当前位置:文档之家› 高中物理---传送带模型-----典型例题(含答案)【经典】

高中物理---传送带模型-----典型例题(含答案)【经典】

高中物理---传送带模型-----典型例题(含答案)【经典】
高中物理---传送带模型-----典型例题(含答案)【经典】

高中物理---传送带模型-----典型例题(含答案)【经典】

-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

难点形成的原因:

1、对于物体与传送带之间是否存在摩擦力、是滑动摩擦力还是静摩擦力、摩擦力的方向如何,等等,这些关于摩擦力的产生条件、方向的判断等基础知识模糊不清;

2、对于物体相对地面、相对传送带分别做什么样的运动,判断错误;

3、对于物体在传送带上运动过程中的能量转化情况考虑不全面,出现能量转化不守恒的错误过程。

1、水平传送带被广泛地应用于机场和火车站,如图所示为一水平传送带装置示意图.绷紧的传送带AB 始终保持恒定的速率v =1 m/s 运行,一质量为m =4 kg 的行李无初速度地放在A 处,传送带对行李的滑动摩擦力使行李开始做匀加速直线运动,随后行李又以与传送带相等的速率做匀速直线运动.设行李与传送带之间的动摩擦因数μ=0.1,A 、B 间的距离L =2 m ,g 取10 m/s 2.

(1)求行李刚开始运动时所受滑动摩擦力的大小与加速度的大小; (2)求行李做匀加速直线运动的时间;

(3)如果提高传送带的运行速率,行李就能被较快地传送到B 处,求行李从A 处传送到B 处的最短时间和传送带对应的最小运行速率.

解析 (1)行李刚开始运动时,受力如图所示,滑动摩擦力:

F f =μmg =4 N 由牛顿第二定律得:F f =ma 解得:a =1 m/s 2

(2)行李达到与传送带相同速率后不再加速,则:v =at ,解得t =v

a

=1 s

(3)行李始终匀加速运行时间最短,且加速度仍为a =1 m/s 2,当行李到达右端时, 有:v 2min =2aL 解得:v min =

2aL =2 m/s 故传送带的最小运行速率为2 m/s 行李运行的最短时间:t min =

v min

a

=2 s 2:如图所示,传送带与地面成夹角θ=37°,以10m/s 的速度顺时针转动,在传送带下端轻轻地放一个质量m=0.5㎏的物体,它与传送带间的动摩擦因数μ=0.9,已知传送带从A →B 的长度L=50m ,则物体从A 到B 需要的时间为多少?

【解析】物体放上传送带以后,开始一段时间,其运动加速度

2

m/s 2.1sin cos =-=

m

mg mg a θ

θμ。

这样的加速度只能维持到物体的速度达到10m/s 为止,其对

应的时间和位移分别为:

,33.8s 2.1101s a v t ===

m 67.412 2

1==a s υ<

50m

以后物体受到的摩擦力变为沿传送带向上,其加速度大小为零(因为mgsin θ<μmgcos θ)。

设物体完成剩余的位移2s 所用的时间为2t ,则2

02

t s υ=,50m -41.67m=210t 解得: s, 33.8 2=t

所以:s 66.16s 33.8s 33.8=+=总t 。

3、如图所示,绷紧的传送带,始终以2 m/s 的速度匀速斜向上运行,传送带与水平方向间的夹角θ=30°。现把质量为10 kg 的工件轻轻地放在传送带底端P 处,由传送带传送至

顶端Q 处。已知P 、Q 之间的距离为4 m ,工件与传送带间的动摩擦因数μ=3

2,取g =10

m/s 2。

(1)通过计算说明工件在传送带上做什么运动; (2)求工件从P 点运动到Q 点所用的时间。

[答案] (1)先匀加速运动0.8 m ,然后匀速运动3.2 m (2)2.4 s

解析 (1)工件受重力、摩擦力、支持力共同作用,摩擦力为动力

由牛顿第二定律得:μmg cos θ-mg sin θ=ma 代入数值得:a =2.5 m/s 2

则其速度达到传送带速度时发生的位移为 x 1=v 22a =22

2×2.5 m =0.8 m<4 m

可见工件先匀加速运动0.8 m ,然后匀速运动3.2 m

(2)匀加速时,由x 1=v 2t 1得t 1=0.8 s 匀速上升时t 2=x 2v =3.2

2

s =1.6 s

所以工件从P 点运动到Q 点所用的时间为 t =t 1+t 2=2.4 s

4:如图所示,传送带与地面成夹角θ=37°,以10m/s 的速度逆时针转动,在传送带上端轻轻地放一个质量m=0.5㎏的物体,它与传送带间的动摩擦因数μ=0.5,已知传送带从A →B 的长度L=5m ,则物体从A 到B 需要的时间为多少?

【解析】物体放上传送带以后,开始一段时间,其运动加速度

2

m/s 10cos sin =+=

m

mg mg a θ

μθ。

这样的加速度只能维持到物体的速度达到10m/s 为止,其对应的时间和位移分别为:

,1s 10101s a v t ===

m

52 2

1==a s υ

此时物休刚好滑到传送带的低端。所以:s 1=总t 。

5:如图所示,传送带与地面成夹角θ=30°,以10m/s 的速度逆时针转动,在传送带上端轻

轻地放一个质量m=0.5㎏的物体,它与传送带间的动摩擦因数μ=0.6,已知传送带从A →B 的长度L=16m ,则物体从A 到B 需要的时间为多少?

【解析】物体放上传送带以后,开始一段时间,其运动加速度

2

m/s 46.8cos sin =+=

m

mg mg a θ

μθ。

这样的加速度只能维持到物体的速度达到10m/s 为止,其对应的时间和位移分别为:

,18.1s 46.810

1s a v t ===

m 91.52 21==a s υ<16m

以后物体受到的摩擦力变为沿传送带向上,其加速度大小为零(因为mgsin θ<μmgcos

θ)。

设物体完成剩余的位移2s 所用的时间为2t ,则202t s υ=,16m -5.91m=2

10t 解得: s, 90.10 2=t

所以:s 27.11s 09.10s 18.1=+=总t 。

6:如图,倾角为37°,长为l =16 m 的传送带,转动速度为v =10 m/s ,动摩擦因数μ=

0.5,在传送带顶端A 处无初速度地释放一个质量为m =0.5 kg 的物体.已知sin 37°=0.6,cos 37°=0.8,g =10 m/s 2.求:

(1)传送带顺时针转动时,物体从顶端A 滑到底端B 的时间; (2)传送带逆时针转动时,物体从顶端A 滑到底端B 的时间. 答案 (1)4 s (2)2 s

解析 (1)传送带顺时针转动时,物体相对传送带向下运动,则物体所受滑动摩擦力沿斜面向上,相对传送带向下匀加速运动,根据牛顿第二定律有mg (sin 37°-μcos 37°)=ma 则a =g sin 37°-μg cos 37°=2 m/s 2,根据l =1

2

at 2得t =4 s.

(2)传送带逆时针转动,当物体下滑速度小于传送带转动速度时,物体相对传送带向上运动,则物体所受滑动摩擦力沿传送带向下,设物体的加速度大小为a 1,由牛顿第二得,mg sin 37°+μmg cos 37°=ma 1 则有a 1=

mg sin 37°+μmg cos 37°

m

=10 m/s 2

设当物体运动速度等于传送带转动速度时经历的时间为t 1,位移为x 1,则有

t 1=v a 1=1010 s =1 s ,x 1=12

a 1t 2

1=5 m

当物体运动速度等于传送带速度瞬间,有mg sin 37°>μmg cos 37°,则下一时刻物体相对传送带向下运动,受到传送带向上的滑动摩擦力——摩擦力发生突变.设当物体下滑速度大于传送带转动速度时物体的加速度为a 2,则a 2=

mg sin 37°-μmg cos 37°

m

=2 m/s 2

x 2=l -x 1=11 m

又因为x 2=vt 2+12

a 2t 22,则有10t 2+t 2

2=11,解得:t 2=1 s(t 2=-11 s 舍去)所以t 总=t 1+

t 2=2 s.

