当前位置:文档之家› 对数与对数函数

对数与对数函数

对数与对数函数
对数与对数函数

第六节对数与对数函数

考纲解读

1.理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数或常用对

数;了解对数在简化运算中的作用.

2.理解对数函数的概念和单调性,掌握对数函数的图像经过的特殊点

3.认识到对数函数是一类重要的函数模型.

4.了解指数函数y=a x与对数函数y=log a x互为反函数(a ? 0且a = 1).

命题趋势研究

对数与对数函数是高中数学重要的内容之一,也是高考必考的知识点.试题的命制常以对数函数为载体考查函数的图像和性质、研究问题方法以及数形结合、分类讨论、函数与方程、等价转化的数学思想,同时也考查了考生分析与解决问题的能力,是高考考查的重点与难点,可以出现在各种题型中.

知识点精讲

一、对数概念

a x二N(N?0):= n = log a N (a ? 0且a =1),叫做以a为底N的对数.

注:①N?0,负数和零没有对数;

②log a l =0,log a a =1 ;

③lg N = log10 N ,ln N = log e N .

二、对数的运算性质

(1) log a(MN) Tog a M log a N(M,N R );

(2) log a M =log a M —log a N(M,N R );

V N丿

(3) log a M nlog a M(M R );

(4) log a b = logc b (a 0且a = 1,b 0,c 0且c=1)(换底公式)

log c a

1

特殊地log a b (a, b 0且a =1,b =1);

log b a

(5) log a m b n = n iog a b(a,b 0,m = 0,a=1,n R);

m

(6) a logaN=N(N 0,a 0 且a=1);

⑹ log a a N=N(N R,a 0 且a=1).

化常数为指数、对数值常用这两个恒等式

三、对数函数

(1) 一般地,形如y =log a x(a ? 0且a")的函数叫对数函数

题型26 对数运算及对数方程、对数不等式

思路提示

对数的有关运算问题要注意公式的顺用、逆用、变形用等 对数方程或对数不等式问题是要

将其化为同底,利用对数单调性去掉对数符号,转化为不含对数的问题,但这里必须注意 对数的真数

为正. 一、对数运算

例 2.56 2log 510 log 5 0.25 =(

A0 B.1 C.2 D.4

变式1 已知x, y 为正实数,则(

A 2?x 丸 y = 2?x +2? y

B 2吩切 2

变式 3 Ig52+§Ig8 +Ig5 Ig20+(Ig2)2= ______________

,

= 2?x 护丫

lg x lg y

_ 2?x 一.-?? y D 2?(砂 lg x 2lg y

(2)对数函数y=log a x (a .0且a")的图像和性质,如表 2-7所示.

变式 2 (|g 2)2 lg 4 lg5 - (Ig5) 2二,

例 2.57 Iog 27 81 + Iog 4 8 = _____ ,

变式 1 Iog+J6-4V2) = _______________________ , 例 2.58 5Ig30 x(])Ig0.5 = _________ ..

二、对数方程

例2.59解下列方程:

1 1

(1) ;(lg x-lg3) =lg5 lg(x-10);

2 2

(2) log x2 二(2x2 -3x 1) =1.

变式 1 函数f(x)=lQg?4 1

(1)若函数f (x)是R上的偶函数,求实数a的值;

(2)若a = 4,求函数f (x)的零点.

三、对数不等式

例 2.60设0:::a",函数f(x)=log a a2x-2a x-2,则使f(x):::0的x的取值范围是() C.(」:,log a3)D.(log a3,

变式1

已知函数f(x)为R 上的偶函数,且在10,"; |上为增函数,f - =0,则不等

13丿

式f I o g x >的解集为

I 3

2

例 2.61 设a =Iog 5 4,b =(Iog 5 3) ,c =log 4 5,则( )

Aa :: c :: b Bb : c :: a C.a :: b c Db :: a c

变式 1 设 a=lge,b= (l

2 、

g ) 6

lge ^(

)

Aa b c B.a c b

C.c a b Dc b a

心讨0g 30.3

变式 2 设 a =5Iog23.4 b =5Iog "3.6 c=|2 I ,则(

)

, ,l 5j

Aa b c C.a c b Bb a c Dc a b

1

变式4 已知x =丨n二,y = log 2严宅,则()

A. x ::: y ::: z

B.z ::x ::y

C.z :: y :: x

D.y ::: z :: x

题型27 对数函数的图像与性质

思路提示研究和讨论题中所涉及的函数图像与性质是解决有关函数问题最重要的思路和方法.图像与性质问题是数和形结合的护体解释.它为研究函数问题提供了思维方向.

一、对数函数的图像

例2.62如图2-15所示,曲线C i,C2,C3,C4是底数分别为a,b,c,d的对数函数的图像,则曲线G,C2,C3,C4对应的底数a,b,c, d的取值依次为()

图2-15

1 1 A3,2,;, -

3 2

1 1

C. 2,3,

—,-

2 3

i i

B. 2,3- -

3 2

1 1

D.3,2, —,

2

3

评注对数函数在同一直角坐标系中的图像的相对位置与底数大小的关系如图 2-16所示,则

O :::c :::d :::1”:a :::b. y=log a X (a . 0且a=1)在第一象限的图像, a 越

大,图像越靠近 x 轴;a 越小,图像越靠近 y 轴.

例2.63函数y =log a (x 1) 2

的图像必过定点

变式2

设a,b,c 均为正数,且

2a 二 log 2 c ,则()

变式1 若函数f ( x )=总(a 且0

:a 是定义域为R 的增函数,则函数

变式1 函数y =log 幺? 2) X--的图像过定点.

二、对数函数的性质(单调性、最值(值域) )

1

例2.64设a 1,函数f (x )=log a X 在区间l.a,2a ]上的最大值与最小值之差为 一,则a -

2

( )

变式1 若函数f (x ) - log a x (0 ::: a :::1)在区间a,2a 1上的最大值是最小值的 3

a

等于(

A 忑

4

o

2 1 小 1

B. C.

D.— 2

4

2

例 2.65 设 2(log 1 x)2 7 log 1 x 3 岂 0,求f (

2 2

x )十喝川

og2X

x

4」

的最大值和最小值

变式1已知f(x)= 2+ logx 凰1,,求函数g( x)= [ f(X$+ f2 x的最大值与最

小值.

kg 2 X(X A 0)

例2.66若函数f(x)二log(_X)(x ” 0),且f(a)? f(-a)则实数a的取值范围是.

