当前位置:文档之家› midas高层建筑的PUSHOVER分析

midas高层建筑的PUSHOVER分析

midas高层建筑的PUSHOVER分析
midas高层建筑的PUSHOVER分析

For utmost Accuracy & Productivity,

MIDAS provides the best solution in Structural Engineering, We Analyze and Design the Future !

高层建筑的PUSHOVER 分析

MIDAS

Gen

Structural Engineering System

目录

荷载组合 (2)

一般设计参数概述 (2)

钢筋混凝土构件设计参数 (4)

钢筋混凝土构件设计 (6)

静力弹塑性(Pushover)分析 (9)

Pushover计算书 (15)

1、结构分析计算 (15)

2、计算结果 (17)

3、计算结果的工程判断 (21)

荷载组合

主菜单选择 结果>荷载组合:

一般组合:用于查看内力变形等,一般组合中有包络组合 混凝土设计:用于结构设计部分组合 点击自动生成

设计规范:GB50017-03

图1 荷载组合

一般设计参数

1:主菜单选择

设计>一般设计参数>定义框架: 设计类型 :三维

图2 定义框架

2:主菜单选择 设计>一般设计参数>指定构件:

自动指定构件自由长度

注:

1. 考虑双向地震勾选双向地震程序会在荷载组合中自动添加。

2.用户亦可自定义所需的荷载用户,先在左侧名称一栏定名称,在右侧选择荷载工况和组合系数。

当梁单元中间被其它节点分割成几部分时,需由程序自动指定构件,定义梁单元在强轴作用平面内的自由长度。

注:当有非直线梁单元时,需在模型中选择此梁单元由手动完成。

3:主菜单选择设计>一般设计参数>反转构件方向:

若有对称单元且对称部分单元编号相同时,选择此项菜单,否则不用选择此项菜单。

4:主菜单选择设计>一般设计参数>自由长度:当由程序自动指定构件后,程序默认自由长度为构件两节点间距离,一般不用选择此项菜单。当有一些特殊构件的自由长度需由设计者指定时,选择此项菜单编辑构件自由长度。

5:主菜单选择设计>一般设计参数>计算长度系数:当由程序自动计算时,一般不用选择此项菜单。当有一些特殊构件的计算长度系数需由设计者指定时,选择此项菜单编辑构件计算长度系数。

6:主菜单选择设计>一般设计参数>极限长细比:一般由程序根据规范内定,不用选择此项菜单。当有一些特殊构件的极限长细比需由设计者指定时,选择此项菜单编辑构件极限长细比。

7:主菜单选择设计>一般设计参数>等效均布荷载系数:此系数为压弯构件在强轴(或弱轴)作用平面内稳定计算时的等效弯矩系数,可选择由程序自动计算。

勾选由程序自动计算

在模型窗口选择竖向压弯构件

当有一些特殊构件的稳定计算需由设计者指定时,在此项菜单内直接输入等效弯矩系数即可。8:主菜单选择设计>一般设计参数>编辑活荷载折减系数:

一般在做基础设计时考虑活荷载折减,其它情况可不考虑。考虑时由设计者直接输入折减系数。

9:主菜单选择设计>一般设计参数>地震作用放大系数:

考虑时由设计者直接输入放大系数。

10:主菜单选择设计>一般设计参数>编辑构件类型:

定义框架梁、框架柱、墙。

选项:添加/替换构件类型:梁梁:框架梁

在模型窗口利用过滤器功能选择框架梁,按即可。

同样方法定义柱和墙构件。

钢筋混凝土构件设计参数

1:主菜单选择设计>钢筋混凝土构件设计参数>定义抗震等级

图3 设计标准

2:主菜单选择设计>钢筋混凝土构件设计参数>材料分项系数

图4 材料分项系数

3:主菜单选择设计>钢筋混凝土构件设计参数>编辑钢筋混凝土材料

特性

图5 钢筋混凝土材料特性

4:主菜单选择设计>钢筋混凝土构件设计参数

编辑最大配筋率

图6 编辑最大配筋率

5:主菜单选择设计>钢筋混凝土构件设计参数>定义设计用钢筋直径

图7 定义设计用钢筋直径

钢筋混凝土构件设计

1:主菜单选择设计>钢筋混凝土构件设计>梁的设计

梁构件配筋

在选择项勾选全选,再勾选更新配筋,则程序按计算的配筋量把配筋数据

赋予梁构件。需要查看单个构件的详细设计情况,可选择相应构件并点击

图形结果或者详细结果查看。

图8 梁设计结果

图9 柱设计结果

图10 墙设计结果

静力弹塑性(PUSHOVER)分析

1.主菜单选择设计>静力弹塑性分析>静力弹塑性控制

图11 静力弹塑性分析控制

2.主菜单选择设计>静力弹塑性分析>PUSHOVER荷载工况:添加

静力弹塑性分析的荷载工况:push-y

控制选项:一般控制最大平移:0.2m

勾选使用初始荷载

荷载分布形式:模态

振型:1

放大系数:1

按即可

图12 静力弹塑性分析荷载工况

3.主菜单选择设计>静力弹塑性分析>PUSHOVER荷载工况:定义/显示初始荷载

荷载工况:DL 放大系数:1 按

注:控制位移

一般为总高

度×塑性位移

角限值

荷载工况:LL 放大系数:0.5 按

按即可

图13 定义初始荷载

4.主菜单选择设计>静力弹塑性分析>

定义PUSHOVER铰特性值

添加

铰数据类型名称:lj(梁铰)

定义数据形式:弯矩-Y,Z(弯矩铰)

铰数据类型名称:zj(柱铰)

定义数据形式:P-My-Mz(轴力弯矩铰)

铰数据类型名称:QJ(墙铰)

定义数据形式:PMM(轴力弯矩铰)或者剪力-y,z(剪力铰)

图14 定义PUSHOVER铰特性值

5.主菜单选择设计>静力弹塑性分析>分配铰特性值选项:添加/替换

静力弹塑性铰的形式:lj

单元类型:梁单元

铰的位置:I和J

在模型窗口选择所有梁单元(利用过滤器功能选择),按即可。

同样方法分配柱铰和墙铰

6.主菜单选择设计>静力弹塑性分析>运行静力弹塑性分析7.主菜单选择设计>静力弹塑性分析>静力弹塑性曲线

静力弹塑性分析的荷载工况:push1

显示方式:能力反应谱定义设计反映谱:需求反应谱

设计反映谱:CHINA(GB50011-2001)