7.如图所示,足够长的传送带与水平面倾角θ=37°,以12m/s 的速率逆时针转动。在传送带底部有一质量m = 1.0kg 的物体,物体与斜面间动摩擦因数μ= 0.25,现用轻细绳将物体由静止沿传送带向上拉动,拉力F = 10.0N ,方向平行传送带向上。经时间t = 4.0s 绳子突然断了,求:

(1)绳断时物体的速度大小; (2)绳断后物体还能上行多远

(3)从绳断开始到物体再返回到传送带底端时的运动时间 ( g = 10m/s 2,sin 37°= 0.6,cos 37°= 0.8) 答案:1 、8.0m/s 2、 = 4.0m 3、3.3s

【解析】(1)物体开始向上运动过程中,受重力mg ,摩擦力F f ,拉力F , 设加速度为a 1,则有F – mgsinθ- F f = m a 1 又 F f = μF N F N = mgcosθ 得a 1 = 2.0m / s

2

所以 ,t = 4.0s 时物体速度v 1 =a 1t = 8.0m/s

(2)绳断后, 物体距传送带底端s 1 =a 1t 2

/2= 16m.设绳断后物体的加速度为a 2, 由牛顿第二定律得

-mgsinθ - μmgcosθ= m a 2 a 2 = -8.0m / s 2

物体做减速运动时间t 2 = -1

2v a = 1.0s

减速运动位移s 2=v 1t 2+ a 2t 2 2

/2 = 4.0m

(3)此后物体沿传送带匀加速下滑, 设加速度为a 3, 由牛顿第二定律得mgsinθ + μmgcosθ= m a 2 a 3 = 8.0m / s 2

当物体与传送带共速时向下运动距离s 3=v 2

/(2a 3)=9m 用时t 3 = v / a 3=1.5s 共速后摩擦力反向,由于mgsinθ 大于 μmgcosθ,物体继续沿

传送带匀加速下滑,设此时加速度为a 4, 由牛顿第二定律得Mgsin θ-μmgcos θ=ma 4 下滑到传送带低部的距离为s 4= s 1+s 2-s 3=11m 设下滑的时间为t4,由

得t 4=0.8s 最后得t=t 2+t 3+t 4=3.3s

8:在民航和火车站可以看到用于对行李进行安全检查的水平传送带。当旅客把行李放到传送带上时,传送带对行李的滑动摩擦力使行李开始做匀加速运动。随后它们保持相对静止,行李随传送带一起前进。 设传送带匀速前进的速度为0.25m/s ,把质量为5kg 的木箱静止放到传送带上,由于滑动摩擦力的作用,木箱以6m/s 2的加速度前进,那么这个木箱放在传送带上后,传送带上将留下一段多长的摩擦痕迹?

解法一:行李加速到0.25m/s 所用的时间:t =a

v 0=s 6

25

.0=0.042s

行李的位移: x 行李=

22

1at =

m 2)042.0(62

1

??=0.0053m

传送带的位移:x 传送带=V0t =0.25×0.042m =0.0105m 摩擦痕迹的长度:

mm

m x x x 50052.0≈=-=?行李传送带

解法二:以匀速前进的传送带作为参考系.设传送带水平向右运动。木箱刚放在传送带上时,相对于传送带的速度v=0.25m/s,方向水平向左。木箱受到水平向右的摩擦力F 的作用,做减速运动,速度减为零时,与传送带保持相对静止。木箱做减速运动的加速度的大小为a =6m/s 2

木箱做减速运动到速度为零所通过的路程为

mm m m a v x 50052.06

225.022

2

0≈=?==

? 即留下5mm 长的摩擦痕

迹。

9:一水平的浅色长传送带上放置一煤块(可视为质点),煤块与传送带之间的动摩擦因数为μ。初始时,传送带与煤块都是静止的。现让传送带以恒定的加速度a 0开始运动,当其速度达到v 0后,便以此速度做匀速运动。经过一段时间,煤块在传送带上留下了一段黑色痕迹后,煤块相对于传送带不再滑动。求此黑色痕迹的长度。

方法一:根据“传送带上有黑色痕迹”可知,煤块与传送带之间发生了相对滑动,煤块的加速度a 小于传送带的加速度a0。根据牛顿运动定律,可得g a μ=

设经历时间t ,传送带由静止开始加速到速度等于v0,煤块则由静止加速到v ,有

t

a v 00=

t

a v =

由于a

0t a v v +=此后,煤块与传送带运动速度相同,相对于传送带不再滑动,不再产生新的痕

迹。

设在煤块的速度从0增加到v0的整个过程中,传送带和煤块移动的距离分别为s0和s ,有

′210200t v t a s +=

202v s a = 传送带上留下的黑色痕迹的长度

s

s l -=0 由以上各式得

2

000()2v a g l a g

μμ-=

【小结】本方法的思路是整体分析两物体的运动情况,分别对两个物体的全过程求位移。

方法二:第一阶段:传送带由静止开始加速到速度v0,设经历时间为t ,煤块加速到v ,有 v t a 00=

① v gt at μ== ②

传送带和煤块的位移分别为s1和s2,

20121t a s =

③ 22221

21gt at s μ== ④

第二阶段:煤块继续加速到v0,设经历时间为t ',有v 0v gt μ'

=+ ⑤

传送带和煤块的位移分别为s3和s4 ,有30s v t '

= ⑥2

41

2s vt gt μ''=+ ⑦

传送带上留下的黑色痕迹的长度

4

231s s s s l --+=由以上各式得

2000()2v a g l a g μμ-=

10、如图所示。水平传送装置由轮半径均为米π1

=R 的主动轮O 1和从动轮O 2及传送带等构

成。两轮轴心相距L=8.0米,轮与传送带不打滑。现用此装置运送一袋面粉,已知面粉袋与传送带间的动摩擦因数为μ=0.4,这袋面粉中间的面粉可不断地从袋中渗出。 (1)当传送带以v 0==4.0m/s 的速度匀速运动时,将这袋面粉由左端O 2正上方的A 点轻放

在传送带上后,这袋面粉由A 端运送到O 1正上方的B 端所用时间为多少?

(2)要想尽快将这带面粉由A 端送到B 端(设初速度仍为零),传送带的速度至少应为多

大?

(3)由于面粉的渗漏,在运送这袋面粉的过程中会在深色传送带上留下白色的面粉的痕

迹。这袋面粉在传送带上留下的痕迹最长能有多长(设袋的初速度仍为零)此时传送带的速度至少应为多大

【解析】设面粉袋的质量为m ,其在与传送带产生相当滑动的过程中所受的摩擦力f=μmg 。

故而其加速度为:2/0.4s m g m

f

a ===

μ (1)若传送速带的速度v 带=4.0m/s ,则面粉袋加速运动的时间s

a v t

0.11

==带,

在t 1时间内的位移为m at s

0.22

12

11

==

,其后以v=4.0m/s 的速度做匀速运动s 2=l AB -

s 1=vt 2,

解得t 2=1.5s ,运动的总时间为t=t 1+t 2=2.5s

(2)要想时间最短,m 应一直向B 端做加速运动,由22

1t a l AB '=可得s t 0.2='

此时传送带的运转速度为s m t a v /0.8='=' (3分)

(3)传送带的速度越大,“痕迹”越长。当面粉的痕迹布满整条传送带时,痕迹达到最

长。即痕迹长为△s=2l +2πR=18.0m

在面粉袋由A 端运动到B 端的时间内,传送带运转的距离 m l s s AB 0.26=+?=带 又由(2)中已知t /=2.0s 此时传送带的运转速度为V //=13m/s (3分)

11:如图所示,水平传送带以速度v 匀速运动,一质量为m 的小木块由静止轻放到传送带上,若小木块与传送带之间的动摩擦因数为μ,当小木块与传送带相对静止时,转化为内能的能量是多少?

【审题】该题首先得清楚当小木块与传送带相对静止时,转化为内

能的能量应该怎么来求,要想到用“物体在克服滑动摩擦力做功过程中转化成的内能等于滑动摩擦力与相对滑动路程的乘积。”这一结论,然后再根据物体和传送带的运动情况来求二者相对滑动的距离。

【解析】在木块从开始加速至与传送带达到共同速度的过程中

由公式 可得:

g

v a v x μ222

2==

从木块静止至木块与传送带达到相对静止的过程中木块加速运动的时间

传送带运动的位移

木块相对传送带滑动的位移 摩擦产生的热:

12:如图所示,倾角为37o的传送带以4m/s 的速度沿图示方向匀速运动。已知传送带的

上、下两端间的距离为L=7m 。现将一质量m=0.4kg 的小木块放到传送带的顶端,使它从静止开始沿传送带下滑,已知木块与传送带间的动摩擦因数为μ=0.25,取g=10m/s2。求木块滑到底的过程中,摩擦力对木块做的功以及生的热各是多少

【解析】刚开始时,合力的大小为 F 合1=mgsin37o+μmgcos37o,

由牛顿第二定律,加速度大小a1=m F 1

合=8m/s2,该过程所用时间t1=10a v =0.5s ,位移大小 s1=12

2a v =1m 。

二者速度大小相同后,合力的大小为F 合2=mgsin37o-μmgcos37o,加速度大小a 2=m F 2

合=4m/s2,

位移大小 s2= L-s1= 6m,所用时间 s2= v 0t 2+22221t a

得: t2=1s 。(另一个解t2=-3s 舍去) 摩擦力所做的功 W =μmgcos37o·(s1-s2) =-4.0J , 全过程中生的热 Q =f ·s 相对 =μmgcos37o·【(v0t1-s1)+(s2-v0t2)】 =0.8N ×3m =2.4J 。

