当前位置:文档之家› 结构模型输入及参数设置

结构模型输入及参数设置

结构模型输入及参数设置
结构模型输入及参数设置

结构模型输入及参数设臵

1、总信息:

1.1水平力与整体坐标系夹角:0

根据抗规(GB50011-2001,以下同)5.1.1条规定,“一般情况下,应允许在建筑结构的两个主轴方向分别计算水平地震作用并进行抗震验算,各方向的水平地震作用应由该方向的抗侧力构件承担;有斜交抗侧力构件的结构,当相交角度大于15度时,应分别计算各抗侧力构件方向的水平地震作用”。

当计算地震夹角大于15度时,给出水平力与整体坐标系的夹角(逆时针为正),程序改变整体坐标系,但不增加工况数。同时,该参数不仅对地震作用起作用,对风荷载同样起作用。

通常情况下,当Satwe文本信息“周期、振型、地震力”中地震作用最大方向与设计假定大于15度(包括X、Y两个方向)时,应将此方向重新输入到该参数进行计算。

1.2混凝土容重:26

本参数用于程序近似考虑其无法自动计算的结构面层重量。同时由于程序未自动扣除梁板重叠区域的结构荷载,因而该参数主要近似计算竖向构件的面层重量。

通常对于框架结构取25-26;框架-剪力墙结构取26;剪力墙结构,取26-2 7。

1.3钢容重:78

一般情况下取78,当考虑饰面设计时可以适当增加。

1.4裙房层数:按实际填入

混凝土高规(JGJ3-2002,以下同)第4.8.6条规定:与主楼连为整体的裙楼的抗震等级不应低于主楼的抗震等级,主楼结构在裙房顶部上下各一层应适当加强抗震措施。

同时抗规6.1.10条条文说明要求:带有大底盘的高层抗震墙(筒体)结构,抗震墙的底部加强部位可取地下室顶板以上H/8,向下延伸一层,大底盘顶板以上至少包括一层。裙房与主楼相连时,加强部位也宜高出裙房一层。

因此,本参数必须按实际填入,裙房层数包括地下室层数。

1.5转换层所在层号:按实际填入

该参数只为程序决定底部加强部位及转换层上下刚度比的计算和内力调整

提供信息。输入转换层号后,程序可以自动判读框支柱、框支梁及落地剪力墙的抗震等级和相应的内力调整。

同时当转换层号大于等于三层时,程序自动对落地剪力墙、框支柱抗震等级增加一级。自动实现0.2Q0或0.3Q0的调整。

本参数必须按实际填入,转换层层号包括地下室层数。指定转换层层号后,框支梁、柱及转换层的弹性楼板还应在特殊构件定义中指定。

1.6地下室层数:按实际填入

程序据此信息决定底部加强区范围和内力调整,内力组合计算时,其控制高度扣除了地下室部分;对I、II、III、即抗震结构的底层内力调整系数乘在地下室的上一层;剪力墙的底部加强部位扣除了地下室部分。

程序据该参数扣除地下室的风荷载,并对地下室的外围墙体进行土、水压力作用的组合,有人防荷载时考虑水平人防荷载。

地下室一般与上部共同作用分析,地下室刚度大于上部层刚度的2倍,可不采用共同分析。

本参数必须按实际填入,当地下室局部层数不同时,以主楼地下室层数输入。

1.7墙元细分最大控制长度:

2.0;

该参数用于墙元细分形成一系列小壳元时,为确保设计精度而给定的壳元边长限值。该限值对精度有影响但不敏感。

对于尺寸较大的剪力墙,可取2.0,对于框支结构,可取1.0~1.5。

1.8强制刚性楼板假定:按照需要勾选

计算楼层位移比和结构层间位移比时:勾选;计算结构周期、位移、内力与配筋计算时:不选。

1.9墙元侧向节点:内部

墙元刚度矩阵凝聚计算的控制参数。对于多层结构或者复杂高层建筑需提高计算精度时,选择出口节点;对于一般高层建筑,可选择内部节点。

选择出口节点,只把因墙元细分而在其内部形成的节点凝聚掉,四边上的节点均作为出口节点,墙元的变形协调性较好,但计算量大;选择内部节点,墙元仅保留上下两边的节点作为出口节点,墙元的其它节点作为内部节点被凝聚掉,故墙元两侧的变形不协调,精度稍差,但效率高。

1.10墙梁转框架梁:5 (填0为不转换)

目前程序只能自动转换规则对齐、墙厚不变的洞口。设计时应通过平面图查看转换后的结果。

连梁按照壳元进行有限元分析,当壳元划分不够细时,将造成较大的误差,故输入时当跨高比大于5时,应直接按照框架梁输入,跨高比小于2.5时,按洞口输入,以确保计算精度。

1.11结构材料信息:钢筋混凝土结构

根据该参数确定地震作用和风荷载计算所遵照的规范。不同结构的地震影响系数取值不同,不同结构体系的风振系数不同,结构基本周期也不同,影响风荷计算。

结构材料信息分为钢筋混凝土结构、钢砼混合结构、有填充墙的钢结构、无填充墙的钢结构和砌体结构,按实填写。其中底框结构按砌体结构填写。

1.12结构体系:复杂高层

规范规定不同体系的结构内力调整及配筋要求不同,程序根据该参数对应规范中相应的调整系数。结构体系应在给出的多种体系中选最接近实际的一种按实填写。

当结构体系定义为短肢剪力墙时,对墙肢截面高度和厚度之比小于8的短肢剪力墙,程序对其抗震等级自动提高一级。(高规7.1.2条3)

1.13荷载计算信息:模拟施工加载3

程序给出4种模拟施工加载方式,通常情况下应选择模拟施工加载3。

一次性加载:整体刚度一次加载,适用于多层结构、有上传荷载的情况;

模拟施工加载1:整体刚度分次加载,可提高计算效率,但与实际不相符;

模拟施工加载2:整体刚度分次加载,但分析时将竖向构件的刚度放大10倍,是一种近似方法,改善模拟施工加载1的不合理处,是结构传给基础的荷载比较合理;

模拟施工加载3:分层刚度分次加载,比较接近实际情况。

1.14风荷载计算信息:计算风荷载

除完全的地下结构,均应计算风荷载。

1.15地震作用计算信息:计算水平地震作用

一般应计算水平地震作用,按照抗震规范5.1.1条规定,8、9度时的大跨度和长悬臂结构及9度时的高层建筑(如结构转换层中的转换构件、跨度大于2 4m的楼盖或屋盖、悬挑大于2m的水平悬臂构件等),应计算竖向地震作用。(高规3.3.2条文说明)

抗震规范5.1.6条对于6度区的建筑,规定可不进行截面抗震验算。但目前应进行结构抗震验算。

1.16结构所在地区:全国。

目前山东省没有地方规定,按国家规范执行。广东、上海等地区的工程按要求选择。

1.17施工次序:按工程需要

对一些传力复杂的结构,如转换层结构、下层荷载由上层构件传递的结构、巨型结构等,应采用多层施工的施工次序。对于带转换层的结构,应指定转换层及其上两层为同一施工次序,目的是避免逐层施工导致缺少上部构件刚度贡献而产生荷载丢失。

对广义层结构模型,应考虑楼层的连接关系指定施工次序。但这时应注意必须定义模拟施工加载3。

2、风荷载信息:

2.1修正后的基本风压:按荷载规范

荷载规范(GB5009-2001)7.1.2条规定:一般按照50年一遇的风压采用,但不得低于0.3KN/m2。对于高层建筑、高耸结构及对风荷载敏感的结构,基本风压应适当提高。高规3.2.2条条文说明,房屋高度大于60m时,按照100年一遇风压值采用;对于门式刚架,规程规定基本风压按荷载规范的规定值乘以1.0 5。

风荷载作用面的宽度,程序按计算简图的外边线的投影距离计算,因此当结构顶层带多个小塔楼而没有设臵多塔楼时,会造成风载过大。因此一定要进行多塔楼定义,否则风荷载会出现错误。另外,顶层女儿墙高度大于1米时应修正顶层风载,在程序给出的风荷上加上女儿墙风荷。

这里风荷载的计算是一种简化输入,假定迎风面、背风面受荷面积相同,每层风荷载作用于各刚性块的形心上,楼层所有节点平均分配风荷载,忽略了侧向风影响,也不能计算屋顶的风吸力和风压力。所以,对于平面、立面不规则的结构(如空旷结构、大悬挑结构、体育场馆、较大面积的错层结构、需要计算屋面风荷载的结构等),应考虑特殊风荷载的输入,目的是更真实的反应结构受力的情况。

2.2结构基本周期:分两次计算

目的是计算风荷载的风振系数。荷载规范7.4.1条:对于高度大于30m且高宽比大于1.5的房屋和基本周期大于0.25s的各种高耸结构及大跨度屋盖结构,均应考虑风压脉动对结构顺风向的风振的影响。

高规3.2.6条给出近似值:规则框架T=(0.08-0.10)N;

框剪结构、框筒结构T=(0.06-0.08)N;

剪力墙、筒中筒结构T=(0.05-0.06)N。

N为房屋层数。另外荷载规范7.4.1条,附录E也给出近似计算方法,程序中给出的基本周期是采用近似方法计算得到的。

首先按默认值试算,然后将试算的结构基本周期结果填入,作为本结构的基本周期,并与近似计算值相比较。

2.3地面粗糙度类别:B类

A类:近海海面,海岛、海岸、湖岸及沙漠地区;

B类:指田野、乡村、丛林、丘陵及中小城镇和大城市郊区; C类:指有密集建筑群的城市市区;

D类:指有密集建筑群且房屋较高的城市市区。

按实际选择,应注意靠近海边的建筑。

2.4体型分段数:1

一般情况下分段数为1。程序自动扣除地下室高度,不必将地下室单独分段。高层立面复杂时,可考虑体型系数分段。

2.5第一段最高层号:结构最高层号

当体型分段数为1时,即结构最高层号。

效应增大系数1.25执行。

2.7设缝多塔被风面体型系数:0.5

应用于设缝多塔结构。由于遮挡造成的风荷载折减值通过该系数来指定。当缝很小时,可取0.5。

3、地震信息:

3.1规则性信息:不规则

抗规3.4.2条规定了不规则的类型:

平面不规则的类型:扭转不规则(位移比超标)、凹凸不规则(结构平面凹进大于30%)、楼板局部不连续(楼板的尺寸和平面刚度急剧变化)

竖向不规则的类型:侧向刚度不规则(刚度比超标、立面收进超过25%)、竖向抗侧力构件不连续(带转换层结构)、楼层承载力突变(层间受剪承载力小于相邻上一楼层的80%)。

3.2设计地震分组、设防烈度、场地类别:按实填写

由设计地震分组和场地类别确定场地特征周期,由设防烈度、特征周期、结构自振周期及阻尼比确定结构的水平地震影响系数,从而进行地震作用计算。

应注意场地类别自地质勘查报告中查得后应按照抗规4.1.6条复核。

6.1.2或高规4.8采用

1)框架-剪力墙结构,当框架承受的地震倾覆力矩大于结构总地震倾覆力矩的50%时,框架部分的抗震等级按框架结构确定;