、2

变式1 已知函数f ( x)二l gx,若0 ::: a ::: b,且f ( a)工f ( b)则a 2b 的取值范围是

()

A(2、.2, ::) B. 3&,::

C.(3, ::)

D.I-3,::

变式2定义区间lx1, x2 ](x^ x2)的长度为X2-X j ,已知函数f(x)= log 1x的定义域为

2

la,b ],值域为10,2 ],则区间la,b ]的长度的最大值与最小值的差为.

题型28

对数函数中的恒成立问题

思路提示

(1)利用数形结合思想,结合对数函数的图像求解;

(2)分离自变量与参变量,利用等价转化思想,转化为函数的最值问题

1 +2x +a 4x

例2.67已知函数f(x) =lg ,若x --,1时有意义,求a得取值范围.

评注为了求a的取值范围,把a进行了分离,若g(x)存在最大值,则g(x) ::: a恒成立等价

于g(x)max :: a ;若g(x)不存在最大值,设其值域为g(x), m,n,则g(x) ::: a恒成立等

价于a - n.

2

变式1当x?(1, 2时,不等式x-1 ::: l o gx恒成立,则a的取值范围是()

(i \

A(0,1) B.(1,2)C. 1,2 1D. 0,2

变式2 函数f ( x) = I o a g 乂- a3 0(且0* ,当点P( x, y是函数y = f (x)图像上的

点时,点Q( x- 2 a- y是函数y = g(x)图像上的点.

(1)写出函数y =g(x)的解析式;

(2)当a:二0 2,a - 31 时,恒有f(x) -g(x) -1,试确定a的取值范围.

最有效训练题9 (限时45分钟)

1.设 a Hog ! 2,^log 1 3,c =

2

D.(-1,3)

3.设定义在区间(-b,b)上的函数是奇函数(a,b R 且a = 2),则a b 的取值 1 -2x 范围是( )

A . i,、、2

B. 0^.2

C.(1,、、2)

D.(0,、,2)

4.已知y = log a (2 - ax)在0,11上是x 的减函数,贝U a 的取值范围是(

)

A.(0,1)

B.(1,2)

C.(0,2)

D.(2,::)

x

5.已知lg a ■ lg b =0,则函数f (x) = a 与函数g (x)二-log b x 的图像可能是(

)

6.已知函数f (x)是R 上的偶函数,且f(1-x)二f (1 ? x),当x 1.0,1时,f(x)=x 2,则 函数y = f(x) Tog 5x 的零点个数是(

)

A3 B.4 C.5 D.6

7. ____________________________________________________________________________ 设函数f(x) = ln(x+1),若—1vacb 且f(a) = f(b),则a + b 的取值范围是 _________________ .

8. 已知 lg x lg y =2lg(2 x -3y),则 log 2

3

9若函数y =log a (x 2 —ax+1)在1,2】上为增函数,则实数 a 的取值范围是 ______________ .. 10.已知函数f (x) =|log 2 x ,正实数 m, n 满足men ,且f (m) = f (n),若f (x)在区间

^m 2 ,n 〕上的最大值为2,则m + n= _______ .

0.2

,则( )

Aa :: b : c 2.设函数f(X )

B.a : : c . b Iog 2(x —1)(xz2)

=J i 丫

Db :: a c

,若f (x 0) . 1,则X )的取值范围是(

)

B.(0,2)

11.设f (x) = log 1上兰 为奇函数,a 为常数. 汀x-1丿 (1) 求a 的值;

(2) 证明:f(x)在区间(1, ?::)内单调递增;

值范围. ,函数y 二Iog 2(ax 2 -2x ? 2)的定义域为Q .

(1)若P 「|Q = ._ ,求实数a 的取值范围;

一 2

(2)若方程log 2(ax -2x 2^2在P 内有解,求实数a 的取值范围.

(3)若对于区间

3,4 ]上的每一个x 值,不等式f (x)

x

-m 恒成

立,

求实数 m 的取

12.已知集合

第6讲 对数与对数函数

第6讲对数与对数函数 一、选择题 1.(2015·四川卷)设a,b为正实数,则“a>b>1”是“log2a>log2b>0”的() A.充分必要条件 B.充分不必要条件 C.必要不充分条件 D.既不充分也不必要条件 解析因为y=log2x在(0,+∞)上单调递增,所以当a>b>1时,有log2a>log2b>log21=0; 当log2a>log2b>0=log21时,有a>b>1. 答案 A 2.(2017·石家庄模拟)已知a=log23+log23,b=log29-log23,c=log32,则a,b,c的大小关系是() A.a=bc C.ab>c 解析因为a=log23+log23=log233=3 2log23>1,b=log29-log23= log233=a,c=log320,且a≠1)的图象如图所示,则下列函数图象正确的是()

解析 由题意y =log a x (a >0,且a ≠1)的图象过(3,1)点,可解得a =3.选项A 中,y =3-x =? ? ? ??13x ,显然图象错误;选项B 中,y =x 3,由幂函数图象可知正确;选项C 中,y =(-x )3=-x 3,显然与所画图象不符;选项D 中,y =log 3(-x )的图象与y =log 3x 的图象关于y 轴对称,显然不符.故选B. 答案 B 4.已知函数f (x )=???log 2x ,x >0,3-x +1,x ≤0, 则f (f (1))+f ? ????log 312的值是( ) A.5 B.3 C.-1 D.7 2 解析 由题意可知f (1)=log 21=0, f (f (1))=f (0)=30+1=2, f ? ? ? ??log 312=3-log 312+1=3log 32+1=2+1=3, 所以f (f (1))+f ? ? ? ??log 312=5. 答案 A 5.(2016·浙江卷)已知a ,b >0且a ≠1,b ≠1,若log a b >1,则( ) A.(a -1)(b -1)<0 B.(a -1)(a -b )>0 C.(b -1)(b -a )<0 D.(b -1)(b -a )>0 解析 ∵a >0,b >0且a ≠1,b ≠1.

