当前位置:文档之家› 地铁盾构隧道施工安全及事故分析

地铁盾构隧道施工安全及事故分析

地铁盾构隧道施工安全及事故分析
地铁盾构隧道施工安全及事故分析

地铁盾构隧道施工安全及事故分析

发表时间:2018-05-16T10:53:21.593Z 来源:《基层建设》2018年第2期作者:吴永辉

[导读] 摘要:随着我国交通运输业的不断发展,地铁已经逐渐成为人们出行的主要交通工具。

中建海峡建设发展有限公司福建福州 350000

摘要:随着我国交通运输业的不断发展,地铁已经逐渐成为人们出行的主要交通工具。在地铁施工中。盾构法是常用的施工技术,可以使用盾构机作为隧道的掘进设备,在使用盾构法使用的过程中我们常常使用的盾构机的外壳作为支柱来进行,同时还将千斤顶作为支撑。本文主要结合作者自身实践就我国的地铁施工安全进行分析。

关键词:地铁施工盾构法;施工;安全

1地铁施工盾构法经常使用的施工技术以及施工注意事项

1.1盾构机始发前的准备

盾构法是指对岩石层进行施工,因此在施工之前需要施工人员提前对施工地的具体环境以及施工地的气候条件进行考察。并且根据考察好的结果制定适宜的施工方案,在施工的时候还需要提前做好意外情况的防范措施。主要是因为城市地面交通繁忙、地面建筑物和地下管线密集,对地面沉降要严格控制,因此我们进行地铁施工建设过程常用的施工方法就是盾构法。

1.2盾构法的施工流程

(1)在隧道的起始端和终端各建一个工作井

在进行工作井口的挖掘工作的时候我们通常使用明挖法的施工形式,这种施工方式和明挖车站施工有很多相同之处,同样都是采用了钻孔技术和灌注桩技术,以及在施工的过程中一定要使用钢结构来支撑。为了防止在施工的过程中出现降雪或者降雨的情况,就需要提前在施工的地方建立一个集水井,这样就可以及时将施工中的积水集合在一起,并对雨水进行统一的处理。为了方便施工人员上下井,就需要在集水井的旁边设置工作梯,钢梯由槽钢、角钢、花纹钢板、钢管及圆钢焊接而成。

(2)盾构机在起始端的工作井内安装就位

挖掘好工作井之后给予需要安装施工底座,这样就可以为后期的掘进工作做好铺垫。基座主要是由钢材构成,这样才能够保证牢固性。我们在进行基座的安装过程中的时候一般将基座和地面预留一定的高度,以利于调整盾构机初始掘进的姿态。

(3)盾构机的初始掘进

将推进缸固定在反力装置上,这样在进行推进工作的时候就能方便进行收回推进油缸,在推进油缸与反力装置间加垫临时支撑垫,即可进行推进。为了防止土体的坍塌,需要在施工中使用螺旋输送器倒转方向向土仓内加注粘土,至满仓后才启动刀盘切削土体和出土。当盾体完全进入隧道后,进行管片的安装工作,辅助推进工作,这样就可以保证推进一节,拼接一节,直至盾构设备完全进入隧道。

(4)盾构机的正常掘进

盾构设备完全进入隧道后,需要严格按照以前的方向进行推进,而且需要施工人员对推进仪器的方向进行随时地检测,一旦发现问题就应该立即进行处理。一般我们是需要将推进仪器按照油缸的方向进行设置,确保施工的推进方向,在进行挖井工作的时候还需要保证土压平衡,在进行挖掘工作的时候还应该调整好刀盘转速与推进速度及螺旋输送机速度之间的比率,这样就能在进行挖掘工作的时候保证排土的稳定。

(5)衬砌处理

在盾构设备掘进完一个节距以后,施工人员可以使用管片来进行陪衬作用,由管片运输车运送到安装台位,再将管片送到需要安装的地方,等到安装完成后再进行下一步的掘进工作。

2施工技术事故

2.1 地面沉降导致的安全事故

地面沉降一般可分为3类。第1类:非正常沉降,主要是施工中盾构操作失误而引起的,如盾构操作过程中各类参数设置错误、超挖、注浆不及时;第2类:灾害性沉降,主要指施工中盾构开挖面有突发性急剧流动,甚至暴发性崩塌,使地面塌陷。主要原因是遇到地下水压大或透水性强的颗粒状土体不良地质条件。如,广州地铁1号线在中山四路段采用盾构法施工,由于铸铁供水管漏水,使路面下的土体部分流失,形成空洞,盾构通过时,小的地层变形造成供水管断裂,大量水土流失,导致路面塌陷;第3类:盾构的选型不合适或出现较大失误,如成都地铁由于选型失误,多次造成掘进过程中的地表沉陷事故,无法正常施工。

2.2 盾构隧道的防洪排水设施不具备或能力不足导致的安全事故

武汉过江公路隧道、重庆嘉陵江排污隧道等盾构隧道施工过程中,均出现过水从洞外倒排进隧道的事故,造成较大的损失。因此,施工中要做好防灾预案安排。

2.3 管片拼装事故

拼装过程中,管片挤损或破裂,导致涌水,使施工面临较大的技术风险。所以,必须重视管片的安装工艺和技术方法,注意掘进参数的控制,采用相应的技术手段,控制姿态的调整,科学进行管片的安装顺序和安装步骤。同时注重管片拼装的质量,防止漏水,防止管片破裂等;施工中管片的上浮是一般盾构施工中比较常见的问题,如果得不到有效的控制,会引起很大的麻烦,要采取相应的技术措施,严格控制管片上浮。

3盾构隧道安全管理措施

3.1 加强盾构机设备管理水平

要加强盾构机本身的设备管理水平,杜绝带病作业,注意维护与保养,发现问题及时解决。严格执行机械设备安全操作管理规章制度等,最大限度地减少机械事故的发生,确保整个盾构施工的顺利进行。

3.2 构建专家、中介机构服务平台

积极构建专家参与的中介安全服务平台,充分发挥社会安全中介机构或专家的力量,按照建设部《危险性较大工程安全专项方案编制及专家论证审查办法》,要求施工单位对暗挖工程重大危险源部位施工时编制专项施工方案,专家对方案进行咨询评估。制定《地铁工程安全生产监理工作的要点》,细化地铁工程监理的安全管理工作,强化监理第二道安全防线的作用。