设计地震分组:1,地震设防烈度:7(0.01g)

地震设防烈度:7(0.01g)场地类别:Ⅱ

地震影响:罕遇地震阻尼比:0.05

结构反应类型:A(短周期新建建筑物)B(短周期已有建筑物)

C(短周期破损建筑物)USER(用户定义)

图15 能力需求谱曲线

8.自动生成性能控制点荷载步,点击,然后点击

图16 性能控制点荷载步push-y(pp)

9.主菜单选择设计>静力弹塑性分析>PUSHOVER图形> 层剪力/层间位移/层间位移角

PUSHOVER荷载工况:push-y

分析结果类型:层-层剪力

层-层间位移

层-层间位移角

步骤:step5 , 10, 15, pp 。点击

图17 层-层剪力图

图18 层-层间位移图

图19 层-层间位移角图

10.主菜单选择 设计>静力弹塑性分析>铰状态表格

图20 铰状态表格

11.主菜单选择 结果>变形>变形形状:查看塑性铰产生的状态

荷载工况/荷载组合:push_y ,步骤: 位移:DY

显示类型:图例、动画、铰状态 点击

注:程序自动统计出每一层处于各状态铰的数量。

图21 塑性铰产生的状态Y方向

图22 塑性铰产生的状态X方向

Pushover计算书

1、结构分析计算

1.1 结构分析采用程序

结构分析采用MIDAS/Gen(General structure design and analysis System),该软件由世界最大的钢铁集团韩国的浦项制铁(POSCO)集团开发,是将通用的有限元分析内核与土木结构的专业性要求有机地结合的通用建筑结构有限元分析与设计软件。该软件目前已成功应用于世界5000多个实际工程项目当中。

1.2 结构静力弹塑性分析方法

1、计算方法

MIDAS/Gen采用的是ATC-40(1996)和FEMA-273(1997)中提供的能力谱法(Capacity Spectrum Method, CSM)对结构进行大震作用下的静力弹塑性分析(Pushover 分析),进而评价该结构的抗震性能。水平推覆力分布形式可采用模态分布、静力荷载工况(用户自定义)、常量加速度分布三种形式,通过Pushover法建立结构的能力谱,同时把规范规定的反应谱变换为结构大震作用下的需求谱,找出结构性能点。

在大震作用下,根据性能点时的结构变形,对以下两个方面进行评价:

a)层间位移角:是否满足抗震规范规定的弹塑性层间位移角限值;

b)结构变形:由结构塑性铰的分布,判定结构薄弱位置。根据塑性铰所处的状态,检验结构构件是否满足大震作用下的抗震性能水准。

2、计算方式

一般工程实例可由SATWE模型转换至MIDAS/Gen,转换程序由北京迈达斯技术有限公司提供。除墙体开洞改为按连梁输入外,几何参数及荷载均同SATWE模型。弹性计算考虑风荷载和地震作用。地震作用取7度0.1g多遇地震,采用振型分解反应谱方法计算。静力弹塑性分析的操作步骤可按上述过程进行。

3、Pushover参数

1)Pushover分析控制

荷载最大增幅次数20。

最大迭代/增幅步骤数10。

收敛值0.001。

2)Pushover地震作用工况

如果结构的位移在目标性能范围内,则继续评价各构件的性能。在MIDAS/Gen中采用与FEMA-273或ATC-40中推荐的方法类似的方法评价构件的性能。如图2.7所示性能状态分为三个阶段。

IO = 直接居住极限状态(Immediate Occupancy)

LS =安全极限状态(Life Safety)

CP =坍塌防止极限状态(Collapse Prevention)

图 1 构件的性能评价

2、计算结果

2.1、各地震作用工况下的结构静力推覆计算结果及图形

本例题只采用第一种类型的荷载分布模式进行Pushover分析,即模态分布模式,其它类型的操作方法和结果评价相同,可举一反三。考虑到结构的非对称性,每种荷载分别按X、Y两个主方向加载,如果有必要也可分别考虑正负不同情况。对上述2个荷载工况进行了Pushover分析,得到各个工况下结构的能力谱曲线。然后采用7度0.1g的罕遇地震反应谱曲线作为需求谱,分别求出能力谱与需求谱交点,即性能点。

以下以表格形式列出各单元的Pushover曲线及性能点的状态参数。

最大值:1/108 (27F)

最大值:1/110 (27F)

18

柱铰分布立面图局部楼层塑性铰分布平面图

图2 Push_y

19

midas时程分析

16. 时程分析 概述 对下面受移动荷载的简支梁运行时程分析。 ?材料 弹性模量 : 2.4?1011 psi 容重(γ) : 0.1 lbf/in3 ?截面 截面面积(Area) : 1.0 in2 截面惯性矩(Iyy) : 0.083333 in4 半径(radius) : 10.0 in 厚度(thickness) : 2.0 in 重力加速度(g) : 1.0 in/sec2

速度 容重 整体坐标系原点 (a)受移动荷载的简支梁 (b)时程荷载函数 图 16.1 分析模型 模型是受600 in/sec速度的移动荷载的简支梁结构。通过时程分析了解动力荷载下结构的反映,改变荷载周期来查看共振的影响。

设定基本环境 打开新文件以‘时程分析 1.mgb’为名保存. 文件 / 新文件 文件 / 保存 ( 时程分析 1 ) 设定单位体系。 工具 / 单位体系 长度 > in ; 力 > lbf 图 16.2 设定单位体系

设定结构类型为 X-Z 平面。且为了特征值分析,设定自重自动转换为节点质量。 模型/ 结构类型 结构类型 > X-Z 平面 将结构的自重转换为质量> 转换到 X, Y, Z 重力加速度( 1 ) 点格(关) 捕捉点(关) 捕捉节点捕捉单元正面 图 16.3 设定结构类型

定义材料以及截面 输入材料和截面,采用用户定义的类型和数值的类型输入数据。 模型/ 特性/ 材料 一般> 名称( 材料) ; 类型> 用户定义 用户定义 > 规范>无 分析数据 > 弹性模量 ( 2.4E+11 ) 容重( 0.1 ) ? 模型/ 特性/ 截面 数值 名称( 截面) ; 截面形状> Pipe 尺寸 > D ( 10 ) ; t w( 2 ) 截面特性值> 面积( 1 ) ; Iyy ( 0.083333 )? 图 16.4 定义材料图 16.5 定义截面

