处质量为m’的星体(视为质点)对它的引力,设A和B的质量分别为m1、m2,试求m’(用m1、m2表示); (2)求暗星B的质量m2与可见星A的速率v、运行周期T和质量m1之间的关系式; (3)恒星演化到末期,如果其质量大于太阳质量m s的2倍,它将有可能成为黑洞。若可见星A的速率v=2.7×105m/s,运行周期T=4.7π×104s,质量m1=6m s,试通过估算来判断暗星B有可能是黑洞吗?(G=6.67×10-11N·m2/kg2,m s=2.0×1030kg) 解析:设A、B的圆轨道半径分别为,由题意知,A、B做匀速圆周运动的角速度相同,设其为。由牛顿运动定律,有,, 设A、B间距离为,则 由以上各式解得

圆周运动的常见模型

圆周运动的常见模型(绳、杆模型)教案 授课人:马少芳 地点:高一(5)班 时间:2014-3-21 【课前分析】 本节课主要讲圆周运动的常见模型中的轻绳模型和轻杆模型,这两个模型都属于竖直平面内的圆周运 动。竖直平面内的圆周运动一般是变速圆周运动 (带电粒子在匀强磁场中运动除外 ),运动的速度大小和方 向在不断发生变化,运动过程复杂,合外力不仅要改变运动方向,还要改变速度大小,所以一般不研究任 意位置的情况,只研究特殊的临界位置——最高点和最低点 【教学目标】 (一) 知识与技能: 1、 加深对向心力的认识,会在绳、杆两类问题中分析向心力的来源。 2、 知道两类问题的“最高点”、“最低点”临界条件。 (二) 过程与方法: 通过对几个圆周运动的事例的分析,掌握分析绳、杆问题中向心力的方法。 (三) 情感态度与价值观: 培养学生独立观察、分析问题,解决问题的能力,提高学生概括总结知识的能力。 【教学重点】绳、杆两类问题的“最高点”临界条件中向心力的分析。 【教学难点】过最高点临界条件的理解? 学情分析】通过前面知识点的学习,学生初步掌握圆周运动、向心力的相关知识,掌握了分析圆周运 动向心力来源的方法,为本节课学习做了铺垫和准备。 【教学方法】 讲授法提问法演示法 【教学用具】 黑板 多媒体 绑细线的道具小桶 【课时安排】1课时(45min ) 【教学过程】 (一)开门见山,直接导入 [师]:前面我们通过生活中的圆周运动了解了圆周运动在生活中的联系与应用,这节课我们继续了解圆周 运动中常见的模型,其中典型的一种用绳子拉着一物体 (小球)在竖直平面内做圆周运动,这种模型叫 轻绳模型,或绳球模型。另一种是用一根杆支撑着物体在竖直面做圆周运动的,叫轻杆模型或杆球模 型。我们先了解第一种模型:轻绳模型 (说明)[师]:轻绳模型和轻杆模型都是竖直平面内的圆周运动,一般是变速圆周运动运动的速度大小和 方向在不断发生变化,运动过程复杂,合外力不仅要改变运动方向还要改变速度大小,所以一般不研究任 意位置的情况,只研究特殊的临界位置——最高点和最低点 一、轻绳模型:如图所示小球在细绳的约束下,在竖直平面内做圆周运动,小球质量为 1、在最低点时,设小球速度为 v 列小球在最低点向心力的表达式 (前面有初步了解, 请学生1回答) 最低点: 对小球受力分析,小球受到重力、绳的拉力 由牛顿第二定律得(向心力由重力 mg 和拉力T 1的合力提供) 2 得:T 1 =mg+m V1- r 在最低点拉力大于重力,速度越大,绳子拉力越大,所以在最低点绳子容易被拉断。 2、在最高点时,假设运动到最高点速度为 v,求列小球在最高点向心力的表达式(请学生 2回答) 最高点: m ,绳长为r 2 T 1-mg =m Vk r