指数函数、对数函数、幂函数的图像与性质

指数函数、对数函数、幂函数的图像与性质 (一)指数与指数函数 1.根式 (1)根式的概念 (2).两个重要公式 ①?? ??????<-≥==)0()0(||a a a a a a a n n ; ②a a n n =)((注意a 必须使n a 有意义)。 2.有理数指数幂 (1)幂的有关概念 ①正数的正分数指数幂:0,,1)m n a a m n N n *=>∈>、且; ②正数的负分数指数幂: 10,,1)m n m n a a m n N n a - *= = >∈>、且 ③0的正分数指数幂等于0,0的负分数指数幂没有意义. 注:分数指数幂与根式可以互化,通常利用分数指数幂进行根式的运算。 (2)有理数指数幂的性质 ①a r a s =a r+s (a>0,r 、s ∈Q ); ②(a r )s =a rs (a>0,r 、s ∈Q ); ③(ab)r =a r b s (a>0,b>0,r ∈Q );. 3.指数函数的图象与性质 n 为奇数 n 为偶数

注:如图所示,是指数函数(1)y=a x ,(2)y=b x,(3),y=c x (4),y=d x 的图象,如何确定底数a,b,c,d 与1之间的大小关系? 提示:在图中作直线x=1,与它们图象交点的纵坐标即为它们各自底数的值,即c 1>d 1>1>a 1>b 1,∴c>d>1>a>b 。即无论在轴的左侧还是右侧,底数按逆时针方向变大。 (二)对数与对数函数 1、对数的概念 (1)对数的定义 如果(01)x a N a a =>≠且,那么数x 叫做以a 为底,N 的对数,记作log N a x =,其中a 叫做对数的底数,N 叫做真数。 (2)几种常见对数 2、对数的性质与运算法则 (1)对数的性质(0,1a a >≠且):①1 log 0a =,②l o g 1a a =,③l o g N a a N =,④l o g N a a N =。

3.2.3指数函数与对数函数的关系教案

3.2.3 指数函数与对数函数的关系 【学习要求】 1.了解反函数的概念及互为反函数图象间的关系; 2.掌握对数函数与指数函数互为反函数. 【学法指导】 通过探究指数函数与对数函数的关系,归纳出互为反函数的概念,通过指数函数图象与对数函数图象的关系,总结出互为反函数的图象间的关系,体会从特殊到一般的思维过程. 填一填:知识要点、记下疑难点 1.当一个函数是一一映射时,可以把这个函数的因变量作为一个新的函数的 自变量 ,而把这个函数的自变量 作为新的函数的 因变量. 我们称这两个函数 互为反函数. 即y =f(x)的反函数通常用 y =f - 1(x) 表示. 2.对数函数y =log a x 与指数函数y =a x 互为反函数 ,它们的图象关于 直线y =x 对称. 3.互为反函数的图象关于直线 y =x 对称;互为反函数的图象同增同减. 4.当a>1时,在区间[1,+∞)内,指数函数y =a x 随着x 的增加,函数值的增长速度 逐渐加快 ,而对数函数y =log a x 增长的速度 逐渐变得很缓慢. 研一研:问题探究、课堂更高效 [问题情境] 设a 为大于0且不为1的常数,对于等式a t =s,若以t 为自变量可得指数函数y =a x ,若以s 为自变量可得对数函数y =log a x.那么指数函数与对数函数有怎样的关系呢?这就是本节我们要探究的主要问题. 探究点一指数函数与对数函数的关系 导引为了探究这两个函数之间的关系,我们用列表法画出函数y =2x 及y =log 2x 的图象. 问题1函数y =2x 及y =log 2x 的定义域和值域分别是什么,它们的定义域和值域有怎样的关系? 答:函数y =2x 的定义域为R,值域为(0,+∞);函数y =log 2x 的定义域为(0,+∞),值域为R.函数y =2x 的定义域和值域分别是函数y =log 2x 的值域和定义域. 问题2在列表画函数y =2x 的图象时,当x 分别取-3,-2,-1,0,1,2,3这6个数值时,对应的y 值分别是什么? 答:y 值分别是: 18, 14, 1 2 , 1, 2, 4, 8. 问题3在列表画函数y =log 2x 的图象时,当x 分别取18,14,1 2 ,1,2,4,8时,对应的y 值分别是什么? 答:y 值分别是:-3,-2,-1,0,1,2,3. 问题4综合问题2、问题3的结果,你有什么感悟? 答:在列表画y =log 2x 的图象时,可以把y =2x 的对应值表里的x 和y 的数值对换,就得到y =log 2x 的对应值表. 问题5观察画出的函数y =2x 及y =log 2x 的图象,能发现它们的图象有怎样的对称关系? 答:函数y =2x 与y =log 2x 的图象关于直线y =x 对称. 问题6我们说函数y =2x 与y =log 2x 互为反函数,它们的图象关于直线y =x 对称,那么对于一般的指数函数y =a x 与对数函数y =log a x 又如何? 答:对数函数y =log a x 与指数函数y =a x 互为反函数.它们的图象关于直线y =x 对称. 探究点二 互为反函数的概念 问题1对数函数y =log a x 与指数函数y =a x 是一一映射吗?为什么? 答:是一一映射,因为对数函数y =log a x 与指数函数y =a x 都是单调函数,所以不同的x 值总有不同的y 值与之对应,不同的y 值也总有不同的x 值与之对应. 问题2对数函数y =log a x 与指数函数y =a x 互为反函数,更一般地,如何定义互为反函数的概念? 答:当一个函数是一一映射时,可以把这个函数的因变量作为一个新的函数的自变量,而把这个函数的自变量作为新 的函数的因变量,我们称这两个函数互为反函数.函数y =f(x)的反函数通常用y =f - 1(x)表示. 问题3 如何求函数y =5x (x ∈R)的反函数? 答:把y 作为自变量,x 作为y 的函数,则x =y 5,y ∈R.通常自变量用x 表示,函数用y 表示,则反函数为y =x 5 ,x ∈R. 例1 写出下列函数的反函数: (1)y =lg x; (2)y =log 1 3 x; (3)y =????23x . 解:(1)y =lg x(x>0)的底数为10,它的反函数为指数函数y =10x (x ∈R). (2)y =log 13x (x>0)的底数为1 3 ,它的反函数为指数函数y =????13x (x ∈R). (3)y =????23x (x ∈R)的底数为23,它的反函数为对数函数y =log 2 3x (x>0). 小结:求给定解析式的函数的反函数的步骤: (1)求出原函数的值域,这就是反函数的定义域; (2)从y =f(x)中解出x; (3)x 、y 互换并注明反函数的定义域. 跟踪训练1 求下列函数的反函数:(1)y =3x -1; (2)y =x 3+1 (x ∈R); (3)y =x +1 (x≥0); (4)y =2x +3 x -1 (x ∈R,x≠1).