2)裙房与主楼相连,除应按裙房本身确定外,不应低于主楼的抗震等级(主楼为带转换层高层结构时,裙房的抗震等级按主楼的高度,框架-剪力墙结构的剪力墙查表)。

3)当地下室顶板作为上部结构的嵌固部位时,地下一层的抗震等级应与上部结构相同,地下一层以下可根据情况采用三级或四级。

4)无上部结构的地下室或地下室中无上部结构的部分,可根据情况采用三

6)高规10.6.2条及其条文说明:抗震设计时,转换层不宜设臵在底盘屋面的上层塔楼内,否则,应采取增大构件内力,提高抗震等级等有效的抗震措施。

对于复杂高层建筑,因可能带来结构不同部位的抗震等级不同。如带转换层的高层建筑,底部加强部位和非底层加强部位以及地下二层以下抗震等级不一致,程序给出两种指定方式。

但无论采用何种方式,程序以手工修改的抗震等级为最优级别进行计算。

第一种方式:在该两项填入底部加强部位剪力墙和框架的抗震等级,然后在特殊构件补充定义中,人工调整非加强部位(包括地下二层及以下楼层)的抗震等级。此时应注意,填入的抗震等级为按照高规表4.8.2、4.8.3查出的抗震等级,对于转换层在3层及以上时,其框支柱、剪力墙底部加强部位抗震等级的提高有程序自动完成,不必再人工干预底部加强部位的柱、墙抗震等级。

第二种方式:在该两项填入非底部加强部位剪力墙和框架的抗震等级,然后在特殊构件补充定义中,人工调整加强部位和地下二层及以下楼层的抗震等级,这时注意底部加强部位人工调整的框支梁、柱及剪力墙的抗震等级应为提高以后的最终等级。

另外,对于转换层在3层及以上时底部加强部位的剪力墙的抗震等级,无论程序自动调整还是人工调整,抗震等级提高均指落地剪力墙,非落地剪力墙不必提高(参见高规10.2.5条条文说明)。

短肢剪力墙结构输入剪力墙抗震等级时,应按照剪力墙结构查表给出,程序自动提高一级计算。

3.4中震(大震)不屈服设计:不选

属于结构性能设计的范围,目前规范没有规定。程序处理的原则为:地震影响系数按中震(大震)采用;地震分项系数为1.0;取消强柱弱梁、强剪弱弯调整;材料强度取标准值;等等。

不同于中震(大震)弹性设计,这时应采用中震(大震)的地震影响系数,将抗震等级改为四级(不进行相关调整)。

3.5斜交抗侧力构件方向附加地震数及相应角度

当计算地震夹角大于15度时,根据抗震规范5.1.1条规定,应计算抗侧力构件方向的水平地震作用。这里填入的参数主要是针对非正交的平面不规则结构中,除了两个正交方向外,还要补充计算的方向角数。注意该参数仅对地震作用计算有关,与风荷载计算无关。

抗侧力构件方向一般就是结构的较大侧向刚度方向,也就是地震力作用不利

3.6考虑偶然偏心:勾选

抗规5.2.3条对平面规则的结构采用增大边榀结构地震内力的方式考虑该扭转影响,这对高层建筑不尽合理。根据高规3.3.3条,由于施工、使用、地震地面运动的扭转分量等因素所引起的偶然偏心的不利影响,计算单向地震作用是,应考虑偶然偏心(5%Li)的影响。

同时,高规3.3.3条条文说明规定当计算双向地震作用时,可不考虑质量的偶然偏心影响。当设计者同时指定考虑偶然偏心和双向地震作用时,程序仅对无偏心的地震作用效应进行双向地震作用,无论左偏心还是右偏心均不做双向地震作用计算。

因此,无论是否考虑双向地震作用,均应勾选本参数。

3.7双向地震作用:勾选

抗规5.1.1条和高规3.3.2条规定质量和刚度明显不对称的结构应计入双向地震作用的影响。位移比超过1.2时,必须考虑双向地震作用。

程序计算双向地震的扭转效应方法见PKPM08用户手册,X、Y方向的地震作用均有不同程度的放大,比高规5.2.3条的要求严格。

程序隐含“考虑双向地震作用”是不考虑偶然偏心的,自动按二者最不利计算,因此,所有结构计算均应选上考虑双向地震作用。

3.8计算振型个数:15

抗震规范5.2.2条条文说明规定振型个数一般取振型参与质量达到总质量的90%所需的振型数;高规3.3.10条规定不考虑扭转藕联振动的结构,规则结构取3,当建筑较高、结构沿竖向刚度不均匀是可取5-6;高规3.3.11条规定考虑扭转转藕联振动的结构,一般情况可取9-15,多塔结构每个塔楼的振型数不小于9个。

目前Satwe软件对所有结构均考虑扭转转藕联振动计算。因此振型数按以下原则选取,并同时满足地震作用有效质量系数要大于等于0.9且不小于3个,振型数应为3的倍数。

当结构按侧刚计算时,单塔楼考虑耦联时应大于等于9;复杂结构应大于等于15;多塔结构的振型个数应大于等于9倍的塔楼数。(注意各振型的贡献由于扭转分量的影响而不服从随频率增加面递减的规律)。

当结构按总刚计算时,采用的振型数不宜小于按铡刚计算的2倍,存在长梁或跨层柱时应注意低阶振型可能是局部振型,其阶数低,但对地震作用的贡献却较小。

3.9活载折减系数:0.5

按照抗规5.1.3条和高规3.3.6条执行。

楼面活荷载按照实际情况计算时取1.0;按等效均布活荷载计算时。藏书库、档案库、库房取0.8;硬钩吊车悬吊物重力取0.3,软钩吊车悬吊物重力取0;其它情况取0.5。

3.10周期折减系数:0.9

周期折减的目的是为了充分考虑非承重填充墙刚度对结构自振周期的影响,因为周期小的结构,其刚度较大,相应吸收的地震力也较大。若不做周期折减,

实际取值时可根据填充墙的数量和刚度大小取上限或下限。当非承重墙体为空心砖或砌块时,可按下列规定取值:框架结构0.75(灰砂砖),0.80(空心砌块);框架-剪力墙结构0.9-1.0;剪力墙结构可取0.95-1.0。应注意短肢剪力墙结构的周期折减可按照框架-剪力墙取值。

当结构的第一自振周期T1≤Tg时,不需进行周期折减,因为此时地震影响系数由程序自动取结构自振周期与特征周期的较大值进行计算。

3.11结构阻尼比:5%

抗规5.1.5条规定,除有专门规定的外,建筑结构的阻尼比取0.05;8.2.2条规定,钢结构在多遇地震下的阻尼比,不超过12层的钢结构可采用0.035,超过12层的钢结构可采用0.02(同高层民用钢结构规程4.3.3条的规定),罕遇地震分析,阻尼比采用0.05。

3.12特征周期及多遇地震、罕遇地震影响系数最大值:

按照抗规5.1.4条执行。

3.13查看和调整地震影响系数曲线:不修改

一般情况下按照抗规5.1.5条执行。

4、活载信息:

4.1墙柱及基础活荷载折减:按照需要勾选或不选

按照荷载规范4.1.2条规定,设计楼面梁、墙柱、基础时,楼面活荷载应乘以规定的折减系数。其中楼面梁的活荷载折减是在PM楼面荷载导算过程中完成,而竖向荷载折减在Setwe荷载信息中规定。

规定楼面梁活荷载折减时,程序的处理方式为:对房间荷载导算到梁上时才折减,导算到墙上时不折减;程序只对标准层(即楼面)的梁折减,对屋面梁不折减;当次梁按照主梁输入时,结构主梁可能被分成几段引起导荷面积减少,程序无法判断而少折减部分活荷载;程序无法判断大底盘主楼以外的屋面梁而统一按照楼面梁进行折减;程序无法判断荷载规范4.1.2条中汽车通道及汽车库的楼板为单向板或双向板,统一按一个折减系数进行折减;Setwe计算时,直接按照折减后的楼面梁荷载向下传递,如此时规定竖向构件和基础的活荷载折减,将导致活荷载被折减了两次,与规范规定不符。因此如果需要,楼面梁的和竖向构件的内力和配筋应按照折减和不折减分别计算两次。

规定竖向(柱、墙)构件及基础的活荷载折减时,程序自动判断柱、墙上方楼层数进行折减,在JCCAD中点取自动按楼层折减活荷载,也可实现柱、墙下的

活荷载根据其上连楼层数折减;按照荷载规范4.1.2条第2款规定的折减系数,根据建筑功能和结构特点修改折减系数。

通常情况下,民用建筑可以折算,业厂房不折算。建议楼面梁在PM导算时不考虑楼面梁荷载折减,Satwe计算时考虑墙、柱及基础活荷载的折算,当应注意根据不同建筑功能修改活荷载折减系数。

4.2梁活载不利布臵:输入的最高层号

高规5.1.8条规定:当楼面活荷载大于4KN/m2时,应考虑楼面活荷载不利布臵引起的梁弯矩增大。

建议所有结构计算均考虑活荷载不利布臵,输入结构的最高层号。

5、调整信息:

5.1梁端负弯矩调幅系数:0.8

高规5.2.3

弯矩条幅后,

架梁的弯矩进行调幅,然后与水平作用产生的框架梁弯矩进行组合。

对于现浇楼板,一般取0.8。另外,程序隐含钢梁为不调幅梁,若需调幅,应在特殊构件定义中人工交互修改。

5.2梁活载内力放大系数:1.0

高规5.1.8条条文说明:如果活荷载较大,可将未考虑活荷载不利布臵计算的框架梁弯矩乘以1.1-1.3,近似考虑活荷载不利布臵影响时,梁正、负弯矩应同时放大。

已考虑活荷载不利布臵时,取1.0。

5.3梁扭矩折减系数:0.4

高规5.2.4条规定对于现浇楼板结构,应考虑楼板对梁抗扭的约束作用。程序通过对梁的扭矩进行折减达到减少梁的扭转变形和扭矩计算值,折减系数为0. 4-1.0,一般取0.4。对不与刚性楼板相连或圆弧梁,此系数不起作用。

5.4剪力墙加强区起算层号:1

程序在计算底部加强区高度时,扣除地下室的高度计算且缺省将地下室作为剪力墙的底部加强区,这时剪力墙的底部加强去起算层号为1。实际上根据规范要求,除特殊情况外,地下室可以不作为底部加强部位。

具体操作时,可认为地下二层及其以下不作为底部加强部位,通过修改本参

抗规6.1.10条:除框支剪力墙外,其它结构的剪力墙,其底部加强部位的高度可取墙肢总高度的1/8和底部两层二者的较大值,且不大于15m。

高规7.1.9条:一般剪力墙结构底部加强部位的高度可取墙肢总高度的1/8和底部两层二者的较大值,当剪力墙高度超过150米时(B级高度),其底部加强部位的高度可取墙肢总高度的1/10。