SAP2000之Pushover分析

SAP2000之Pushover分析 Pushover分析:基本概念 静力非线性分析方法(Nonlinear Static Procedure),也称Pushover 分析法,是基于性能评估现有结构和设计新结构的一种方法。静力非线性分析是结构分析模型在一个沿结构高度为某种规定分布形式且逐渐增加的侧向力或侧向位移作用下,直至结构模型控制点达到目标位移或结构倾覆为止。控制点一般指建筑物顶层的形心位置;目标位移为建筑物在设计地震力作用下的最大变形。 Pushover方法的早期形式是“能力谱方法”(Capacity Spectrum Method CSM),基于能量原理的一些研究成果,试图将实际结构的多自由度体系的弹塑性反应用单自由度体系的反应来表达,初衷是建立一种大震下结构抗震性能的快速评估方法。从形式上看,这是一种将静力弹塑性分析与反应谱相结合、进行图解的快捷计算方法,它的结果具有直观、信息丰富的特点。正因为如此,随着90年代以后基于位移的抗震设计(Diaplacement-Based Seismic Design,DBSD)和基于性能(功能)的抗震设计(Performance-Based Seismic Design. PBSD)等概念的提出和广为接受,使这种方法作为实现DBSD和PBSD的重要工具,得到了重视和发展。这种方法本身主要包含两方面的内容:计算结构的能力曲线(静力弹塑性分析)、计算结构的目标位移及结果的评价。第一方面内容的中心问题是静力弹塑性分析中采用的结构模型和加载方式;第二方面内容的中心问题则是如何确定结构在预定地震水平下的反应,目前可分为以A TC-40为代表的CSM和以FEMA356为代表的NSP (Nonlinear Static Procedure,非线性静力方法),CSM的表现形式是对弹性反应谱进行修正,而NSP则直接利用各种系数对弹性反应谱的计算位移值进行调整。两者在理论上是一致的。在一些文献中将第一方面的内容称为Pushover,不包括计算目标位移和结果评价的内容。本文中,将两方面的内容统称为“Pushover 分析”。基于结构行为设计使用Pushover分析包括形成结构近似需求和能力曲线并确定曲线交点。需求曲线基于反应谱曲线,能力谱基于Pushover分析。在Pushover分析中,结构在逐渐增加的荷载作用下,其抗侧能力不断变化(通常用底部剪力-顶部位移曲线来表征结构刚度与延性的变化,这条曲线我们可以看成为表征结构抗侧能力的曲线)。将需求曲线与抗侧能力曲线绘制在一张图表中,如果近似需求曲线与能力曲线的有交点,则称此交点为性能点。利用性能点能够得到结构在用需求曲线表征的地震作用下结构底部剪力和位移。通过比较结构在性能点的行为与预先定义的容许准则,判断设计目标是否满足。在结构产生侧向位移的过程中,结构构件的内力和变形可以计算出来,观察其全过程的变化,判别结构和构件的破坏状态,Pushover分析比一般线性抗震分析提供更为有用的设计信息。在大震作用下,结构处于弹塑性工作状态,目前的承载力设计方法,不能有效估计结构在大震作用下的工作性能。Pushover分析可以估计结构和构件的非线性变形,结果比承载力设计更接近实际。Pushover分析相对于非线性时程分析,可以获得较为稳定的分析结果,减少分析结果的偶然性,同时可以大大节省分析时间和工作量。

MIDAS—GEN施工阶段分析例题

例题钢筋混凝土结构施工阶段分析 2 例题. 钢筋混凝土结构施工阶段分析 概要 本例题介绍使用MIDAS/Gen 的施工阶段分析功能。真实模拟建筑物的实际建造过 程,同时考虑钢筋混凝土结构中混凝土材料的时间依存特性(收缩徐变和抗压强度的 变化)。 此例题的步骤如下: 1.简要 2.设定操作环境及定义材料和截面 3.利用建模助手建立梁框架 4.使用节点单元及层进行建模 5.定义边界条件 6.输入各种荷载 7.定义结构类型 8.运行分析 9.查看结果 10.配筋设计

例题 钢筋混凝土结构施工阶段分析 3 1.简要 本例题介绍使用MIDAS/Gen 的施工阶段分析功能。(该例题数据仅供参考) 例题模型为六层钢筋混凝土框-剪结构。 基本数据如下: 轴网尺寸:见平面图 主梁: 250x450,250x500 次梁: 250x400 连梁: 250x1000 混凝土: C30 剪力墙: 250 层高: 一层:4.5m 二~六层 :3.0m 设防烈度:7o(0.10g ) 场地: Ⅱ类 图1 结构平面图

例题 钢筋混凝土结构 抗震分析及设计 1

例题钢筋混凝土结构抗震分析及设计 例题. 钢筋混凝土结构抗震分析及设计 概要 本例题介绍使用MIDAS/Gen 的反应谱分析功能来进行抗震设计的方法。 此例题的步骤如下: 1.简要 2.设定操作环境及定义材料和截面 3.利用建模助手建立梁框架 4.建立框架柱及剪力墙 5.楼层复制及生成层数据文件 6.定义边界条件 7.输入楼面及梁单元荷载 8.输入反应谱分析数据 9.定义结构类型 10.定义质量 11.运行分析 12.荷载组合 13.查看结果 14.配筋设计 2

用midas做稳定分析步骤

用MIDAS来做稳定分析的处理方法(笔记整理) 对一个网壳或空间桁架这样的整体结构而言,稳定会涉及三类问题: A.整个结构的稳定性 B.构成结构的单个杆件的稳定性 C.单个杆件里的局部稳定(如其中的板件的稳定)A整个结构的稳定性: 1. 在数学处理上是求特征值问题的特征值屈曲,又叫平衡分叉失稳或者分支点失稳 特征:结构达到某种荷载时,除结构原来的平衡状态存在外,还可能出现第二个平衡态 2:极值点失稳 特征:失稳时,变形迅速增大,而不会出现新的变形形式,即平衡状态不发生质变,结构失稳时相应的荷载称为极限荷载。 3:跳跃失稳,性质和极值点失稳类似,可以归入第二类。B构成结构的单个杆件的稳定性 通过设计的时候可以验算秆件的稳定性,尽管这里面存在一个计算长度的选取问题而显得不完善,但总是安全的。 C 单个杆件里的局部稳定(如其中的板件的稳定) 在MIDAS里面,我想已不能在整体结构的范围内解决了,但是单个秆件的局部稳定可以利用板单元(对于实体现在还没