指数函数与对数函数高考题

第二章 函数 三 指数函数与对数函数 【考点阐述】指数概念的扩充.有理指数幂的运算性质.指数函数.对数.对数的运算性质.对数函数. 【考试要求】(4)理解分数指数幂的概念,掌握有理指数幂的运算性质,掌握指数函数的概念、图像和性质.(5)理解对数的概念,掌握对数的运算性质;掌握对数函数的概念、图像和性质.(6)能够运用函数的性质、指数函数和对数函数的性质解决某些简单的实际问题. 【考题分类】 (一)选择题(共15题) 1.(安徽卷文7)设 232555 322555a b c ===(),(),() ,则a ,b ,c 的大小关系是 (A )a >c >b (B )a >b >c (C )c >a >b (D )b >c >a 【答案】A 【解析】2 5 y x =在0x >时是增函数,所以a c >,2()5x y =在0x >时是减函数,所以c b >。 【方法总结】根据幂函数与指数函数的单调性直接可以判断出来. 2.(湖南卷文8)函数y=ax2+ bx 与y= ||log b a x (ab ≠0,| a |≠| b |)在同一直角坐标系 中的图像可能是 【答案】D 【解析】对于A 、B 两图,|b a |>1而ax2+ bx=0的两根之和为 -b a ,由图知0<-b a <1得-11矛盾,选D 。 3.(辽宁卷文10)设525b m ==,且112a b +=,则m = (A (B )10 (C )20 (D )100 【答案】 D

解析:选A.211 log 2log 5log 102,10, m m m m a b +=+==∴= 又0,m m >∴= 4.(全国Ⅰ卷理8文10)设a= 3 log 2,b=In2,c=1 2 5 - ,则 A. a>,所以a=>,所以c,从而错选A,这也 是命题者的用苦良心之处. 【解析】因为 f(a)=f(b),所以|lga|=|lgb|,所以a=b(舍去),或 1b a = ,所以a+2b=2 a a + 又0f(1)=1+2 1=3,即a+2b 的取值范围是(3,+∞). 6.(全国Ⅰ卷文7)已知函数()|lg |f x x =.若a b ≠且,()()f a f b =,则a b +的取值范围是 (A)(1,)+∞ (B)[1,)+∞ (C) (2,)+∞ (D) [2,)+∞ 【答案】C 【命题意图】本小题主要考查对数函数的性质、函数的单调性、函数的值域,考生在做本小 题时极易忽视a 的取值范围,而利用均值不等式求得a+b=12a a + ≥,从而错选D,这也是命 题者的用苦良心之处.

2015高考数学(理)一轮题组训练:2-6对数与对数函数

第6讲 对数与对数函数 基础巩固题组 (建议用时:40分钟) 一、填空题 1.如果 ,那么x ,y,1的大小关系是________. 解析 ∵ 是(0,+∞)上的减函数,∴x >y >1. 答案 1<y <x 2.(2014·深圳调研)设f (x )为定义在R 上的奇函数,当x >0时,f (x )=log 3(1+x ),则f (-2)=________. 解析 f (-2)=-f (2)=-log 33=-1. 答案 -1 3.函数y =log 12 (3x -a )的定义域是? ????23,+∞,则a =______. 解析 要使函数有意义,则3x -a >0,即x >a 3, ∴a 3=23,∴a =2. 答案 2 4.已知f (x )=??? 2a 2,x <2,log a (x 2-1),x ≥2,且f (2)=1,则f (1)=________. 解析 ∵f (2)=log a (22-1)=log a 3=1, ∴a =3,∴f (1)=2×32=18. 答案 18 5.函数y =log a (x -1)+2(a >0,a ≠1)的图象恒过一定点是________. 解析 当x =2时y =2. 答案 (2,2) 6.(2012·重庆卷改编)已知a =log 23+log 23,b =log 29-log 23,c =log 32,则a ,b ,c 的大小关系是________.

解析 a =log 23+log 23=log 233>log 22=1,b =log 29-log 23=log 233=a >1,c =log 32c . 答案 a =b >c 7.(2014·池州一模)函数y =log 2|x |的图象大致是______. 解析 函数y =log 2|x |=??? log 2x ,x >0, log 2(-x ),x <0, 所以函数图象为①. 答案 ① 8.(2013·苏州二模)若a =ln 264,b =ln 2×ln 3,c =ln 2π4,则a ,b ,c 的大小关系 是________. ①a >b >c ;②c >a >b ;③c >b >a ;④b >a >c 解析 ∵ln 6>ln π>1,∴a >c ,排除②,③;b =ln 2·ln 3<? ????ln 2+ln 322=ln 264=a ,排除④. 答案 ① 二、解答题 9.已知f (x )=log 4(4x -1). (1)求f (x )的定义域; (2)讨论f (x )的单调性; (3)求f (x )在区间???? ??12,2上的值域. 解 (1)由4x -1>0解得x >0, 因此 f (x )的定义域为(0,+∞).