13:一传送带装置示意如图,其中传送带经过AB 区域时是水平的,经过BC 区域时变为圆弧

形(圆弧由光滑模板形成,未画出),经过CD 区域时是倾斜的,AB 和CD 都与BC 相切。现将大量的质量均为m 的小货箱一个一个在A 处放到传送带上,放置时初速为零,经传送带运送到D 处,D 和A 的高度差为h 。稳定工作时传送带速度不变,CD 段上各箱等距排列,相邻两箱的距离为L 。

F F mg

N 摩

==μμa F m

mg

m

g

=

=

=合μμv ax 22=t v a v g

=

=μx vt v g '==2μ?x x x v g =-=

'2

2μQ F x mg v g mv ===摩··

?μμ22

21

2

每个箱子在A 处投放后,在到达B 之前已经相对于传送带静止,且以后也不再滑动(忽略经BC 段时的微小滑动)。已知在一段相当长的时间T 内,共运送小货箱的数目为N 。这装置由电动机带动,传送带与轮子间无相对滑动,不计轮轴处的摩擦。求电动机的平均输出功率

假定已知传送带速度

的条件下进行的,实际上传送带的速度是未知的。因此要设法找出

。题中给出在时间T 内运送的小货箱有N 只,这是

说,我们在D 处计数,当第1只货箱到达D 处时作为时刻t=0,当第N 只货箱到达D 处时恰好t=T 。如果把这N 只货箱以L 的距离间隔地排在CD 上(如果排得下的话),则第N 只货箱到D 处的距离为(N —1)L ,当该货箱到达D 处,即传送带上与该货箱接触的那点在时间T 内运动到D 点,故有

。由此便可求出

,电动机的平均功率便可求得。由于N 很大,N 与N -1实际上可视作相等的。 【解析】以地面为参考系

(下同),设传送带的运动速度为

,在水平段的运输过程中,小货箱先在滑动摩擦力作用下做匀加速运动,直到其速度与传送带的速度相等。设

这段路程为s ,所用的时间为t ,加速度为a ,则对小货箱有

②在这段时间内传送带运动的路程为

③由上可得

④用Ff 表示小货箱与传送带之间的滑动摩擦力,则传送带对小货箱做功为

2

0121mv s F W f =

=⑤传送带克服小货箱

对它的摩擦力做功2

2000212mv mv s F W f =?==⑥两者之差就克服摩擦力做功发出的热量⑦

可见,在小货箱加速过程中,小货箱获得的动能与发热量相等。T 时间内电动机输出的功为

⑧此功用于增加N 个小货箱的动能、

势能和使小货箱加速时程中克服摩擦力发的热,即有

⑨N 个小货箱之间的距离为(N -1)L ,它应等于传送带在T

时间内运动的距离,即有

⑩因T 很大,故N 亦很大。联立⑦、⑧、⑨、⑩,得

2.(多选)如图2所示,一质量为1 kg 的小物块自斜面上A 点由静止开始匀加速下滑,经2 s 运动到B 点后通过光滑的衔接弧面恰好滑上与地面等高的传送带,传送带以4 m /s 的恒定速率运行.已知A 、B 间距离为 2 m ,传送带长度(即B 、C 间距离)为10 m ,小物块与传送带间的动摩擦因数为0.2,取g =10 m/s 2.下列说法正确的是( )

A .小物块在传送带上运动的时间为2.32 s

B .小物块在传送带上因摩擦产生的热量为2 J

C .小物块在传送带上运动过程中传送带对小物块做的功为6 J

D .小物块滑上传送带后,传动系统因此而多消耗的能量为8 J 2.BCD

P 0

v 0

v T

v L )1N (0=-0

v 0

v 2

at 21s =at v 0=t

v s 00=s

2s 0=20mv 21Q =T P W =NQ Nmgh Nmv 21W 2

0++=

NL L )1N (T v 0≈-=??

????+=

gh T L N T Nm P 22

2

(完整版)高中物理传送带模型典型例题(含答案)【经典】,推荐文档

难点形成的原因: 1、对于物体与传送带之间是否存在摩擦力、是滑动摩擦力还是静摩擦力、摩擦力的方向如何,等等,这些关于摩擦力的产生条件、方向的判断等 基础知识模糊不清; 2、对于物体相对地面、相对传送带分别做什么样的运动,判断错误; 3、对于物体在传送带上运动过程中的能量转化情况考虑不全面,出现能量转化不守恒的错误过程。 1、水平传送带被广泛地应用于机场和火车站,如图所示为一水平传送带装置示意图.绷紧的传送带AB 始终保持恒定的速率v =1 m/s 运行,一质量为m =4 kg 的行李无初速度地放在A 处,传送带对行李的滑 动摩擦力使行李开始做匀加速直线运动,随后行李又以与传送带相等的速率做匀速直线运动.设行李与 传送带之间的动摩擦因数μ=0.1,A 、B 间的距离L =2 m ,g 取10 m/s 2. (1)求行李刚开始运动时所受滑动摩擦力的大小与加速度的大小; (2)求行李做匀加速直线运动的时间; (3)如果提高传送带的运行速率,行李就能被较快地传送到B 处,求行李从A 处传送到B 处的最短时间和 传送带对应的最小运行速率. 解析 (1)行李刚开始运动时,受力如图所示,滑动摩擦力: F f =μmg =4 N 由牛顿第二定律得:F f =ma 解得:a =1 m/s 2(2)行李达到与传送带相同速率后不再加速,则:v =at ,解得t ==1 s v a (3)行李始终匀加速运行时间最短,且加速度仍为a =1 m/s 2,当行李到达右端时, 有:v =2aL 解得:v min ==2 m/s 2min 2aL 故传送带的最小运行速率为2 m/s 行李运行的最短时间:t min ==2 s v min a 2:如图所示,传送带与地面成夹角θ=37°,以10m/s 的速度顺时针转动,在传送带下端轻轻地放一个 质量m=0.5㎏的物体,它与传送带间的动摩擦因数μ=0.9,已知传送带从A→B 的长度L=50m ,则物体从 A 到 B 需要的时间为多少? 【解析】物体放上传送带以后,开始一段时间,其运动加速度 2 m/s 2.1sin cos =-=m mg mg a θ θμ。 这样的加速度只能维持到物体的速度达到10m/s 为止,其对应的时 间和位移分别为: ,33.8s 2.1101s a v t === m 67.412 21==a s υ<50m 以后物体受到的摩擦力变为沿传送带向上,其加速度大小为零(因为mgsinθ<μmgcosθ)。 设物体完成剩余的位移2s 所用的时间为2t ,则202t s υ=,50m -41.67m=210t 解得: s, 33.8 2=t 所以:s 66.16s 33.8s 33.8=+=总t 。 3、如图所示,绷紧的传送带,始终以2 m/s 的速度匀速斜向上运行,传送带与水平方向间的夹角 θ=30°。现把质量为10 kg 的工件轻轻地放在传送带底端P 处,由传送带传送至顶端Q 处。已知P 、Q 之间的距离为4 m ,工件与传送带间的动摩擦因数μ=,取g =10 3 2m/s 2。 (1)通过计算说明工件在传送带上做什么运动; (2)求工件从P 点运动到Q 点所用的时间。 [答案] (1)先匀加速运动0.8 m ,然后匀速运动3.2 m (2)2.4 s 解析 (1)工件受重力、摩擦力、支持力共同作用,摩擦力为动力由牛顿第二定律得:μmg cos θ-mg sin θ= ma 代入数值得: a =2.5 m/s 2

2010高中物理易错题分析集锦——11电磁感应

第11单元电磁感应 [内容和方法] 本单元内容包括电磁感应现象、自感现象、感应电动势、磁通量的变化率等基本概念,以及法拉第电磁感应定律、楞次定律、右手定则等规律。 本单元涉及到的基本方法,要求能够从空间想象的角度理解法拉第电磁感应定律。用画图的方法将题目中所叙述的电磁感应现象表示出来。能够将电磁感应现象的实际问题抽象成直流电路的问题;能够用能量转化和守恒的观点分析解决电磁感应问题;会用图象表示电磁感应的物理过程,也能够识别电磁感应问题的图像。 [例题分析] 在本单元知识应用的过程中,初学者常犯的错误主要表现在:概念理解不准确;空间想象出现错误;运用楞次定量和法拉第电磁感应定律时,操作步骤不规范;不会运用图像法来研究处理,综合运用电路知识时将等效电路图画错。 例1在图11-1中,CDEF为闭合线圈,AB为电阻丝。当滑动变阻器的滑动头向下滑动时,线圈CDEF中的感应电流在G处产生的磁感强度的方向是“·”时,电源的哪一端是正极? 【错解分析】错解:当变阻器的滑动头在最上端时,电阻丝AB因被短路而无电流通过。由此可知,滑动头下移时,流过AB中的电流是增加的。当线圈CDEF中的电流在G处产生的磁感强度的方向是“·”时,由楞次定律可知AB中逐渐增加的电流在G处产生的磁感强度的方向是“×”,再由右手定则可知,AB中的电流方向是从A流向B,从而判定电源的上端为正极。 楞次定律中“感生电流的磁场总是要阻碍引起感生电流的磁通量的变化”,所述的“磁通量”是指穿过线圈内部磁感线的条数,因此判断感应电流方向的位置一般应该选在线圈的内部。 【正确解答】 当线圈CDEF中的感应电流在G处产生的磁感强度的方向是“·”时,它在线圈内部产生磁感强度方向应是“×”,AB中增强的电流在线圈内部产生的磁感强度方向是“·”,所以,AB中电流的方向是由B流向A,故电源的下端为正极。 【小结】 同学们往往认为力学中有确定研究对象的问题,忽略了电学中也有选择研究对象的问题。学习中应该注意这些研究方法上的共同点。 例2长为a宽为b的矩形线圈,在磁感强度为B的匀强磁场中垂直于磁场的OO′轴以恒定的角速度ω旋转,设t= 0时,线圈平面与磁场方向平行,则此时的磁通量和磁通量的变化率分别是[ ]

