当前位置:文档之家› 最小费用最大流算法实现

最小费用最大流算法实现

最小费用最大流算法实现
最小费用最大流算法实现

基于最大最小距离的人脸识别

Neighbor Search with Global Geometry:A Minimax Message Passing Algorithm 基于全局数据集合结构的近邻搜索:极大极小信息传递算法 人脸识别简介: 人脸识别技术是基于人的脸部特征,对输入的人脸图象或者视频流 . 首先判断其是否存在人脸 , 如果存在人脸,则进一步的给出每个脸的位置、大小和各个主要面部器官的位置信息。并依据这些信息,进一步提取每个人脸中所蕴涵的身份特征,并将其与已知的人脸进行对比,从而识别每个人脸的身份。 广义的人脸识别实际包括构建人脸识别系统的一系列相关技术,包括人脸图像采集、人脸定位、人脸识别预处理、身份确认以及身份查找等;而狭义的人脸识别特指通过人脸进行身份确认或者身份查找的技术或系统。 人脸识别技术中被广泛采用的区域特征分析算法,它融合了计算机图像处理技术与生物统计学原理于一体,利用计算机图像处理技术从视频中提取人像特征点,利用生物统计学的原理进行分析建立数学模型,即人脸特征模板。利用已建成的人脸特征模板与被测者的人的面像进行特征分析,根据分析的结果来给出一个相似值。通过这个值即可确定是否为同一人。 基本算法:1.基于人脸特征点的识别算法(Feature-based recognition algorithms )。 2.基于整幅人脸图像的识别算法(Appearance-based recognition algorithms )。 3.基于模板的识别算法(Template-based recognition algorithms )。 4.利用神经网络进行识别的算法(Recognition algorithms using neural network )。 5.利用线性回归进行识别的算法。 6.利用稀疏表示进行识别的算法。 我的课题是利用最小最大距离进行人脸识别的算法( Neighbor with Global Geometry :A Minimax Message Passing Algorithm ) 核心算法: 1. k-Nearest Neighbor algorithm (k 邻近算法) K 最近邻(k-Nearest Neighbor ,KNN)分类算法,是一个理论上比较成熟的方法,也是最简单的机器学习算法之一。该方法的思路是:如果一个样本在特征空间中的k 个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别。KNN 算法中,所选择的邻居都是已经正确分类的对象。该方法在定类决策上只依据最邻近的一个或者几个样本的类别来决定待分样本所属的类别。 KNN 方法虽然从原理上也依赖于极限定理,但在类别决策时,只与极少量的相邻样本有关。由于KNN 方法主要靠周围有限的邻近的样本,而不是靠判别类域的方法来确定所属类别的,因此对于类域的交叉或重叠较多的待分样本集来说,KNN 方法较其他方法更为适合。 具体来说就是在N 个已知样本中,找出X 的k 个近邻。设这N 个样本中,来自1w 类的样本有1N 个,来自2w 类的有2N 个,…,来自c w 类的有c N 个,若12,,...,c k k k 分别是k 个近邻中属于12,...,c w w w 类

实验三:使用matlab求解最小费用最大流算问的题目

北京联合大学 实验报告 项目名称:运筹学专题实验报告 学院:自动化专业:物流工程 班级:1201B 学号:2012100358081 姓名:管水城成绩:

2015 年 5 月 6 日 实验三:使用matlab求解最小费用最大流算问题 一、实验目的: (1)使学生在程序设计方面得到进一步的训练;,学习Matlab语言进行程序设计求解最大流最小费用问题。 二、实验用仪器设备、器材或软件环境 计算机, Matlab R2006a 三、算法步骤、计算框图、计算程序等 1.最小费用最大流问题的概念。 在网络D(V,A)中,对应每条弧(vi,vj)IA,规定其容量限制为cij(cij\0),单位流量通过弧(vi,vj)的费用为dij(dij\0),求从发点到收点的最大流f,使得流量的总费用d(f)为最小,即mind(f)=E(vi,vj)IA 2.求解原理。 若f是流值为W的所有可行流中费用最小者,而P是关于f的所有可扩充链中费用最小的可扩充链,沿P以E调整f得到可行流fc,则fc是流值为(W+E)的可行流中的最小费用流。 根据这个结论,如果已知f是流值为W的最小费用流,则关键是要求出关于f 的最小费用的可扩充链.为此,需要在原网络D的基础上构造一个新的赋权有向图E(f),使其顶点与D的顶点相同,且将D中每条弧(vi,vj)均变成两个方向相反的弧(vi,vj)和(vj,vi)1新图E(f)中各弧的权值与f中弧的权值有密切关系,图E(f)中各弧的权值定义为:

新图E(f)中不考虑原网络D中各个弧的容量cij.为了使E(f)能比较清楚,一般将长度为]的弧从图E(f)中略去.由可扩充链费用的概念及图E(f)中权的定义可知,在网络D中寻求关于可行流f的最小费用可扩充链,等价于在图E(f)中寻求从发点到收点的最短路.因图E(f)中有负权,所以求E(f)中的最短路需用Floyd算法。 1.最小费用流算法的框图描述。 图一 2.计算最小费用最大流MATLAB源代码,文件名为mp_mc.m function[Mm,mc,Mmr]=mp_mc(a,c) A=a; %各路径最大承载流量矩阵 C=c; %各路径花费矩阵 Mm=0; %初始可行流设为零 mc=0; %最小花费变量 mcr=0; mrd=0;

最大最小距离算法以及实例

最大最小距离算法实例 10个模式样本点{x1(0 0), x2(3 8), x3(2 2), x4(1 1), x5(5 3), x6(4 8), x7(6 3), x8(5 4), x9(6 4), x10(7 5)} 第一步:选任意一个模式样本作为第一个聚类中心,如z1 = x1; 第二步:选距离z1最远的样本作为第二个聚类中心。 经计算,|| x6 - z1 ||最大,所以z2 = x6; 第三步:逐个计算各模式样本{x i, i = 1,2,…,N}与{z1, z2}之间的距离,即 D i1 = || x i - z1 || D i2 = || x i – z2 || 并选出其中的最小距离min(D i1, D i2),i = 1,2,…,N 第四步:在所有模式样本的最小值中选出最大距

离,若该最大值达到||z1 - z2 ||的一定比例以 上,则相应的样本点取为第三个聚类中心 z3,即:若max{min(D i1, D i2), i = 1,2,…,N} > θ||z1 - z2 ||,则z3 = x i 否则,若找不到适合要求的样本作为新的 聚类中心,则找聚类中心的过程结束。 这里,θ可用试探法取一固定分数,如1/2。 在此例中,当i=7时,符合上述条件,故 z3 = x7 第五步:若有z3存在,则计算max{min(D i1, D i2, D i3), i = 1,2,…,N}。若该值超过||z1 - z2 ||的一定 比例,则存在z4,否则找聚类中心的过程 结束。 在此例中,无z4满足条件。 第六步:将模式样本{x i, i = 1,2,…,N}按最近距离分到最近的聚类中心: z1 = x1:{x1, x3, x4}为第一类 z2 = x6:{x2, x6}为第二类 z3 = x7:{x5, x7, x8, x9, x10}为第三类最后,还可在每一类中计算各样本的均值,得到更具代表性的聚类中心。

最大最小距离算法

最大最小距离算法函数: function [pattern]=maxmin(x) maxdistance=0; index=1;%相当于指针指示新中心点的位置 k=1;%中心点计数,也即是类别 center=zeros(size(x));%保存中心点 patternnum=size(x,1);%输入的数据数 distance=zeros(patternnum,3);%求距离 min=zeros(patternnum,1);%取较小距离 pattern=(patternnum);%表示类别 center(1,:)=x(1,:); pattern(1)=1; for i=2:patternnum distance(i,1)=sqrt((x(i,:)-center(1,:))*(x(i,:)-center(1,:))');%欧氏距离min(i,1)=distance(i,1); pattern(i)=1; if(maxdistancedistance(i,k)) min(i,1)=distance(i,k); pattern(i)=k; end end end max=0; for i=2:patternnum if((max

最大流的增广路算法(KM算法).