指数函数对数函数和幂函数知识点归纳

一、幂函数 1、幂的有关概念 正整数指数幂: ...() n n a a a a n N =∈ 零指数幂: 01(0) a a =≠ 负整数指数幂: 1 (0,) p p a a p N a -=≠∈ 分数指数幂:正分数指数幂的意义是: (0,,,1) m n m n a a a m n N n =>∈> 且 负分数指数幂的意义是: 1 (0,,,1) m n m n m n a a m n N n a a - ==>∈> 且 2、幂函数的定义 一般地,函数 a y x =叫做幂函数,其中x是自变量,a是常数(我们只讨论a是有理数的情况). 3、幂函数的图象 幂函数a y x = 当 11 ,,1,2,3 32 a= 时的图象见左图;当 1 2,1, 2 a=--- 时的图象见上图: 由图象可知,对于幂函数而言,它们都具有下列性质:

a y x =有下列性质: (1)0a >时: ①图象都通过点(0,0),(1,1); ②在第一象限内,函数值随x 的增大而增大,即在(0,)+∞上是增函数. (2)0a <时: ①图象都通过点(1,1); ②在第一象限内,函数值随x 的增大而减小,即在(0,)+∞上是减函数; ③在第一象限内,图象向上与y 轴无限地接近,向右与x 轴无限地接近. (3)任何幂函数的图象与坐标轴至多只有一个交点; (4)任何幂函数图象都不经过第四象限; (5)任何两个幂函数的图象最多有三个交点. 二、指数函数 ①定义:函数)1,0(≠>=a a a y x 且称指数函数, 1)函数的定义域为R ; 2)函数的值域为),0(+∞; 3)当10<a 时函数为增函数. 4)有两个特殊点:零点(0,1),不变点(1,)a . 5)抽象性质: ()()(),()()/()f x y f x f y f x y f x f y +=?-= 三、对数函数 如果b a N =(0a >,1a ≠),那么b 叫做以a 为底N 的对数,记作log a N b = log b a a N N b =?=(0a >,1a ≠,0N >). 1.对数的性质 ()log log log a a a MN M N =+. log log log a a a M M N N =-.

指数函数和对数函数知识点总结

指数函数和对数函数知识点总结及练习题 一.指数函数 (一)指数及指数幂的运算 n m n m a a = s r s r a a a +=? rs s r a a =)( r r r b a ab =)( (二)指数函数及其性质 1.指数函数的概念:一般地,形如x a y =(0>a 且1≠a )叫做指数函数。 2.指数函数的图象和性质 10<a 6 54321 -1 -4-2 2460 1 6 5 4 3 2 1 -1 -4-2 246 1 定义域 R 定义域 R 值域y >0 值域y >0 在R 上单调递减 在R 上单调递增 非奇非偶函数 非奇非偶函数 定点(0,1) 定点(0,1) 二.对数函数 (一)对数 1.对数的概念:一般地,如果N a x =(0>a 且1≠a ),那么x 叫做以a 为底N 的对数,记作N x a log =,其中a 叫做底数,N 叫做真数,N a log 叫做对数式。 2.指数式与对数式的互化 幂值 真数 x N N a a x =?=log 底数 指数 对数

3.两个重要对数 (1)常用对数:以10为底的对数N lg (2)自然对数:以无理数 71828.2=e 为底的对数N ln (二)对数的运算性质(0>a 且1≠a ,0,0>>N M ) ①MN N M a a a log log log =+ ②N M N M a a a log log log =- ③M n M a n a log log = ④换底公式:a b b c c a log log log =(0>c 且1≠c ) 关于换底公式的重要结论:①b m n b a n a m log log = ②1log log =?a b b a (三)对数函数 1.对数函数的概念:形如x y a log =(0>a 且1≠a )叫做对数函数,其中x 是自变量。 2对数函数的图象及性质 01 32.5 2 1.51 0.5-0.5 -1-1.5-2-2.5 -1 1 23456780 1 1 32.5 2 1.5 1 0.5 -0.5 -1 -1.5 -2 -2.5 -1 1 2345678 1 1 定义域x >0 定义域x >0 值域为R 值域为R 在R 上递减 在R 上递增 定点(1,0) 定点(1,0)

指数函数和对数函数

指数函数和对数函数 知能目标 1. 理解分数指数幂的概念, 掌握有理指数幂的运算性质. 掌握指数函数的概念、图象和性质. 2. 理解对数的概念, 掌握对数的运算性质. 掌握对数函数的概念、图象和性质. 3. 能够运用指数函数和对数函数的性质解决某些简单的实际问题. 综合脉络 1. 以指数函数、对数函数为中心的综合网络 2. 指数式与对数式有如下关系(指数式化为对数式或对数式化为指数式的重要依据): 0a (N log b N a a b >=?=且)1a ≠ 指数函数与对数函数互为反函数, 它们的图象关于直线x y =对称, 指数函数与对数函数 的性质见下表: 3. 指数函数,对数函数是高考重点之一 指数函数,对数函数是两类重要的基本初等函数, 高考中既考查双基, 又考查对蕴含其中的函 数思想、等价转化、分类讨论等思想方法的理解与运用. 因此应做到能熟练掌握它们的图象与性 质并能进行一定的综合运用. (一) 典型例题讲解: 例1.设a >0, f (x)= x x e a a e -是R 上的奇函数. (1) 求a 的值; (2) 试判断f (x )的反函数f - 1 (x)的奇偶性与单调性.