盾构隧道穿越既有建筑物施工应对技术

盾构隧道穿越既有建筑物施工应对技术 文章摘要: 盾构隧道穿越既有建筑物施工应对技术摘要:随着近几年地下工程建设的不断发展,盾构施工技术已越来越成熟,特别是在城市轨道交通建设中更显示出其优越性。但是,对于盾构施工过程中穿越障碍物或近距离通过既有建(构)筑物的施工还缺少相应的工程实例,经验相对也较少。近年来,我国城市轨道交通建设发展迅速,但是面临着越来越复杂的周边环境和施工条件,因此研究和制定相应的施工技术和应对措施十分必要。文章针对盾构施工穿越城市内河、下穿既有隧道以及湖底施工、下穿古城墙等工程实例进行分析研究,提出了针对类似情况的应对技术措施。 1 引言 随着国民经济的发展和城镇化建设的加速,国内城市轨道交通建设发展也越来越迅速。在轨道交通建设中,盾构工法由于其优越性在国内的应用越来越多。为了使轨道交通尽快形成网络达到预期的规模效应,轨道交通的建设也在加速。随着初期单条线的建成,后续线路建设的难度会越来越大。同时,伴随城市规划建设,特别是通常伴随地铁建设的沿线开发的增多,工程建设所面临的是越来越复杂的周边环境,穿越障碍物或近距离通过既有建(构)筑物的情况也越来越多。工程施工时既需要对既有建(构)筑物进行保护,又要确保工程本身的安全性和进展顺利,因此对不同的情况采用相应的应对技术十分必要。本文以南京地铁施工中已成功完成的盾构施工穿越障碍物的几个实例为基础,研究分析相应的应对技术。 2 下穿既有河流 2.1 工程实例 金川河宽10.4m,河堤深4m, 水深1.3m,为污水河。盾构隧道与 该河近正交下穿通过,盾构机与 河床底净间距6.2m。该段 地质情况自上而下分别是:② -1d3-4粉细砂(3.5m)、②-2c2-3 粉土(约6.0m)、②-2b4淤泥质粉 质粘土(约3m)、③-2-1b2粉质粘 土(4m)、③-3-1(a+b)1-2粉质粘 土(约 4.7m)。隧道主要在② -2c2-3粉土、②-2b4淤泥质粉质 粘土(上部)和③-2-1b2粉质粘土 (下部)地层中穿过(图1)。 该工程盾构机于2002年5月 9日~2002年5月10日和2002年 12月28日~2002年12月29日分 别在下行线和上行线顺利通过金 川河,沉降监测结果良好,没有采 用应急预案。但是在下行线掘进

地铁盾构法隧道施工技术方案

地铁盾构法隧道施工技 术方案 标准化工作室编码[XX968T-XX89628-XJ668-XT689N]

地铁盾构法隧道施工技术方案

地铁盾构法隧道施工技术方案 1.施工流程图 1.1盾构法隧道施工流程图 图1盾构隧道施工流程图 1.2盾构始发流程图 图2 始发流程 图 2.盾构机下井 盾构机从盾构工作井吊入,每台盾构机本身自重约200t ,分解为 5 块,最大块重约60t 。综合考虑吊机的起吊 能力和工作半径,安排1 台200t 和一台40t 汽车吊机进行吊入任务。盾构机下井拼装顺序见图3。 图3盾构机下井拼装示意图 在吊入盾构机之前,依次完成以下几项工作: 1.将测量控制点从地面引到井下底板上; 2.铺设后续台车轨道; 3.依次吊入后续台车并安放在轨道上; 4.安装始发推进反力架,盾构管片反力架示意图见图4; 5.安装盾构机始发托架,盾构始发托架示意图见图5。 图4盾构管片反力架示意图 掘进

图5 盾构始发托架示意图 3.盾构机安装调试 3.1盾构机的安装主要工作 1.盾构机各组成块的连接; 2.盾构机与后续设备及后续台车之间各种线路、管线和机械结构的连接。 3.盾构机内管片安装器、螺旋输送器、保园器的安装; 4.台车顶部皮带机及风道管的连接; 5.刀盘上各种刀具的安装。 3.2盾构机的检测调试主要内容 1.刀盘转动情况:转速、正反转; 2.刀盘上刀具:安装牢固性、超挖刀伸缩; 3.铰接千斤顶的工作情况:左、右伸缩; 4.推进千斤顶的工作情况:伸长和收缩; 5.管片安装器:转动、平移、伸缩; 6.保园器:平移、伸缩; 7.油泵及油压管路; 8.润滑系统; 9.冷却系统; 10.过滤装置; 11.配电系统; 12.操作控制盘上各项开关装置、各种显示仪表及各种故障显示灯的工作情况。 盾构机在完成了上述各项目的检测和调试后(具体应遵照盾构机制造厂家提供的操作手册进行),即可判定该盾构机已具备工作能力。 4.盾构进洞 1.盾构进洞前50 环进行贯通测量,以确定盾构机的实际位置和姿态。此后的掘进不允许有大的偏差发生,逐渐按偏差方位调整盾构机姿态和位置,满足盾构进洞尺寸要求。这一调整应在盾构刀盘进入洞前加固土前完成,以避免盾构进洞发生意外。

典型地铁事故案例汇编

序言 安全是地铁科学发展之本,是地铁和谐发展之基,是地铁运营效益之道,是地铁员工幸福之源,是地铁的生命线,是我们永恒的主题。 认真总结研究地铁典型事故案例,是预防发生类似事故的重要措施,从中可以汲取经验教训,发人深思、令人警醒,进一步提升安全技术和管理水平,营造地铁安全发展的环境和氛围。 本次地铁事故汇报收集了地铁运营发生的14起典型事故案例。每个案例都详细记载了事故的经过、事故原因、事故处理和整改措施4个方面的内容,内容具体,资料翔实,能够客观全面反映事故发生的整个过程。特别是事故的原因分析和整改措施,能够让全体员工结合身边发生的具体案例,掌握相关的安全知识和操作规程,在日常工作中高度重视,遵章守纪,不要存在侥幸心理,避免类似事故再发生。 这些事故都是发生在我们身边人和事,事故的责任者、受害者、当事者往往仅仅是因为一次小小的疏忽、一个简单的错误、一处不当的行为,就酿成一起事故,而每一起事故都有可能造成人员的伤亡,设备的损坏,或者不同程度的伤害,教训之深刻,后果之惨重,令人久久难以释怀。 希望全体员工在阅读和学习典型地铁事故案例汇编的每一个事故案例,不仅要搞清每一起事故的来龙去脉,还要将自己置身于事故的背景之中,换位思考:当处在当事者的情形下,会怎么做,是否会

犯同样的错误。要努力从每一起事故中吸取教训,纠正自己的一些不良工作行为或习惯,使自己在今后的工作中自觉地遵章守纪,并且主动关心他人的安全,形成安全、和谐的工作环境和氛围,为建设“平安型地铁”努力奋斗,为畅通北京提速。