运动与力的关系专题之传送带问题(典型例题分析+专项训练)附详细解析

牛顿第二定律的运用之传送带问题 一、传送带水平放,传送带以一定的速度匀速转动,物体轻放在传送带一端,此时物体可能经历两个过程——匀加速运动和匀速运动。 【例题1】在民航和火车站可以看到用于对行李进行安全检查的水平传送带,当旅客把行李放到传送带上时,传送带对行李的摩擦力使行李开始运动,最后行李随传送带一起前进,设传送带匀速前进的速度为0.6m/s,质量为4.0kg的皮箱在传送带上相对滑动时,所受摩擦力为24N,那么,这个皮箱无初速地放在传送带上后,求: (1)经过多长时间才与皮带保持相对静止? (2)传送带上留下一条多长的摩擦痕迹? 【答案】分析:(1)行李在传送带上先做匀加速直线运动,当速度达到传送带的速度,和传送带一起做匀速直线运动 (2)传送带上对应于行李最初放置的一点通过的位移与行李做匀加速运动直至与传送带共同运动时间内通过的位移之差即是擦痕的长度 解答:解:(1)设皮箱在传送带上相对运动时间为t,皮箱放上传送带后做初速度为零的匀加速直线运动,由牛顿运动定律: 皮箱加速度:a==m/s2=6m/s2 由v=at 得t==s=0.1s (2)到相对静止时,传送带带的位移为s1=vt=0.06m 皮箱的位移s2==0.03m 摩擦痕迹长L=s1--s2=0.03m(10分) 所以,(1)经0.1s行李与传送带相对静止 (2)摩擦痕迹长0.0.03m 二、传送带斜放,与水平方向的夹角为θ,将物体轻放在传送带的最低端,只

要物体与传送带之间的滑动摩擦系数μ≥tanθ,那么物体就能被向上传送。此时物体可能经历两个过程——匀加速运动和匀速运动。 【例题2】如图2—4所示,传送带与地面成夹角θ=37°,以 10m/s的速度顺时针转动,在传送带下端轻轻地放一个质量 m=0.5㎏的物体,它与传送带间的动摩擦因数μ=0.9,已知传送 带从A→B的长度L=50m,则物体从A到B需要的时间为多少? 解:物体放上传送带后,开始一段时间t1内做初速度为0的匀加速直线运动,对小物体受力分析如下图所示: 可知,物体所受合力F合=f-Gsinθ 又因为f=μN=μmgcosθ 所以根据牛顿第二定律可得: 此时物体的加速度 a===m/s2=1.2m/s2 当物体速度增加到10m/s时产生的位移 x===41.67m 因为x<50m 所以=8.33s 所以物体速度增加到10m/s后,由于mgsinθ<μmgcosθ,所以物体将以速度v做匀速直线运动 故匀速运动的位移为50m-x,所用时间

高中物理平抛运动的典型例题

平抛运动典型题目 1、从水平匀速飞行的直升机上向外自由释放一个物体,不计空气阻力,在物体下落过程中,下列说法正确的是() A.从飞机上看,物体静止B.从飞机上看,物体始终在飞机的后方 C.从地面上看,物体做平抛运动D.从地面上看,物体做自由落体运动 2、飞机距离地面高H=500m,水平飞行速度为v1=100m/s,追击一辆速度为v2=20m/s 同向行驶的汽车,欲使投弹击中汽车,则飞机应在距汽车水平距离x=m远处投弹.(g=10m/s2) 3、把物体以一定速度水平抛出。不计空气阻力,g取10,那么在落地前的任意一秒内() A.物体的末速度大小一定等于初速度大小的10倍 B.物质的末速度大小一定比初速度大10 C.物体的位移比前一秒多10m D.物体下落的高度一定比前一秒多10m 平抛运动“撞球”问题——判断两球运动的时间是否相同(h是否相同);类比追击问题,利用撞上时水平位移、竖直位移相等的关系进行解决 4、如图所示,甲乙两球位于同一竖直线上的不同位置,甲比乙高h,将甲乙两球分别以v1.v2的速度沿同一水平方向抛出,不计空气阻力,下列条件中有可能使乙球击中甲球的是(? ) A.同时抛出,且v1< v2? B.甲后抛出,且v1> v2 C.甲先抛出,且v1> v2? ? D.甲先抛出,且v1< v2

5、从高H 处以水平速度v 1平抛一个小球1,同时从地面以速度v 2竖直向上抛出一个小球2,两小球在空中相遇则:( ) A .从抛出到相遇所用时间为 H v 1 B .从抛出到相遇所用时间为H v 2 C .抛出时两球的水平距离是v H v 12 D .相遇时小球2上升高度是H gH v 1212 -?? ? ? ? 6.物体做平抛运动时,它的速度的方向和水平方向间的夹角α的正切tan α随时间t 变化的图像是下( ) 7、子弹从枪口射出,在子弹的飞行途中,有两块相互平行的竖直挡板A 、B (如图所示),A 板距枪口的水平距离为s 1,两板相距s 2,子弹穿过两板先后留下弹孔C 和D ,C 、D 两点之间的高度差为h ,不计挡板和空气阻力,求子弹的初速度v 0. () 2h S S 2S g 2 221+ 8、从高为h 的平台上,分两次沿同一方向水平抛出一个小球。如右图第一次小球落地在a 点。第二次小球落地在b 点,ab 相距为d 。已知第一次抛球的初速度为,求第二次抛 球的初速度是多少—————2h 2gh d V 1+

高中物理电磁学经典例题

高中物理典型例题集锦 (电磁学部分) 25、如图22-1所示,A、B为平行金属板,两板相距为d,分别与电源两极相连,两板 的中央各有小孔M、N。今有一带电质点,自A板上方相距为d的P点由静止自由下落(P、M、N三点在同一竖直线上),空气阻力不计,到达N点时速度恰好 为零,然后按原路径返回。若保持两板间的电压不变,则: A.若把A板向上平移一小段距离,质点自P点下落仍能返回。 B.若把B板向下平移一小段距离,质点自P点下落仍能返回。 C.若把A板向上平移一小段距离,质点自P点下落后将穿过 N孔继续下落。 图22-1 D.若把B板向下平移一小段距离,质点自P点下落后将穿过N 孔继续下落。 分析与解:当开关S一直闭合时,A、B两板间的电压保持不变,当带电质点从M向N 运动时,要克服电场力做功,W=qU AB,由题设条件知:带电质点由P到N的运动过程中,重力做的功与质点克服电场力做的功相等,即:mg2d=qU AB 若把A板向上平移一小段距离,因U AB保持不变,上述等式仍成立,故沿原路返回, 应选A。 若把B板下移一小段距离,因U AB保持不变,质点克服电场力做功不变,而重力做功 增加,所以它将一直下落,应选D。 由上述分析可知:选项A和D是正确的。 想一想:在上题中若断开开关S后,再移动金属板,则问题又如何(选A、B)。 26、两平行金属板相距为d,加上如图23-1(b)所示的方波形电压,电压的最大值为U0,周期为T。现有一离子束,其中每个 离子的质量为m,电量为q,从与两板 等距处沿着与板平行的方向连续地射 入两板间的电场中。设离子通过平行 板所需的时间恰为T(与电压变化周图23-1 图23-1(b)

(完整)高中物理必修一涉及到传送带问题解析(含练习解析)