例2. 是否存在实数a, 使函数f (x )=)x ax (log 2 a -在区间]4 ,2[上是增函数? 如果存在, 说明a 可以取哪些值; 如果不存在, 请说明理由. 例3. 已知x 满足≤+6x 2a a 4x 2x a a +++)1a ,0a ( ≠>, 函数y =)ax (log x a 1 log 2 a 12 a ? 的值域为]0 ,8 1[-, 求a 的值. (二) 专题测试与练习:

指数函数与对数函数知识点总结

指数函数与对数函数知识点总结 (一)指数与指数幂的运算 1.根式的概念:一般地,如果a x n =,那么x 叫做a 的n 次 方根,其中n >1,且n ∈N * . 当n 是奇数时, a a n n =,当n 是偶数时, ?? ?<≥-==) 0() 0(||a a a a a a n n 2.分数指数幂 正数的分数指数幂的意义,规定: ) 1,,,0(*>∈>=n N n m a a a n m n m )1,,,0(1 1*>∈>= = - n N n m a a a a n m n m n m 3.实数指数幂的运算性质 (1)r a ·s r r a a += ),,0(R s r a ∈>; (2)rs s r a a =)( ),,0(R s r a ∈>; (3)s r r a a ab =)( ),,0(R s r a ∈>. (二)指数函数及其性质 1、指数函数的概念:一般地,函数)1,0(≠>=a a a y x 且叫做指数函数,其中x 是自变量,函数的定义域为R . 二、对数函数 (一)对数 1.对数的概念:一般地,如果N a x =)1,0(≠>a a ,那么数x 叫做以.a 为底..N 的对数, 记作:N x a log =(a — 底数,N — 真数,N a log — 对数式) 两个重要对数: ○ 1 常用对数:以10为底的对数N lg ; ○ 2 自然对数:以无理数 71828.2=e 为底的对数的对数N ln . 指数式与对数式的互化 幂值 真数 (二)对数的运算性质 如果0>a ,且1≠a ,0>M ,0>N ,那么: ○ 1 M a (log ·=)N M a log +N a log ; ○ 2 =N M a log M a log -N a log ; ○ 3 n a M log n =M a log )(R n ∈. 注意:换底公式 a b b c c a log log log = (0>a ,且1≠a ;0>c ,且1≠c ; 0>b ). 利用换底公式推导下面的结论 (1)b m n b a n a m log log =; (2)a b b a log 1log =. (二)对数函数

带答案对数与对数函数经典例题.

经典例题透析 类型一、指数式与对数式互化及其应用 1.将下列指数式与对数式互化: (1);(2);(3);(4);(5);(6). 思路点拨:运用对数的定义进行互化. 解:(1);(2);(3);(4);(5); (6). 总结升华:对数的定义是对数形式和指数形式互化的依据,而对数形式和指数形式的互化又是解决问题的重要手段. 举一反三: 【变式1】求下列各式中x的值: (1)(2)(3)lg100=x (4) 思路点拨:将对数式化为指数式,再利用指数幂的运算性质求出x. 解:(1); (2); (3)10x=100=102,于是x=2; (4)由. 类型二、利用对数恒等式化简求值 2.求值:解:. 总结升华:对数恒等式中要注意格式:①它们是同底的;②指数中含有对数形式;③其值为真数.举一反三: 【变式1】求的值(a,b,c∈R+,且不等于1,N>0) 思路点拨:将幂指数中的乘积关系转化为幂的幂,再进行运算. 解:. 类型三、积、商、幂的对数 3.已知lg2=a,lg3=b,用a、b表示下列各式. (1)lg9 (2)lg64 (3)lg6 (4)lg12 (5)lg5 (6) lg15 解:(1)原式=lg32=2lg3=2b(2)原式=lg26=6lg2=6a (3)原式=lg2+lg3=a+b(4)原式=lg22+lg3=2a+b (5)原式=1-lg2=1-a(6)原式=lg3+lg5=lg3+1-lg2=1+b-a

举一反三: 【变式1】求值 (1)(2)lg2·lg50+(lg5)2 (3)lg25+lg2·lg50+(lg2)2 解: (1) (2)原式=lg2(1+lg5)+(lg5)2=lg2+lg2lg5+(lg5)2=lg2+lg5(lg2+lg5)=lg2+lg5=1 (3)原式=2lg5+lg2(1+lg5)+(lg2)2 =2lg5+lg2+lg2lg5+(lg2)2=1+lg5+lg2(lg5+lg2)=1+lg5+lg2=2. 【变式2】已知3a=5b=c,,求c的值. 解:由3a=c得: 同理可得 . 【变式3】设a、b、c为正数,且满足a2+b2=c2.求证:. 证明: . 【变式4】已知:a2+b2=7ab,a>0,b>0. 求证:. 证明:∵a2+b2=7ab,∴a2+2ab+b2=9ab,即(a+b)2=9ab,∴lg(a+b)2=lg(9ab),∵a>0,b>0,∴2lg(a+b)=lg9+lga+lgb ∴2[lg(a+b)-lg3]=lga+lgb 即. 类型四、换底公式的运用 4.(1)已知log x y=a,用a表示; (2)已知log a x=m,log b x=n,log c x=p,求log abc x.

指数函数对数函数幂函数练习题大全答案

一、选择题(每小题 4分,共 计40分) 1.下列各式中成立的一项是 () A .71 7 7)(m n m n =B . 3 3 39=C .4 343 3)(y x y x +=+D .31243)3(-=- 2.化简)3 1 ()3)((65 613 12 12 13 2b a b a b a ÷-的结果 () A .a 9- B .a - C .a 6 D .2 9a 3.设指数函数)1,0()(≠>=a a a x f x ,则下列等式中不正确... 的是 () A .f (x +y )=f(x )·f (y ) B .) () (y f x f y x f =-) ( C .)()] ([)(Q n x f nx f n ∈= D .)()]([· )]([)]([+∈=N n y f x f xy f n n n 4.函数2 1 ) 2()5(--+-=x x y () A .}2,5|{≠≠x x x B .}2|{>x x C .}5|{>x x D .}552|{><≤-=-0 ,0,12)(21x x x x f x ,满足1)(>x f 的x 的取值范围 () A .)1,1(- B .),1(+∞- C .}20|{-<>x x x 或 D .}11|{-<>x x x 或 9.已知2 )(x x e e x f --=,则下列正确的是 ()