大全圆周运动模型

圆周运动模型 一、匀速圆周运动模型 1.随盘匀速转动模型 1.如图,小物体m 与圆盘保持相对静止,随盘一起做匀速圆周运动,则物体的受力情况是: A .受重力、支持力、静摩擦力和向心力的作用 B .摩擦力的方向始终指向圆心O C .重力和支持力是一对平衡力 D .摩擦力是使物体做匀速圆周运动的向心力 2. 如图所示,质量为m 的小物体系在轻绳的一端,轻绳的另一端固定在转轴上。轻绳长度为L 。现在使物体在光滑水平支持面上与圆盘相对静止地以角速度 做匀速圆周运动,求: (1)物体运动一周所用的时间T ; (2)绳子对物体的拉力。 3、如图所示,MN 为水平放置的光滑圆盘,半径为1.0m ,其中心O 处有一个小孔,穿过小孔的细绳两端各系一小球A 和B ,A 、B 两球的质量相等。圆盘上的小球A 作匀速圆周运动。问 (1)当A 球的轨道半径为0.20m 时,它的角速度是多大才能维持B 球静止? (2)若将前一问求得的角速度减半,怎样做才能使A 作圆周运动时B 球仍能保持静止? 4、如图4所示,a 、b 、c 三物体放在旋转水平圆台上,它们与圆台间的动摩擦因数均相同,已知a 的质量为2m ,b 和c 的质量均为m ,a 、b 离轴距离为R ,c 离轴距离为2R 。当圆台转动时,三物均没有打滑,则:(设最大静摩擦力等于滑 动摩擦力)( ) A.这时c 的向心加速度最大 B .这时b 物体受的摩擦力最小 C.若逐步增大圆台转速,c 比b 先滑动 D .若逐步增大圆台转速,b 比a 先滑动 5、如右图所示,某游乐场有一水上转台,可在水平面内匀速转动,沿半径方向面对面手拉手坐着甲、乙两个小孩,假设两小孩的质量相等,他们与盘间的动摩擦因数相同,当圆盘转速加快到两小孩刚好还未发生滑动时,某一时刻两小孩突然松手,则两小孩的运动情况是( ) A .两小孩均沿切线方向滑出后落入水中 B .两小孩均沿半径方向滑出后落入水中 C .两小孩仍随圆盘一起做匀速圆周运动,不会发生滑动而落入水中 D .甲仍随圆盘一起做匀速圆周运动,乙发生滑动最终落入水中 6、线段OB=AB ,A 、B 两球质量相等,它们绕O 点在光滑的水平面上以相同的角速度转动时,如图4所示,两段线拉力之比T AB :T OB =______。 2.转弯模型 1.火车在水平轨道上转弯时,若转弯处内外轨道一样高,则火车转弯时:[ ] A .对外轨产生向外的挤压作用 B .对内轨产生向外的挤压作用 C .对外轨产生向内的挤压作用 D .对内轨产生向内的挤压作用 2.火车通过半径为R 的弯道,已知弯道的轨道平面与水平面的夹角为θ,要使火车通过弯道时对内外轨道不产生挤压,求火车通过弯道时的速度? O ω ω m

圆周运动中的几种模型

圆周运动中的几种模型 一.轻绳模型 (一). 轻绳模型的特点: 1. 轻绳的质量和重力不计; 2. 只能产生和承受沿绳方向的拉力; (二).轻绳模型在圆周运动中的应用 小球在绳的拉力作用下在竖直平面内做圆周运动的临界问题: 1. 临界条件:小球通过最高点,绳子对小球刚好没有力的作用,由重力提供向心力: 2. 小球能通过最高点的条件:(当时,绳子对球产生拉力) 3. 不能通过最高点的条件:(实际上小球还没有到最高点时,就脱离了轨道) 例:质量为m的小球在竖直平面内的圆形轨道的内侧运动,经过最高点而不脱离轨道的临界速度为v ,当小球以2v的速度经过最高点时,对轨道的压力是() A . 0 B. mg C .3mg D 5mg