1459:Power Network Time Limit: 2000MS Memory Limit: 32768K Total Submissions: 17697 Accepted: 9349 Description A power network consists of nodes (power stations, consumers and dispatchers) connected by power transport lines. A node u may be supplied with an amount s(u) >= 0 of power, may produce an amount 0 <= p(u) <= p max(u) of power, may consume an amount 0 <= c(u) <= min(s(u),c max(u)) of power, and may deliver an amount d(u)=s(u)+p(u)-c(u) of power. The following restrictions apply: c(u)=0 for any power station, p(u)=0 for any consumer, and p(u)=c(u)=0 for any dispatcher. There is at most one power transport line (u,v) from a node u to a node v in the net; it transports an amount 0 <= l(u,v) <= l max(u,v) of power delivered by u to v. Let Con=Σu c(u) be the power consumed in the net. The problem is to compute the maximum value of Con. An example is in figure 1. The label x/y of power station u shows that p(u)=x and p max(u)=y. The label x/y of consumer u shows that c(u)=x and c max(u)=y. The label x/y of power transport line (u,v) shows that l(u,v)=x and l max(u,v)=y. The power consumed is Con=6. Notice that there are other possible states of the network but the value of Con cannot exceed 6. Input There are several data sets in the input. Each data set encodes a power network. It starts with four integers: 0 <= n <= 100 (nodes), 0 <= np <= n (power stations), 0 <= nc <= n (consumers), and 0 <= m <= n^2 (power transport lines). Follow m data triplets (u,v)z, where u and v are node identifiers (starting from 0) and 0 <= z <= 1000 is the value of l max(u,v). Follow np doublets (u)z, where u is the identifier of a power station and 0 <= z <= 10000 is the value of p max(u). The data set ends with nc doublets (u)z, where u is the identifier of a consumer and 0 <= z <= 10000 is the value of

算法导论求n个点的最小距离

算法导论求n个点的最小距离 在中文算法导论649页算法: 0:把所有的点按照横坐标排序 1:用一条竖直的线L将所有的点分成两等份 2:递归算出左半部门的这段两点距离d1,右半部门的这段两点距离d2,取d=min(d1,d2) 3:算出"1个在左半部分,另外1个在右半部分"这样的点对的最短距离d3 4:结果=min(d1,d2,d3) 关键就是这第3步貌似这需要n^2的时间,把左边每1个点以及右面每1个点都相比较一下,其实奥秘就在这里。 首先,两边的点,与分割线L的距离超过d的,都可以扔掉了,其次,纵然两个点P1,P2(不妨令P1在左边,P2在右面)与分割线L的距离(程度距离)都小于d,如果它们的纵坐标之差大于d,也没戏了。 就是这两点使得搜索范围大大减小:对左半部分的,与L的距离在d之内的,每1个P1来讲:右半部分内,切合以上两个条件的点P2至多只有六个! 原因就是: d是两个半平面各自内,任意两点的最小距离,因此在同一个半平面内,任何两点距离都不有可能超过d。 咱们又要求P1以及P2的程度距离不能超过d,垂直距离也不能超过d,在这个d*2d 的小方块内,至多只能放下六个距离不小于d的点。 因此,第3步总的比较距离的回数不超过n*6 第3步的具体做法是: 3.1删除所有到L的距离大于d的点O(n) 3.2把右半平面的点按照纵坐标y排序O(nlogn) 3.3对左半平面内的每个点P1,找出右半平面内纵坐标与P1的纵坐标的差在d以内的点P2,计算距离取最小值,算出d3 O(n*6)=O(n) 改进:咱们对3.2这个排序的O(nlogn)不太满意. 既然全部算法是递归的,咱们可以哄骗第2步的子递归中已经排好序的序列,在第3.2部合并这两个子列,这样3.2的复杂度变成了O(n)。 这样,全般算法就是O(nlogn)的。 代码如下:VC6.0下编译通过 #include"stdafx.h" #include stdio.h #include stdlib.h #include math.h #define MAX 10000 typedef struct point{ int x,y; }POINT; double delta=MAX; int totalnum;

算法分析与设计(最大流问题)

算法分析与设计题目:最大流算法 院系:软件工程 班级:软件11-2班 :慕永利 学号: 23 号

目录 1算法提出背景........................................................... - 3 - 2 问题实例及解决......................................................... - 3 - 3算法论述............................................................... - 4 - 3.1、可行流.......................................................... - 4 - 3.2 最大流.......................................................... - 5 - 3.3最大流算法....................................................... - 6 - 3.3.1 增广路径................................................. - 6 - 3.3.2沿增广路径增广............................................. - 7 - 3.3.3样例:..................................................... - 8 - 3.3.4定理:.................................................... - 13 - 3.3.5算法的实现:.............................................. - 13 - 3.3.6 优化...................................................... - 16 - 4算法应用.............................................................. - 18 -