2)框支剪力墙结构的剪力墙

抗规6.1.10条:部分框支剪力墙,其底部加强部位的高度可取框支层加框支层以上两层的高度及落地剪力墙总高度的1/8二者的较大值,且不大于15m;

高规10.2.4条:底部带转换层的高层建筑结构,其剪力墙底部加强部位的高度可取框支层加框支层以上两层的高度及墙肢总高度的1/8二者的较大值。

3)带有大底盘(裙房)高层的剪力墙

抗规6.1.10条条文说明:带有大底盘的高层抗震墙(含筒体)结构,底部加强部位可取地下室顶板以上H/8,加强部位应向下延伸到地下一层,在大底盘顶以上至少包括一层。裙房与主楼相连时,加强范围也以高出裙房至少一层。

5.5连梁刚度折减系数:0.7

抗规6.2.13条规定折减系数不宜小于0.5,当连梁内力由风荷载控制时,不宜折减;高规5.2.1条条文说明指出,设防烈度低(6、7度)时可少折减(0. 7),抗震烈度高时可多折减(0.5),折减系数不宜小于0.5,以保证连梁承受竖向荷载的能力。

程序通过该参数考虑连梁进入塑性状态后的连梁刚度。一般工程取0.7(并不小于0.55),位移由风载控制时取≥0.8。

5.6中梁刚度放大系数:2

高规5.2.2条:现浇楼面和装配整体式楼面可考虑翼缘作用对梁的刚度予以放大。

一般情况下,装配式楼板取1.0;装配整体式楼板取1.3;现浇楼板取2.0。程序自动处理边梁、独立梁及与弹性楼板相连梁的刚度不放大。另外,该系数对连梁不起作用。

5.7调整与框支柱相连的梁内力:勾选

高规10.2.7条规定,框支柱按0.3Q0调整后,应相应调整框支柱的弯矩及柱端梁(不包括转换梁)的剪力和弯矩,框支柱轴力可不调整。

该参数目前不起作用。

5.8托墙梁刚度放大系数:100

由于Satwe程序计算框支梁和梁上的剪力墙分别采用梁元和墙元两种不同的计算模型,造成剪力墙下边缘与转换大梁的中性轴变形协调,而与转换大梁的上边缘变形不协调,或者说,计算模型的刚度偏柔了。

为了真实反映转换梁刚度,使用该放大系数。一般取100,当为了使设计保持一定的富裕度,也可小考虑或不考虑该系数。

5.9按抗震规范5.2.5条调整各楼层地震内力:勾选

抗规5.2.5条为强制性条文,必须执行。应注意的是6度区没有剪重比控制指标要求,宜按λ=0.08控制。该内容可在计算结果文本信息中查看。

5.1.10指定的薄弱层个数及其层号:根据具体情况选择

抗规3.4.3条和高规5.1.14条规定了竖向不规则的建筑结构,其薄弱层的地震剪力应乘以1.15的增大系数。薄弱层应同时满足剪重比要求,即地震剪力应乘以1.15λ。

程序只是根据层间侧向刚度的比值来确定薄弱层,没有根据受剪承载力的比值确定薄弱层。通常情况下,如框支结构、刚度、承载力削弱层应人工定义为薄弱层层。

5.1.11全楼地震作用放大:1.0

当采用时程分析计算出的楼层剪力大于按振型分解计算的地震剪力时,应乘以相应的放大系数,其它情况下一般不考虑地震作用放大。

另外,当剪重比不满足要求太多时,在调整结构布臵无效时,可通过考虑加大地震作用满足剪重比的要求。

5.1.12 0.2Q0调整的起始层号和终止层号:按实填入

仅用于框-剪结构和钢框架-支撑(剪力墙)结构体系,对应高规8.1.4条和抗规6.2.13条(0.2Q0调整)及高层民用钢结构规程5.3.3条(0.3Q0调整)的要求。

可将起始层号填入负值(-m),表示取消程序内部对调整系数上限2.0限制。

0.2Q0调整也可以人工干预,实现分段、分塔0.2Q0的调整。具体方法为在前处理程序中选取“用户指定0.2Q0调整系数”(SatInput.02Q),按约定格式输入要修改的各层具体调整系数。

对框支剪力墙结构,当在特殊构件定义中指定框支柱后,程序自动按照高规10.2.7条实现0.2Q0或者0.3Q0的调整。

5.1.13顶塔楼地震作用放大起算层号及系数:0,1

抗规5.2.4条:当采用底部剪力法计算地震剪力时,突出屋面的屋顶间、女儿墙、烟囱等的地震作用效应,宜乘以增大系数3;采用振型分解法时,可将突出屋面部分作为一个质点。

于9时,取放大系数小于3.0;振型数小于15大于12时,取放大系数小于1.5。

6、设计信息:

6.1考虑P-Δ效应:

高规5.4节给出由结构刚重比确定是否考虑重力二阶效应的原则;高层民用钢结构5.2.11条给出对于无支撑结构和层间位移角大于1/1000的有支撑结构,应考虑P-Δ效应。

具体应用中由程序计算(Wmass.out)确定是否勾选。

6.2梁柱重叠部分简化为刚域:不选

高规5.3.4条:在内力和位移计算中,可以考虑框架或壁式框架梁柱节点区的刚域。

一般情况下可不考虑刚域的有利作用,作为安全储备。但异形柱框架结构可

刚性梁具有独立的位移,但本身不变形。程序对刚域的

截面设计按扣除刚域后的长度计算。

6.3按高规或高钢规进行构件计算:根据情况选择

高规1.02条给出混凝土高层建筑的适用范围为10层及以上或高度28m以上的民用建筑结构;高层民用钢结构规程1.0.2条没有给出使用高度的下限,多层钢结构也可按照高钢规进行构件计算。

符合高层条件的建筑应勾选,多层建筑不勾选。是否选择按高规或高钢规进行构件计算的区别在于,荷载组合和构件计算适用的规范不同。

6.4钢柱计算长度系数按有侧移:有侧移

钢结构规范5.3.3条给出钢柱的计算长度按照钢结构规范附录D执行,主要考虑的因素为支撑的侧移刚度。

一般选择有侧移,也可考虑以下原则:楼层最大杆间位移小于1/1000(强支撑)时,按无侧移;楼层最大杆间位移大于1/1000且小于1/300(弱支撑)时,取1.0;楼层最大杆间位移大于1/300(弱支撑、无支撑)时,按有侧移计算。

6.5混凝土柱的计算长度系数计算规定:勾选

选择后,程序自动按照混凝土规范(GB50010-2002)7.3.11条判断。

程序自动搜索跃层柱和单边跃层柱,经跃层判断修改为完整柱,但对于地下室跃层柱除外。对于地下室跃层柱,由于程序自动强制采用刚性楼板假定,其跃层柱不能被正确搜索,而按层分段计算其长度系数,应手工修改。

跃层柱和单边跃层柱应注意外挑阳台、雨蓬等情况,程序可能按照非跃层柱计算柱的计算长度系数,应手工修改。

对于排架柱,Satwe与PK不一样,按框架柱的计算长度取值,未执行混凝

土规范7.3.11和钢结构规范5.3.4条的规定,也应手工调整(可根据PK计算结构调整)。

6.6结构重要性系数:1.0

混凝土规范3.2.1、3.2.3条,高规4.7.1条:对安全等级为一级或实际使用年限为100年纪一闪的结构构件,不应小于1.1;对安全等级为二级或使用年限为50年的结构构件,不应小于1.0;对安全等级为三级或设计使用年限为5年及以下的结构构件,不应小于0.9;在抗震设计中,不考虑结构构件的重要性系数。

6.7梁、柱保护层厚度:25,30

钢筋保护层厚度主要反映构件的耐久性指标,具体应用一般按照混凝土规范9.2.1条执行,对处于腐蚀环境中的混凝土构件,可参考混凝土耐久性设计规范的规定。

6.8钢构件截面净毛面积比:0.85

用于钢结构构件的强度计算,一般取0.85可满足要求,但螺栓孔的数量多对截面削弱严重的应降低该参数取值。

6.9柱配筋计算原则:按单偏压计算,双偏压复核

单偏压计算只考虑平面内的弯矩和轴力,在同一组设计内力中,当两个方向的弯矩都很大时,可能配筋不足。

双偏压计算同时考虑平面内和平面外的弯矩和相应的轴力,但结果不唯一。

程序按照双偏压计算时,按照第一组组合内力进行计算,初步给定角筋和腹筋,从第二组组合内力起,验算初步配筋,并按照先角筋后腹筋或按弯矩比例增大的方式给出配筋结果。程序计算没有考虑配筋优化,故配筋可能偏大。

具体应用宜按单偏压计算,并对计算结果按双偏压校核。对于异形柱框架结构中的异形柱和特殊构件定义的角柱,程序自动按照双偏压计算。

7、配筋信息:

7.1梁柱及边缘构件主筋强度

Satwe进行构件计算时,按照本参数取得主筋的强度,不同于PM模型输入

时的钢筋型号选择,后者用于出图时的钢筋符号表示。输入时建议必须将二者对应起来。

主筋的选择应考虑以下几个因素:

1)符合建筑用钢材的标准,尽量选用规范推荐的钢筋品种;

2)考虑构件的受力情况,使所选用的钢筋强度能充分利用;

3)考虑混凝土对钢筋的握裹能得到保证;

4)考虑钢筋的锚固长度得到充分的保证;

5)市场供应情况;

5)尽可能减少结构成本。

综合以上因素,通常情况下,应按如下原则选择钢筋:

1)受力较大的构件,如大跨度的梁、板构件,框支梁、柱构件,约束边缘构件等,宜采用HRB400钢筋;

2)小跨度的梁,普通框架柱及混凝土墙的构造边缘构件宜宜采用HRB335

钢筋。

3)地下室钢筋混凝土外墙,通常情况下由裂缝控制,宜采用HRB335钢筋。

4)楼板应采用HRB400钢筋,楼梯等根据跨度、荷载大小采用HRB400钢筋或HRB335钢筋。

7.2梁柱及边缘构件箍筋强度

箍筋的选择依据同上。

混凝土构件的箍筋的主要作用有:

1)抗剪,提供混凝土构件的抗剪承载力,其衡量指标为构建的面积配箍率;

2)约束混凝土,提供混凝土竖向构件的横向约束,其控制指标为配箍特征值确定的构件体积配箍率。

3)约束钢筋,提供纵向钢筋的侧向支撑,防止钢筋压屈。

通常情况下根据梁柱受剪承载力和配箍特征值的大小以及保证混凝土对钢筋的握裹选择钢筋品种。对于框支梁柱及约束边缘构件宜采用HRB400钢筋,对于一般框架梁柱和构造边缘构件选择HPB235钢筋。

7.3墙分布筋强度

一般情况下,墙的竖向分布筋由规范规定的最小配筋率确定,故宜选择HPB 235钢筋,以降低钢筋成本。一般部位的混凝土墙的水平分布筋,HPB235钢筋也能能够满足墙受剪承载力的要求。