分析:内侧轨道只能对小球产生向下的压力,其作用效果同轻绳一样,所以其本质是轻绳模型 当小球经过最高点的临界速度为v ,则 当小球以 2v的速度经过最高点时,轨道对小球产生了一个向下的压力N ,则 因为所以 根据牛顿第三定律,小球对轨道压力的大小也是,故选 c. 二.轻杆模型: (一). 轻杆模型的特点: 1.轻杆的质量和重力不计; 2.能产生和承受各方向的拉力和压力 (二). 轻杆模型在圆周运动中的应用 轻杆的一端连着一个小球在竖直平面内做圆周运动,小球通过最高点时,轻杆对小球产生弹力的情况: 1. 小球能通过最高点的临界条件:v=0 ,N=mg ( N为支持力) 2. 当时,有( N为支持力)

3 当时,有(N=0 ) 4 当时,有(N 为拉力) 例:半径为R=0.5m 的管状轨道,有一质量为m=3kg的小球在管状轨道内部做圆周运动,通过最高点时小球的速率是2m/s ,g=10m/s2 ,则() A. 外轨道受到24N的压力 B. 外轨道受到6N的压力 C. 内轨道受到24N 的压力 D. 内轨道受到 6N的压力 分析:管状轨道对小球既有支持力又有压力,所以其本质属于杆模型: 当小球到最高点轨道对其作用力为零时:有 则, =>2m/s 所以,内轨道对小球有向上的支持力,则有 代入数值得: N=6N 根据牛顿第三定律,小球对内轨道有向下的压力大小也为6N ,故选 D 三.圆锥摆模型: 圆锥摆模型在圆周运动中的应用:

高考物理模型之圆周运动模型

第二章 圆周运动 解题模型: 一、水平方向的圆盘模型 1. 如图1.01所示,水平转盘上放有质量为m 的物块,当物块到转轴的距离为r 时,连接物块和转轴的绳刚好被拉直(绳上张力为零)。物体和转盘间最大静摩擦力是其正压力的μ倍,求: (1)当转盘的角速度ωμ12=g r 时,细绳的拉力F T 1。 (2)当转盘的角速度ωμ232=g r 时,细绳的拉力F T 2。 图2.01 解析:设转动过程中物体与盘间恰好达到最大静摩擦力时转动的角速度为ω0,则μωmg m r =02,解得ωμ0=g r 。 (1)因为ωμω102=g r ,所以物体所需向心力大于物与盘间的最大静摩擦力,则细绳将对物体施加拉力F T 2,由牛顿的第二定律得:F mg m r T 222+=μω,解得 F mg T 22=μ。 2. 如图2.02所示,在匀速转动的圆盘上,沿直径方向上放置以细线相连的A 、B 两个小物块。A 的质量为m kg A =2,离轴心r cm 120=,B 的质量为m kg B =1,离轴心

r cm 210=,A 、B 与盘面间相互作用的摩擦力最大值为其重力的0.5倍,试求: (1)当圆盘转动的角速度ω0为多少时,细线上开始出现张力? (2)欲使A 、B 与盘面间不发生相对滑动,则圆盘转动的最大 角速度为多大?(g m s =102/) 图2.02 解析:(1)ω较小时,A 、B 均由静摩擦力充当向心力,ω增大,F m r =ω2可知,它们受到的静摩擦力也增大,而r r 12>,所以A 受到的静摩擦力先达到最大值。ω再增大,AB 间绳子开始受到拉力。 由F m r fm =1022ω,得:ω011111 055===F m r m g m r rad s fm ./ (2)ω达到ω0后,ω再增加,B 增大的向心力靠增加拉力及摩擦力共同来提供,A 增大的向心力靠增加拉力来提供,由于A 增大的向心力超过B 增加的向心力,ω再增加,B 所受摩擦力逐渐减小,直到为零,如ω再增加,B 所受的摩擦力就反向,直到达最大静摩擦力。如ω再增加,就不能维持匀速圆周运动了,A 、B 就在圆盘上滑动起来。设此时角速度为ω1,绳中张力为F T ,对A 、B 受力分析: 对A 有F F m r fm T 11121+=ω 对B 有F F m r T fm -=2212 2ω 联立解得:ω112 112252707=+-==F F m r m r rad s rad s fm fm /./ 3. 如图2.03所示,两个相同材料制成的靠摩擦传动的轮A 和轮B 水平放置,两轮半径 R R A B =2,当主动轮A 匀速转动时,在A 轮边缘上放置的小木块恰能相对静止在A 轮边缘上。若将小木块放在B 轮上,欲使木块相对B 轮也静止,则木块距B 轮转轴的最大距离为( ) A. R B 4 B. R B 3 C. R B 2 D. R B 答案: C