最大和最小费用流问题模型

最大流和最小费用流的作业 1.在下图中A 、B 为发点,分别有50和40单位物资往外发送,D 和E 是为收点,分别需要物资30和60单位,C 为中转站,各弧旁数字为(Cij ,Bij ),求满足上述收发量要求的最小费用流。 解:把问题转化为网络图: (20,90) (50,40) ( 10,20 ) (30,20) (10,30) (40,30) (80,10) 决策变量:设A 运到B 为L1, A 运到C 为L2, A 运到D 为L3,B 运到C 为L4, C 到E 为L5 D 到E 为L6, E 到D 为L7。 目标函数: Min Z=L1×20+L2×40+L3×90+L4×30+L5×10+L6×30+L7×20 约束条件: L1<=10,L2<=50,L3<=20,L4<=40,L5<=80,L6<=30,L7<=20 L1+L2+L3=50 L4=40+L1 L2+L4=L5 L3+L7=30 L5+L6=60 Li 为整数(i=1,2,3,4,5,6,7); A D B E C

结果如下: 解得L1=0 L2=40 L3=10 L4=40 L5=80 L6=0 L7=20 Min Z=4900 2、下图是描述一个水渠系统,其中R1,R2,R3,代表三个水库,A,B,C,D,E,F,代表水渠的交汇点,T 表示水渠终点的一个城市,水渠各段每日允许通过的最大流量(1000m 3)分别见表6-10和6-11.城市水资源管理部门希望制定一个方案,使每天输送到城市的水流量为最大,请将此问题归结为求最大流问题。 表6-10 到 从 A B C R1 73 65 _ R2 40 50 60 R3 _ 80 70 R1 R2 R3 A D B E T C F

算法导论求n个点的最小距离

算法导论求n个点的最小距离 2010-01-20 17:23 在中文算法导论649页 算法: 0:把所有的点按照横坐标排序 1:用一条竖直的线L将所有的点分成两等份 2:递归算出左半部分的最近两点距离d1,右半部分的最近两点距离d2,取 d=min(d1,d2) 3:算出“一个在左半部分,另一个在右半部分”这样的点对的最短距离d3。4:结果=min(d1,d2,d3) 关键就是这第3步。貌似这需要n^2的时间,把左边每个点和右边每个点都对比一下。其实不然。秘密就在这里。 首先,两边的点,与分割线L的距离超过d的,都可以扔掉了。 其次,即使两个点P1,P2(不妨令P1在左边,P2在右边)与分割线L的距离(水平距离)都小于d,如果它们的纵坐标之差大于d,也没戏。 就是这两点使得搜索范围大大减小: 对于左半部分的,与L的距离在d之内的,每个P1来说:右半部分内,符合以上两个条件的点P2最多只有6个! 原因就是: d是两个半平面各自内,任意两点的最小距离,因此在同一个半平面内,任何两点距离都不可能超过d。 我们又要求P1和P2的水平距离不能超过d,垂直距离也不能超过d,在这个d*2d 的小方块内,最多只能放下6个距离不小于d的点。 因此,第3步总的比较距离的次数不超过n*6。 第3步的具体做法是: 3.1 删除所有到L的距离大于d的点。 O(n) 3.2 把右半平面的点按照纵坐标y排序。 O(nlogn) 3.3 对于左半平面内的每个点P1,找出右半平面内纵坐标与P1的纵坐标的差在d以内的点P2,计算距离取最小值,算出d3。 O(n*6) = O(n) 因为3.2的排序需要O(nlogn), 所以整个算法的复杂度就是O(n((logn)^2))。 改进:

数学建模任意两点间最短距离

任意两点间最短距离-floyd算法matlab程序 %Floyd's Algorithm 通过一个图的权值矩阵求出它的任意两点间的最短路径矩阵。 %Floyd算法适用于APSP(All Pairs Shortest Paths),是一种动态规划算法, %稠密图效果最佳,边权可正可负。 %此算法简单有效,由于三重循环结构紧凑,对于稠密图,效率要高于执行|V|次Dijkstra算法。 %a为图的带权邻接矩阵 %从图的带权邻接矩阵A=[a(i,j)] n×n开始,递归地进行n次更新, %即由矩阵D(0)=A,按一个公式,构造出矩阵D(1); %又用同样地公式由D(1)构造出D(2);……; %最后又用同样的公式由D(n-1)构造出矩阵D(n)。 %矩阵D(n)的i行j列元素便是i号顶点到j号顶点的最短路径长度,称D(n)为图的距离矩阵, %同时还可引入一个后继节点矩阵path来记录两点间的最短路径。 %采用的是松弛技术,对在i和j之间的所有其他点进行一次松弛。所以时间复杂度为O(n^3); matlab函数文件为: function [D,path]=floyd1(a) a(find(a==0))=inf; n=size(a,1); %计算出a的规模的大小. D=a;path=zeros(n,n);%设置D和path的初值. for i=1:n for j=1:n if D(i,j)~=inf path(i,j)=j; end