涉及到传送带问题解析 【学习目标】 能用动力学观点分析解决多传送带问题 【要点梳理】 要点一、传送带问题的一般解法 1.确立研究对象; 2.受力分析和运动分析,逐一摩擦力f大小与方向的突变对运动的影响; ⑴受力分析: F的突变发生在物体与传送带共速的时刻,可能出现f消失、变向或变为静摩擦力,要注意这个时刻。 ⑵运动分析: 注意参考系的选择,传送带模型中选地面为参考系;注意判断共速时刻并判断此后物体与带之间的f变化从而判定物体的受力情况,确定物体是匀速运动、匀加速运动还是匀减速运动;注意判断带的长度,临界之前是否滑出传送带。 ⑶注意画图分析: 准确画出受力分析图、运动草图、v-t图像。 3.由准确受力分析、清楚的运动形式判断,再结合牛顿运动定律和运动学规律求解。 要点二、分析物体在传送带上如何运动的方法 1、分析物体在传送带上如何运动和其它情况下分析物体如何运动方法完全一样,但是传送带上的物体受力情况和运动情况也有它自己的特点。 具体方法是: (1)分析物体的受力情况 在传送带上的物体主要是分析它是否受到摩擦力、它受到的摩擦力的大小和方向如何、是静摩擦力还是滑动摩擦力。在受力分析时,正确的理解物体相对于传送带的运动方向,也就是弄清楚站在传送带上看物体向哪个方向运动是至关重要的!因为是否存在物体与传送带的相对运动、相对运动的方向决定着物体是否受到摩擦力和摩擦力的方向。 (2)明确物体运动的初速度 分析传送带上物体的初速度时,不但要分析物体对地的初速度的大小和方向,同时要重视分析物体相对于传送带的初速度的大小和方向,这样才能明确物体受到摩擦力的方向和它对地的运动情况。 (3)弄清速度方向和物体所受合力方向之间的关系 物体对地的初速度和合外力的方向相同时,做加速运动,相反时做减速运动;同理,物体相对于传送带的初速度与合外力方向相同时,相对做加速运动,方向相反时做减速运动。 2、常见的几种初始情况和运动情况分析 (1)物体对地初速度为零,传送带匀速运动,(也就是将物体由静止放在运动的传送带上) 物体的受力情况和运动情况如图1所示:其中V是传送带的速度,V10是物体相对于传送带的初速度,f是物体受到的滑动摩擦力,V20是物体对地运动初速度。(以下的说明中个字母的意义与此相同) 物体必定在滑动摩擦力的作用下相对于地做初速度为零的匀加速直线运动。其加速度由牛顿第二定律 ,求得;

高一物理必修1典型例题

高一物理必修1典型例题 例l. 在下图甲中时间轴上标出第2s末,第5s末和第2s,第4s,并说明它们表示的是时间还是时刻。 甲乙 例2. 关于位移和路程,下列说法中正确的是 A. 在某一段时间内质点运动的位移为零,该质点不一定是静止的 B. 在某一段时间内质点运动的路程为零,该质点一定是静止的 C. 在直线运动中,质点位移的大小一定等于其路程 D. 在曲线运动中,质点位移的大小一定小于其路程 例3. 从高为5m处以某一初速度竖直向下抛出一个小球,在与地面相碰后弹起,上升到高为2m处被接住,则在这段过程中 A. 小球的位移为3m,方向竖直向下,路程为7m B. 小球的位移为7m,方向竖直向上,路程为7m C. 小球的位移为3m,方向竖直向下,路程为3m D. 小球的位移为7m,方向竖直向上,路程为3m 例4. 判断下列关于速度的说法,正确的是 A. 速度是表示物体运动快慢的物理量,它既有大小,又有方向。 B. 平均速度就是速度的平均值,它只有大小没有方向。 C. 汽车以速度1v经过某一路标,子弹以速度2v从枪口射出,1v和2v均指平均速度。 D. 运动物体经过某一时刻(或某一位置)的速度,叫瞬时速度,它是矢量。 例5. 一个物体做直线运动,前一半时间的平均速度为1v,后一半时间的平均速度为2v,则全程的平均速度为多少?如果前一半位移的平均速度为1v,后一半位移的平均速度为2v,全程的平均速度又为多少? 例6. 打点计时器在纸带上的点迹,直接记录了 A. 物体运动的时间 B. 物体在不同时刻的位置 C. 物体在不同时间内的位移 D. 物体在不同时刻的速度 例7.如图所示,打点计时器所用电源的频率为50Hz,某次实验中得到的一条纸带,用毫米刻度尺测量的情况如图所示,纸带在A、C间的平均速度为m/s,在A、D间的平均速度为m/s,B点的瞬时速度更接近于m/s。 例8. 关于加速度,下列说法中正确的是 A. 速度变化越大,加速度一定越大 B. 速度变化所用时间越短,加速度一定越大 C. 速度变化越快,加速度一定越大 D. 速度为零,加速度一定为零

高中物理力学典型例题

高中物理力学典型例题 1、如图1-1所示,长为5米的细绳的两端分别系于竖立在地面上相距 为4米的两杆顶端A、B。绳上挂一个光滑的轻质挂钩。它钩着一个重 为12牛的物体。平衡时,绳中张力T=____ 分析与解:本题为三力平衡问题。其基本思路为:选对象、分析力、画 力图、列方程。对平衡问题,根据题目所给条件,往往可采用不同的方 法,如正交分解法、相似三角形等。所以,本题有多种解法。 解法一:选挂钩为研究对象,其受力如图1-2所示,设细绳与水平夹角 为α,由平衡条件可知:2TSinα=F,其中F=12牛,将绳延长,由图 中几何条件得:Sinα=3/5,则代入上式可得T=10牛。 解法二:挂钩受三个力,由平衡条件可知:两个拉力(大小相等均为T) 的合力F’与F大小相等方向相反。以两个拉力为邻边所作的平行四边形 为菱形。如图1-2所示,其中力的三角形△OEG与△ADC相似,则: 得:牛。 想一想:若将右端绳A 沿杆适当下移些,细绳上张力是否变化? (提示:挂钩在细绳上移到一个新位置,挂钩两边细绳与水平方向夹角仍相等,细绳的张力仍不变。) 2、如图2-1所示,轻质长绳水平地跨在相距为2L的两个小定滑轮A、 B上,质量为m的物块悬挂在绳上O点,O与A、B两滑轮的距离相 等。在轻绳两端C、D分别施加竖直向下的恒力F=mg。先托住物块, 使绳处于水平拉直状态,由静止释放物块,在物块下落过程中,保持 C、D两端的拉力F不变。 (1)当物块下落距离h为多大时,物块的加速度为零? (2)在物块下落上述距离的过程中,克服C端恒力F做功W为多少? (3)求物块下落过程中的最大速度Vm和最大距离H? 分析与解:物块向下先作加速运动,随着物块的下落,两绳间的夹角 逐渐减小。因为绳子对物块的拉力大小不变,恒等于F,所以随着两 绳间的夹角减小,两绳对物块拉力的合力将逐渐增大,物块所受合力 逐渐减小,向下加速度逐渐减小。当物块的合外力为零时,速度达到 最大值。之后,因为两绳间夹角继续减小,物块所受合外力竖直向上, 且逐渐增大,物块将作加速度逐渐增大的减速运动。当物块下降速度 减为零时,物块竖直下落的距离达到最大值H。 当物块的加速度为零时,由共点力平衡条件可求出相应的θ角,再由θ角求出相应的距离h,进而求出克服C端恒力F所做的功。 对物块运用动能定理可求出物块下落过程中的最大速度Vm和最大距离H。 (1)当物块所受的合外力为零时,加速度为零,此时物块下降距离为h。因为F恒等于mg,所以绳对物块拉力大小恒为mg,由平衡条件知:2θ=120°,所以θ=60°,由图2-2知: h=L*tg30°= L [1] (2)当物块下落h时,绳的C、D端均上升h’,由几何关系可得:h’=-L [2] 克服C端恒力F做的功为:W=F*h’[3]

高中物理典型例题集锦

高中物理典型例题集锦(一) 山东贾玉兵 编者按:笔者结合多年的高三教学经验,记录整理了部分高中物理典型例题,以2003年《考试说明》为依据,以力学和电学为重点,编辑如下,供各校教师、高三同学参考。实践证明,考前浏览例题,熟悉做过的题型,回顾解题方法,可以提高复习效率,收到事半功倍的效果。 力学部分 1、如图1-1所示,长为5米的细绳的两端分别系于竖立在地面上相距为4米的两杆顶端A、B。绳上挂一个光滑的轻质挂钩。它钩着一个重为12牛的物体。平衡时,绳中 张力T=____

分析与解:本题为三力平衡问题。其基本思路为:选对象、分析力、画力图、列方程。对平衡问题,根据题目所给条件,往往可采用不同的方法,如正交分解法、相似三角形等。所以,本题有多种解法。 解法一:选挂钩为研究对象,其受力如图1-2所示 设细绳与水平夹角为α,由平衡条件可知:2TSinα=F,其中F=12牛 将绳延长,由图中几何条件得:Sinα=3/5,则代入上式可得T=10牛。 解法二:挂钩受三个力,由平衡条件可知:两个拉力(大小相等均为T)的合力F’与F大小相等方向相反。以两个拉力为邻边所作的平行四边形为菱形。如图1-2所示, 其中力的三角形△OEG与△ADC相似,则:得: 牛。 想一想:若将右端绳A 沿杆适当下移些,细绳上张力是否变化? (提示:挂钩在细绳上移到一个新位置,挂钩两边细绳与水平方向夹角仍相等,细绳的张力仍不变。) 2、如图2-1所示,轻质长绳水平地跨在相距为2L的