(完整版)最全圆周运动模型

圆周运动模型 一、匀速圆周运动模型 1.随盘匀速转动模型 1.如图,小物体m 与圆盘保持相对静止,随盘一起做匀速圆周运动,则物体的受力情况是: A .受重力、支持力、静摩擦力和向心力的作用 B .摩擦力的方向始终指向圆心O C .重力和支持力是一对平衡力 D .摩擦力是使物体做匀速圆周运动的向心力 2. 如图所示,质量为m 的小物体系在轻绳的一端,轻绳的另一端固定在转轴上。轻绳长度为 L 。现在使物体在光滑水平支持面上与圆盘相对静止地以角速度 做匀速圆周运动,求: (1)物体运动一周所用的时间T ; (2)绳子对物体的拉力。 3、如图所示,MN 为水平放置的光滑圆盘,半径为1.0m ,其中心O 处有一个小孔,穿过小孔的细绳两端各系一小球A 和B ,A 、B 两球的质量相等。圆盘上的小球A 作匀速圆周运动。问 (1)当A 球的轨道半径为0.20m 时,它的角速度是多大才能维持B 球静止? (2)若将前一问求得的角速度减半,怎样做才能使A 作圆周运动时B 球仍能保持静止? 4、如图4所示,a 、b 、c 三物体放在旋转水平圆台上,它们与圆台间的动摩擦因数均相同,已知a 的质量为2m ,b 和c 的质量均为m ,a 、b 离轴距离为R ,c 离轴距离为2R 。当圆台转动时,三物均没有打滑,则:(设最大静摩擦力等于滑动摩擦力)( ) A.这时c 的向心加速度最大 B .这时b 物体受的摩擦力最小 C.若逐步增大圆台转速,c 比b 先滑动 D .若逐步增大圆台转速,b 比a 先滑动 5、如右图所示,某游乐场有一水上转台,可在水平面内匀速转动,沿半径方向面对面手拉手坐着甲、乙两个小孩,假设两小孩的质量相等,他们与盘间的动摩擦因数相同,当圆盘转速加快到两小孩刚好还未发生滑动时,某一时刻两小孩突然松手,则两小孩的运动情况是( ) A .两小孩均沿切线方向滑出后落入水中 B .两小孩均沿半径方向滑出后落入水中 C .两小孩仍随圆盘一起做匀速圆周运动,不会发生滑动而落入水中 D .甲仍随圆盘一起做匀速圆周运动,乙发生滑动最终落入水中 6、线段OB=AB ,A 、B 两球质量相等,它们绕O 点在光滑的水平面上以相同的角速度转动时,如图4所示,两段线拉力之比T AB :T OB =______。 2.转弯模型 1.火车在水平轨道上转弯时,若转弯处内外轨道一样高,则火车转弯时:[ ] A .对外轨产生向外的挤压作用 B .对内轨产生向外的挤压作用 C .对外轨产生向内的挤压作用 D .对内轨产生向内的挤压作用 2.火车通过半径为R 的弯道,已知弯道的轨道平面与水平面的夹角为θ,要使火车通过弯道时对内外轨道不产生挤压,求火车通过弯道时的速度? O ω ω m