end end %做n次迭代,每次迭代均更新D(i,j)和path(i,j) for k=1:n for i=1:n for j=1:n if D(i,k)+D(k,j)

图论算法 最大流算法和最大匹配算法

最大流算法 clc,clear,M=1000; c(1,2)=3;c(1,4)=3; c(2,3)=1;c(2,4)=20; c(3,6)=3; c(4,5)=10; c(5,1)=4;c(5,3)=2;c(5,6)=13; n=length(u); list=[]; maxf=zeros(1:n);maxf(n)=1; while maxf(n)>0 maxf=zeros(1,n);pred=zeros(1,n); list=1;record=list;maxf(1)=M; while (~isempty(list))&(maxf(n)==0) flag=list(1);list(1)=[]; index1=(find(u(flag,:)~=0)); label1=index1(find(u(flag,index1)... -f(flag,index1)~=0)); label1=setdiff(label1,record); list=union(list,label1); pred(label1(find(pred(label1)==0)))=flag; maxf(label1)=min(maxf(flag),u(flag,label1)... -f(flag,label1)); record=union(record,label1); label2=find(f(:,flag)~=0); label2=label2'; label2=setdiff(label2,record); list=union(list,label2); pred(label2(find(pred(label2)==0)))=-flag; maxf(label2)=min(maxf(flag),f(label2,flag)); record=union(record,label2); end if maxf(n)>0 v2=n; v1=pred(v2); while v2~=1 if v1>0

实验1 最大最小距离法

实验一 最大最小距离法 一.实验目的 本实验的目的是使学生了解最大最小距离法聚类方法,掌握最大最小距离聚类分析法的基本原理,培养学生实际动手和思考能力,为数据分析和处理打下牢固基础。 二.最大最小距离聚类算法 该算法以欧氏距离为基础,首先辨识最远的聚类中心,然后确定其他的聚类中心,直到无新的聚类中心产生。最后将样本按最小距离原则归入最近的类。 例:样本分布如图所示。 最大最小距离聚类算法步骤如下: ① 给定θ,10<<θ,并且任取一个样本作为第一个聚合中心,11x Z =。 ② 寻找新的集合中心: 计算其它所有样本到1Z 的距离1i D : 若}{max 11i i k D D =,则取k x 为第二个聚合中心2Z ,62x Z =。 计算所有样本到1Z 和2Z 的距离1i D 和2i D :

若)},max{min(21i i l D D D =,n i ,....,2,1=,并且12D D l ?>θ,12D 为1Z 和2Z 间距离,则取l x 为第三个集合中心3Z ,73x Z =。【注意:∑=-= -=d i i i i z x Z x D 1 21 11||||||, ||||22Z x D i i -=】 如果3Z 存在,则计算)},,max{min(321i i i j D D D D =,n i ,....,2,1=,若12D D j ?>θ,则建立第四个聚合中心。依次类推,直到最大最小距离不大于12D ?θ时,结束寻找聚合中心的计算。 注意7x 所在第列,29在),min(21i i D D 中为最大的,而且8029?>=θl D ,一 般取2 1 = θ。所以,73x Z =。 这里的例中只有三个集合中心,11x Z =,62x Z =,73x Z =。 ③ 按最近邻原则把所有样本归属于距离最近的聚合中心,得: 1431},,{Z x x x ∈, 262},{Z x x ∈,3109875},,,,{Z x x x x x ∈。 ④ 按照某聚类准则考查聚类结果,若不满意,则重选θ,第一个聚合中心1Z ,返回到②,直到满意,算法结束。 该算法的聚类结果与参数θ和起始点1Z 的选取关系重大。若无先验样本分布知识,则只有用试探法通过多次试探优化,若有先验知识用于指导θ和1Z 选取,则算法可很快收敛。 三.实验内容 见右图所示,为二维点集。 四.实验步骤 1、提取分类特征,确定特征值值域,确定特征空间; 2、编写聚类程序; 3、将所提取的样本的加以聚类; 4、用误差平方和准则(也可选用其他准则)加以评价,直到满意为止。