目录 一、运营事故案例 案例一:“9.22”西单电梯事故 案例二:“1.17”5号线列车救援 案例三:“1.18”1号线列车救援 案例四:“2.3”机场线列车救援 案例五:“2.17”房山线列车救援 案例六:“3.5”5号线列车救援 案例七:“3.15”1号线列车救援 案例八:“5.18”公主坟道岔故障 二、火灾事故案例 案例九:“2.29”知春路站电梯冒烟事故 案例十:“10.14”四惠站线路管理用房起火事件三、工伤事故案例 案例十一“6.23”四惠车辆段坠车工伤事故四、施工安全事故案例 案例十二:“2.27”10号线接触轨断电事故 案例十三:“1.4”房山线接地线未拆除事故 案例十四:“4.8”苹果园站列车剐蹭光缆事故

地铁隧道盾构施工安全管理(标准版)

( 安全管理 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 地铁隧道盾构施工安全管理(标 准版) Safety management is an important part of production management. Safety and production are in the implementation process

地铁隧道盾构施工安全管理(标准版) 1引言 安全管理工作己在我国得到了日益重视,尤其是在加入了WTO 后,全球经济趋于一体化,要求发展中国家的安全生产管理水平赶上世界先进水平,企业安全管理工作已作为和生产管理并列的一项企业管理重要内容。而建筑业是伤亡事故多发的行业,仅次于矿山作业。隧道施工具有建筑业和矿山业的一些共同特点,施工危险程度大,安全隐患多。盾构施工隧道技术是一项先进的隧道施工技术,开挖面处在盾构体的保护下,可以最大程度避免土体失稳或冒顶带来的人身伤亡事故,近年来,在上海、广州、北京和深圳等地得到了较为广泛的应用。 盾构法隧道施工技术由英国工程师布鲁诺尔发明于1818年,并于1825年运用于工程实践。我国从1956年开始引进盾构施工技术,从20世纪80年代开始得到了快速发展,目前,在上海、广州等大

城市中逐渐成为城市地下铁道施工的主流方法,其特有的安全施工和管理问题引起犷广泛注意,本文为结合多年的盾构施工实践和安全管理经验的总结。 2盾构机刀盘前的压气作业 2.1盾构机的压气作业 当操作人员必须进人盾构机前体刀盘内作业时,如果盾构机前方或上方的土体不能自稳,上体可能通过刀盘的开日处进人刀盘内,威胁作业人员的安全。大多先进的盾构机均配备了压气系统,即通过密封刀盘和盾构前体的通道,向刀盘内注入无油空气,使刀盘内的压力升高,以达到平衡外侧土体压力的目的,压力最大可达到3-4kg/cm2。为了保证操作人员的适应性,一般在通道卜设置密闭的过渡增压舱,这将在很大程度上缓解压力变化带给操作人员的影响。由于操作人员是在一个密闭的环境中工作,刀盘内空间狭窄,不能有多人同时作业,压人的空气质量也可能含有一定的杂质,且工作面的环境温度将会很高,当操作人员出现不适时,需要经过一定时间减压过渡后才能得到医疗。因此,压气作业是盾构安全施工的一

(完整版)地铁事故案例汇编(终)

地铁建设事故案例汇编 (内部资料) 西安市地下铁道有限责任公司安全质量监督处 二OO九年十一月六日

目录 引言 (2) 【地面沉陷篇】 (3) 【管线断裂篇】 (10) 【涌水坍塌篇】 (14) 【气体爆燃篇】 (32) 【高空坠物篇】 (38) 【机械侧翻篇】 (40) 【意外伤亡篇】 (44)

引言 地铁是城市公共交通的重要组成部分,地铁安全的重要性不言而喻,其建设期的风险管理尤为重中之重。近年来,全球地铁事故不断发生,我国的北京、上海、广州、杭州、南京等城市先后发生了不少事故。收集地铁建设事故案例,分析地铁建设过程中突发意外事故的影响因素,对于制定预防事故相关对策以及突发事故后的救援措施,确保地铁建设的顺利进行、预防和减少事故、降低事故损失都具有十分重要的意义。 此次地铁建设事故案例汇编主要收集了国内地铁建设过程中发生的意外事故,其内容包括地面沉陷、管线断裂、涌水坍塌、气体爆燃、高空坠物、机械侧翻、意外伤亡。文字及照片均来自相关报道和有关资料,基本保留原文,以资借鉴。

【地面沉陷篇】 案例一、广州地铁海珠区二、八号线地陷导致居民楼倾斜 1.事故经过 2009年1月4日上午10时许,海珠区东晓南路瑞宝村一幢木桩结构的六层楼房突然发生倾斜,附近的地面也发生沉降,涉及沉降的房屋有三幢。事故原因与地铁施工有关,相关部门对五幢楼的群众进行了疏散并安置。事故没有造成人员伤亡,截至当日中午12时监测到的数据表明,房屋的沉降趋于稳定,暂无倒塌危险。相关部门成立了专家组,对现场情况进行论证,对沉降房屋进行妥善处理。 2.事故原因 事故现场离正在施工的地铁东晓南站约100米,而发生倾斜的楼房正是位于地铁二、八号线(即二号线、八号线的并行路段)东晓南隧道上方。地铁该项目负责人表示,在盾构机通过之前,施工单位已做了准备。而事故发生的原因主要有三点: 1) 首先是该路段地质情况复杂; 2) 其次是倾斜的房屋是木桩结构; 3) 最后是地基稳定性较差。 3.事故图片

地铁隧道盾构法施工

地铁隧道盾构法施工 导语:盾构法施工是一种机械化和自动化程度较高的隧道掘进施工方法,从20世纪60年代开始,西方发达国家大量将这种技术应用于城市地铁和大型城市排水隧道施工。我国近年来也开始在城市地铁隧道、越江越海隧道、取排水隧道施工中采用此项技术,以替代原来落后的开槽明挖或浅埋暗挖等劳动密集型施工方法。 关键词:地铁盾构施工盾构施工技术盾构施工测量点击进入VIP充值通道 地铁盾构机分类及组成 地铁盾构机根据其适用的土质及工作方式的不同主要分为压缩空气式、泥浆式,土压平衡式等不同类型。盾构机主要由开挖系统、推进系统排土系统管片拼装系统、油压、电气、控制系统、资态控制装置、导向系统、壁后注浆装置、后方台车、集中润滑装置、超前钻机及预注浆、铰接装置、通风装置、土碴改良装置及其他一些重要装置如盾壳、稳定翼、人闸等组成。海瑞克公司在广州地铁使用的典型土压平衡式盾构机为主机结构(盾体及刀盘结构)断面形状:圆形、用钢板成型制成,材料为:S335J2G3。主要由已下部分构成:刀盘、主轴承、前体、中体、推进油缸、