有办法做屈曲分析)来模拟单个构件,然后分析出整体稳定屈曲系数。和A是同样的道理,这里充分体现了结构即构件,构件即结构的道理 A整个结构的稳定性: 分析方法: 1:线性屈曲分析(对象:桁架,粱,板) 在一定变形状态下的结构的静力平衡方程式可以写成下列形式: (1):结构的弹性刚度矩阵:结构的几何刚度矩阵:结构的整体位移向量:结构的外力向量 结构的几何刚度矩阵可通过将各个单元的几何刚度矩阵相加而得,各个单元的几何刚度矩阵由以下方法求得。几何刚度矩阵表示结构在变形状态下的刚度变化,与施加的荷载有直接的关系。任意构件受到压力时,刚度有减小的倾向;反之,受到拉力时,刚度有增大的倾向。大家所熟知的欧拉公式,对于一个杆单元,当所受压力超过N=3.1415^2*E*I/L^2时,杆的弯曲刚度就消失了,同样的道理不仅适用单根压杆,也适用与整个框架体系通过特征值分析求得的解有特征值和特征向量,特征值就是临界荷载,特征向量是对应于临界荷载的屈曲模态。临界荷载可以用已知的初始值和临界荷载的乘积计算得到。临界荷载和屈曲模态意味着所输入的临界荷载作用到结构时,结构就发生与屈曲模态相同形态的屈

MIDAS GTS-地铁施工阶段分析资料精

高级例题1
地铁施工阶段分析

GTS高级例题1.
- 地铁施工阶段分析
运行GTS
1
概要
2
生成分析数据
6
属性 / 6
几何建模
20
矩形, 隧道, 复制移动 / 20
扩展, 圆柱 / 25
嵌入, 分割实体 / 27
矩形, 转换, 分割实体 (主隧道) / 30
矩形, 转换, 分割实体 (连接通道) / 33
矩形, 转换, 分割实体 (竖井,岩土) / 36
直线, 旋转 / 39
生成网格
41
网格尺寸控制 / 41
自动划分实体网格 / 44
析取单元 / 46
自动划分线网格 / 48
重新命名网格组 / 53
修改参数 / 57
分析
58
支撑 / 58
自重 / 60
施工阶段建模助手 / 61
定义施工阶段 / 67
分析工况 / 68
分析 / 70

查看分析结果
71
位移 / 71
实体最大/最小主应力 / 74
喷混最大/最小主应力 / 77
桁架 Sx / 79

GTS 高级例题1
GTS高级例题1
建立由竖井、连接通道、主隧道组成的城市隧道模型后运行分析。 在此GTS里直接利用4节点4面体单元直接建模。
运行GTS
运行程序。
1. 运行GTS 。
2. 点击 文件 > 新建建立新项目。
3. 弹出项目设置对话框。
4. 项目名称里输入‘高级例题 1’。
5. 其它的项直接使用程序的默认值。
6. 点击

7. 主菜单里选择视图 > 显示选项...。
8. 一般表单的网格 > 节点显示指定为‘False’。
9. 点击

1

midas施工阶段分析

目录 Q1、施工阶段荷载为什么要定义为施工阶段荷载类型 (2) Q2、 POSTCS阶段的意义 (2) Q3、施工阶段定义时结构组激活材龄的意义 (2) Q4、施工阶段分析独立模型和累加模型的关系 (2) Q5、施工阶段接续分析的用途及使用注意事项 (2) Q6、边界激活选择变形前变形后的区别 (3) Q7、体内力体外力的特点及其影响 (4) Q8、如何考虑对最大悬臂状态的屈曲分析 (4) Q9、需要查看当前步骤结果时的注意事项 (5) Q10、普通钢筋对收缩徐变的影响 (5) Q11、如何考虑混凝土强度发展 (5) Q12、从施工阶段分析荷载工况的含义 (5) Q13、转换最终阶段内力为POSTCS阶段初始内力的意义 (6) Q14、赋予各构件初始切向位移的意义 (6) Q15、如何得到阶段步骤分析结果图形 (6) Q16、施工阶段联合截面分析的注意事项 (6) Q17、如何考虑在发生变形后的钢梁上浇注混凝土板 (7)

Q1、施工阶段荷载为什么要定义为施工阶段荷载类型 A1.“施工阶段荷载”类型仅用于施工阶段荷载分析,在POSTCS阶段不能进行分析。如果将在施工阶段作用的荷载定义为其他荷载类型,则该荷载既在施工阶段作用,也在成桥状态作用。在施工阶段作用的效应累加在CS合计中,在成桥状态作用的荷载效应以“ST荷载工况名称”的形式体现。 因此为了避免相同的荷载重复作用,对于在施工阶段作用的荷载,其荷载类型最好定义为施工阶段荷载。 注:荷载类型“施工荷载”和“恒荷载”一样,都属于既可以在施工阶段作用也可以在POSTCS阶段独立作用的荷载类型。 Q2、P OSTCS阶段的意义 A2.POSTCS是以最终分析阶段模型为基础,考虑其他非施工阶段荷载作用的状态。通常是成桥状态,但如果在施工阶段分析控制数据中定义了分析截止的施工阶段,则那个施工阶段的模型就是POSTCS阶段的基本模型。沉降、移动荷载、动力荷载(反应谱、时程)都是只能在POSTCS阶段进行分析的荷载类型。 施工阶段的荷载效应累计在CS合计中,而POSTCS阶段各个荷载的效应独立存在。 POSTCS阶段荷载效应有ST荷载,移动荷载,沉降荷载和动力荷载工况。 有些分析功能也只能在POSTCS阶段进行:屈曲、特征值。 Q3、施工阶段定义时结构组激活材龄的意义 A3.程序中有两个地方需要输入材龄,一处是收缩徐变函数定义时需输入材龄,用于计算收缩应变;一处是施工阶段定义时结构组激活材龄,用于计算徐变系数和混凝土强度发展。因此当考虑徐变和混凝土强度发展时,施工阶段定义时的激活材龄一定要准确定义。 当进行施工阶段联合截面分析时,计算徐变和混凝土强度发展的材龄采用的是施工阶段联合截面定义时输入的材龄,此时在施工阶段定义时的结构组激活材龄不起作用。 为了保险起见,在定义施工阶段和施工阶段联合截面分析时都要准确的输入结构组的激活材龄。 Q4、施工阶段分析独立模型和累加模型的关系 A4.进行施工阶段分析的目的,就是通过考虑施工过程中前后各个施工阶段的相互影响,对各个施工阶段以及POSTCS阶段进行结构性能的评估,因此通常进行的都是累加模型分析。 对于线性分析,程序始终按累加模型进行分析,如欲得到某个阶段的独立模型下的受力状态,可以通过另存当前施工阶段功能,自动建立当前施工阶段模型,进行独立分析。 在个别情况下,需要考虑当前阶段的非线性特性时,可以进行非线性独立模型分析,如悬索桥考虑初始平衡状态时的倒拆分析,需用进行非线性独立模型分析。 Q5、施工阶段接续分析的用途及使用注意事项 A5.对于复杂施工阶段模型,一次建模很难保证结构布筋合理,都要经过反复调整布筋。 每次修改施工阶段信息后,都必须重新从初始阶段计算。接续分析的功能就是可以指定接续分析的阶段,被指定为接续分析开始阶段前的施工阶段不能进行修改,其后的施工阶段可以进行再次修改,修改完毕后,不必重新计算,只需执行分析〉运行接续