两个小定滑轮A、B上,质量为m的物块悬挂在绳上O点,O与A、B两滑轮的距离相等。在轻绳两端C、D分别施加竖直向下的恒力F=mg。先托住物块,使绳处于水平拉直状态,由静止释放物块,在物块下落过程中,保持C、D两端的拉力F不变。 (1)当物块下落距离h为多大时,物块的加速度为零? (2)在物块下落上述距离的过程中,克服C端恒力F 做功W为多少? (3)求物块下落过程中的最大速度Vm和最大距离H? 分析与解:物块向下先作加速运动,随着物块的下落,两绳间的夹角逐渐减小。因为绳子对物块的拉力大小不变,恒等于F,所以随着两绳间的夹角减小,两绳对物块拉力的合力将逐渐增大,物块所受合力逐渐减小,向下加速度逐渐减小。当物块的合外力为零时,速度达到最大值。之后,因为两绳间夹角继续减小,物块所受合外力竖直向上,

高中物理平抛运动经典例题

[例1] 如图1所示,某人骑摩托车在水平道路上行驶,要在A处越过的壕沟,沟面对面比A处低,摩托车的速度至少要有多大? 图1 解析:在竖直方向上,摩托车越过壕沟经历的时间 在水平方向上,摩托车能越过壕沟的速度至少为 2. 从分解速度的角度进行解题 对于一个做平抛运动的物体来说,如果知道了某一时刻的速度方向,则我们常常是“从分解速度”的角度来研究问题。 [例2] 如图2甲所示,以9.8m/s的初速度水平抛出的物体,飞行一段时间后,垂直地撞在倾角为的斜面上。可知物体完成这段飞行的时间是() A. B. C. D. 图2 解析:先将物体的末速度分解为水平分速度和竖直分速度(如图2乙所示)。根据平抛运动的分解可知物体水平方向的初速度是始终不变的,所以;又因为与斜面垂直、与水平面垂直,所以与间的夹角等于斜面的倾角。再根据平抛运动的 分解可知物体在竖直方向做自由落体运动,那么我们根据就可以求出时间了。则 所以 根据平抛运动竖直方向是自由落体运动可以写出

所以 所以答案为C。 3. 从分解位移的角度进行解题 对于一个做平抛运动的物体来说,如果知道了某一时刻的位移方向(如物体从已知倾角的斜面上水平抛出,这个倾角也等于位移与水平方向之间的夹角),则我们可以把位移分解成水平方向和竖直方向,然后运用平抛运动的运动规律来进行研究问题(这种方法,暂且叫做“分解位移法”) [例3] 在倾角为的斜面上的P点,以水平速度向斜面下方抛出一个物体,落在斜面上的Q点,证明落在Q点物体速度。 解析:设物体由抛出点P运动到斜面上的Q点的位移是,所用时间为,则由“分解位移法”可得,竖直方向上的位移为;水平方向上的位移为。 又根据运动学的规律可得 竖直方向上, 水平方向上 则, 所以Q点的速度 [例4] 如图3所示,在坡度一定的斜面顶点以大小相同的速度同时水平向左与水平向右 抛出两个小球A和B,两侧斜坡的倾角分别为和,小球均落在坡面上,若不计空气阻力,则A和B两小球的运动时间之比为多少? 图3 解析:和都是物体落在斜面上后,位移与水平方向的夹角,则运用分解位移的方法可以得到 所以有

高中物理难点分类解析滑块与传送带模型问题(经典)

滑块—木板模型 例1如图1所示,光滑水平面上放置质量分别为m、2m的物块A和木板B,A、B间的最大静摩擦力为μmg,现用水平拉力F拉B,使A、B以同一加速度运动,求拉力F的最大值。 分析:为防止运动过程中A落后于B(A不受拉力F的直接作用,靠A、B间的静摩擦力加速),A、B 一起加速的最大加速度由A决定。解答:物块A能获得的最大加速度为:.∴A、B 一起加速运动时,拉力F的最大值为:. 变式1例1中若拉力F作用在A上呢如图2所示。解答:木板B能获得的最大加速度为:。∴A、B一起加速运动时,拉力F的最大值为: . 变式2在变式1的基础上再改为:B与水平面间的动摩擦因数为(认为最大静摩擦力等于滑动摩擦力),使A、B以同一加速度运动,求拉力F的最大值。 解答:木板B能获得的最大加速度为:,设A、B一起加速运动时,拉力F的最大值为F m,则: 解得: 《 例2 如图3所示,质量M=8kg的小车放在光滑的水平面上,在小车右端加一水平恒 力F,F=8N,当小车速度达到1.5m/s时,在小车的前端轻轻放上一大小不计、质量m=2kg的物体,物体与小车间的动摩擦因数μ=0.2,小车足够长,求物体从放在小车上开始经t=1.5s通过的位移大小。(g 取10m/s2) 解答:物体放上后先加速:a1=μg=2m/s2,此时小车的加速度为:,当小车与物体达到共同速度时:v共=a1t1=v0+a2t1,解得:t1=1s ,v共=2m/s,以后物体与小车相对静止: (∵,物体不会落后于小车)物体在t=1.5s内通过的位移为:s= a1t12+v共(t-t1)+ a3(t-t1)2=2.1m

练习1如图4所示,在水平面上静止着两个质量均为m=1kg、长度均为L=1.5m的木板A和B,A、B 间距s=6m,在A的最左端静止着一个质量为M=2kg的小滑块C,A、B与C之间的动摩擦因数为μ1=0.2,A、B与水平地面之间的动摩擦因数为μ2=0.1。最大静摩擦力可以认为等于滑动摩擦力。现在对C施加一个水平向右的恒力F=4N,A和C开始运动,经过一段时间A、B相碰,碰后立刻达到共同速度,C瞬间速度不变,但A、B并不粘连,求:经过时间t=10s时A、B、C的速度分别为多少(已知重力加速度g=10m/s2) 解答:假设力F作用后A、C一起加速,则:,而A能获得的最 大加速度为:,∵,∴假设成立,在A、C滑行6m的过程中:,∴v1=2m/s,,A、B相碰过程,由动量守恒定律可得:mv1=2mv2 ,∴v2=1m/s,此后A、C相对滑动:,故C匀速运动; ,故AB也匀速运动。设经时间t2,C从A右端滑下:v1t2-v2t2=L∴t2=1.5s,然后A、B分离,A减速运动直至停止:a A=μ2g=1m/s2,向 左,,故t=10s时,v A=0.C在B上继 续滑动,且C匀速、B加速:a B=a0=1m/s2,设经时间t4,C.B速度相 等:∴t4=1s。此过程中,C.B的相对位移为:,故C没有从B的右端滑下。然后C.B一起加速,加速度为a1,加速的时间为: ,故t=10s时,A、B、C的速度分别为0,2.5m/s,2.5m/s. $ 练习2如图5所示,质量M=1kg的木板静止在粗糙的水平地面上,木板与地面间的动摩擦因数,在木板的左端放置一个质量m=1kg、大小可以忽略的铁块,铁块与木板间的动摩擦因数 ,取g=10m/s2,试求: (1)若木板长L=1m,在铁块上加一个水平向右的恒力F=8N,经过多长时间铁块运动到木板的右端 (2)若在铁块上施加一个大小从零开始连续增加的水平向右的力F,通过分析和计算后。(解答略)答案如下:(1)t=1s,(2)①当F≤N时,A、B相对静止且对地静止,f2=F;,②当2N6N时,A、B发生相对滑动,N. 滑块问题 1.如图所示,有一块木板静止在光滑且足够长的水平面上,木板质量为M=4kg,长为L=;木板右端放着一

高中物理圆周运动典型例题解析1

圆周运动的实例分析典型例题解析 【例1】用细绳拴着质量为m 的小球,使小球在竖直平面内作圆周运动,则下列说法中,正确的是[ ] A .小球过最高点时,绳子中张力可以为零 B .小球过最高点时的最小速度为零 C .小球刚好能过最高点时的速度是Rg D .小球过最高点时,绳子对小球的作用力可以与球所受的重力方向相 反 解析:像该题中的小球、沿竖直圆环内侧作圆周运动的物体等没有支承物的物体作圆周运动,通过最高点时有下列几种情况: (1)m g m v /R v 2当=,即=时,物体的重力恰好提供向心力,向心Rg 加速度恰好等于重力加速度,物体恰能过最高点继续沿圆周运动.这是能通过最高点的临界条件; (2)m g m v /R v 2当>,即<时,物体不能通过最高点而偏离圆周Rg 轨道,作抛体运动; (3)m g m v /R v m g 2当<,即>时,物体能通过最高点,这时有Rg +F =mv 2/R ,其中F 为绳子的拉力或环对物体的压力.而值得一提的是:细绳对由它拴住的、作匀速圆周运动的物体只可能产生拉力,而不可能产生支撑力,因而小球过最高点时,细绳对小球的作用力不会与重力方向相反. 所以,正确选项为A 、C . 点拨:这是一道竖直平面内的变速率圆周运动问题.当小球经越圆周最高点或最低点时,其重力和绳子拉力的合力提供向心力;当小球经越圆周的其它位置时,其重力和绳子拉力的沿半径方向的分力(法向分力)提供向心力. 【问题讨论】该题中,把拴小球的绳子换成细杆,则问题讨论的结果就大相径庭了.有支承物的小球在竖直平面内作圆周运动,过最高点时:

(1)v (2)v (3)v 当=时,支承物对小球既没有拉力,也没有支撑力; 当>时,支承物对小球有指向圆心的拉力作用; 当<时,支撑物对小球有背离圆心的支撑力作用; Rg Rg Rg (4)当v =0时,支承物对小球的支撑力等于小球的重力mg ,这是有支承物的物体在竖直平面内作圆周运动,能经越最高点的临界条件. 【例2】如图38-1所示的水平转盘可绕竖直轴OO ′旋转,盘上的水平杆上穿着两个质量相等的小球A 和B .现将A 和B 分别置于距轴r 和2r 处,并用不可伸长的轻绳相连.已知两球与杆之间的最大静摩擦力都是f m .试分析角速度ω从零逐渐增大,两球对轴保持相对静止过程中,A 、B 两球的受力情况如何变化? 解析:由于ω从零开始逐渐增大,当ω较小时,A 和B 均只靠自身静摩擦力提供向心力. A 球:m ω2r =f A ; B 球:m ω22r =f B . 随ω增大,静摩擦力不断增大,直至ω=ω1时将有f B =f m ,即m ω=,ω=.即从ω开始ω继续增加,绳上张力将出现.12m 112r f T f m r m /2 A 球:m ω2r =f A +T ;B 球:m ω22r =f m +T . 由B 球可知:当角速度ω增至ω′时,绳上张力将增加△T ,△T =m ·2r(ω′2-ω2).对于A 球应有m ·r(ω′2-ω2)=△f A +△T =△f A +m ·2r(ω′2-ω2). 可见△f A <0,即随ω的增大,A 球所受摩擦力将不断减小,直至f A =0

高中物理知识点汇总(带经典例题)

高中物理必修1 运动学问题是力学部分的基础之一,在整个力学中的地位是非常重要的,本章是讲运动的初步概念,描述运动的位移、速度、加速度等,贯穿了几乎整个高中物理内容,尽管在前几年高考中单纯考运动学题目并不多,但力、电、磁综合问题往往渗透了对本章知识点的考察。近些年高考中图像问题频频出现,且要求较高,它属于数学方法在物理中应用的一个重要方面。 第一章运动的描述 专题一:描述物体运动的几个基本本概念 ◎知识梳理 1.机械运动:一个物体相对于另一个物体的位置的改变叫做机械运动,简称运动,它包括平动、转动和振动等形式。 2.参考系:被假定为不动的物体系。 对同一物体的运动,若所选的参考系不同,对其运动的描述就会不同,通常以地球为参考系研究物体的运动。 3.质点:用来代替物体的有质量的点。它是在研究物体的运动时,为使问题简化,而引入的理想模型。仅凭物体的大小不能视为质点的依据,如:公转的地球可视为质点,而比赛中旋转的乒乓球则不能视为质点。’ 物体可视为质点主要是以下三种情形: (1)物体平动时; (2)物体的位移远远大于物体本身的限度时; (3)只研究物体的平动,而不考虑其转动效果时。 4.时刻和时间 (1)时刻指的是某一瞬时,是时间轴上的一点,对应于位置、瞬时速度、动量、动能等状态量,通常说的“2秒末”,“速度达2m/s时”都是指时刻。 (2)时间是两时刻的间隔,是时间轴上的一段。对应位移、路程、冲量、功等过程量.通常说的“几秒内”“第几秒内”均是指时间。 5.位移和路程 (1)位移表示质点在空间的位置的变化,是矢量。位移用有向线段表示,位移的大小等于有向线段的长度,位移的方向由初位置指向末位置。当物体作直线运动时,可用带有正负号的数值表示位移,取正值时表示其方向与规定正方向一致,反之则相反。 (2)路程是质点在空间运动轨迹的长度,是标量。在确定的两位置间,物体的路程不是唯一的,它与质点的具体运动过程有关。 (3)位移与路程是在一定时间内发生的,是过程量,二者都与参考系的选取有关。一般情况下,位移的大小并不等于路程,只有当质点做单方向直线运动时,二者才相等。6.速度 (1).速度:是描述物体运动方向和快慢的物理量。 (2).瞬时速度:运动物体经过某一时刻或某一位置的速度,其大小叫速率。 (3).平均速度:物体在某段时间的位移与所用时间的比值,是粗略描述运动快慢的。 ①平均速度是矢量,方向与位移方向相同。

传送带问题典型题解

传送带问题典型题解 摩擦力做功 A 、滑动摩擦力做功的特点: ①滑动摩擦力可以对物体做正功,也可以对物体做负功,还可以不做功。 ②相互摩擦的系统内,一对滑动摩擦力所做的功总为负值,其绝对值等于滑动摩擦力与相对位移的乘积。 B 、静摩擦力做功的特点: 1.静摩擦力可以做正功,也可以做负功,还可以不做功. 2.相互摩擦的系统内,一对静摩擦力所做功的和总是等于零. 三、传送带问题: 传送带类分水平、倾斜两种:按转向分顺时针、逆时针转两种。 (1)受力和运动分析: 受力分析中的摩擦力突变(大小、方向)——发生在V 物与V 传相同的时刻; 运动分析中的速度变化——相对运动方向和对地速度变化。 分析关键是: ◆ V 物、V 带的大小与方向; ◆ mgsin θ与f 的大小与方向。 (2)传送带问题中的功能分析 ①功能关系:WF=△E K +△E P +Q ②对W F 、Q 的正确理解 (a )传送带做的功:W F =F ·S 带 功率P=F ×V 带 (F 由传送带受力平衡求得) (b )产生的内能:Q=f ·S 相对 (c )如物体无初速,放在水平传送带上,则在整个加速过程中 物体获得的动能E K =2mv 2 1传E K , 因为摩擦而产生的热量Q 两者间有如下关系:E K =Q= 2mv 21传 难点: 1、属于易错点,突破方法是先让学生正确理解摩擦力产生的条件、方向的判断方法、大小的决定因素等等。通过对不同类型题目的分析练习,让学生做到准确灵活地分析摩擦力的有无、大小和方向。 2、对于物体相对地面、相对传送带分别做什么样的运动,判断错误。该难点应属于思维上有难度的知识点,突破方法是灵活运用“力是改变物体运动状态的原因”这个理论依据,对物体的运动性质做出正确分析,判断好物体和传送带的加速度、速度关系,画好草图分析,找准物体和传送带的位移及两者之间的关系。 3、对于匀速运动的传送带传送初速为零的物体,传送带应提供两方面的能量,一是物体动能的增加,二是物体与传送带间的摩擦所生成的热(即内能),有不少同学容易漏掉内能的转化,因为该知识点具有隐蔽性,往往是漏掉了,也不能在计算过程中很容易地显示出来,尤其是在综合性题目中更容易疏忽。突破方法是引导学生分析有滑动摩擦力做功转化为内能的物理过程,使“只要有滑动摩擦力做功的过程,必有内能转化”的知识点在学生头脑中形成深刻印象。

高一物理典型例题

高一物理必修1知识集锦及典型例题 一. 各部分知识网络 (一)运动的描述: 测匀变速直线运动的加速度:△x=aT 2 ,6543212 ()()(3) a a a a a a a T ++-++=

a与v同向,加速运动;a与v反向,减速运动。

(二)力: 实验:探究力的平行四边形定则。 研究弹簧弹力与形变量的关系:F=KX.