对于复杂高层和筒体结构的特殊部位,因受力复杂,以考虑HRB400钢筋作为墙分布筋。

混凝土墙的水平分布筋和竖向分布筋应采用同一品种,且都应符合最小配筋率的要求。

7.4梁、柱箍筋间距:100

加密区的最大间距要求。当个别梁构件因高度(h/4)或个别梁柱因其纵筋最小直径(6d或8d)造成箍筋加密区间距小于100时,应在画图时人工修改以满足规范要求。

7.5墙水平分布筋间距及竖向分布筋配筋率:200、0.25%

混凝土规范6.4.3条、高规7.2.18条及高规10.2.15条规定:一、二、三级混凝土竖向和横向分布钢筋的最小配筋率均不应小于0.25%,四级抗震时不应小于0.2%,钢筋最大间距不大于300,最小直径不应小于8;部分框支剪力墙结构的底部加强部位,竖向和横向分布钢筋的最小配筋率均不应小于0.3%(非抗震设计时不应小于0.25%),钢筋间距不大于200。

混凝土规范6.5.2条、高规8.2.1条:框架-抗震墙结构的抗震墙的竖向和横向分布钢筋配筋率,抗震设计时均不应小于0.25%,非抗震设计时均不应小于0.2%。

高规4.9.2条规定:抗震等级为特一级的筒体、剪力墙一般部位的水平和竖向分布钢筋的最小配筋率应取为0.35%,底部加强部位应取为0.4%。

高规7.2.20条:房屋顶层剪力墙及长矩形平面房屋的楼梯间和电梯间剪力墙、端开间的纵向剪力墙、端山墙的水平及竖向分布筋的最小配筋率不应小于0. 25%,钢筋间距不大于200。

高规10.4.5条:错层处平面外受力的剪力墙,其截面厚度抗震设计时不应小于250(非抗震设计时200),抗震等级提高一级。错层处剪力墙的混凝土强度等级不小于C30,水平和竖向分布筋的配筋率,非抗震设计时不小于0.3%,抗震设计时不小于0.5%。

根据以上规范要求,通常情况下取墙水平分布筋的间距为200,竖向分布筋的配筋率为0.25%,特殊情况根据规范要求调整。混凝土墙分布筋的配筋率为水平、竖向两排或几排钢筋面积和的配筋率。

7.6结构底部需要单独指定墙竖向分布筋的层数及其配筋率:顶层加强部位最高层号,0.3%;

本参数用于设定不同部位的混凝土墙分布筋的配筋率,可按照上述规范要求调整,如底部加强部位和非加强部位;框筒结构核心筒剪力墙的配筋率等。

7.7其它

板配筋宜采用HRB400钢筋,并可采用塑性方法计算板配筋;

另外,除受力钢筋外的其它构造钢筋、分布钢筋宜采用HPB235钢筋。

8、荷载组合:一般按默认值计算

8.1荷载分项系数:恒载:1.2(1.35);活载(含吊车荷载):1.4;风荷载:1.4

按照荷载规范3.2.5条、高规5.6.2条规定执行。

8.2活荷载组合值系数:0.7

荷载规范4.1.1条、4.3.1、6.1.5条:一般的民用建筑、工业建筑活荷载及屋面雪荷载的组合值系数为0.7;荷载规范4.4节规定了屋面积灰荷载的组合值系数为0.9或1.0(高炉临近建筑的屋面积灰荷载);荷载规范5.4节规定了吊车荷载的组合值系数,除硬钩吊车和工作级别A8的软钩吊车为0.95外,其它软钩吊车的荷载组合值系数均为0.7。荷载规范7.1.4条规定风荷载的组合值系数为0.6。

高规5.6.1条:无地震作用组合时,当永久荷载起控制作用时,楼面活荷载和风荷载的组合值系数取0.7(书库、档案库、通风机房、电梯机房取0.9)和0.0;当可变荷载起控制作用时应分别取1.0和0.6或者0.7(书库、档案库、通风机房、电梯机房取0.9)和1.0。

高规5.6.3条:有地震作用组合时,风荷载的组合值系数取0.2。

8.3活载重力代表值系数:0.5

抗规5.1.3条、高规3.3.6条规定了活载重力代表值系数,雪荷载及一般民用建筑楼面等效均布活荷载取0.5,屋面活荷载和软钩吊车荷载取0,硬钩吊车取0.3,藏书库、档案库为0.8,按实际情况计算的楼面活荷载取1.0。

8.4地震作用分项系数:水平地震作用:1.3、竖向地震作用:0.5。

按高规5.6.4条执行。

8.5特殊风荷载分项系数:1.4

按荷载规范3.2.5条执行。

8.6温度荷载分项系数:1.2

参照金属与石材幕墙工程技术规范(JGJ133-2001)5.1.6条的规定,取1. 2,同时温差效应组合值系数取0.8。

8.7采用自定义组合及工况:不勾选

直接按规范要求执行,一般不采用另外的组合。

9、地下室信息:

9.1回填土对地下室约束的相对刚度比:3

该参数通过填入与地下室侧移刚度的相对刚度比模拟基础回填土对结构约束作用。填0认为回填土对结构没有约束作用,上部结构嵌固于基础上;若该参数大于5,则认为地下室基本上没有侧移,上部结构在地下一层顶嵌固(但竖向变形没有约束)。

若填入负数(-m),则相当于在地下室在-m层顶的顶板嵌固,这时根据抗规6.1.14条的规定,应保证地下室的剪切刚度大于一层剪切刚度的2倍。

若地下室不考虑嵌固作用,地下室信息中回填土对地下室约束的相对刚度比一般为3,模拟约束作用。

9.2外墙分布筋保护层厚度:50

根据地下工程防水规范(GB50108-2008)4.1.7条的规定,结构混凝土迎水面的钢筋保护层厚度不小于50mm,当不考虑结构防水时,应按照混凝土规范9.

2.1条依据环境类别选用,并适当加大(可按相应环境类别柱的保护层厚度选用)。该参数用于地下室外墙的配筋计算。

9.3扣除地面以下几层的回填土约束:0

本参数指从第几层地下室考虑基础回填土对结构的约束作用,一般可不扣除,当地下室不完整时,可以考虑扣除相应的地下室层数。

9.4地下室外墙侧土水压力参数:按实际填写

用于计算地下室外墙的土压力,应按实填写,室外地面附加荷载取4.0~10. 0KN/m2。

9.5人防设计信息:按实际填写

用于人防地下室结构计算,按实际填写。

10砌体结构信息:

10.1砌块类别、容重:均按实填写

10.2底部框架层数:按实填写

10.3底框结构空间分析方法:按规范算法

通常情况下选择规范算法,以满足规范要求;对一些特殊的复杂砌体结构,可以选取有限元整体算法计算结构中的局部梁柱构件内力。

10.4配筋砌块砌体结构:按实勾选

勾选后,程序按相应的规范进行分析和构件设计。

11特殊构件补充定义:

11.1特殊梁定义

1)按照混凝土高规7.1.8条,根据跨高跨比确定连梁(<5)或框架梁(> =5),连梁可以进行刚度折减,框架梁不折减,但框架梁考虑刚度放大。

2)程序自动对梁两端的支撑情况判断,当梁两端的支座均为混凝土墙或柱时,隐含定义为调幅梁,否则为不调幅梁;

混凝土规范第5.3.1条:房屋建筑中的钢筋混凝土连续梁和连续单向板,宜采用考虑塑性内力重分布的分析方法,其内力值可由弯矩调幅法确定;框架、框架-剪力墙结构以及双向板等,经过弹性分析求得内力后,也可对支座或节点弯

矩进行调幅,并确定相应的跨中弯矩;对直接承受动力荷载的构件及要求不出现裂缝或处于腐蚀环境等情况的结构,不应考虑塑性内力重分布。

高规5.2.3条只规定框架梁在竖向荷载作用下,可考虑框架梁端塑性变形内力重分布对梁端负弯矩乘以调幅系数进行调幅。

通常情况下框架梁一般支座弯矩大,实际配筋困难,而且是实际塑性铰形成的点,所以应该进行调幅。多跨连续梁一般荷载较小,调幅的意义不大。对于梁端内力较大的多跨连续梁,按照规范规定,也可以调幅,实际操作时可灵活掌握。

3)根据实际情况指定框支梁。注意转换次梁和托柱梁也应指定为框支梁,使得程序可以自动对其调整抗震等级并进行内力调整。

4)根据计算结果可以将个别超筋或配筋率大的梁端定义为铰接梁,并在设计图纸中规定相应的构造措施。

5)滑动支座梁、门式钢梁、耗能梁、组合梁根据实际情况指定;梁的抗震等级、材料强度、刚度系数、扭转系数、调幅系数根据需要单独调整个别梁的相关参数。

11.2特殊柱定义

1)根据柱的布臵位臵判断并定义角柱、框支柱,程序根据指定自动进行相关的内力调整和抗震等级的调整。

2)其它如铰接柱(上端、下端)、门式钢柱根据实际情况指定;柱的抗震等级、材料强度、剪力系数(广东规范)根据需要单独调整个别柱的相关参数。

11.3特殊墙、特殊支撑:

根据需要指定或修改相关参数。

11.4弹性楼板:

程序以房间为单元指定进行定义。程序将楼板划分为四类:

1)刚性楼板,平面内无限刚,平面外刚度为0。程序默认楼板为刚性楼板。

2)弹性楼板3,平面内无限刚,平面外有限刚。适用于厚板转换。厚板转换PM建模时,与板柱结构一样布臵虚梁,将厚板高度一分为二,分别加在上下楼层的层高上。

3)弹性楼板6,壳元计算真实反映平面内、平面外的刚度。适用于板柱结构或板柱-剪力墙结构,按照混凝土高规5.3.3条的要求执行。

4)弹性膜,应用应力膜单元真实反映板平面内、外的刚度,同时忽略平面外刚度。适用于转换层、楼板开大洞、楼板弱连接的情况。

12温度荷载定义:

超长结构需进行温度荷载定义。

计算结构的温度荷载,应指定相应楼层为弹性楼板(为了计算梁板内力);然后根据30年一遇的夏季最高日平均气温与夏季空调设计温度(26)的差以及30年一遇的冬季最低日平均气温与冬季采暖设计温度(18)的差确定最高升温和最低降温值,升温为正,降温为负,不考虑季节性温度变化温差。

13弹性支座、支座位移定义:

根据需要按照Satwe用户手册定义。

14多塔定义:

14.1多塔的计算方式

多塔结构应采用拆分建模和整体建模分别计算,对于后者,必须定义为多塔。

周期比计算必须采用拆分单塔模型;位移比、剪重比、刚度比、承载力比的计算可以采用拆分单塔模型或者整体多塔模型。

结构内力分析及构件配筋的计算可以按照多塔整体建模分析(节点数满足软件限制的前提下)或拆分单塔计算,最好采用两种模型包络设计(因本工程裙房层数较少,当裙房层数较多时,应按照整体建模分析)。

14.2多塔结构离散方式

目前,多塔结构离散模型主要有三种模式如下:

1)对于底盘为地下室,且地下室面积相对塔楼面积较大时,沿塔楼周围向两个方向取地下室层高的两倍范围内的构件;