铰接油缸、盾尾、管片安装机。主机外形尺寸:7565mm(L)X6250(前体)X6240(中体)X6230(盾尾)。 ①压缩空气式盾构 1886 年Greatbhad 首次在盾构掘进隧道中引了这种工法,该工法利用压缩空气使整个盾构都防止地下水的侵入, 它可在游离水体下或地下水位下运作。其工作原理是利用用压缩空气来平衡水压和土压。传统的压缩空气式盾构要求在隧道工作面和止水隧道之间封闭一个相对较大的工作腔,大部分工人经常处于压缩空气下, 这会对掘进隧道和衬砌造成干扰,为了解决这些问题,又出现了用无压工作腔及全断面开挖的压缩空气式盾构和带有无压工作腔及部分断面开挖的压缩空气式盾构等。 ②土压平衡式盾构 20 世纪70 年代日本就开发土压平衡式盾构,不用辅助的支撑介质,切割轮开挖出的材料可作为支撑介质。该法用旋转的刀盘开挖地层,挖下的渣料通过切割轮的开口被压入开挖腔,然后在开挖腔内与塑性土浆混合。推力由压力舱壁传递到土浆上。当开挖腔内的土浆不再被当地的土和水压固化时就达到平衡。如果土浆的支撑压增大超过了平衡,开挖腔的土浆和在工作面的地层将进一步固化。与泥浆式盾构相比优点在于:无分离设备在淤泥或粘土地层中使用,覆盖层浅时无贯穿浆化的支撑泥浆泄露的危险。 ③泥浆式盾构 1912 年,Grauel 首次建造了泥浆式盾构。该法可以适用于各种松

地铁运营事故案例修订稿

地铁运营事故案例内部编号:(YUUT-TBBY-MMUT-URRUY-UOOY-DBUYI-0128)

一、运营事故案例 案例一:“”西单电梯事故 发生时间:2011年9月22日18时11分 发生地点:三西单站站台3号电梯 事故类型:违章违纪 事故影响:导致乘客在电梯上头部拥堵、挤伤 事故经过 2011年9月22日11时55分,西单站带班值班站长在站台巡视时发现西单站站台3号电梯故障,有异响,立即停梯,关闭电梯上下围栏,并挂故障牌;同时报机电人员维修,写报修记录。12时00分机电第二项目部电

梯维修中心主任唐某某、维修员南某某接到西单站客运人员报修电话,于12时20分到达西单站。机电维修人员到达现场后,根据车站工作人员的描述,对地铁故障情况进行检查,发现在电梯头部疏齿板处有3个小锣钉,进行了清除处理,开启扶梯试运转,看到扶梯运转正常,便向车站工作人员报告修复完成。此时机电工作人员在未打开该电梯上方护栏门的情况下,打开了该电梯下方的护栏门,且该电梯处于运行状态。恰好有列车进站,乘客乘坐3#扶梯,由于该扶梯上头部护拦门未完全打开,形成拥堵,发生乘客挤伤。 事故原因分析 经过对现场勘查、现场人员问询,并查看录像,调查判断,得出结论如下: (一)事故发生直接原因:电梯上头部护栏门没有打开是造成乘客拥堵、挤伤的直接原因。 (二)间接原因:机电维修人员对扶梯故障处理后,没有按照电梯维修规定进行全面运转检查,也没有按照电梯运行规定与客运人员进行交接;同

时也反应出机电公司在人员管理、安全教育方面存在缺失以及维修规章制度执行不到位等问题。 整改措施 1. 进一步加强全体员工教育培训力度,尤其对相关规章制度的掌握和执行落实。 2.加强运营分公司与设备分公司故障处理应急演练,优化并做好应急处置工作,提高现场应急处置水平。 3.立即对各线扶梯进出口护拦进行全面检查,统计汇总单向门位置数量,制定双向开启方案后,全面进行整改。 4.将所有运行扶梯护拦门置于开启状态,进行临时邦固。 5.将此次事件制作成案例,对全员进行一次教育,在全公司范围开展“举一反三查隐患”活动。

地铁盾构法隧道施工技术方案

地铁盾构法隧道施工技术方案

艮丿丿架安■ 苗沟机就位调试 --------- A 丿- 达- 止加掘逬 洒门螯封陽住妓 盾构札托歆- iVt 汕 涧门处牟站) 1 隆护舞曲除1 头 再次琥程啊试 期门篷刘圈安寢 — "L J V 割门处牢站 再就解1 側护堆凿陈■ 图1盾构隧道施工流程图 地铁盾构法隧道施工技术方案 1.施工流程图 1.1盾构法隧道施工流程图 初蜡掘it 到ii 终点

1.2盾构始发流程图 图2始发流程图 2.盾构机下井 盾构机从盾构工作井吊入,每台盾构机本身自重约 200t ,分解为5块,最 大块重约60t 。综合考虑吊机的起吊能力和工作半径,安排 1台200t 和一台 40t 汽车吊机进行吊入任务。盾构机下井拼装顺序见图 3。 始 发 准 备 拆 除 临 时 墙 掘 进

图3盾构机下井拼装示意图 在吊入盾构机之前,依次完成以下几项工作: 1.将测量控制点从地面引到井下底板上; 2.铺设后续台车轨道; 3.依次吊入后续台车并安放在轨道上; 4.安装始发推进反力架,盾构管片反力架示意图见图4; 5.安装盾构机始发托架,盾构始发托架示意图见图5。

8储口F诧 5*注腿諜 >—£ L27KW 图4盾构管片反力架示意图 3盾构机安装调试 3.1盾构机的安装主要工作 1?盾构机各组成块的连接; 2.盾构机与后续设备及后续台车之间各种线路、管线和机械结构的连接 3.盾构机内管片安装器、螺旋输送器、保园器的安装; 4?台车顶部皮带机及风道管的连接; 5?刀盘上各种刀具的安装。 3.2盾构机的检测调试主要内容 1?刀盘转动情况:转速、正反转; 2?刀盘上刀具:安装牢固性、超挖刀伸缩; 3.铰接千斤顶的工作情况:左、右伸缩;

(完整)地铁火灾事故分析解析

(完整)地铁火灾事故分析解析 编辑整理: 尊敬的读者朋友们: 这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)地铁火灾事故分析解析)的内容能够给您的工作和学习带来便利。同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。 本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)地铁火灾事故分析解析的全部内容。