指数与对数函数题型总结

指数与对数函数题型总结 题型1 指数幂、指数、对数的相关计算 【例1】计算:3 5 3 log 1+-2 3 2 log 4++10 3lg3 +????1252log . 【例2】计算下列各式的值: (1)12lg 3249-43lg 8+lg 245; (2)lg 25+2 3lg 8+lg 5×lg 20+(lg 2)2. 变式: 1.计算下列各式的值: (1)(lg 5)2+2lg 2-(lg 2)2; (2)lg 3+25lg 9+3 5 lg 27-lg 3 lg 81-lg 27. 2.计算下列各式的值: (1)lg 2+lg 5-lg 8lg 5-lg 4 ; (2)lg 5(lg 8+lg 1 000)+(lg 2 3)2+lg 16+lg 0.06. 3.计算下列各式 (1)化简 a 4 3-8a 3 1b 4b 3 2 +23 ab +a 3 2÷? ?? ??1-2 3b a ×3ab ; (2)计算:2log 32-log 3329+log 38-253 5log . (3)求lg 8+lg 125-lg 2-lg 5log 54·log 25 +525log +1643 的值.(4)已知x >1,且x +x - 1=6,求x 21-x 21 -. 题型2指数与对数函数的概念 【例1】若函数y =(4-3a )x 是指数函数,则实数a 的取值范围为________. 【例2】指数函数y =(2-a )x 在定义域内是减函数,则a 的取值范围是________. 【例3】函数y =a x - 5+1(a ≠0)的图象必经过点________. 变式: 1.指出下列函数哪些是对数函数? (1)y =3log 2x ;(2)y =log 6x ; (3)y =log x 3;(4)y =log 2x +1. 题型3 指数与对数函数的图象 【例1】如图是指数函数①y =a x ,②y =b x ,③y =c x ,④y =d x 的图象,则a ,b ,c ,d 与1的大小关系是( ) A .a <b <1<c <d B .b <a <1<d <c C .1<a <b <c <d D .a <b <1<d <c 【例2】函数y =|2x -2|的图象是( )

2020版高考数学新设计大一轮复习-第6节对数与对数函数习题理(含解析)新人教A版

第6节 对数与对数函数 最新考纲 1.理解对数的概念及其运算性质,知道用换底公式将一般对数转化成自然对数或常用对数;了解对数在简化运算中的作用;2.理解对数函数的概念及其单调性,掌握对数函数图象通过的特殊点,会画底数为2,10,1 2的对数函数的图象;3.体会对数函数是一类重 要的函数模型;4.了解指数函数y =a x (a >0,且a ≠1)与对数函数y =log a x (a >0,且a ≠1)互为反函数. 知 识 梳 理 1.对数的概念 如果a x =N (a >0,且a ≠1),那么x 叫做以a 为底N 的对数,记作x =log a N ,其中a 叫做对数的底数,N 叫做真数. 2.对数的性质、换底公式与运算性质 (1)对数的性质:①a log a N =N ;②log a a b =b (a >0,且a ≠1). (2)对数的运算法则 如果a >0且a ≠1,M >0,N >0,那么 ①log a (MN )=log a M +log a N ; ②log a M N =log a M -log a N ; ③log a M n =n log a M (n ∈R ); ④log a m M n =n m log a M (m ,n ∈R ,且m ≠0). (3)换底公式:log b N =log a N log a b (a ,b 均大于零且不等于1). 3.对数函数及其性质 (1)概念:函数y =log a x (a >0,且a ≠1)叫做对数函数,其中x 是自变量,函数的定义域是(0,+∞). (2)对数函数的图象与性质 a >1 0

指数函数、对数函数、幂函数教案

一、指数函数 1.形如(0,0)x y a a a =>≠的函数叫做指数函数,其中自变量是x ,函数定义域是R ,值域是(0,)+∞. 2.指数函数(0,0)x y a a a =>≠恒经过点(0,1). 3.当1a >时,函数x y a =单调性为在R 上时增函数; 当01a <<时,函数x y a =单调性是在R 上是减函数. 二、对数函数 1. 对数定义: 一般地,如果a (10≠>a a 且)的b 次幂等于N , 即N a b =,那么就称b 是以a 为底N 的对数,记作 b N a =log ,其中,a 叫做对数的底数,N 叫做真数。 着重理解对数式与指数式之间的相互转化关系,理解,b a N =与log a b N =所表示的是,,a b N 三个量之间的同一个关系。 2. 对数的性质: (1)零和负数没有对数;(2)log 10a =;(3)log 1a a = 这三条性质是后面学习对数函数的基础和准备,必须熟练掌握和真正理解。 3. 两种特殊的对数是:①常用对数:以10作底 10log N 简记为lg N ②自然对数:以e 作底(为无理数),e = 28…… , log e N 简记为ln N . 4.对数恒等式(1)log b a a b =;(2)log a N a N = 要明确,,a b N 在对数式与指数式中各自的含义,在指数式b a N =中,a 是底数,b 是指数,N 是幂;在对数式log a b N =中,a 是对数的底数,N 是真数,b 是以a 为底N 的对数,虽然,,a b N 在对数式与指数式中的名称不同,但对数式与指数式有密切的联系:求 对数log a N 就是求b a N =中的指数,也就是确定a 的多少次幂等于N 。 三、幂函数 1.幂函数的概念:一般地,我们把形如y x α =的函数称为幂函数,其中x 是自变量,α是

指数函数 和 对数函数公式 (全)

指数函数和对数函数 重点、难点: 重点:指数函数和对数函数的概念、图象和性质。 难点:指数函数和对数函数的相互关系及性质的应用,以及逻辑划分思想讨论函数y a y x x a ==,l o g 在a >1及01<≠01且叫指数函数。 定义域为R ,底数是常数,指数是自变量。 为什么要求函数y a x =中的a 必须a a >≠01 且。 因为若a <0时,()y x =-4,当x = 1 4 时,函数值不存在。 a =0 ,y x =0,当x ≤0,函数值不存在。 a =1 时,y x =1对一切x 虽有意义,函数值恒为1,但y x =1的反函数不存在, 因为要求函数y a x =中的 a a >≠01且。 1、对三个指数函数y y y x x x ==?? ???=212 10,, 的图象的认识。 图象特征与函数性质: 图象特征 函数性质 (1)图象都位于x 轴上方; (1)x 取任何实数值时,都有a x >0; (2)图象都经过点(0,1); (2)无论a 取任何正数,x =0时,y =1; (3)y y x x ==210,在第一象限内的纵坐标都大于1,在第二象限内的纵坐标都小于1,y x =?? ? ? ?12的图象正好相反; (3)当a >1时,x a x a x x >><<<>?????0101, 则, 则 (4)y y x x ==210,的图象自左到右逐渐(4)当a >1时,y a x =是增函数,