(三)牛顿运动定律: . 改变

(四)共点力作用下物体的平衡: 静止 平衡状态 匀速运动 F x 合=0 力的平衡条件:F 合=0 F y 合=0 合成法 正交分解法 常用方法 矢量三角形动态分析法 相似三角形法 正、余弦定理法 物 体 的平衡

二、典型例题 例题1..某同学利用打点计时器探究小车速度随时间变化的关系,所用交流电的频率为50 Hz,下图为某次实验中得到的一条纸带的一部分,0、1、2、3、4、5、6、7为计数点,相邻两计数点间还有3个打点未画出.从纸带上测出x1=3.20 cm,x2=4.74 cm,x3=6.40 cm,x4=8.02 cm,x5=9.64 cm,x6=11.28 cm,x7=12.84 cm. (1)请通过计算,在下表空格内填入合适的数据(计算结果保留三位有效数字); (2)根据表中数据,在所给的坐标系中作出v-t图 象(以0计数点作为计时起点);由图象可得,小车 运动的加速度大小为________m /s2 例2. 关于加速度,下列说法中正确的是 A. 速度变化越大,加速度一定越大 B. 速度变化所用时间越短,加速度一定越大 C. 速度变化越快,加速度一定越大 D. 速度为零,加速度一定为零 例3. 一滑块由静止开始,从斜面顶端匀加速下滑,第5s末的速度是6m/s。求:(1)第4s末的速度;(2)头7s内的位移;(3)第3s内的位移。 例4. 公共汽车由停车站从静止出发以0.5m/s2的加速度作匀加速直线运动,同时一辆汽车以36km/h的不变速度从后面越过公共汽车。求: (1)经过多长时间公共汽车能追上汽车? (2)后车追上前车之前,经多长时间两车相距最远,最远是多少? 例5.静止在光滑水平面上的物体,受到一个水平拉力,在力刚开始作用的瞬间,下列说法中正确的是 A. 物体立即获得加速度和速度

传送带的摩擦力问题

传送带中的摩擦力做功与能量转化问题 传送带问题具有理论联系实际,综合性较强的特点。通过归类教学把相近、类似的问题区别开来,经过典型例题分析、比较,充分认识这类问题的特点、规律,掌握对该类问题的处理方法、技巧,采用归类教学有利于提高分析、鉴别并解决物理综合问题的能力。 一、运动时间的讨论 问题1:(水平放置的传送带)如图所示,水平放置的传送带以速度v=2m/s 匀速向右运行,现将一质量为2kg 的小物体轻轻地放在传送带A 端,物体与传送带间的动摩擦因数μ=0.2,若A 端与B 端相距4 m ,求物体由A 到B 的时间和物体到B 端时的速度分别是多少? 解析:小物体放在A 端时初速度为零,且相对于传送带向左运动,所以 小物体受到向右的滑动摩擦力,小物体在该力作用下向前加速,a=μg, 当小物体的速度与传送带的速度相等时,两者相对静止,摩擦力突变为零, 小物体开始做匀速直线运动。所以小物体的运动可以分两个阶段,先由零开始匀加速运动,后做匀速直线运动。 小物体做匀加速运动,达到带速2m/s 所需的时间 1v t s a = = 在此时间内小物体对地的位移m at x 12 12== 以后小物体以2m/s 做匀速直线运动的时间 s s v x s t AB 5.12 3==-=' 物体由A 到B 的时间T=1s+1.5s=2.5s ,且到达B 端时的速度为2m/s. 讨论:若带长L 和动摩擦因数μ已知,则当带速v 多大时,传送时间最短? 22 ()()22v v v L v T vT a g a a a μ=+-=-= 22L v L v T T v a v a =+=当时最短 此时22v aL gL μ=这说明小物体一直被加速过去且达到另一端时恰与带同速时间最短。 变式:如图所示,传送带的水平部分长为L ,传动速率为v ,在其左端无初速释放一小木块,若木块与传送带间的动摩擦因数为μ,则木块从左端运动到右端的时间不可能是 ( ) A.L v +v 2μg B.L v C.2L μg D.2L v 解析:因木块运动到右端的过程不同,对应的时间也不同,水平传送带传送物体一般存在以 下三种情况(1)若一直匀加速至右端仍未达带速,则L =12μgt 2,得:t =2L μg ,C 正确;

高中物理经典题库1000题

《物理学》题库 一、选择题 1、光线垂直于空气和介质的分界面,从空气射入介质中,介质的折射率为n,下列说法中正确的是() A、因入射角和折射角都为零,所以光速不变 B、光速为原来的n倍 C、光速为原来的1/n D、入射角和折射角均为90°,光速不变 2、甘油相对于空气的临界角为42.9°,下列说法中正确的是() A、光从甘油射入空气就一定能发生全反射现象 B、光从空气射入甘油就一定能发生全反射现象 C、光从甘油射入空气,入射角大于42.9°能发生全反射现象 D、光从空气射入甘油,入射角大于42.9°能发生全反射现象 3、一支蜡烛离凸透镜24cm,在离凸透镜12cm的另一侧的屏上看到了清晰的像,以下说法中正确的是() A、像倒立,放大率K=2 B、像正立,放大率K=0.5 C、像倒立,放大率K=0.5 D、像正立,放大率K=2 4、清水池内有一硬币,人站在岸边看到硬币() A、为硬币的实像,比硬币的实际深度浅 B、为硬币的实像,比硬币的实际深度深 C、为硬币的虚像,比硬币的实际深度浅 D、为硬币的虚像,比硬币的实际深度深 5、若甲媒质的折射率大于乙媒质的折射率。光由甲媒质进入乙媒质时,以下四种答案正确的是() A、折射角>入射角 B、折射角=入射角 C、折射角<入射角 D、以上三种情况都有可能发生 6、如图为直角等腰三棱镜的截面,垂直于CB面入射的光线在AC面上发生全反射,三棱镜的临界角() A、大于45o B、小于45o C、等于45o D、等于90o 7、光从甲媒质射入乙媒质,入射角为α,折射角为γ,光速分别为v甲和v乙,已知折射率为n甲>n乙,下列关系式正确的是() A、α>γ,v甲>v乙 B、α<γ,v甲>v乙 C、α>γ,v甲

传送带经典例题透析

传送带经典例题透析 类型一、传送带的动力学问题——分析计算物体在传送带上的运动情况这类问题通常有两种情况,其一是物体在水平传送带上运动,其二是物体在倾斜的传送带上运动。解决这类问题共同的方法是:分析初始条件→相对运动情况→判断滑动摩擦力的大小和方向→分析出物体受的合外力和加速度大小和方向→由物体速度变化再分析相对运动来判断以后的受力及运动状态的改变,然后根据牛顿第二定律和运动学公式计算。 1、物体在水平传送带上的运动情况的计算 例1、如图所示,水平放置的传送带以速度v=2m/s向右运行,现将一小物体轻轻地放在传送带A端,物体与传送带间的动摩擦因数μ=0.2,若A端与B端相距4 m,则物体由A 运动到B的时间和物体到达B端时的速度是:() A.2.5 s,2m/s B.1s,2m/s C.2.5s,4m/s D.1s,4/s 举一反三 【变式】水平传送带被广泛地应用于机场和火车站,用于对旅客的行 李进行安全检查。如图所示为一水平传送带装置示意图,绷紧的传送带AB始终保持v=1m/s 的恒定速率运行。一质量为m=4kg的行李无初速度地放在A处,传送带对行李的滑动摩擦力使行李开始做匀加速直线运动,随后行李又以与传送带相等的速率做匀速直线运动。设行 李与传送带间的动摩擦因数μ=0.1,AB间的距离=2m,g取10 m/ s2。 (1)求行李刚开始运动时所受的滑动摩擦力大小与加速度大小; (2)求行李做匀加速直线运动的时间; (3)如果提高传送带的运行速率,行李就能被较快地传送到B处。求行李从A处传送到B处的最短时间和传送带对应的最小运行速率。 2、物体在倾斜传送带上运动的计算 例2、如图所示,传送带与地面的倾角θ=37°,从A端到B端的 长度为16m,传送带以v0=10m/s的速度沿逆时针方向转动。在传送 带上端A处无初速地放置一个质量为0.5kg的物体,它与传送带之间的动摩擦因数为μ=0.5,求物体从A端运动到B端所需的时间是多少?(sin37°=0.6,cos37°=0.8) 类型二:物体在传送带上的相对运动问题 理解物体在传送带上的相对运动问题具有一定的难度,只要掌握了分析和计算的方法,问题便迎刃而解,解决此类问题的方法就是:分析物体和传送带相对于地的运动情况——分别求出物体和传送带对地的位移——求出这两个位移的矢量差。 例3、一水平的浅色长传送带上放置一煤块(可视为质点),煤块与传送带之间的动摩擦因数为μ。初始时,传送带与煤块都是静止。现让传送带以恒定的加速度a0开始运动,当其速度达到v0后,便以此速度做匀速运动。经过一段时间,煤块在传送带上留下了一段黑色痕迹后,煤块相对于传送带不再滑动。求此黑色痕迹的长度。 举一反三:物体在倾斜传送带上相对运动的计算 【变式1】如图所示,皮带轮带动传送带沿逆时针方向以速度v0=2 m / s 匀速运动,两皮带轮之间的距离L=3.2 m,皮带绷紧与水平方向的夹角θ=37°。将一可视为质点的小物块无初速地从上端放到传送带上,已知物块与传送带间的动摩擦因数μ=0.5,物块在皮带上滑过时能在皮带上留下白色痕迹。求物体从下端离开传送带后,传送带上留下的

相关主题
文本预览
相关文档 最新文档