摘要 随着经济的发展和人口的增多,地铁作为人们出行的交通工具的重要性越来越被 人们所重视.但是,地铁火灾的发生率及严重的损失同样令人担忧. 地铁火灾事故的发生不但会造成大量的人员伤亡,而且还会造成城市的大面积交 通堵塞,因此对地铁火灾事故的分析及预防有着重要的现实意义。 本文在详细分析国内外地铁火灾案例的基础上,从扑救难度大、疏散难度大、火 灾烟雾中的潜在危险性三大方面剖析了地铁火灾特点,从地铁管理、列车材料等方 面分析了地铁火灾的成因。通过对国外预防地铁火灾措施的学习,再针对我国地铁 现今存在的消防问题,从控制可燃材料、加强消防设施、保证火灾时地铁的通风以 及地铁火灾预案的设计、地铁管理制度等方面对我国地铁预防火灾提出了一些建议。 关键词:地铁火灾;事故分析;预防对策地铁火灾事故分析Abstract With economic development and population increase, the MTR as a means of transport people to the importance of travel is increasingly important to people。 However, the incidence of subway fire and severe loss of the same cause for concern。 Subway fire accident will not only result in a large number of casualties, but also resulted in large cities, traffic congestion,subway fires and therefore the analysis and prevention of important practical significance。 Based on the detailed analysis of subway fire at home and abroad, this paper studies the characteristics of a subway fire from three aspects: difficult to fight, difficult to evacuation, and the potential risk in fire smoke ; analyses the cause of a subway fire from two aspects such as subway management and the train materials. By learning from fire

两起事故案例(伦敦和南京地铁)

[图文]近期国内外地铁事故情况汇总 [日期: 2007-07-09]来源:安全技术部作者:collin 7月5日伦敦地铁脱轨基本情况 一、发生时间:当地时间7月5日上午9时4分(北京时间16时4分) 二、发生地点:东西向中轴线(红线)地铁城东Mile End与Bethnal Green (伯斯纳尔格林)车站之间 三、事故概况:一列车的6节车厢脱轨 四、对乘客的影响: 1、37名乘客受轻伤,其中11人被送往医院,事发后,有关部门第一时间疏散了大约700名乘客,有数百名乘客前后两个小时被困在隧道中。 2、除出轨地铁外,还有一班地铁被堵在隧道中,数以百计的乘客被迫下车徒步沿铁轨走到下一站站台,才得以逃脱困境。 五、乘客表现: 一位脱险的乘客表示,人们最初以为地铁遭到了恐怖袭击或者发生了爆炸,因此很多人非常紧张;也有一些乘客在惊恐中开始哭泣,甚至变得有点行为失控。 多亏当时也在车厢内的一位地铁工作人员及时出来解释,认为好像是发生了出轨事故,才让惊慌不定的乘客镇静了下来。 六、事故初步原因: 伦敦交通管理当局TFL说,有初期证据显示,铁轨上可能有障碍物。 七、事故造成的影响:

横贯伦敦大市区东西向的中轴线地铁目前大段瘫痪,从城东金融中心的利物浦街站(Liverpool Street)到东郊雷顿斯顿(Leytonstone)一段已经完全关闭。Mile End,Bethnal Green,Bow Road等车站部分或全部关闭。 八、救援情况: 伦敦消防大队共调动十四台各类大型器械前往事发现场,包括四台特别市政救援车辆。 1[字体:大中小]9月7日南京地铁供电设施被雷击基本情况 一、发生时间:9月7日上午8时32分(北京时间16时4分) 二、发生地点:地铁小行站附近地面段的供电设备 三、事故概况:强雷电击中位于地铁小行站附近地面段的供电设备,造成了中胜至安德门区间接触网断电。 四、事故造成的影响: 1、中断运营1小时37分钟,于10:09′恢复运营。 2、对受影响的乘客,根据乘客需要,为521人办理了免费退票。 五、乘客表现: 大多数乘客急着赶时间,耐不住长久等待,在大厅退票窗口处排起了长长的退票队伍。 由于地铁站外雨横风狂,一些乘客不愿再冒风雨前往公交站台,只好站在刷卡口,耐心等待地铁方面临时抽调的20分钟一班的应急列车。而伴随应急列车呼啸声中进站,刷卡口的众乘客也一起涌上。 六、事故初步原因: 雷击造成该故障区段接触网补偿磁瓶破裂、坠砣补偿绳断裂,致使维持运营的接触网短路而断电。

地铁隧道盾构施工安全管理措施 - 制度大全

地铁隧道盾构施工安全管理措施-制度大全 地铁隧道盾构施工安全管理措施之相关制度和职责,1引言安全管理工作己在我国得到了日益重视,尤其是在加入了WTO后,全球经济趋于一体化,要求发展中国家的安全生产管理水平赶上世界先进水平,企业安全管理工作已作为和生产管理并列的一项企业... 1引言 安全管理工作己在我国得到了日益重视,尤其是在加入了WTO后,全球经济趋于一体化,要求发展中国家的安全生产管理水平赶上世界先进水平,企业安全管理工作已作为和生产管理并列的一项企业管理重要内容。而建筑业是伤亡事故多发的行业,仅次于矿山作业。隧道施工具有建筑业和矿山业的一些共同特点,施工危险程度大,安全隐患多。盾构施工隧道技术是一项先进的隧道施工技术,开挖面处在盾构体的保护下,可以最大程度避免土体失稳或冒顶带来的人身伤亡事故,近年来,在上海、广州、北京和深圳等地得到了较为广泛的应用。 盾构法隧道施工技术由英国工程师布鲁诺尔发明于1818年,并于1825年运用于工程实践。我国从1956年开始引进盾构施工技术,从20世纪80年代开始得到了快速发展,目前,在上海、广州等大城市中逐渐成为城市地下铁道施工的主流方法,其特有的安全施工和管理问题引起犷广泛注意,本文为结合多年的盾构施工实践和安全管理经验的总结。 2盾构机刀盘前的压气作业 2.1盾构机的压气作业 当操作人员必须进人盾构机前体刀盘内作业时,如果盾构机前方或上方的土体不能自稳,上体可能通过刀盘的开日处进人刀盘内,威胁作业人员的安全。大多先进的盾构机均配备了压气系统,即通过密封刀盘和盾构前体的通道,向刀盘内注入无油空气,使刀盘内的压力升高,以达到平衡外侧土体压力的目的,压力最大可达到3-4kg/cm2。为了保证操作人员的适应性,一般在通道卜设置密闭的过渡增压舱,这将在很大程度上缓解压力变化带给操作人员的影响。由于操作人员是在一个密闭的环境中工作,刀盘内空间狭窄,不能有多人同时作业,压人的空气质量也可能含有一定的杂质,且工作面的环境温度将会很高,当操作人员出现不适时,需要经过一定时间减压过渡后才能得到医疗。因此,压气作业是盾构安全施工的一个重点,也是一个值得注意的危险源。 2. 2压气作业的相应措施 (1)尽量减少在不良地质条件下进人刀盘内,尽可能地在基本可以自稳的地层中进行开舱作业,这样可以不用压气作业。因此,要根据地质条件的变化,选择适当的时机,提前或推迟进人刀盘内,尤其是更换刀具时要有预见性。 (2)要挑选身体健康、强壮的工人作为进人刀盘内的操作人员,并经过职业病医院严格的身体检查,确保对恶劣环境的抵抗力。一般压气作业一天不宜超过4小时。 (3)如需压气作业时,一定要选用无油型空压机,确保空气质量,减小环境污染。 (4)准备好通迅工具,无间断地保持联络。 (5)做好应急准备,必要时要能在减压舱(刀盘与盾构前体间的密封过渡通道)内抢救伤员,并与有关医院签好急救协议。有条件的要配备专用的流动医疗舱,以便在送往医院的过程中,保持伤员所受体外压力差基本一致。 3盾构刀具更换 随着地质条件的变化,隧道掘进过程中需要对刀具进行更换,尤其是当岩石强度较高时,需要