6 第6讲 对数与对数函数

第6讲 对数与对数函数 1.对数 指数函数y =a x 与对数函数y =log a x 互为反函数,它们的图象关于直线y =x 对称. 判断正误(正确的打“√”,错误的打“×”) (1)若MN >0,则log a (MN )=log a M +log a N .( ) (2)log a x ·log a y =log a (x +y ).( )

(3)函数y =log 2x 及y =log 13 3x 都是对数函数.( ) (4)对数函数y =log a x (a >0且a ≠1)在(0,+∞)上是增函数.( ) (5)对数函数y =log a x (a >0且a ≠1)的图象过定点(1,0)且过点(a ,1),????1 a ,-1,函数图象只在第一、四象限.( ) 答案:(1)× (2)× (3)× (4)× (5)√ 函数y =x ln(1-x )的定义域为( ) A .(0,1) B .[0,1) C .(0,1] D .[0,1] 解析:选B .因为y =x ln(1-x ),所以? ????x ≥0, 1-x >0,解得0≤x <1. 函数f (x )=log 12 (x 2-4)的单调递增区间为( ) A .(0,+∞) B .(-∞,0) C .(2,+∞) D .(-∞,-2) 解析:选D.设t =x 2-4,因为y =log 12 t 在定义域上是减函数,所以求原函数的单调递增区间,即求函数t =x 2-4的单调递减区间,结合函数的定义域,可知所求区间为(-∞,-2). lg 5 2 +2lg 2-????12-1=________. 解析:lg 52+2lg 2-????12-1=lg 5-lg 2+2lg 2-2 =(lg 5+lg 2)-2=1-2=-1. 答案:-1 (教材习题改编)函数y =log a (4-x )+1(a >0,且a ≠1)的图象恒过点________. 解析:当4-x =1即x =3时,y =log a 1+1=1. 所以函数的图象恒过点(3,1). 答案:(3,1) 对数式的化简与求值 [典例引领] 计算下列各式:

高一数学指数函数对数函数幂函数练习含答案

分数指数幂 1、用根式的形式表示下列各式)0(>a (1)5 1a = (2)32 a - = 2、用分数指数幂的形式表示下列各式: (1)3 4y x = (2))0(2>=m m m 3、求下列各式的值 (1)2 325= (2)32 254- ?? ??? = 4、解下列方程 (1)13 1 8 x - = (2)151243 =-x 分数指数幂(第 9份)答案 1 2、33 2 22 ,x y m 3、(1)125 (2) 8125 4、(1)512 (2)16 指数函数(第 10份) 1、下列函数是指数函数的是 ( 填序号) (1)x y 4= (2)4 x y = (3)x y )4(-= (4)2 4x y =。 2、函数)1,0(12≠>=-a a a y x 的图象必过定点 。 3、若指数函数x a y )12(+=在R 上是增函数,求实数a 的取值范围 。 4、如果指数函数x a x f )1()(-=是R 上的单调减函数,那么a 取值范围是 ( ) A 、2a C 、21<

5、下列关系中,正确的是 ( ) A 、51 31 )21()21(> B 、2.01.022> C 、2 .01.022--> D 、11 5311()()22 - - > 6、比较下列各组数大小: (1)0.5 3.1 2.3 3.1 (2)0.3 23-?? ? ?? 0.24 23-?? ? ?? (3) 2.52.3- 0.10.2- 7、函数x x f 10)(=在区间[1-,2]上的最大值为 ,最小值为 。 函数x x f 1.0)(=在区间[1-,2]上的最大值为 ,最小值为 。 8、求满足下列条件的实数x 的范围: (1)82>x (2)2.05=a a a y x 的图象经过点)2,1(-,求该函数的表达式并指出它的定义域、值域和单调区间。 11、函数x y ??? ??=31的图象与x y -?? ? ??=31的图象关于 对称。 12、已知函数)1,0(≠>=a a a y x 在[]2,1上的最大值比最小值多2,求a 的 值 。 13、已知函数)(x f =1 22+-x x a 是奇函数,求a 的值 。 14、已知)(x f y =是定义在R 上的奇函数,且当0

指数与对数练习题

指数函数与对数函数 1.b 4log a 3log 55==,,则12log 25的值是( ) A.a+b B.)b a (21+ C.a·b D.ab 21 2.已知3log 1x log 266-=,则x 的值是( ) A .3?B.2 C .22-或 D.23或 3.已知2 lg (x-2y )=lg x+lg y,则y x 的值为 ? ( ) A .1 B .4 ?C.1或4 D.4 或 4.已知f (ex )=x ,则f (5)等于? ( ) ?A .e 5 B .5e C .ln5? D.lo g5e 5.如果函数x log )x (f )1a (2-=在(0,+∞)内是减函数,则a 的取值范围是( ) A.|a|<1 B.2|a |< C.2|a |1<> B.b a c >>? ?C.c a b >> ? D.b c a >> 9.已知函数y =log 2 1 (ax 2 +2x +1)的值域为R,则实数a 的取值范围是 ( ) A .a > 1 B.0≤a< 1 C .0<a<1 D.0≤a≤1 10.下列各项中不表示...同一函数的是 ( ) (A )2lg y x =与2lg ||y x = (B)y x =与2log 2x y = (C)2y x =与||y x = (D)2log 2x y =与2log 2x y = 11.若log 2log 20a b >>,则 ( ) (A)1a b >> (B)1b a >> (C)01a b <<< (D)01b a <<< 12.函数 与 的图象大致是( ).

相关主题
文本预览
相关文档 最新文档