PUSHOVER分析

提要:本文首先介绍采用Midas/Gen进行Pushover分析的主要方法及使用心得,然后结合工程实例进行具体说明,其结果反映出此类结构在大震下表现的一些特点,可供类似设计参考。 关键词:Pushover 剪力墙结构超限高层 Midas/Gen 静力弹塑性分析(Pushover)方法是对结构在罕遇地震作用下进行弹塑性变形分析的一种简化方法,本质上是一种静力分析方法。具体地说,就是在结构计算模型上施加按某种规则分布的水平侧向力,单调加荷载并逐级加大;一旦有构件开裂(或屈服)即修改其刚度(或使其退出工作),进而修改结构总刚度矩阵,进行下一步计算,依次循环直到结构达到预定的状态(成为机构、位移超限或达到目标位移),得到结构能力曲线,并判断是否出现性能点,从而判断是否达到相应的抗震性能目标[1]。 Pushover方法可分为两个部分,第一步建立结构能力谱曲线,第二步评估结构的抗震性能。 对剪力墙结构体系的超限高层而言,选取Pushover计算程序的关键是程序对墙单元的设定。SAP2000、ETABS软件没有提供剪力墙塑性铰,对框-剪结构可将剪力墙人工转换为模拟支撑框架进行分析;对剪力墙结构来说,进行转换不可行。而Midas/Gen程序提供了剪力墙Pushover单元(类似薄壁柱单元,详见用户手册),对剪力墙能够设置轴力-弯矩铰以及剪切铰。下面将详细介绍如何在Midas/Gen中进行Pushover分析的步骤(以Midas/Gen 6.9.1为例): 一 Pushover分析步骤 1. 结构建模并完成静力分析和构件设计直接在Midas/Gen中建模比较繁琐,可以用接口转换程序从SATWE(或其他程序如SAP2000)中导入。SATWE转换程序由Midas/Gen提供,会根据PKPM的升级而更新。转换仅需要SATWE中的Stru.sat 和Load.sat文件。转换时需要注意的是,用转换程序导入SATWE的模型文件后,形成的是Midas/Gen的Stru.mgt文件,是模型的文本文件形式,需要在Midas/Gen中导入此文件,导入后还应该注意以下几个问题: 1) 风荷载及反应谱荷载没有导进来,需要在Midas/Gen中重新定义; 2) 需要定义自重、质量; 3) 需要定义层信息,以及墙编号; 此外,还应注意比较SATWE的质量与Midas/Gen的质量,并比较两者计算的周期结果实否一致。 2. 输入Pushover分析控制用数据 荷载最大增幅次数用于定义达到设定的目标位移(或荷载)的分步数,一般来说,分步越多,每次的增幅越小,最终得到的能力谱曲线越平滑。但是分步过多带来计算时间上的大大增加,所以取值应该由少至多进行试算,直到取得满意的曲线结果为止。 图1 10分步,每步最大10次迭代结果

学习midas心得

r Calculate Propertes Now MIDAS/SPC U 1.5.1 - Sectional Property Calculate Iriported AutoCAD DXF model data -Model: Cunie [140], Point [仙町 I —I —JI —1\ Procts# Message / i r I r 练习 midas 时的心得 I Generate Section Type ---------------- ti Plane 广 Line ? ■■I. ..■■■. .■■■ . ?■■■■■ ^11 ■■■ :_■■■■■? ?■■■. . ■■■ r i^lerge Strai^t Line^— Angle | [Deg] rjame [ r Location I 厂 Group I Sectior Color Apply Clos e I 馆 SEcliQn ]

HIDA^/src V 1 ■応~I - 5e[;n re]… PtLilt [*] H PW pl4ihr ii^cl L?i (S^Etitii f1 J a n 缈?叶 fr^pgrti ?& >f 1 CBqrinn 町?町駁|c ?)4Eud ? 首先在CAD 中将需要导入的截面画好(注意截面必须是闭合的!),然后保存 为DXF 文件;在midas 中打开截面特性计算器,选择与 导入DXF 文件,然后点生成截面、计算截面特性再保存为 中截面添加选择spc 数值,点击导入spc 截面就是保存的sec 文件!然后只需 要设置一些截面的参数就可以了! 7! > V tt ■,■ 10 u Hart Sortian I- Marhbo-EHr CciaiE Fne ke<^LJdt^ [占田 a I CtKt ] V ¥1* Ei 七 尹打*■冷劈《 T<-ilc K+lp 'D 磴U 曾I 口 垢 PnriBfhf HnJ _ lb IlH ■ *C 1 2户怕口怕3胶I 厂 血I |>Pdr m2、 f 畅(5性 F : hd mVfiR 甩口F Irntidl ['Iv% 何rrn ■哎 oL|「*nii 广 Irf 『Em nri Iratq] L ] 口cram Zn- L JJ. T U a Bf 7 niBAS/y^C V ii5 +1 £Htr ?rMi m 托 uw* |vf?rrF<1 A ?FinR4? Kr rw4l*l 4?la -ItodHp Curve ffl]. P*lnt [fl] 决? pl?e fPCLl.n [lectio.-PI] y^ner^tea. ItiF prftfiertiFS - ?-F 1 arctinn ATF C -J J 匚 ulalrd. I i I CAD 一致的单位,再 sec 文件;在 midas 刁:>■ V r > . 1£ tie 4 >