地铁盾构施工安全管理

地铁盾构施工安全管理 发表时间:2017-07-17T11:34:12.927Z 来源:《建筑知识》2017年14期作者:符昌钦 [导读] 在二十一世纪,城市化的进程得到加快,地铁建设是城市发展的必然选择之一。 (广东华隧建设股份有限公司广东广州 510520) 【摘要】在二十一世纪,城市化的进程得到加快,地铁建设是城市发展的必然选择之一。但是在地铁盾构施工中,存在的各类风险直接关系到社会的和谐稳定和人民的生命财产安全。因此,地铁盾构施工的安全尤为重要。本文对地铁盾构施工中的安全管理进行研究,为今后的地铁施工提供参考依据。 【关键词】地铁盾构;施工风险;安全管理 【中图分类号】U231 【文献标识码】A 【文章编号】1002-8544(2017)14-0105-02 1.引言 我国的交通流量每年都在快速增长,地面交通已无法满足交通需求,人们开始在地下兴建地铁,但是地铁盾构施工存在的风险不容忽视,需要对这些风险进行分析与管理,才能保证地铁盾构施工建设的安全。 2.地铁盾构施工存在的风险 近几年来,地铁给我们带来的便利可是家喻户晓,各大城市也在加快地铁的修建,其所带来的安全事故也层出不穷,给地铁的施工带来了困扰。盾构法相对于别的工法施工虽然具有较高的安全性,但是也避免不了起重伤害、机械伤害、坍塌、车辆伤害、高处坠落、触电、中毒等安全事故,给人民的生命与财产带来了巨大的损失。 2.1 起重伤害的风险 盾构施工过程中一般需要龙门吊或者起重设备进行垂直吊装作业,作为施工物资运送的必须设备,在日常机械设备管理上,如无法对设备机械及时进行维修和保养,缺少过程安全检查,设备带病作业,过程中未能严格执行起重作业安全操作规程,容易造成群死群伤事故。 2.2 坍塌的风险 盾构隧道设计规划一般会在道路下方穿行,甚至会不可避免的穿越建构筑物群,由于盾构施工过程对沉降的要求很严格,加上地质条件的复杂性,存在很多不可预见性,无法保证盾构施工过程中路面不发生塌方或沉降。在盾构施工中若发生坍塌事故,可能会造成路面塌陷,车辆人员掉入,影响路面交通,严重的造成建筑物倒塌,造成重大人员伤亡和经济损失,坍塌事故还可能使自来水管、煤气管等管线遭到破坏,造成更为严重的次生灾害。 2.3 车辆伤害的风险 盾构隧道的水平运输主要是靠电瓶车,由于隧道搭设的临时性轨道质量相对比较差,如果电瓶车刹车不灵敏或者司机不正当的操作都会使电瓶车发生意外,造成电瓶车溜车事故,轻者撞坏了设备,重者伤及人命。1998年3月19日晚,在上海地铁2号线陆家嘴-东昌路区间,电瓶车司机在清理轨道下的泥土时启动电瓶车但是没有打铃警示,车才开了几米远就撞到了民工方正飞。 2.4 盾构开仓换刀作业的风险 盾构施工中不可避免的会进行换刀作业,常规换刀作业分为常压开仓和气压开仓,由于地下环境的复杂性,掌子面的稳定性、舱内气体的质量、施工过程的动火作业等等,种种风险因素中如果过程管理不严,没有按照操作规程作业,会给仓内施工人员带来危险。 2.5 隧道堵漏作业的风险 隧道堵漏往往与盾构施工同时进行,不可避免的与电瓶车之间存在交叉作业,堵漏架子的不稳定性、过程中固定措施不足、高处作业不系安全带、堵漏材料侵入电瓶车轨行区、行车过程指令不明确、堵漏工人不避让等风险因素,都有可能造成人车伤亡事故。 2.6 交叉作业的风险 交叉作业是指两个以上的班组在同一区域内进行施工。盾构施工过程中,为了施工能够穿插进行,盾构施工中的电瓶车往往与联络通道开挖、隧道堵漏,与车站主体之间存在诸多交叉作业,如果各方职责不明确,过程中管理不严,极易在交叉作业过程中出大事故。 2.7 高处坠落风险 盾构法地铁施工过程中,施工人员在盾构机安装维护过程中如果高处作业没有系好安全带,或者施工作业平台防护不到位,稍在有不慎就会从高处摔下去,造成高处坠落事故。 2.8 触电风险 盾构机为大型的设备,施工过程中采用一万伏供电电压,除了生产用电外,需要用到其他的辅助设备,如水泵、电焊机、照明灯等等,如果电工过程中检查不严、无证上岗、线路乱拉乱接、安全警示不到位、漏电保护器失效等等,都有很容易在施工过程中发生漏电事故。 2.9 物体打击风险 在地铁施工过程中,如果安全帽佩戴不正确,头部就有可能受到打击,稍有不慎就会被没有放稳的器材砸到,比如在交叉作业中很容易被上方的施工人员掉落的工具造成伤害。 3.地铁盾构施工风险控制措施 3.1 起重伤害控制措施 为了更好的做好起重设备的安全管理。首先,临时起重设备必须严格执行进场审批制度,从源头上杜绝有问题的起重设备进入施工现场,杜绝设备带病作业;其次,加强对工人进场的教育关,特别是特殊工种,要求工人履行三级安全教育外,还必须对其进行手抄安全技术交底,通过深刻教育传输过程安全管理的强度和硬度,做到严把进场关。最后,过程中做好安全监督,加强检查,日常中加强对设备的维修保养。通过管控人的安全行为和物的安全状态,确保设备安全运行。 3.2 坍塌控制措施 盾构隧道在施工过程中(1)针对不利地层,可提前对隧道沿线进行加固处理,改良土体,特别是溶洞发育较多的地方,可以进行填