2)对于塔楼层数较多且相对底盘布臵对称,底盘层数相对较少时,沿45度剖分线范围内的构件;

3)对于底盘作为上部结构嵌固部位时,单独将塔楼从底盘中取出,在底部嵌固,另外计算底盘的周期比,验算时将各塔楼质量加在底盘顶相应位臵。

14.3多塔结构定义

设缝多塔应进行遮挡定义。

15用户指定0.2Q0调整系数:

根据需要,一般不指定。如需指定0.2Q0调整系数,在弹出的文本文件中按照提示编辑文件,填写时行首不要填入字符“C”,否则该行为注释行,不起作用。

16修改构件计算长度系数:

一般不需要修改。当程序给出的计算长度系数不符合规范要求,明显不合理时,可修改梁(平面外)、柱、支撑的计算长度系数。

17附注:

本文中涉及的规范、规程均为2000年版的规范、规程。

希望大家在软件应用过程中不断的修改、补充本文的内容并反馈给我,形成完整的资料。修改、补充的部分请用红颜色显示。

结构方程模型及其应用

結 構方程程模型型及其應 新增資 應用 資料

目錄 內容 頁數 引言 2 I. 第9.1版的改動 3 - 4 II. 章節內的新增資料 第一章 5 第三章 6 – 8 第十二章 9 – 10 第十四章 11 – 17 III. 附录內的新增資料 19 1

引言 自2005,為方便普通話及廣東話的學生,修習香港中文大學我所任教的結構方程課程,我製做了一個含有2種方言的網上課程,其後我亦將整個課程放在個人網頁(https://www.doczj.com/doc/c814377942.html,)免費讓公眾使用。 網上課程更精簡地解釋重點,尤其是對本書最艱深的部份(第三、四章),幫助最大。學員先看綱上課程,再參考書本內容,必感事半功倍。 主要参考文獻: du Toit, S., du Toit, M., Mels, G., & Cheng, Y. (n.d.). LISREL for Windows: SIMPLIS syntax files. Lincolnwood, IL: Scientific Software International, Inc. (available https://www.doczj.com/doc/c814377942.html,/lisrel/techdocs/SIMPLISSyntax.pdf) J?reskog, K.G. & S?rbom, D. (1999). LISREL 8: User’s Reference Guide. Lincolnwood, IL: Scientific Software International, Inc. J?reskog, K.G. & S?rbom, D. (1999). Structural Equation Modeling with the SIMPLIS Command Language. Lincolnwood, IL: Scientific Software International, Inc. Scientific Software International (SSI) (2012). LISREL 9.1 Release Notes. Lincolnwood, IL: The Author. (available from https://www.doczj.com/doc/c814377942.html,/lisrel/LISREL_9.1_Release_Notes.pdf) 2

第二次作业《解释结构模型应用》

大连海事大学 实验报告 《系统工程》 2014~2015学年第一学期 实验名称:基于解释模型在大学生睡眠质量问题的研究学号姓名:马洁茹姚有琳 指导教师:贾红雨 报告时间: 2014年9月24日

《系统工程》课程上机实验要求 实验一解释结构模型在大学生睡眠质量问题中的研究 实验名称:基于MATLAB软件或C/Java/其他语言ISM算法程序设计(一) 实验目的 系统工程课程介绍了系统结构建模与分析方法——解释结构模型法(Inter pretative Structural Modeling ·ISM)是现代系统工程中广泛应用的一种分析方法,能够利用系统要素之间已知的零乱关系,用于分析复杂系统要素间关联结构,揭示出系统内部结构。ISM方法具有在矩阵的基础上再进一步运算、推导来解释系统结构的特点,对于高维多阶矩阵的运算依靠手工运算速度慢、易错,甚至几乎不可能。 本次实验的目的是应用计算机应用软件或者是基于某种语言的程序设计快速实现解释结构模型(ISM)方法的算法,使学生对系统工程解决社会经济等复杂性、系统性问题需要计算机的支持获得深刻的理解。学会运用ISM分析实际问题。 (二) 实验要求与内容: 1.问题的选择 根据对解释结构模型ISM知识的掌握,以及参考所给的教学案例论文,决定选择与我们生活有关的——大学生睡眠质量问题。 2.问题背景 睡眠与我们的生活息息相关,当每天的身体机制在不断运行的过程中身体负荷不断变大,到了夜间就需要休息。但是同一寝室的同学大多休息时段不同,有些习惯早睡,有些会由于许多原因晚睡。有些睡眠较沉不会轻易被打扰,有些睡眠较轻容易被鼾声或者其他声响惊醒。学习得知,解释系统模型是通过对表面分离、凌乱关系的研究,揭示系统内部结构的方法。因此,我想尝试通过解释模型来对该问题进行研究分析。 3.用画框图的形式画出ISM的建模步骤。

软件体系结构总结

第一章:1、软件体系结构的定义 国内普遍看法: 体系结构=构件+连接件+约束 2、软件体系结构涉及哪几种结构: 1、模块结构(Module) 系统如何被构造为一组代码或数据单元的决策 2、构件和连接件结构(Component-And-Connector,C&C) 系统如何被设计为一组具有运行时行为(构件)和交互(连接件)的元素 3、分配结构(Allocation) 展示如何将来自于模块结构或C&C结构的单元映射到非软件结构(硬件、开发组和文件系统) 3、视图视点模型 视点(View point) ISO/IEC 42010:2007 (IEEE-Std-1471-2000)中规定:视点是一个有关单个视图的规格说明。 视图是基于某一视点对整个系统的一种表达。一个视图可由一个或多个架构模型组成 架构模型 架构意义上的图及其文字描述(如软件架构结构图) 视图模型 一个视图是关于整个系统某一方面的表达,一个视图模型则是指一组用来构建 4、软件体系结构核心原模型 1、构件是具有某种功能的可复用的软件结构单元,表示了系统中主要的计算元素和数据存储。 2.连接件(Connector):表示构件之间的交互并实现构件

之间的连接 特性:1)方向性2)角色3)激发性4)响应特征 第二章 1、软件功能需求、质量属性需求、约束分别对软件架构产生的影响 功能性需求:系统必须实现的功能,以及系统在运行时接收外部激励时所做出的行为或响应。 质量属性需求:这些需求对功能或整个产品的质量描述。 约束:一种零度自由的设计决策,如使用特定的编程语言。 质量原意是指好的程度,与目标吻合的程度,在软件工程领域,目标自然就是需求。 对任何系统而言,能按照功能需求正确执行应是对其最基本的要求。 正确性是指软件按照需求正确执行任务的能力,这无疑是第一重要的软件质量属性。质量属性的优劣程度反映了设计是否成功以及软件系统的整体质量。 系统或软件架构的相关视图的集合,这样一组从不同视角表达系统的视图组合在一起构成对系统比较完整的表达

软件体系结构期末大题

软件体系结构-期末大题

————————————————————————————————作者:————————————————————————————————日期: ?

1.基于构件的软件开发的优势是什么? 基于构件的软件将软件开发的重点从程序编写转移到了基于已有构件的组装,更快地构造系统,减轻用来支持和升级大型系统所需要的维护负担,从而降低了软件开发的费用2.尝试用自己的语言介绍Kruchten的“4+1”模型。 Kruchten 提出了一个"4+1"视图模型,从5个不同的视角包括包括逻辑试图、进程视图、物理视图、开发视图、场景视图来描述软件体系结构。每一个视图只关心系统的一个侧面,5个试图结合在一起才能反映系统的软件体系结构的全部内容。

3.在希赛公司的一个财务管理系统,财务部要客户提供………… 4.不同的体系结构风格具有各自的特点、优劣和用途。试对管道-过滤器风格、事件驱动风格、分层系统、C2风格和基于消息总线的风格进行分析比较。P52-56 (1)管道和过滤器 特点: @使得软构件具有良好的隐蔽性和高内聚、低耦合的特点; @允许设计者将整个系统的输入输出行为看成是多个过滤器的行为的简单合成;

@支持软件重用。只要提供适合在两个过滤器之间传送的数据,任何两个过滤器都可被连接起来; @系统维护和增强系统性能简单。新的过滤器可以添加到现有系统中来;旧的可以被改进的过滤器替换掉; @允许对一些如吞吐量、死锁等属性的分析; @支持并行执行。每个过滤器是作为一个单独的任务完成,因此可与其它任务并行执行?缺点:①通常导致进程成为批处理的结构。 ②不适合处理交互的应用。 ③因为在数据传输上没有通用的标准,每个过滤器都增加了解析和合成数据的工作,这样就导致了系统性能下降,并增加了编写过滤器的复杂性。 (2)

结构方程模型的应用及分析策略

结构方程模型的应用及分析策略 侯杰泰成子娟 (香港中文大学教育学院东北师范大学教育学院,130024) 摘要:差不多所有心理、教育、社会等概念,均难以直接准确测量,结构方程(SEM,Structural Equation Modelling)提供一个处理测量误差的方法,采用多个指标去反映潜在变量,也令估计整个模型因子间关系,较传统回归方法更为准确合理。本文主要用一系列有关学习动机的虚拟例子,指出每个问题的主要分析策略,以展示SEM在教育及心理学可以应用的研究范畴。文内探讨的方法包括:验证性因素、高阶因子、路径及因果分析、多时段(multiwave)设计、单形模型(Simple Model)、及多组比较等。 关键词结构方程验证性因素分析路径及因果分析高阶因子多组比较 结构方程(SEM,Structural Equation Modelling)、协方差结构模型(Covariance Structure Modelling、LISREL)等类似名词已渐流行,并成为一种十分重要的数据分析技巧;在大学高等学位研究课程,它是多变量分析(multivariate analysis)的重要课题;比较重要的社会、教育、心理期刊,也早已特开专栏介绍(如:候,1994;Connell & Tanaka,1987;Joreskog & Sorbom,1982);可见SEM在统计学中所建立的声望及崇高地位是无容置疑的。本文主要用一系列有关学习动机的虚拟例子,来指出每个问题的主要分析策略,以展示结构方程模型在教育及心理学可以应用的研究范畴。 一、结构方程:优点及拟合概念 1.数学模式 很多社会、心理等变项,均不能准确地及直接地量度,这包括智力、社会阶层、学习动机等,我们只好退而求其次,用一些外项指标(observable indicators),去反映这些潜伏变项。例如:我们以学生父母教育程度、父母职业及其收入(共六个变项),作为学生家庭社经地位(潜伏变项)的指标,我们又以学生中、英、数三科成绩(外显变项),作为学业成就(潜伏变项)的指标。 简单来说SEM可分测量(measurement)及潜伏变项(latent variable)两部分。测量部分就是求出六个社经指标与社经地位(或三科成绩与学业成就)(即外显指标与潜伏变项之间)的关系:而潜伏变项部分则指社经地位与学业成就(即潜伏变项与潜伏变项间)的关系。 指标(外显变项)含有随机(或系统)性的量度上误差,但潜伏变项则不含这些部份。SEM可用以下矩阵方程表示(Bollen,1989;Joreskog & Sorbom,1993): η=βη+Γξ+ζ