弗洛伊德算法求解最短路径

课程设计任务书

目录 第1章概要设计 (1) 1.1题目的内容与要求 (1) 1.2总体结构 (1) 第2章详细设计 (2) 2.1主模块 (2) 2.2构建城市无向图 (3) 2.3添加城市 (4) 2.4修改城市距离 (5) 2.5求最短路径 (6) 第3章调试分析 (7) 3.1调试初期 (7) 3.2调试中期 (7) 3.3调试末期 (7) 第4章测试及运行结果 (7) 附页(程序清单) (10)

第1章概要设计 1.1题目的内容与要求 内容:给出一张无向图,图上的每个顶点表示一个城市,顶点间的边表示城市间存在路径,边上的权值表示城市间的距离。试编写程序求解从某一个城市出发到达任意其他任意城市的最短路径问题。 要求: 1)能够提供简单友好的用户操作界面,可以输入城市的基本信息,包括城市名 称,城市编号等; 2)利用矩阵保存城市间的距离; 3)利用Floyd算法求最短路径; 4)独立完成系统的设计,编码和调试; 5)系统利用C语言完成; 6)按照课程设计规范书写课程设计报告。 1.2总体结构 本程序主要分为四个模块(功能模块见图1.1):主模块对整个程序起一主导作用,开始构建一城市无向图,对其进行添加城市顶点,以及对原来的距离数据进行修改,整体构建结束可以实现求一城市到其他城市的最短路径问题。 图1.1 功能模块图

第2章详细设计 2.1主模块 用户根据屏幕上显示的操作提示输入要进行操作的模块,通过调用相对应的模块程序,达到用户所想进行操作。程序的总框架大致分为四个模块:1.建立城市无向图2.添加城市模块3.修改城市距离4.求最短路径。具体实现过程见2.2:建立城市无向图2.3:添加城市2.4:修改城市距离2.5:求最短路径。流程图中通过输入n,由n的值来选择调用相对应子函数,实现所选择的功能,调用完后可以返回调用主函数进行下一次选择,从而实现反复调用子函数而实现四个模块的功能等。 图2.1 主模块流程图

最小费用最大流问题matlab程序

下面的最小费用最大流算法采用的是“基于Floyd最短路算法的Ford和Fulkerson迭加算法”,其基本思路为:把各条弧上单位流量的费用看成某种长度,用Floyd求最短路的方法确定一条自V1至Vn的最短路;再将这条最短路作为可扩充路,用求解最大流问题的方法将其上的流量增至最大可能值;而这条最短路上的流量增加后,其上各条弧的单位流量的费用要重新确定,如此多次迭代,最终得到最小费用最大流。本源码由GreenSim团队原创,转载请注明 function [f,MinCost,MaxFlow]=MinimumCostFlow(a,c,V,s,t) %%MinimumCostFlow.m %最小费用最大流算法通用Matlab函数 %% 基于Floyd最短路算法的Ford和Fulkerson迭加算法 % GreenSim团队原创作品,转载请注明 %% 输入参数列表 %a单位流量的费用矩阵 %c链路容量矩阵 %V最大流的预设值,可为无穷大 %s源节点 %t目的节点 %% 输出参数列表 %f链路流量矩阵 %MinCost最小费用 %MaxFlow最大流量 %% 第一步:初始化 N=size(a,1);%节点数目 f=zeros(N,N);%流量矩阵,初始时为零流 MaxFlow=sum(f(s,:));%最大流量,初始时也为零 flag=zeros(N,N);%真实的前向边应该被记住 for i=1:N for j=1:N if i~=j&&c(i,j)~=0 flag(i,j)=1;%前向边标记 flag(j,i)=-1;%反向边标记 end if a(i,j)==inf a(i,j)=BV; w(i,j)=BV;%为提高程序的稳健性,以一个有限大数取代无穷大 end end end if L(end)