MIDASCivil中施工阶段分析后自动生成的荷载工况说明

MIDAS/Civil 中施工阶段分析后自动生成的荷载工况说明 CS: 恒荷载: 除预应力、徐变、收缩之外的在定义施工阶段时激活的所有荷载的作用效应 CS: 施工荷载 为了查看CS: 恒荷载中部分恒荷载的结果而分离出的荷载的作用效应。分离荷载在“分析>施工阶段分析控制数据”对话框中指定。 输出结果(对应于输出项部分结果无用-CS:合计内结果才有用) No. 荷载工况名称 反力 位移 内力 应力 1 CS: 恒荷载 O O O O 2 CS: 施工荷载 O O O O 3 CS: 钢束一次 O O O O 4 CS: 钢束二次 O X O O 5 CS: 徐变一次 O O O O 6 CS: 徐变二次 O X O O 7 CS: 收缩一次 O O O O 8 CS: 收缩二次 O X O O 9 CS: 合计 O O O O CS: 合计中包含的工况 1+2+4+6+8 1+2+3+5+7 1+2+3+4+6+8 1+2+3+4+6+8 CS: 钢束一次 反力: 无意义 位移: 钢束预应力引起的位移(用计算的等效荷载考虑支座约束计算的实际位移) 内力: 用钢束预应力等效荷载的大小和位置计算的内力(与约束和刚度无关)

应力: 用钢束一次内力计算的应力 CS: 钢束二次 反力: 用钢束预应力等效荷载计算的反力 内力: 因超静定引起的钢束预应力等效荷载的内力(用预应力等效节点荷载考虑约束和刚度后计算的内力减去钢束一次内力得到的内力) 应力: 由钢束二次内力计算得到的应力 CS: 徐变一次 反力: 无意义 位移: 徐变引起的位移(使用徐变一次内力计算的位移) 内力: 引起计算得到的徐变所需的内力(无实际意义---计算徐变一次位移用) 应力: 使用徐变一次内力计算的应力(无实际意义) CS: 徐变二次 反力: 徐变二次内力引起的反力 内力: 徐变引起的实际内力(参见下面例题中收缩二次的内力计算方法) 应力: 使用徐变二次内力计算得到的应力 CS: 收缩一次 反力: 无意义 位移: 收缩引起的位移(使用收缩一次内力计算的位移) 内力:引起计算得到的收缩所需的内力(无实际意义---计算收缩一次位移用) 应力: 使用收缩一次内力计算的应力(无实际意义) CS: 收缩二次 反力: 收缩二次内力引起的反力 内力: 收缩引起的实际内力(参见下面例题) 应力: 使用收缩二次内力计算得到的应力 例题1: P R2 e sh:收缩应变(Shrinkage strain) (随时间变化) P: 引起收缩应变所需的内力 (CS: 收缩一次) 因为用变形量较难直观地表现收缩量,所以MIDAS程序中用内力的表现方式表 现收缩应变. ?: 使用P计算(考虑结构刚度和约束)的位移 (CS: 收缩一次) e E:使用?计算的结构应变 F: 收缩引起的实际内力 (CS: 收缩二次)

midas时程荷载工况中几个选项的说明

时程荷载工况中几个选项的说明 动力方程式如下: 在做时程分析时,所有选项的设置都与动力方程中各项的构成和方程的求解方法有关,所以在学习时程分析时,应时刻联想动力方程的构成,这样有助于理解各选项的设置。另外,正如哲学家所言:运动是绝对的,静止是相对的。静力分析方程同样可由动力方程中简化(去掉加速度、速度项,位移项和荷载项去掉时间参数)。 0.几个概念 自由振动: 指动力方程中P(t)=0的情况。P(t)不为零时的振动为强迫振动。 无阻尼振动: 指[C]=0的情况。 无阻尼自由振动: 指[C]=0且P(t)=0的情况。无阻尼自由振动方程就是特征值分析方程。 简谐荷载: P(t)可用简谐函数表示,简谐荷载作用下的振动为简谐振动。 非简谐周期荷载: P(t)为周期性荷载,但是无法用简谐函数表示,如动水压力。 任意荷载: P(t)为随机荷载(无规律),如地震作用。随机荷载作用下的振动为随机振动。 冲击荷载: P(t)的大小在短时间内急剧加大或减小,冲击后结构将处于自由振动状态。 1.关于分析类型选项 目前有线性和非线性两个选项。该选项将直接影响分析过程中结构刚度矩阵的构成。 非线性选项一般用于定义了非弹性铰的动力弹塑性分析和在一般连接中定义了非线性连接(非线性边界)的结构动力分析中。当定义了非弹性铰或在一般连接中定义了非线性连接(非线性边界),但是在时程分析工况对话框中的分析类型中选择了“线性”时,动力分析中将不考虑非弹性铰或非线性连接的非线性特点,仅取其特性中的线性特征部分进行分析。 只受压(或只受拉)单元、只受压(或只受拉)边界在动力分析中将转换为既能受压也能受拉的单元或边界进行分析。 如果要考虑只受压(或只受拉)单元、只受压(或只受拉)边界的非线性特征进行动力分析应该使用边界条件>一般连接中的间隙和钩来模拟。 2.关于分析方法选项 目前有振型叠加法、直接积分法、静力法三个选项。这三个选项是指解动力方程的方法。关于振型叠加法、直接积分法可以参考一些动力方程方面的书籍。 振型叠加法是将多自由度体系的动力反应问题转化为一系列单自由度体系的反应,然后再线性叠加的方法。其优点是计算速度快节省时间,但是由于采用了线性叠加原理,原则上仅适用于分析线弹性问题,当进行非线性动力分析时或者因为装有特殊的阻尼器而不能满足阻尼正交(刚度和质量的线性组合)时是不能使用振型叠加法的。 直接积分法是将时间作为积分参数解动力方程式的方法,又称为时域逐步积分法。直接

SAP2000之Pushover分析

Pushover分析:基本概念静力非线性分析方法(Nonlinear Static Procedure),也称Pushover 分析法,是基于性能评估现有结构和设计新结构的一种方法。静力非线性分析是结构分析模型在一个沿结构高度为某种规定分布形式且逐渐增加的侧向力或侧向位移作用下,直至结构模型控制点达到目标位移或结构倾覆为止。控制点一般指建筑物顶层的形心位置;目标位移为建筑物在设计地震力作用下的最大变形。Pushover方法的早期形式是“能力谱方法”(Capacity Spectrum Method CSM),基于能量原理的一些研究成果,试图将实际结构的多自由度体系的弹塑性反应用单自由度体系的反应来表达,初衷是建立一种大震下结构抗震性能的快速评估方法。从形式上看,这是一种将静力弹塑性分析与反应谱相结合、进行图解的快捷计算方法,它的结果具有直观、信息丰富的特点。正因为如此,随着90年代以后基于位移的抗震设计(Diaplacement-Based Seismic Design,DBSD)和基于性能(功能)的抗震设计(Performance-Based Seismic Design. PBSD)等概念的提出和广为接受,使这种方法作为实现DBSD和PBSD的重要工具,得到了重视和发展。这种方法本身主要包含两方面的内容:计算结构的能力曲线(静力弹塑性分析)、计算结构的目标位移及结果的评价。第一方面内容的中心问题是静力弹塑性分析中采用的结构模型和加载方式;第二方面内容的中心问题则是如何确定结构在预定地震水平下的反应,目前可分为以ATC-40为代表的CSM和以FEMA356为代表的NSP (Nonlinear Static Procedure,非线性静力方法),CSM的表现形式是对弹性反应谱进行修正,而NSP则直接利用各种系数对弹性反应谱的计算位移值进行调整。两者在理论上是一致的。在一些文献中将第一方面的内容称为