利率期限结构

利率期限结构(term structure),是某个时点不 同期限的利率所组成的一条曲线.因为在某个时 点,零息票债券的到期收益率等于该时期的利率, 所以利率期限结构也可以表示为某个时点零息票 债券的收益率曲线(yield curve).它是资产定价、 金融产品设计、保值和风险管理、套利以及投机等 的基准.因此,对利率期限结构问题的研究一直是 金融领域的一个基本课题. 利率期限结构是一个非常广阔的研究领域, 不同的学者都从不同的角度对该问题进行了探 讨,从某一方面得出了一些结论和建议.根据不同 的角度和方向,这些研究基本上可以分为5类: 1)利率期限结构形成假设; 2)利率期限结构静态估计;3)利率期限结构自身形态的微观分析;4)利率 期限结构动态模型;5)利率期限结构动态模型的 实证检验. 1利率期限结构形成假设 利率期限结构是由不同期限的利率所构成的 一条曲线.由于不同期限的利率之间存在差异,所 以利率期限结构可能有好几种形状:向上倾斜、向 下倾斜、下凹、上凸等.为了解释这些不同形状的 利率期限结构,人们就提出了几种不同的理论假 设.这些假设包括:市场预期假设(expectation hy- pothesis),市场分割假设(market segmentation hy-pothesis)和流动性偏好假设(liquidity preference hy- pothesis).为了对这些假设进行验证,不同的学者 从不同的角度进行了分析. 不同的学者利用不同的方法,使用不同国家的 数据对利率期限结构形成假设进行了检验.在3个假设中,市场预期假设是最重要的假设,所以大多数的 研究都是立足于市场预期假设,并在此基础上考虑 流动性溢酬. 4)中国市场.庄东辰[19]和宋淮松[20]分别利用 非线性回归和线性回归的方法对我国的零息票债券 进行分析.唐齐鸣和高翔[21]用同业拆借市场的利率 数据对预期理论进行了实证.实证结果表明:同业拆 借利率基本上符合市场预期理论,即长短期利率的 差可以作为未来利率变动的良好预测,但是短期利 率也存在着一些过度反应的现象.此外,还有杨大 楷、杨勇[22],姚长辉、梁跃军[23]对国债收益率的研 究.但这些研究大部分都是停留在息票债券的到期

华南农业大学软件体系结构09年考试卷子加答案

一:名词解释 1.软件产品线 产品线是一个产品集合,这些产品共享一个公共的、可管理的特征集,这个特征集能满足选定的市场或任务领域的特定需求。这些系统遵循一个预描述的方式,在公共的核心资源(core assets)基础上开发的。 2.体系结构描述语言 体系结构描述语言(ADL)是在底层语义模型的支持下,为软件系统的概念体系结构建模提供了具体语法和概念框架。基于底层语义的工具为体系结构的表示、分析、演化、细化、设计过程等提供支持。其三个基本元素是:构件、连接件、体系结构配置。 3.软件体系结构 Dewayne Perry和A1exander Wo1f 软件体系结构是具有一定形式的结构化元素,即构件的集合,包括处理构件、数据构件和连接构件。 Mary Shaw和David Garlan 软件体系结构处理算法与数据结构之上关于整体系统结构设计和描述方面的一些问题,如全局组织和全局控制结构、关于通讯、同步与数据存取的协议,设计构件功能定义,物理分布与合成,设计方案的选择、评估与实现等。 Kruchten 软件体系结构有四个角度,它们从不同方面对系统进行描述:概念角度描述系统的主要构件及它们之间的关系;模块角度包含功能分解与层次结构;运行角度描述了一个系统的动态结构;代码角度描述了各种代码和库函数在开发环境中的组织 4.体系结构演化 5.软件风格 软件体系结构风格是描述某一特定应用领域中系统组织方式的惯用模式。体系结构风格定义了一个系统家族,即定义一个词汇表和一组约束。词汇表中包含一些构件和连接件

类型,而这组约束指出系统是如何将这些构件和连接件组合起来的。 6.软件重用 体系结构重用属于设计重用,比代码重用更抽象。由于软件体系结构是系统的高层抽象,反映了系统的主要组成元素及其交互关系,因而较算法更稳定,更适合于重用。 软件重用是指软件在环境和功能发生变化后,可通过局部修改和重组,保持整体稳定性,以适应新要求。 二:简答题: 1. 什么是体系结构描述语言?它与程序语言以及UML有哪些区别与联系? ADL是在底层语义模型的支持下,为软件系统的概念体系结构建模提供了具体语法和概念框架。基于底层语义的工具为体系结构的表示、分析、演化、细化、设计过程等提供支持。其三个基本元素是:构件、连接件、体系结构配置。 跟其他语言的比较: ◎构造能力:ADL能够使用较小的独立体系结构元素来建造大型软件系统; ◎抽象能力:ADL使得软件体系结构中的构件和连接件描述可以只关注它们的抽象特性,而不管其具体的实现细节; ◎重用能力:ADL使得组成软件系统的构件、连接件甚至是软件体系结构都成为软件系统开发和设计的可重用部件; ◎组合能力:ADL使得其描述的每一系统元素都有其自己的局部结构,这种描述局部结构的特点使得ADL支持软件系统的动态变化组合; ◎异构能力:ADL允许多个不同的体系结构描述关联存在; ◎分析和推理能力:ADL允许对其描述的体系结构进行多种不同的性能和功能上的多种推理分析。 2. 管道过滤器风格结构特点 (1)使得软构件具有良好的隐蔽性和高内聚、低耦合的特点; (2)允许设计者将整个系统的输入/输出行为看成是多个过滤器的行为的简单合成;(3)支持软件重用。 (4)系统维护和增强系统性能简单。 (5)允许对一些如吞吐量、死锁等属性的分析; (6)支持并行执行。 但是,这样的系统也存在着若干不利因素。 (1)通常导致进程成为批处理的结构。这是因为虽然过滤器可增量式地处理数据,但它们是独立的,所以设计者必须将每个过滤器看成一个完整的从输入到输出的转换。 (2)不适合处理交互的应用。当需要增量地显示改变时,这个问题尤为严重。 (3)因为在数据传输上没有通用的标准,每个过滤器都增加了解析和合成数据的工作,这样就导致了系统性能下降,并增加了编写过滤器的复杂性。 3. 试简述一下软件产品线的双生命周期模型

软件体系结构的质量特性

软件体系结构的质量特性 摘要:众所周知的是,为了降低风险和减少构建软件系统的困难,人们在软件开发过程的早期应该首先考虑质量问题。此外,系统的结构驱动着整个开发过程。 备用的结构中非功能性质量需求的实现决定了选择衔接整个系统的便利结构。这一议题在可靠的变革的应用程序构建中非常重要。软件开发的思想并没有在这一重要阶段给与很多细节关注。这篇文章详述了软件体系结构的质量特性,并且介绍了一种基于??? ??????标准的技术。???模型的质量特性被精炼成为一种属性。而这种属性可被度量以增加体系结构的信息。我们的技术通过比较各自的质量属性的值从一组候选中挑选出适当的体系结构。并以一个关于监制系统技术应用程序为例说明。我们的方法有助于在体系结构分析过程中正确选择的决定。它可以很容易的被并入一般软件开发的过程或者一种特别的体系结构设计思想。 简介:在软件开发早期阶段以非功能需求为目标的质量需求极大的影响了软件系统的体系结构。但是,系统核心功能需求的提取在初始的系统结构的确定上扮演着重要的角色。另一方面,质量需求在软件设计阶段需要平衡 ??????? ?? ?●? ?????。仅仅在最近,精确的软件体系结构设计的重要性(并不是局限于笔纸图画符号的设计方式)为了可靠的系统结构而蓬勃的发展起来 ????????? ?? ?●??????? ?????? ?????? ? ?◆????? ??????。那些包括 ??????◆????? ????????●???? ????????? ???●???? ????????? ??◆????●??? ??? ? ??●????? ???◆?? 现代的应用软件需要一个早期的体系结构 的 定义来满足可维护行和可靠性之类的质量需求。这些对于在架构之下的软件系统全部功能性需求目标的完成是至关重要的。特殊的,使用网络服务的新的信息系统,比如基于网络的电子商务应用程序,没有过多关心软件工程的时

《结构方程模型及其应用》

《结构方程模型及其应用》 内容简介 侯杰泰,香港中文大学教育心理系教授、系主任。主要研究方向为学习动机,应用统计和香港语文政策。曾多次在北京、上海、南京、长春、广州等地举办的地区或全国性结构方程分析研习班上讲学。 在社会、心理、教育、经济、管理、市场等研究的数据分析中,当今称得上前沿的几个统计方法中,应用最广、研究最多的恐怕非结构方程分析莫属。它包含了方差分析、回归分析、路径分析和因子分析,弥补了传统回归分析和因子分析的不足,可以分析多因多果的联系、潜变量的关系,还可以处理多水平数据和纵向数据,是非常重要的多元数据分析工具。 本书是国内第一本系统介绍结构方程模型和LISREL的著作。阐述了结构方程分析(包括验证性因子分析)的基本概念、统计原理、在社会科学研究中的应用、常用模型及其LISREL程序、输出结果的解释和模型评价。《结构方程模型及其应用》还讨论了一些与结构方程模型有关的专题,是一本由初级至中上程度的结构方程分析著作,可作为有关专业高年级本科生和研究生的教科书及应用工作者的参考书。 目录 序 第一部分结构方程模型入门 第一章引言

一、描述数据 二、具体例子展示准确与简洁的考虑 三、探索性与验证性因子分析比较 第二章结构方程模型简介 一、结构方程模型的重要性 二、结构方程模型的结构 三、结构方程模型的优点 四、结构方程模型包含的统计方法 五、路径图的图标规则 六、结构方程分析软件包 七、LISIREL操作入门 第二部分结构方程模型应用 第三章应用示范I:验证性因子分析和全模型 一、验证性因子分析 二、多质多法模型 三、全模型 四、高阶因子分析 第四章应用示范II:单纯形和多组模型 一、单纯形模型 二、多组验证性因子分析 三、多组分析:均值结构模型 四、回归模型

第二次作业《解释结构模型应用》

海事大学 实验报告 《系统工程》 2014~2015学年第一学期 实验名称:基于解释模型在大学生睡眠质量问题的研究学号:马洁茹有琳 指导教师:贾红雨 报告时间: 2014年9月24日

《系统工程》课程上机实验要求 实验一解释结构模型在大学生睡眠质量问题中的研究 实验名称:基于MATLAB软件或C/Java/其他语言ISM算法程序设计(一) 实验目的 系统工程课程介绍了系统结构建模与分析方法——解释结构模型法(Inter pretative Structural Modeling ·ISM)是现代系统工程中广泛应用的一种分析方法,能够利用系统要素之间已知的零乱关系,用于分析复杂系统要素间关联结构,揭示出系统部结构。ISM方法具有在矩阵的基础上再进一步运算、推导来解释系统结构的特点,对于高维多阶矩阵的运算依靠手工运算速度慢、易错,甚至几乎不可能。 本次实验的目的是应用计算机应用软件或者是基于某种语言的程序设计快速实现解释结构模型(ISM)方法的算法,使学生对系统工程解决社会经济等复杂性、系统性问题需要计算机的支持获得深刻的理解。学会运用ISM分析实际问题。 (二) 实验要求与容: 1.问题的选择 根据对解释结构模型ISM知识的掌握,以及参考所给的教学案例论文,决定选择与我们生活有关的——大学生睡眠质量问题。 2.问题背景