地铁工程事故案例分析

目录 1 引言 (1) 2 事故的主要表现形式和风险源 (1) 2.1 围护支撑体系失稳 (2) 2.2 纵向滑坡 (3) 2.3 地下水的危害 (4) 2.4 坑底隆起 (5) 2.5 隧道施工风险源 (8) 3 事故案例分析与警示 (10) 3.1 北京轨道交通事故 (11) 3.2青岛轨道交通事故 (15) 3.2.1青岛地铁三号线君峰路~西流庄站区间塌方事故 (15) 3.2.2青岛地铁三号线江西路车站塌方事故 (18) 3.2.3青岛地铁三号线河西站—河东站区间坍塌事故 (21) 3.2.4青岛地铁3号线岭清区间隧道塌方事故 (23) 3.2.5青岛地铁3号线太湛区间隧道塌方事故 (30) 3.3武汉轨道交通事故 (35) 3.3.1广埠屯站~虎泉站区间隧道掌子面突泥涌水 (35) 3.3.2青年路站~中山公园站区间建筑物裂缝事故 (37) 3.3.3广埠屯站突水涌泥事故 (38) 3.3.4王家墩北站~范湖站区间涌水涌砂事故 (40) 3.3.5王家湾站端头井局部滑移险情 (41) 3.3.6地铁4号线附近发生地陷 (44) 3.4 重庆轨道交通事故 (45) 3.4.1铜锣山隧道2#斜井涌水事故 (45) 3.5大连轨道交通事故 (48) 3.5.1大连交通大学站塌方事故 (48) 3.5.2华北路站~泉水路站区间坍塌事故 (50)

3.5.3山东路沉降事故 (52) 3.5.4南林路站~机场站区间塌方事故 (53) 3.6福州轨道交通1号线三角埕站围护结构渗水事故 (54) 3.7南京地铁事故 (57) 3.7.1南京地铁机场线5a#-5#暗挖隧道地表沉降异常险情 (57) 3.7.2 南京地铁路面泡沫事故 (59) 3.8宁波轨道交通事故事故 (59) 3.8.1海晏北站~福庆北站区间隧道多处管片开裂事故 (59) 3.8.2大碶站~松花江站区间坍塌事故 (62) 3.9哈尔滨地铁铁路局站~哈工大站区间塌陷事故 (63) 3.10西安地铁D3TJSC-12标段塌方事故 (64) 3.11广州地铁康王路坍塌事故 (65) 3.12郑州地铁坍塌事故 (66) 3.13上海地铁坍塌事故 (67) 3.14长春地铁事故 (68) 4结论与建议 (69)

地铁事故案例分析

地铁事故案例分析 地铁事故案例分析引发地铁事故因素分析我个人认为引发地铁事故的因素可以分为三种:第一:人为因素第二:设备因素第三:天气因素人为因素人为因素又可以分为一下几种情况:违章作业;业务不精;人为因素又可以分为一下几种情况:判断失误;身体因素;人为因素又可以分为一下几种情况:地外人员对地铁设备不了解;人群密集、客流量大;故意破坏、恐怖袭击。设备因素设备因素可以分为以下几种情况:设备故障;新设备状态不稳定;设备潜在的安全隐患。天气因素天气因素又可以分为以下几种情况:风、雨、雷、电、雾的影响;气温和湿度的影响。人为原因引起的地铁事故一、南京地铁列车连挂车钩发生碰撞事故时间地点时间:2005年12月1日6 时55分。地点:小行—安德门上行区间,距安德门站约300米处。事故后果此次事故造成2526车A端的防爬器轻微擦伤,2526车A端车头右侧的导流罩损坏。事故经过7:40,行调指令基地内1314车出库连挂故障车2526车;8:05,1314车出库,采用洗车模式与2526车连挂时,因列车处于小半径曲线位置,车钩对位不正,连挂失败,车钩发生碰撞。事故原因分析本案例事故的主要原因是编制技术文本时,考虑的不够充分,没有将“小曲率半径连挂作业要求”进行明确;当时车辆连挂时线路半径为150米,根据《南京地铁南北线一期工程车辆合同文件附件1》中对车钩连挂的规定,是不允许进行自动连挂的,合同中明确要求列车自动连挂时最小半径不得小于300米。同时也反应出调度人员和作业人员安全意识不强,经验不足,缺乏处理特殊情况的应变能力。事故原因分析(续) 经过此事故后,南京地铁在2007版《小行基地运作规则》中规定:小行基地内道岔区段及其它300 米以下曲线半径线路原则上不得进行电客车连挂作业。特殊情况下须进行连挂作业时,须确认车钩位置,如果车钩自动对中不能达到对中范围的要求,须进行手动调整。150米曲线半径的线路上进行连挂作业时,由车辆系统派专业人员进行现