(完整版)圆周运动知识点总结

曲线运动 圆周运动---章节知识点总结 §1 曲线运动 1、曲线运动:轨迹是曲线的运动 分析学习曲线运动,应对比直线运动记忆,抓住受力这个本质。 2、分类:平抛运动 圆周运动 3、曲线运动的运动学特征: (1)轨迹是曲线 (2)速度特点:①方向:轨迹上该点的切线方向 ②可能变化可能不变(与外力有关) 4、曲线运动的受力特征 ①F 合不等于零 ②条件:F 合与0v 不在同一直线上(曲线);F 合与0v 在同一直线上(直线) 例子----分析运动:水平抛出一个小球 对重力进行分解:x g 与A v 在同一直线上:改变A v 的大小 y g 与A v 为垂直关系:改变A v 的方向 ③F 合在曲线运动中的方向问题:F 合的方向指向轨迹的凹面 (请右图在箭头旁标出力和速度的符号) 5、曲线运动的加速减速判断(类比直线运动) F 合与V 的夹角是锐角-------加速 F 合与V 的夹角是钝角-------减速 F 合与V 的夹角是直线-------速度的大小不变 拓展:若F 合恒定--------匀变速曲线运动(典型例子:平抛运动) 若F 合变化--------非匀变速曲线运动(典型例子:圆周运动) §2 运动的合成与分解 1、合运动与分运动的基本概念:略 2、运动的合成与分解的实质:对s 、v 、a 进行分解与合成--------高中阶段仅就这三个物理量进行正交分解。 3、合运动与分运动的关系:等时性---合运动与分动的时间相等(解题的桥梁) 独立性---类比牛顿定律的独立性进行理解 等效性:效果相同所以可以合成与分解 4、几种合运动与分运动的性质 ①两个匀速直线运动合成---------匀速直线运动 ②一个匀速直线运动与一个匀变速直线运动合成-------匀变速曲线运动 ③两个匀变速直线运动合成-----------可能是匀变速直线运动可能是匀变速曲线运动 分析:判断物体做什么运动,一定要抓住本质-----受力!

专题09 圆周运动七大常考模型(解析版)

2020年高考物理一轮复习热点题型归纳与变式演练 专题09 圆周运动七大常考模型 【专题导航】 目录 题型一水平面内圆盘模型的临界问题 (1) 热点题型二竖直面内圆周运动的临界极值问题 (3) 球—绳模型或单轨道模型 (4) 球—杆模型或双轨道模型 (6) 热点题型三斜面上圆周运动的临界问题 (8) 热点题型四圆周运动的动力学问题 (9) 圆锥摆模型 (9) 车辆转弯模型 (11) 【题型演练】 (13) 【题型归纳】 题型一水平面内圆盘模型的临界问题 1.与摩擦力有关的临界极值问题 物体间恰好不发生相对滑动的临界条件是物体间恰好达到最大静摩擦力. (1)如果只是摩擦力提供向心力,则最大静摩擦力F m=mv2 r,静摩擦力的方向一定指向圆心. (2)如果除摩擦力以外还有其他力,如绳两端连接物体随水平面转动,其中一个物体存在一个恰不向内滑动的临界条件和一个恰不向外滑动的临界条件,分别为静摩擦力达到最大且静摩擦力的方向沿半径背离圆心和沿半径指向圆心. 2.与弹力有关的临界极值问题 (1)压力、支持力的临界条件是物体间的弹力恰好为零. (2)绳上拉力的临界条件是绳恰好拉直且其上无弹力或绳上拉力恰好为最大承受力. 【例1】(多选)如图所示,两个可视为质点的、相同的木块A和B放在转盘上,两者用长为L的细绳连接,木块与转盘的最大静摩擦力均为各自重力的K倍,A放在距离转轴L处,整个装置能绕通过转盘中心的转轴O1O2转动,开始时,绳恰好伸直但无弹力,现让该装置从静止开始转动,使角速度缓慢增大,以下说法