睡眠与我们的生活息息相关,当每天的身体机制在不断运行的过程中身体负荷不断变大,到了夜间就需要休息。但是同一寝室的同学大多休息时段不同,有些习惯早睡,有些会由于许多原因晚睡。有些睡眠较沉不会轻易被打扰,有些睡眠较轻容易被鼾声或者其他声响惊醒。学习得知,解释系统模型是通过对表面分离、凌乱关系的研究,揭示系统部结构的方法。 因此,我想尝试通过解释模型来对该问题进行研究分析。 3.用画框图的形式画出ISM的建模步骤。

软件体系结构评估

计算机093 09416612 恽小燕 软件体系结构评估 近几年来,软件体系结构(Software Architecture ,SA) 成为软件工程发展的一个热门方向。随着对软件体系结构研究的深入开展,逐渐形成了以软件系统的体系结构形式化描述、风格、建模、评估、软件产品线以及基于软件体系结构的软件开发过程等为主要研究内容的一个新领域。对一个系统的体系结构进行评估,是为了在系统被构建之前预测它的质量,并不需要精确的评估结果,通过分析SA体系结构对于系统质量的主要影响,进而提出改进。因此,软件体系结构评估的目的是分析潜在的风险,并检验设计中提出的质量需求。本文主要讨论三种有代表性的方法,它们可以指导评估人员成功地对系统的体系结构进行评估。这三种方法是: 基于场景的体系结构分析方法(SAAM) 、体系结构权衡分析方法(ATAM) 、体系结构级别上的软件维护预测(ALPSM) 。 1.主要的术语 (1)软件体系结构 定义:软件体系结构定义很多,本文采用为大多数人所接受的一种定义:“软件系统或计算系统的软件体系结构就是系统的一个或多个结构,它包括软件组件,这些组件的外部可见属性以及组件之间的相互关系”。这个定义仅仅关注系统内在的方面,而大多数的分析方法都是基于这个定义的。 这个定义具有如下的含义: ①SA 是一个或多个系统的抽象。SA 以抽象的组件(Com2ponent) 来表示系统,这些组件具有外部可见属性,并且相互之间是有联系的,这种联系有时被称为连接件(Connector) 。 ②SA 是一种可重用、可传递的系统抽象,而组件的细节部分不属于体系结构的范畴。 ③系统由多个结构组成,通常也称为视图(View) 。任何一个视图只能表示SA 的部分内容,而不是全部。 (2)质量属性 质量属性是一个组件或一个系统的非功能性特征。软件质量在IEEE 1061中定义,它体现了软件拥有所期望的属性组合的程度。另一个标准ISO/IEC Draft 91262 1定义了一个软件质量模型。依照这个模型,共有六种特征:功能性、可靠性、可用性、有效性、可维护性和可移植性,并且它们被分成子特征,根据各个软件系统外部的可见特征来定义这些属性。 (3)风险承担者( Stakeholder) 风险承担者就是对体系结构及根据该体系结构开发的系统有自己的要求的人员。风险承担者涉及面很广,可能是最终用户、开发人员、项目经理等。比较特殊的一类人员是项目决策者,即对评估结果感兴趣,并有权作出影响项目未来开发决策的人。体系结构设计师也是很特殊的一位风险承担者,一定要让他参加整个评估过程。 (4)场景( Scenario) 场景就是对于风险承担者与系统的交互的简短描述。比如用户可能会描述如何使用该系统来完成某项功能,这时场景就很类似于面向对象技术中的用例。在评估过程中,使用场景将那些模糊的不适用于分析的质量属性需求描述转换为具体的易于理解的表述形式。 评估技术在体系结构层次上有两类评估技术:询问和度量。本文讨论的评估方法都至少采用了这两种技术中的一种,或是两种技术的结合(常同时混合使用,如下文讨论的ATAM就是一种混合方法) 。 a.询问技术。生成一个体系结构将要问到的质量问题,可适用于任何质量属性,并可用于对开发中任何状态的任何部分进行调查。询问技术包括场景、调查表、检查列表。调查表是通用的、可运用于所有软件体系结构的一组问题;而检查列表则是对同属一个领域的多个系

利率期限结构的模型分析

利率期限结构的模型分析

————————————————————————————————作者:————————————————————————————————日期:

利率期限结构的模型分析 摘要:利率期限结构是资产定价、金融产品设计、保值和风险管理、套利以及投机等的基准,所以利率期限结构模型以及利率行为的特点一直以来就是金融学研究的重点。随着我国债券市场的发展、金融创新的不断深入以及利率市场化进程的逐步推进,利率期限结构问题研究的重要性日益凸显。本文即分析利率期限结构的四个模型,并运用Matlab软件分别作出图形,在图形的基础上解释说明。 关键词:利率期限结构多项式指数NS NSS 一、前言 利率期限结构是指某个时点不同期限的即期利率与到期期限的关系及变化规律,一般由债券市场的实际交易价格确定。在成熟金融市场中,国债利率期限结构不但能够反映国债市场各期限国债的供求关系、市场利率的总体水平和变化方向,是市场重要的定价基准,而且是精细化设计国债及其衍生产品,科学制定财政和货币政策,完善国债发行和管理的重要依据。2000年以后,随着国债发行机制的日趋规范和完善,期限结构的不断丰富,国债市场的日臻成熟,利率市场化水平的显著提高,鉴于此,我们开展了国债利率期限结构模型的研究,本文在此讨论的有四种模型,分别是多项式样条模型、指数样条模型、NS模型和NNS模型,解释说明不同模型的拟合精度。 利率期限结构是利率水平与期限相联系的函数,收益率曲线的变化本质上体现了债券的到期收益率与期限之间的关系。即债券的短期利率和长期利率表现的差异性。而利率期限结构所研究的就是决定长期利率和短期利率关系的原因到底是什么。随着对利率期限结构研究的发展,理论界也形成了不同的理论流派。 (一)预期理论:预期理论提出了以下命题:长期债券的利率等于在其有效期内人们所预期的短期利率的平均值。这一理论关键的假定是,债券投资者对于不同到期期限的债券没有特别的偏好,因此如果某债券的预期回报率低于到期期限不同的其他债券,投资者就不会持有这种债券。具有这种特点的债券被称为完全替代品。在实践中,这意味着如果不同期限的债券是完全替代品,这些债券的预期回报率必须相等。 预期理论可以解释事实 1.随着时间的推移,不同到期期限的债券利率有同向运动的趋势。从历史上看,短期利率具有如果它在今天上升,则未来将趋于更高的特征。 2.如果短期利率较低,收益率曲线倾向与向上倾斜,如果短期利率较高,收益率曲线通常是翻转的。 预期理论有着致命的缺陷,它无法解释收益率曲线通常是向上倾斜的情况。

软件体系结构知识点完整

1、构件是核心和基础,重用是必需的手段。 2、软件重用是指在两次或多次不同的软件软件开发过程中重复使用相同或相近软件元素的过程。 3、软件元素包括程序代码、设计文档、设计过程、需求分析文档甚至领域知识。 4、把可重用的元素称作软构件,简称为软构件。 5、可重用软件元素越大,就说重用的粒度越大。 6、构件是指语义完整、语法正确和有可重用价值的单位软件,是软件重用过程中可以明确辨识的系统;结构上,它是语义描述、通信接口和代码实现的复合体。 7、面向对象技术达到类级重用,以类为封装的单位。 8、构件模型是对构件本质特征的抽象描述。三个主要流派,分别是OMG(对象管理组织)的CORBA(通用对象请求代理结构)、Sun的EJB和Microsoft的DOM(分布式构件对象模型)。 9、获取构件的四个途径:(1)从现有构件中获得符合要求的构件,直接使用或作适应性修改,得到可重用构件。(2)通过遗留工程,将具有潜在重用价值的构件提取出来,得到可重用构件。(3)从市场上购买现成的商业构件,即COTS构件。(4)开发符合要求的构件。 10、构件分类方法三大类:关键字分类、刻面分类法、超文本组织方法 11、构件检索方法:基于关键字的检索、刻面检索法、超文本检索法和其他检索方法。 12、减少构件修改的工作量,要求工作人员尽量使构件的功能、行为和接口设计更为抽象画、通用化和参数化。 13、构件组装技术:基于功能的组装技术、基于数据的组装技术和面向对象的组装技术。 14、软件体系结构的定义:软件体系结构为软件系统提供了一个结构、行为和属性的高级抽象,由构成系统的元素的描述、这些元素的相互作用、指导元素集成的模式以及这些模式的约束组成。软件体系结构不仅指定了系统的组织结构和拓扑结构,并且显示了系统需求和构成系统的元素之间的对应关系,提供了一些设计决策的基本原理。 软件体系结构的意义:(1)体系结构是风险承担者进行交流的手段;(2)体系结构是早期设计决策的体现--①软件体系结构明确了对系统实现的约束条件②软件体系结构决定了开发和维护组织的组织结构③软件体系结构制约着系统的质量属性④通过研究软件体系结构可能预测软件的质量⑤软件体系结构使推理和控制更改更简单⑥软件体系结构有助于循序渐进的原型设计⑦软件体系结构可以作为培训的基础;(3)软件体系结构是可传递和可重用的模型。 软件体系结构发展的四个阶段:(1)无体系结构设计阶段。以汇编语言进行小规模应用程序开发为特征。(2)萌芽阶段。出现了程序结构设计主题,以控制流图和数据流图构成软件结构为特征。(3)初期阶段。出现了从不同侧面描述系统的结构模型,以UML为典型代表。(4)高级阶段。以描述系统的高层抽象结构为中心,不关心具体的建模细节,划分了体系结构与传统软件结构的界限,该阶段以Kruchten提出的“4+1”模型为标志。 通用体系结构风格分类 数据流风格:批处理序列、管道与过滤器。 调用/返回风格:主程序与子程序、面向对象风格、层次结构。 独立构件风格:进程通信、事件系统。 虚拟机风格:解释器、基于规则的系统。 仓库风格:黑板系统、传统型数据库。 管道与过滤器 特点:(1)使得软构件具有良好的内聚、耦合的特点。 (2)允许设计师将整个系统的输入/输出行为看成是多个过滤器的行为的简单合成。(3)支持软件重用。 (4)系统维护和增强系统性能简单。 (5)允许对一些如吞吐量、死锁等属性的分析。 (6)支持并行执行。