关于最小费用最大流的解题

关于最小费用最大流的解题 这是课本235页的一道习题 题目是:求如下图中网络的最小费用最大流。弧旁数字(Cij,Rij)。 根据之前的例题14 解题过程如下: (1)构造一个对偶网络,按狄克斯屈标号法找到最短路,得到相应的增广链,调整; (2)再次构造一个对偶网络,如下图。在书中曾提到在含负权的的网络中不能运用狄克斯屈标号法,只能用距离矩阵摹乘法。 可是距离矩阵摹乘法做起来确实是比较复杂,因此我在研究已经做过的几个题中发现,我们在计算最小费用最大流的时候,可以用如下方法来解该题。 解: 从S点出发,有三条路,分别到1和2,由于标号为-1的路是反向的,排除。因此,我们选标号比较小的S—1这条路……依次类推,得到一条最短路:S—1—2

—4—3—T。再按之前的解题思路解题。 再得到S—2—4—3—T; 不存在从S到T的最短路,故最大流为f(X*)=4+1=5,c(X′)=3×1+4×2+1×2+2×5+1×4+3×3+1×1=37; (3)重复上面的动作; (4)得到最小费用最大流。 我不喜欢复杂的做题的方法,因此,在做这个题的时候,由于之前提到过的狄克斯屈标号法不能用于含负权的网络图中,所以必须用到距离矩阵摹乘法,而距离矩阵摹乘法确实是很麻烦,又得画表,又得计算。所以,我通过书上的图列推出这样来做这个题。虽然并不一定这种做法是不是对的(我目前只在几个题目

中运用,结果是对的),但我相信这样一个方向是对的,以前的运筹学方法也是前辈们研究出来的。 另外,我还在维普中文网上看到了一篇题为《含负权最短路问题的一个改进标号法》的论文,载要:在不出现负回路的情况下,给出了在赋权的网络图中求两点之间的最短路问题的一个改进标号法,该方法对于网络图中出现负权的情况也有效。最后给出了该算法的数值实验结果。 这篇文章中,提到了对狄克斯屈标号法的在负权网络不能运用的缺陷的改进。 这让我体会到了运筹学学习当中的另一个重要方面:我们不能拘泥于课本上一层不变的解题方法,应多了解运筹学发展的最新动态,掌握有关运筹学的最新知识。通过对其的研究,从而找到更好的方法来解决相关的问题。 这是我在这次作业当中,所获得的心得体会。

最大最小距离算法

#include #include #define C 0.5 main(void) { int x[100][3],z[100][3],b[100];//x[][]:输入点坐标;z[][]:标记第几个聚类中心;w[][]用于标记各点到聚类中心距离最小值 int i,j,h,N,flag,k=1,f=1;//f:聚类中心个数;b[]用于记录与聚类中心最大距离的点标号;dd[][]:在循环体中记录各点与聚类中心距离 float w[100][100],dd[100][100],Q,max1,max2,distance[100];//distance[]:记并求出录第二个聚类点 b[0]=0; printf(" 最大最小距离分类法\n\n"); printf("请输入坐标数N:"); scanf("%d",&N); printf("请输入各点的坐标:\n"); for(i=0;i

最短路径算法

最短距离算法(Dijkstra)设计与编程实现 所在系(院): 专业: 班级: 学号: 姓名: 绪论

随着知识经济的到来,信息将成为人类社会财富的源泉,网络技术的飞速发展与广泛应用带动了全社会对信息技术的需求,最短路径问题作为许多领域中选择最有问题的基础,在电子导航,交通旅游,城市规划以及电力、通讯等各种管网、管线的布局设计中占有重要地位。 最短路径,顾名思义就是在所有的路径中找到距离最短的路径,而我们所说的最短路径通常不仅仅指地理意义的距离最短,还可以引申到其他的度量,如时间、费用、路线容量等。相应地,最短路径问题就成为最快路径问题,最低费用问题等,所以我们所说的最短路径也可以看做是最优路径问题。 最短路径问题在交通网络结构的分析,交通运输线路的选择,通讯线路的选择与维护,运输货流的最小成本分析,城市公共交通网络的规划等,都有直接应用的价值。最短路径问题在实际中还应用于汽车导航系统以及各种应急系统等,这些系统一般要求计算出到出事点的最佳线路,在车辆行驶过程中还需要实时的计算出车辆前方的行驶路线,这就决定了最短路径问题的实现应该是高效的。 最短路径问题一直是计算机学科,运筹学,交通工程学,地理信息学等学科的一个研究热点。经典的图论与不断发展完善的计算机数据结构及算法的有效结合使得新的最短路径算法不断的涌现。