Midas Civil中各种时间的含义

midas Civil中各种时间的含义 在使用midas Civil,需要对桥梁结构进行施工阶段分析,那必然会碰到混凝土收缩徐变的问题,利用midas建模时,经常会碰到一些时间的定义,我在这里把这些时间的含义罗列出来,以供大家参考。 首先需要注意一点:收缩的龄期与徐变的龄期是没有任何联系的,收缩龄期是计算混凝土收缩的时间,而徐变龄期是计算徐变的时间,只有结构上作用荷载,才会发生徐变的效应。 一、收缩开始的混凝土龄期: 收缩开始时的混凝土龄期:浇筑混凝土后开始收缩时间,即发生收缩效应的时间;midas 是在定义时间依存材料特性中定义,按规范要求,一般取3d。 二、混凝土徐变的材龄: 混凝土发生徐变的时间为徐变材龄,这个值是在定义混凝土施工阶段的时候定义的,如下图:即在midas中的“混凝土材龄”,这个材龄是混凝土从浇筑到激活(即参与受力)的时间,同时也是发生徐变的时间,因为有荷载作用采用徐变。针对徐变的计算材材龄。不要输入0,按实际的天数输入即可。 三、施工阶段持续时间: 施工的持续时间,是指该施工过程持续的天数,这个持续时间不包括结构的材龄。对于持续时间可能会有个疑问,从混凝土浇筑到受力需要一段时间养护,那如何考虑这弹模的变化?这个可以利用midas中“强度发展曲线”来考虑,对于中国规范,强度发展未作规定,故一般可以不需要定义强度发展曲线。 四、施工阶段荷载-时间荷载: 为了考虑相邻构件的时间经历差异,并反映到材料的时间依存特性(徐变、收缩、强度的变化等),给构件施加时间荷载。 一般时间荷载主要用在:两个桥墩在模拟施工阶段时是同时激活的,但是实际上只有一套模板,这样一个桥墩的悬臂段比另一个晚了60天,也即第一个桥墩了60天时间经历,由于这60天的时间差异,两个桥墩的悬臂梁的挠度也将有差别,为了最大限度降低合龙段完工时产生的残留应力,必须正确预测两个桥墩悬臂梁的挠度,故做施工阶段分析时,可以用时间荷载来考虑两个桥墩的时间经历差异。 midas 在定义施工阶段时会要求输入材龄 该材龄为该结构组的初始材龄,即在该施工阶段开始时,结构组已经具备的材龄。程序将按输入的材龄计算徐变。一般输入从浇筑混凝土后到拆模直到该单元开始发生作用(拆除了脚手架)的时间。当定义了强度发展函数时,一定要准确输入该材龄。重点就是这是徐变材料。也就是混凝土有强度开始算起,跟施工持续时间没有必然联系。他们相互独立。比如浇筑混凝土到拆模10天,材龄小于10天,因为刚浇筑没有强度,也就不存在徐变。 如果是预制构件,当前施工阶段结构材龄就大于施工持续时间,因为在当前施工之前,构件就具备材龄了.

静力弹塑性分析(Pushover分析)两种方法剖析

静力弹塑性分析(Pushover 分析) ■ 简介 Pushover 分析是考虑构件的材料非线性特点,分析构件进入弹塑性状态直至到达极限状态时结构响应的方法。Pushover 分析是最近在地震研究及耐震设计中经常采用的基于性能的耐震设计(Performance-Based Seismic Design, PBSD)方法中最具代表性的分析方法。所谓基于性能的耐震设计就是由用户及设计人员设定结构的目标性能(target performance),并使结构设计能满足该目标性能的方法。Pus hover 分析前要经过一般设计方法先进行耐震设计使结构满足小震不坏、中震可修的规范要求,然后再通过pushover 分析评价结构在大震作用下是否能满足预先设定的目标性能。 计算等效地震静力荷载一般采用如图2.24所示的方法。该方法是通过反应修正系数(R)将设计荷载降低并使结构能承受该荷载的方法。在这里使用反应修正系数的原因是为了考虑结构进入弹塑性阶段时吸收地震能量的能力,即考虑结构具有的延性使结构超过弹性极限后还可以承受较大的塑性变形,所以设计时的地震作用就可以比对应的弹性结构折减很多,设计将会更经济。目前我国的抗震规范中的反应谱分析方法中的小震影响系数曲线就是反应了这种设计思想。这样的设计方法可以说是基于荷载的设计(force-based design)方法。一般来说结构刚度越大采用的修正系数R 越大,一般在1~10之间。 但是这种基于荷载与抗力的比较进行的设计无法预测结构实际的地震响应,也无法从各构件的抗力推测出整体结构的耐震能力,设计人员在设计完成后对结构的耐震性能的把握也是模糊的。 基于性能的耐震设计中可由开发商或设计人员预先设定目标性能,即在预想的地震作用下事先设定结构的破坏程度或者耗能能力,并使结构设计满足该性能目标。结构的耗能能力与结构的变形能力相关,所以要预测到结构的变形发展情况。所以基于性能的耐震设计经常通过评价结构的变形来实现,所以也可称为基于位移的设计(displacement-based design)。 Capacity (elastic) Displacement V B a s e S h e a r 图 2.24 基于荷载的设计方法中地震作用的计算