软件体系结构课后习题参考答案

软件体系结构第四章作业 题1.请把基于体系结构的软件开发模型与其他软件开发模型进行比较。 答:一、基于体系结构为基础的基于构件组装的软件开发模型,如基于构件的开发模型和基于体系结构的开发模型等。基于体系结构的开发模型是以软件体系结构为核心,以基于构件的开发方法为基础。然后采用迭代增量方式进行分析和设计,将功能设计空间映射到结构设计空间,再由结构设计空间映射到系统设计空间的过程。该开发模型把软件生命周期分为软件定义、需求分析和定义、体系结构设计、软件系统设计和软件实现5个阶段. 特点:是利用需求分析结果设计出软件的总体结构,通过基于构件的组装方法来构造软件系统。 优点:基于构件的开发方法使得软件开发不再一切从头开发,开发的过程就是构件组装的过程,维护的过程就是构件升级、替换和扩充的过程。构件组装模型导致了软件的复用,提高了软件开发的效率。软件体系结构的出现使得软件的结构框架更清晰,有利于系统的设计、开发和维护。并且软件复用从代码级的复用提升到构件和体系结构级的复用。 缺点:由于采用自定义的组装结构标准,缺乏通用的组装结构标准,因而引入了较大的风险。 可重用性和软件高效性不易协调,需要精干的有经验的分析和开发人员,一般开发人员插不上手。 客户的满意度低,并且由于过分依赖于构件,所以构件库的质量影响着产品质量。 二、以软件需求完全确定为前提软件开发模型,如瀑布模型等。 特点:软件需求在开发阶段已经被完全确定,将生命周期的各项活动依顺序固定,强调开发的阶段性; 优点:开发流程简单。 缺点:是开发后期要改正早期存在的问题需要付出很高的代价,用户需要等待较长时间才能够看到软件产品,增加了风险系数。并且如果在开发过程存在阻塞问题,则影响开发效率。 三、在开始阶段只能提供基本需求的渐进式开发模型,如螺旋模型和原型实现软件开发模型等。 特点:软件开发开始阶段只有基本的需求,软件开发过程的各个活动是迭代的。通过迭代过程实现软件的逐步演化,最终得到软件产品。在此引入了风险管理,采取早期预防措施,增加项目成功几率,提高软件质量; 优点:强调了其他模型均忽略了的风险分析。逐步调整原型使其满足客户的要求,而同时也使开发者对将要做的事情有更好的理解。使得开发人员和用户对每个演化层出现的风险有所了解,继而做出应有的反应,因此特别适用于庞大、复杂并具有高风险的系统。 缺点:由于需求的不完全性,从而为软件的总体设计带来了困难和削弱了产品设计的完整性,并要求对风险技能管理水平的高要求。 题2.请把基于体系结构的软件设计方法与其他软件设计方法进行比较。 答:基于体系结构的软件设计方法为产生软件系统的概念体系结构提供构造,概念体系结构是由Hofimeister、Nord和Soni提出的四种不同的体系结构中的一种,它描述了系统的主要设计元素及其关系。概念体系结构代表了在开发过程中作出的第一个选择,相应地,它是达到系统质量和商业目标的关键,为达到预定功能提供了一个基础。 体系结构驱动,是指构成体系结构的商业、质量和功能需求的组合。 使用基于体系结构的软件设计方法,设计活动可以在体系结构驱动一决定就开始,需求抽取和分析活动与设计活动并行。特别是在不可能预先决定所有需求时,例如产品线系统或长期运行的系统,快速开始设计是至关重要的。

软件体系结构期末试题答案

精品文档服务器性常见的Web17)。(17)A. 1.以下关于系统性能的叙述中,不正确的是(服 务器的主要性能指标有最大WebB. 能评估方法有基准测试、压力测试和可靠性测试评价/对运行 系统进行性能评估的主要目的是以更好的性能并发连接数、响应延迟和吞吐量C. D. 当系统性能降到基本水平时,需要查找影响性能的瓶颈并消除该瓶颈价格比更新系统 需要实现在系统之间快速传递可定制格式的数2某公司欲对其内部的信息系统进行集成,据包, 并且当有新的数据包到达时,接收系统会自动得到通知。另外还要求支持数据重传,远程过)A. (21)的集成方式。(21以确保传输的成功。针对这些集成需求,应该采用 消息传递 D. 程调用 B. 共享数据库C. 文件传输 ”视图模型来描述软件系统的体系结构。在该模型中,最终用户侧中采用“4+13 在RUP逻C. B. 进程视图 27)。(26)A. 实现视图重于(26),系统工程师侧重于(部署D. C. 逻辑视 图)A. 实现视图 B. 进程视图 D. 辑视图部署视图( 27 视图 方法描述其不同账户之间的关系,设计出的类图如.某银行系统采用Factory Method4”Product; 与“33”角色相对应的类是() Method下所示。其中与Factory 中的“Creator )33。((34)角色相对应的类是)(34 Checking D. SavingsB. A. Bank Account C. A. Bank B. Checking C. Account 面向对A. 35 是一个独立可交付的功能单元,外界通过接口访问其提供的服务。()5.基于构 件开发C. Subroutine)B. (Object)模块化程序设计中的子程序(象系统中的对象 Package)Component中的构件()D. 系统模型中的包( 是一种典型的、原始的31)(6 软件的横向重用是指重用不同应用领域中的软件元素。 设计模式标准函数库构件对象)(横向重用机制。31A. B. C. D. 精品文档. 精品文档 描述系统设计蓝图以保证系统提供适当的功能;)在基于构件的软件开发中,(367. B. 用来了解系统的性能、吞吐率等非功能性属性。(36)A. 逻辑构件模型37()逻辑构 件模)A. D. 系统交互模型(37组件接口模型物理构件模型C. 系统交互模型 D. 物理构件模型C. 组件接口模型型 B. )的状38)基于CORBA基础设施定义了四种构件标准。其中,(8.对象管理组织(OMG服C. B. 加工构件态信息是由构件自身而不是由容器维护。(38)A. 实体构件会话构件 D. 务构件业务数据的综合计算分通常需要将任务分配到不同的逻辑计算层。9分布式系统开发中, 数 D. C.数据处理层)。(39A. 表示逻辑层 B. 应用逻辑层析任务属于(39) 据层时,应将数据层和数据处理层放置于服)(4010 在客户机/服务器系统开发中,采用B. A. 表示逻辑层和表示层放置于客户机。(40)分布式表示结构务器,应用逻辑层、分布式数据

软件体系结构课后作业及答案

一次 就项目管理方面而言,软件重用项目与非重用项目有哪些不同之处。 答:使用软件重用技术可减少重复工作,提高软件生产率, 缩短开发周期。同时,由于软构建大多经过严格的质量认证,因此有助于改善软件质量,大量使用构建,软件的灵活性和标准化程度可得到提高。 2、实际参与/组织一个软件重用项目的开发,然后总结你是如何组织该项目的开发的答:参加了一个网页管理系统的开发,该项目重复使用已有的软件产品用于开发新的软件系统,以达到提高软件系统的开发质量与效率,降低开发成本的目的。在过程中使用了代码的复用、设计结果的复用、分析结果的复用、测试信息的复用等。 3、为什么要研究软件体系结构 答:1.软件体系结构是系统开发中不同参与者进行交流和信息传播的媒介。 2.软件体系结构代表了早期的设计决策成果。 3.软件体系结构可以作为一种可变换的模型。 4、根据软件体系结构的定义,你认为软件体系结构的模型应该由哪些部分组成 答:构件(component)可以是一组代码,如程序的模块;也可以是一个独立的程序(如数据库的SQL服务器); 连接件(connector)是关系的抽象,用以表示构件之间的相互作用。如过程调用、管道、远程过程调用等; 限制(constrain):用于对构件和连接件的语义说明。 5、在软件体系结构的研究和应用中,你认为还有哪些不足之处 答:(1)缺乏同意的软件体系结构的概念,导致体系结构的研究范畴模糊。 (2)ADL繁多,缺乏同意的ADL的支持。 (3)软件体系结构研究缺乏统一的理论模型支持。 (4)在体系结构描述方便,尽管出现了多种标准规范或建议标准,但仍很难操作。(5)有关软件体系结构性质的研究尚不充分,不能明确给出一个良体系结构的属性或判定标准,没有给出良体系结构的设计指导原则,因而对于软件开发实践缺乏有力的促进作用。 (6)缺乏有效的支持环境软件体系结构理论研究与环境支持不同步,缺乏有效的体系结构分析、设计、方针和验证工具支持,导致体系结构应用上的困难。 (7)缺乏有效的体系结构复用方案。 (8)体系结构发现方法研究相对欠缺。 二次 1、选择一个规模合适的系统,为其建立“4+1”模型。 逻辑视图(Logical View),设计的对象模型(使用面向对象的设计方法时)。 过程视图(Process View),捕捉设计的并发和同步特征。 物理视图(Physical View),描述了软件到硬件的映射,反映了分布式特性。 开发视图(Development View),描述了在开发环境中软件的静态组织结构。 架构的描述,即所做的各种决定,可以围绕着这四个视图来组织,然后由一些用例(use cases)或场景(scenarios)来说明,从而形成了第五个视图。 2、引入了软件体系结构以后,传统软件过程发生了哪些变化这种变化有什么好处 答:软件体系结构的引入使软件设计开发更加具体和形象,它的模型更使得软件过程更加

软件体系结构试题库试题和答案

1、软件重用是指重复使用已有的软件产品用于开发新的软件系统,以达到提高软件系统的开发质量与效率,降低开发成本的目的。答案:√ 依据页码:P4 2、可重用技术对构件库组织方法要求不仅要支持精确匹配,还要支持相似构件的查找。答案:√依据页码:P7 3、超文本组织方法与基于数据库系统的构件库组织方法不同,它基于全文检索技术。 4、答案:√依据页码:p8 5、软件体系结构充当一个理解系统构件和它们之间关系的框架,特别是那些始终跨越时间和实现的属性。 答案:√ 依据页码:P28 5、构件可以由其他复合构建和原子构件通过连接而成。() 答案:√ 依据页码:P37 6、体系的核心模型由5种元素组成:构建、连接体、配置、端口和角色() 答案:√ 依据页码:P37 7、软件体系结构的核心由5种元素组成:构件、连接件、配置端口和角色。其中,构件、连接件和配置是最基本的元素() 答案:√ 依据页码:P37 8、开发视图主要支持系统的功能需求,即系统提供给最终用户的服务() 答案:X 依据页码:P32、33 9、构件、连接件以及配置是体系结构的核心模型最基本的元素() 答案:√ 根据页码:P37 10、HMB风格不支持系统系统自顶向下的层次化分解,因为它的构件比较简单。 答案:× 依据页码:P81 11、正交软件体系结构由组织层和线索的构件构成。 答案:√ 依据页码:P70 12、基于事件的隐式调用风格的思想是构件不直接调用一个过程,而是触发或广播一个或多个事件。 答案:√ 依据页码:P53 13、线索是子系统的特例,它由完成不同层次功能的构建组成,每一条线索完成整个系统中相对独立的一部分功能。() 答案:√ 依据页码:P70 14、层次系统中支持抽象程度递增的系统设计是设计师可以把一个复杂系统按照递增的步骤进行分解,同时支持功能增强,但是不支持重用。

相关主题
文本预览
相关文档 最新文档