正确的是() A.当ω>2Kg 3L时,A、B相对于转盘会滑动 B.当ω>Kg 2L,绳子一定有弹力 C.ω在Kg 2L<ω< 2Kg 3L范围内增大时,B所受摩擦力变大 D.ω在0<ω<2Kg 3L范围内增大时,A所受摩擦力一直变大 【答案】ABD 【解析】当A、B所受摩擦力均达到最大值时,A、B相对转盘即将滑动,Kmg+Kmg=mω2L+mω2·2L, 解得:ω=2Kg 3L,A项正确;当B所受静摩擦力达到最大值后,绳子开始有弹力,即:Kmg=m·2L·ω2, 解得ω=Kg 2L,可知当ω> Kg 2L时,绳子有弹力,B项正确;当ω> Kg 2L时,B已达到最大静摩擦力,则 ω在Kg 2L<ω< 2Kg 3L范围内增大时,B受到的摩擦力不变,C项错误;ω在0<ω< 2Kg 3L范围内,A相对转 盘是静止的,A所受摩擦力为静摩擦力,所以F f-F T=mLω2,当ω增大时,静摩擦力也增大,D项正确.【变式1】(多选)(2019·重庆市江津中学月考)摩擦传动是传动装置中的一个重要模型,如图所示的两个水平放置的轮盘靠摩擦力传动,其中O、O′分别为两轮盘的轴心,已知两个轮盘的半径比r甲∶r乙=3∶1,且在正常工作时两轮盘不打滑.今在两轮盘上分别放置两个同种材料制成的完全相同的滑块A、B,两滑块与轮盘间的动摩擦因数相同,两滑块距离轴心O、O′的间距R A=2R B.若轮盘乙由静止开始缓慢地转动起来,且转速逐渐增加,则下列叙述正确的是() A.滑块A和B在与轮盘相对静止时,角速度之比为ω甲∶ω乙=1∶3 B.滑块A和B在与轮盘相对静止时,向心加速度的比值为a A∶a B=2∶9 C.转速增加后滑块B先发生滑动D.转速增加后两滑块一起发生滑动 【答案】ABC 【解析】由题意可知两轮盘边缘的线速度v大小相等,由v=ωr,r甲∶r乙=3∶1,可得ω甲∶ω乙=1∶3,所

圆周运动典型模型2019

圆周运动典型模型2019.3.15 1.如图,半径10cm的圆盘水平放置,每3.14s转一周, 在圆盘的边沿放置一个质量为0.1kg 的小物体A(可视为质点)随圆盘一起做圆周运动而不打滑,Л=3.14,求 (1)圆盘旋转的角速度多大; (2)圆盘边沿一点的线速度多大; (3)圆盘边沿一点的向心加速度多大; (4)小物体受到的摩擦力多大; (5)若物体受到圆盘的最大静摩擦力为0.16N,若不打滑圆盘最大的角速度为多大。 2.已知地球自转周期为T,地球半径为R,物体1位于赤道处,物体2位于北纬600处,求(1)在图上标出物体2的位置、随地球自转的圆心o’; (2)1、2两物体圆周运动的角速度ω1、ω2分别多大; (3)1、2两物体圆周运动的半径r1、r2分别多大; (4)1、2两物体圆周运动的向心加速度a1、a2分别多大。 3.已知小球质量m、重力加速度g、绳长l、绳子和竖直方向的夹角θ,当小球在水平面内做匀速圆周运动时,求: (1)画出小球在图中位置的受力分析,标出θ;(2)绳子拉力的大小; (3)小球向心力的大小; (4)小球的线速度的大小;

4.如图所示,为一火车转弯时的情景,已知火车质量为 m,重力加速度为g,路面倾角为θ,转弯半径为R, 若火车与内外轨都无挤压则最安全,将此时的速度称为 规定行驶速度,求 (1)该处火车的规定行驶速度v0多大; (2)若某次该弯道处火车的实际行驶速度v1> v0,将出现(“内”或“外”)侧轮缘挤压轨道的情况,此时轨道会对火车产生指向轨道(“内”或“外”)侧的压力。 5.假设汽车质量为m,重力加速度为g,拱桥的半径为r,当汽车以速度v通过拱桥最高点时,则: (1)求汽车对拱桥的压力F压的大小和方向; (2)判断汽车此时是超重还是失重; (3)汽车对桥面的压力过小是不安全的,从该角度判断并说明此处汽车的速度v大还是小会更安全; (4)若把拱桥变为半径为r的凹桥,当汽车以速度v通过凹桥最低点时,求汽车在此处受到的支持力的大小。 6.用细绳拴一小桶,盛0.5kg水后,使小桶在竖直平面内做半径为90cm的圆周运动,g取10m/s2,求: (1)要使小桶过最高点时水刚好不流出,小桶过最高点的速度应是多大; (2)当小桶过最高点的速度为6m/s时,水对桶底的压力F的大小和方向; (3)若小桶底部能承受的最大压力为50N,则小桶在圆周最低点的最大速度为多少。