1 定义概览 Dijkstra(迪杰斯特拉)算法是典型的单源最短路径算法,用于计算一个节点到其他所有节点的最短路径。主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止。Dijkstra算法是很有代表性的最短路径算法,在很多专业课程中都作为基本内容有详细的介绍,如数据结构,图论,运筹学等等。注意该算法要求图中不存在负权边。 问题描述:在无向图G=(V,E) 中,假设每条边E[i] 的长度为w[i],找到由顶点V0 到其余各点的最短路径。(单源最短路径) 2 概要设计和数据结构选择 按路径长度递增的顺序产生最短路径。通过以上对问题的分析和任务的理解,设计出一个大体的模块和程序流程。 2.1程序中涉及到的结构体及子函数: 2.1.1结构体: 本程序设计使用了以下结构体: struct vertex { int num; //顶点编号 int data; //顶点信息 }; //顶点类型 typedef struct graph { int n; //图中顶点个数 int e; //图中边的个数 struct vertex vexs[MAXVEX]; //顶点集合 int edges[MAXVEX][MAXVEX]; //边的集合 }AdjMaxix; //图的邻接矩阵类型 2.1.2子函数: 设计本程序需分成几个模块,要用到以下几个子函数: AdjMaxix creatmgraph() //通过用户交互产生一个有向图的邻接矩阵; void dispmgraph(AdjMaxix adj)//用于输出一个有向图的邻接矩阵;

从一道题目的解法试谈网络流的构造与算法

从一道题目的解法试谈网络流的构造与算法 福建师大附中江鹏 1. 引论 A. 对网络流算法的认识 网络流算法是一种高效实用的算法,相对于其它图论算法来说,模型更加复杂,编程复杂度也更高,但是它综合了图论中的其它一些算法(如最短路径),因而适用范围也更广,经常能够很好地解决一些搜索与动态规划无法解决的,看似NP的问题。 B. 具体问题的应用 网络流在具体问题中的应用,最具挑战性的部分是模型的构造。这没用现成的模式可以套用,需要对各种网络流的性质了如指掌(比如点有容量、容量有上下限、多重边等等),并且归纳总结一些经验,发挥我们的创造性。

2. 例题分析 【问题1】项目发展规划(Develop) Macrosoft?公司准备制定一份未来的发展规划。公司各部门提出的发展项目汇总成了一张规划表,该表包含了许多项目。对于每个项目,规划表中都给出了它所需的投资或预计的盈利。由于某些项目的实施必须依赖于其它项目的开发成果,所以如果要实施这个项目的话,它所依赖的项目也是必不可少的。现在请你担任Macrosoft?公司的总裁,从这些项目中挑选出一部分,使你的公司获得最大的净利润。 ●输入 输入文件包括项目的数量N,每个项目的预算Ci和它所依赖的项目集合Pi。格式如下:第1行是N; 接下来的第i行每行表示第i个项目的信息。每行的第一个数是Ci,正数表示盈利,负数表示投资。剩下的数是项目i所依赖的项目的编号。 每行相邻的两个数之间用一个或多个空格隔开。 ●输出 第1行是公司的最大净利润。接着是获得最大净利润的项目选择方案。若有多个方案,则输出挑选项目最少的一个方案。每行一个数,表示选择的项目的编号,所有项目按从小到大的顺序输出。 ●数据限制 0≤N≤1000 -1000000≤Ci≤1000000 ●输入输出范例

最小费用流问题的研究

最小费用流问题的研究 摘要 本文主要研究的是最小费用流问题。在给出一些定义定理的基础上进一步求解最小费用流问题从而得到更好的算法。 关键字 最小费用流问题 剩余网络 容许网络 算法 复杂度 1最小费用流问题的概述 给定一个有向网络),(A N G =。其中},...,,...,3,2,1{n i N =表示顶点集合,A 表示G 中的所有弧构成的一个集合。任意的弧A j i ∈),(,用ij c 表示弧),(j i 上单位流量的费用,用ij u 表示弧),(j i 上的最大流量,任意的N i ∈用)(i b 表示在i 这一点处所提供的流量或所需要的流量。当0)(>i b 时,表示在i 这一点处所提供的流量为)(i b ,当0)(

相关主题
文本预览
相关文档 最新文档