地铁区间隧道盾构施工安全风险管理的措施1范玉玉

地铁区间隧道盾构施工安全风险管理的措施1范玉玉 发表时间:2018-07-12T13:22:39.263Z 来源:《建筑学研究前沿》2018年第7期作者: 1范玉玉 2邵磊 [导读] 近年来随着城市数量的增加,规模的扩大,造成了可用土地减少、环境污染、交通拥挤、空气质量下降等问题。 1范玉玉 2邵磊 1身份证号码:37098219830810XXXX;2身份证号码:37083119850524XXXX 摘要:近年来随着城市数量的增加,规模的扩大,造成了可用土地减少、环境污染、交通拥挤、空气质量下降等问题。在这种形式之下,以高效、节能、低耗、舒适为特点的地铁在我国得到了迅速发展,盾构法以其与众不同的优势,迅速发展为修建城市地铁隧道施工的主要方法。上述施工方法在快速发展的过程中暴露了一些问题,其中安全问题是地铁隧道建设过程中最受关注的,由于地铁区间隧道工程的大规模建设且具有特殊的地理位置、建设周期较长以及高安全性和质量的要求造成影响安全施工的不确定因素较多,可能引发的事故种类繁多,因此,对地铁区间隧道盾构施工进行风险管理研究十分迫切和必要。 关键词:地铁区间;隧道盾构;施工安全;风险管理 1风险的定义 风险的不确定性包含风险发生的不确定性与风险产生后果的不确定性两类。其中风险发生的不确定性主要是风险是否会发生,风险将在何时何地发生等。风险的不确定性主要指风险损失的不确定性。其范围包括风险发生与否的不确定性、风险发生时间的不确定性、风险发生程度的不确定性与风险发生造成损失大小的不确定性。虽然不同的学者对风险的理解不同,但大家都普遍认可风险的内涵为不确定性。本文认为风险是指在项目实施过程中,不同阶段的各类潜在风险因素发生的可能性与一旦发生带来的损失程度的综合。 1.1风险的特征 风险在现代社会产生的影响越来越大,要对风险进行深刻认识并尽可能减轻风险带来的危害还需要了解风险的特征。 1.1.1风险的不确定性 风险的不确定性包括的范围比较广,一般认为主要有风险发生的不确定、风险何时发生的不确定与损失程度的不确定,。在如今这个社会,风险的重要性是不言而喻的,针对风险的不确定性,人们只能利用概率理论或模糊理论去讨论风险的大小程度。但预测结果也只能作为参考,因为小概率事件也有发生的可能,风险可能现在发生,也可能以后发生,风险发生的结果有可能还导致产生新的风险,这些都是不确定的。 1.1.2风险的客观性 风险的客观性是指风险是客观存在的,取决于主体的客观结构与状态,而不随人的主观变化而改变。我们可以研究风险,通过改变主体状态或客观环境尽量将风险控制在可承受的水平,而不能完全消除风险,任何事物都不能做到零风险。 1.2多样性和复杂性 地铁工程施工技术的多样性与施工环境的多样性也决定了施工风险的多样性,地铁工程受环境的制约影响很大,环境风险是不容忽视的。同时,地铁施工风险也是复杂多变的,风险是可以相互影响、相互组合的,大多事故的发生都不是由单一风险因素引起的,而是多种风险共同作用的结果。 1.3风险的动态性 风险具有动态性,工程建设项目风险的动态性尤其普遍。有的风险会贯穿于整个工程的始终,也有风险在工程建设的过程中逐渐显现,风险的重要程度也会随着工程进度而不断改变。针对风险的这一特征,需要在工程前期就要尽可能的识别出所有风险,并在施工过程中逐渐加入所识别的新风险,建立一个尽可能全面的风险清单。对于风险清单中的每一个风险因素都要有相应的应对策略,并在施工过程中,不断对照检查清单中的风险,分析是否有发生的可能性,坚持动态风险管理的理念。此外,风险还具有普遍性、偶然性、发展性等特征。 1.4风险的构成要素 风险构成三要素包括风险因素、风险事故、风险损失。 1.4.1风险因素 风险因素是指引发风险事件的原因与条件,是造成风险事故的潜在原因,是导致风险损失发生的间接条件。一般情况下风险因素分为以下两种:有形风险和无形风险。有形风险指造成风险事件发生或者引发风险损失更加严重的事物自身拥有的因素,所以它也被称为实质风险,举例来说,施工过程中自然条件恶劣、地质不良等都是有形风险。无形风险是指导致风险事件发生的人的心理或行为因素。 1.4.2风险事故 风险事故又称风险事件,指导致人身伤害或财产损失发生的不可预料事件。风险事故是造成风险损失的直接原因或前提条件,它的发生使事物存在的潜在危险转变成了可见的人身伤害或财产损失。 1.4.3风险损失 风险损失是因为不可预料事件发生所引发的意外的经济损失。通常损失有两种形态:直接损失和间接损失。直接损失是风险事件发生引发的人身伤害及善后处理所支出的费用和损坏财产的价值,间接损失是指直接损失引发的在一定范围内的未来财产利益的损失。 2城市地铁区间隧道盾构施工风险管理策略 2.1控制地层与重要建筑物的隆降 在盾构机掘进施工前,要对施工影响范围内的地面建筑物、地下障碍物、地下管线以及地下设施等进行详细探查,并对重要建筑物给予必要的事先加固或保护。若未对地层及重要建筑物进行保护采取针对性措施很有可能造成地层及重要建筑物沉降。①要建立严格的隧道沉降量测量控制网,及时定期的对地层及建筑物进行监控,并分析盾构前方监测点的监测数据,充分掌握盾构施工对隧道及本身周边环境的影响。地铁施工中地面监测数据一般控制在-30~+10mm范围以内。若地面变形接近-21~+7mm时,应尽快找出原因并采取相应的而措

城市轨道交通运营阶段事故案例统计、汇编_2019

近年来我国城市轨道交通安全事故统计及分析 根据建设工程施工安全事故快报信息系统统计,结果表明城市轨道交通工程试运营及正式运营过程中坍塌事故所占比例较大,往往造成群死群伤和重大经济损失,社会影响严重,必须重点防。 城市轨道交通系统的运营安全不仅涉及到人、车辆、轨道、列车运行相关设备(信号系统、供电系统)等主要因素,还受到社会、环境、地质条件等因素的影响。我们将按照通过事故产生的主要因素进行分类统计,回顾一下世界城市轨道交通主要的事故。见下表。 典型事故统计 1、近二十年国外地铁运营事故统计情况: (1) 火灾事故 1971 年12 月加拿大蒙特尔火车与隧道端头相撞引起电路短路,造成座椅起火,36 辆车被毁,司机死亡。 1972 年10 月德国东柏林车站和4 辆车被毁。 1973 年3 月法国巴黎人为纵火,车辆被毁,2 人死亡。 1975 年7 月美国波士顿隧道照明线路被拉断,引发大火。 1976 年5 月葡萄牙里斯本火车头牵引失败,引发火灾,毁车4 辆。 1976 年10 月加拿大多伦多人为纵火,4 辆车被毁。 1977 年3 月法国巴黎天花板坠落引发火灾。 1978 年10 月德国科隆丢弃的未熄灭烟头引起火灾,8 人伤。 1979 年1 月美国旧金山电路短路引发大火,1 人死亡,56 人伤。 1979 年3 月法国巴黎车厢电路短路引发大火,26 人伤。 1979 年9 月美国费城变压器火灾引起爆炸,178 人伤。 1979 年9 月美国纽约烟头引燃油箱,2 辆车燃烧,4 名乘客受伤。 1980 年4 月德国汉堡车箱座位着火,2 辆车被毁,4 人伤。 1980 年6 月英国伦敦烟头引发大火,1 人死亡。 1980~1981 年美国纽约共发生8 次火灾,50 人重伤,53 人死亡。 1981 年6 月俄罗斯莫斯科电路引起火灾,7 人死亡。 1981 年9 月德国波恩操作失误火灾,无人员伤亡,但车辆报废。

相关主题
文本预览
相关文档 最新文档