高中物理分类模型:圆周运动

第1 页 第二章圆周运动 解题模型: 一、水平方向的圆盘模型 1.如图1.01所示,水平转盘上放有质量为m 的物块,当物块到转轴的距离为r 时,连接物块和转轴的绳刚好被拉直(绳上张力为零)。物体和转盘间最大静摩擦力是其正压力的μ倍,求:(1)当转盘的角速度ωμ12=g r 时,细绳的拉力F T 1。(2)当转盘的角速度ωμ232= g r 时,细绳的拉力F T 2。图2.01解析:设转动过程中物体与盘间恰好达到最大静摩擦力时转动的角速度为ω0,则μωmg m r =02,解得ωμ0=g r 。(1)因为ωμω102=g r ,所以物体所需向心力大于物与盘间的最大静摩擦力,则细绳将对物体施加拉力F T 2,由牛顿的第二定律得:F mg m r T 222+=μω,解得 F mg T 22 =μ。2.如图2.02所示,在匀速转动的圆盘上,沿直径方向上放置以细线相连的A、B 两个小

物块。A 的质量为m kg A =2,离轴心r cm 120=,B 的质量为m kg B =1,离轴心r cm 210=,A、B 与盘面间相互作用的摩擦力最大值为其重力的0.5倍,试求: (1)当圆盘转动的角速度ω0为多少时,细线上开始出现张力? (2)欲使A、B 与盘面间不发生相对滑动,则圆盘转动的最大 角速度为多大?(g m s =102 /)图2.02 (1)当圆盘转动的角速度ω0为多少时,细线上开始出现张力? (2)欲使A、B 与盘面间不发生相对滑动,则圆盘转动的最大角速度为多大?(g m s =102 /) 解析:(1)ω较小时,A、B 均由静摩擦力充当向心力,ω增大,F m r =ω2可知,它们受到的静摩擦力也增大,而r r 12>,所以A 受到的静摩擦力先达到最大值。ω再增大,AB 间绳子开始受到拉力。 由F m r fm =1022ω,得:ω011111 055===F m r m g m r rad s fm ./(2)ω达到ω0后,ω再增加,B 增大的向心力靠增加拉力及摩擦力共同来提供,A 增大的向心力靠增加拉力来提供,由于A 增大的向心力超过B 增加的向心力,ω再增加,B 所受摩擦力逐渐减小,直到为零,如ω再增加,B 所受的摩擦力就反向,直到达最大静摩擦力。如ω再增加,就不能维持匀速圆周运动了,A、B 就在圆盘上滑动起来。设此时角速度为ω1,绳中张力为F T ,对A、B 受力分析: 对A 有F F m r fm T 1112 1 +=ω对B 有F F m r T fm -=22122 ω

圆周运动的常见类型与应用

第5讲 圆周运动中常见的模型及应用 第一部分 知识点一 常见模型之一 1.火车转弯 如果车轮与铁轨间无挤压力,则向心力完全由重力和支持力提供 r v m mg 2 tan =ααtan gr v =?,v 增加,外轨挤压,如果v 减小,内轨挤压 2.圆锥摆 αωαsin tan 2l m mg = 3.圆锥问题 θωωθωθθtan tan cos sin 22r g r g r m N mg N = ?= ?== 典型例题: 例1 列车轨道在转弯处外轨高于内轨,其高度差由转弯半径与火车速度确定。若在某转弯处规定行驶速度为v ,则下列说法中正确的是: ( ) ①当以速度v 通过此弯路时,火车重力与轨道面支持力的合力提供向心力 ②当以速度v 通过此弯路时,火车重力、轨道面支持力和外轨对轮缘侧弹向力的合力提供向心力 ③当速度大于v 时,轮缘侧向挤压外轨 ④当速度小于v 时,轮缘侧向挤压外轨 A. ①③ B. ①④ C. ②③ D. ②④ 例2 用细线吊着一个小球,使小球在水平面内做半径为R 匀速圆周运动;圆周运动的水平面距离悬点h ,距离水平地面H .若细线突然在A 处断裂,求小球在地面上的落点P 与A 的水平距离. 例3 小球在半径为R 的光滑半球内做水平面内的匀速圆周运动,球心连线跟竖直方向的夹角)与线速度v 、周期T 的关系。 针对性练习: 1.在高速公路的拐弯处,路面要造得外高内低,即当车向右拐弯时,司机左侧的路面比右侧要高一

些,路面与水平面的夹角为θ,设拐弯路段为半径为R 的圆弧,要使车速为V 时车轮与路面之间的横向(即垂直于前进方向)摩擦力等于零,θ应等于………… ( ) A. B. C. D. 2.如图所示,固定的锥形漏斗内壁是光滑的,内壁上有两个质量相等的小球A 和B ,在各自不同的水平面做匀速圆周运动,以下说法正确的是 ( ) A .V A > V B B . ωA > ωB C .a A > a B D .压力N A > N B 3.如图所示,在男女双人花样滑冰运动中,男运动员以自己为转动轴拉着女运动员 做匀速圆周运动,若男运动员的转速为30转/分,女运动员触地冰鞋的线速度为4.7m/s 。g 取10m/s 2。求: (1)女运动员做圆周运动的角速度及触地冰鞋做圆周运动的半径; (2)若男运动员手臂与竖直夹角600,女运动员质量50kg ,则男运动员手臂拉力是多大? 4.有一种叫“飞椅”的游乐项目,示意图如图14所示,长为L 的钢绳一端系着座椅,另一端固定在半径为r 的水平转盘边缘。转盘可绕穿过其中心的竖直轴转动.当转盘以角速度ω匀速转动时,钢绳与转轴在同一竖直平面内,与竖直方向的夹角为θ,不计钢绳的重力,求转盘转动的角速度ω与夹角θ的关系. 5.如图(a)所示,在光滑的圆锥顶用长为L 的细线悬挂一质量为m 的小球,圆锥顶角为2θ,当圆锥和球一起以角速度ω匀速转动时,球压紧锥面.此时绳的张力是多少?若要小球离开锥面,则小球的角速度至少为多少? 知识点二 常见模型之二 1.汽车过拱桥 r v m N mg 2 cos =-θ mg sin θ = f

圆周运动知识点

描述圆周运动的物理量及相互关系 圆周运动1、定义:物体运动轨迹为圆称物体做圆周运动。 2、描述匀速圆周运动的物理量 (1)轨道半径(r ) (2)线速度(v ): 定义式:t s v = 矢量:质点做匀速圆周运动某点线速度的方向就在圆周该点切线方向上。 (3)角速度(ω,又称为圆频率): T t π? ω2= = (φ是t 时间内半径转过的圆心角) 单位:弧度每秒(rad/s ) (4)周期(T ):做匀速圆周运动的物体运动一周所用的时间叫做周期。 (5)频率(f ,或转速n ):物体在单位时间内完成的圆周运动的次数。 各物理量之间的关系: r t r v f T t rf T r t s v ωθππθωππ==??? ??? ? ?====== 2222 注意:计算时,均采用国际单位制,角度的单位采用弧度制。 (6)向心加速度 r r v a n 22ω==(还有其它的表示形式,如:()r f r T v a n 2 2 22ππω=?? ? ??==) 方向:其方向时刻改变且时刻指向圆心。 对于一般的非匀速圆周运动,公式仍然适用,为物体的加速度的法向加速度分量,r 为曲率半径;物体的另一加速度分量为切向加速度τa ,表征速度大小改变的快慢(对匀速圆周运动而言,τa =0) (7)向心力 匀速圆周运动的物体受到的合外力常常称为向心力,向心力的来源可以是任何性质的 力,常见的提供向心力的典型力有万有引力、洛仑兹力等。对于一般的非匀速圆周运动,物体受到的合力的法向分力n F 提供向心加速度(下式仍然适用),切向分力τF 提供切向加速度。 向心力的大小为:r m r v m ma F n n 22 ω===(还有其它的表示形式,如:

相关主题
文本预览
相关文档 最新文档