弹塑性时程分析实例

80 第40卷 增刊 建 筑 结 构 2010年6月 北京某超高层商住楼动力弹塑性时程分析 徐晓龙,高德志,桂满树,姜毅荣,何四祥,王 侃 (北京迈达斯技术有限公司,北京 100044) [摘要] 基于梁柱塑性铰和剪力墙纤维模型,利用MIDAS Building 软件实现了超高层建筑结构的弹塑性时程分析。结合该结构研究了在大震作用下结构将出现的破坏模式、塑性发展特点等,并与弹性分析进行了对比,说明弹塑性分析更能反映实际情况,能对结构的抗震性能给出较为合理全面的评价,并对工程设计给出指导。 [关键词] 动力弹塑性时程分析;MIDAS Building ;纤维模型 Elastic-plastic time-history analysis on the super-high business-living building in Beijing Xu Xiaolong, Gao Dezhi, Gui Manshu, Jiang Yirong, He Sixiang, Wang Kan (Beijing MIDAS Technology Information Co.,Ltd,. Beijing 100044,China ) Abstract: Based on the theory of plastic hinges (beams and columns ) and fiber model (walls ), elastic-plastic time-history analysis is performed on the super-high business-living building in Beijing by MIDAS Building software under the scarce earthquake load. Failure Modes and plastic zone development are researched according to the feature of the structure. Through the comparison with the elastic analysis, it is considered that evaluation on the structure can be deduced from the elastic-plastic analysis more reasonably and comprehensively, and there will be better instruction to the projects. Keywords: dynamic elastic-plastic analysis; MIDAS Building; fiber model 1 结构特点 某50层的超高层商住两用建筑,地上50层,结构高度达到236.3m ,采用钢骨混凝土柱框筒结构形式,平面尺寸64.8m ×43.8m (轴线尺寸)。结构已经超过型钢混凝土框架-钢筋混凝土筒体结构8度(0.2g )抗震设防下的最大适用高度(150m ),该结构为抗震超限结构,故有必要对结构进行动力弹塑性时程分析,以考察其在罕遇地震作用下的响应、薄弱环节、破坏模式等。结构整体模型及首层平面见图1,2。 2 动力弹塑性时程分析 图1 结构模型图 图2 首层平面图 时程分析法[1]被认为是目前结构弹塑性分析的最可靠和最精确的方法,它不仅能对结构进行定性分析,同时又可给出结构在罕遇地震下的量化性能指标,并且得到结构在各个时刻的真实地震反应。弹塑性时程分析方法将结构作为弹塑性振动体系加以分析,直接按照地震波数据输入地面运动,通过逐步积分运算,求得在地面加速度随时间变化期间内,结构的内力和变形随时间变化的全过程,也称为弹塑性直接积分法。 弹塑性动力时程分析有如下优点:1)输入的是罕遇地震波的整个过程,可以真实反映各个时刻地震作用引起的结构响应,包括变形、内力、损伤状态(开裂和破坏)等;2)有些程序通过定义材料的本构关系来考虑结构的弹塑性性能,故可以准确模拟任何结构,计算模型简化较少;3)该方法基于塑性区的概念,对带剪力墙的结构,结果更为准确可靠。 基于MIDAS Building 动力弹塑性分析平台,对北京某超高层商住楼进行了罕遇地震作用下的动力时程分析,研究其各个抗震性能指标以及破坏模式。 2.1 弹塑性动力分析的基本方法 弹塑性动力分析包括以下几个步骤:1)建立结构

静力非线性分析pushover

pushover分析 2011-07-08 20:03:25| 分类:默认分类|举报|字号订阅 SAP2000高级应用: 1.基本概念 静力非线性分析方法(Nonlinear Static Procedure),也称Pushover 分析法,是基于性能评估现有结构和设计新结构的一种方法。静力非线性分析是结构分析模型在一个沿结构高度为某种规定分布形式且逐渐增加的侧向力或侧向位移作用下,直至结构模型控制点达到目标位移或结构倾覆为止。控制点一般指建筑物顶层的形心位置;目标位移为建筑物在设计地震力作用下的最大变形。 Pushover方法的早期形式是“能力谱方法”(Capacity Spectrum Method CSM),基于能量原理的一些研究成果,试图将实际结构的多自由度体系的弹塑性反应用单自由度体系的反应来表达,初衷是建立一种大震下结构抗震性能的快速评估方法。从形式上看,这是一种将静力弹塑性分析与反应谱相结合、进行图解的快捷计算方法,它的结果具有直观、信息丰富的特点。正因为如此,随着90年代以后基于位移的抗震设计(Diaplacement-Based Seismic Design,DBSD)和基于性能(功能)的抗震设计(Performance-Based Seismic Design. PBSD)等概念的提出和广为接受,使这种方法作为实现DBSD和PBSD的重要工具, 得到了重视和发展。 这种方法本身主要包含两方面的内容:计算结构的能力曲线(静力弹塑性分析)、计算结构的目标位移及结果的评价。 第一方面内容的中心问题是静力弹塑性分析中采用的结构模型和加载方式; 第二方面内容的中心问题则是如何确定结构在预定地震水平下的反应, 目前可分为以ATC-40为代表的CSM和以FEMA356为代表的NSP (Nonlinear Static Procedure,非线性静力方法),CSM的表现形式是对弹性反应谱进行修正,而NSP则直接利用各种系数对弹性反应谱的计算位移值进行调整。两者在理 论上是一致的。在一些文献中将第一方面的内容称为Pushover,不包括计算目标位移 和结果评价的内容。本文中,将两方面的内容统称为“Pushover分析”。 基于结构行为设计使用Pushover分析可以得到能力曲线,并确定结构近似需 求谱与能力曲线的交点。其中需求曲线是基于反应谱曲线,能力谱是基于Pushover分析。在Pushover分析中,结构在逐渐增加的荷载作用下,其抗侧能力不断变化(通常用底部剪力-顶部位移曲线来表征结构刚度与延性的变化,这条曲线我们可以看成为表 征结构抗侧能力的曲线)。将需求曲线与抗侧能力曲线绘制在一张图表中,如果近似需

midas第06章-分析

第六章 “分析”中的常见问题 6.1 为什么稳定分析结果与理论分析结果相差很大?(是否考虑剪切对稳定的影 响) 具体问题 当采用I56b 的工字钢进行稳定计算时,其计算出的结果与材料力学的结果差别较大。计算采用的模型为1米高的一端固接、一端受集中荷载的柱。集中荷载的大小为-10tonf 。理论值为程序计算的1.78倍,为什么?压杆稳定计算公式:() 2 22L EI P cr π= 相关命令 模型〉材料和截面特性〉截面... 问题解答 材料力学给处的压杆稳定理论公式是基于细长杆件而言的,对于截面形式为I56b 型钢来说,1m 高的柱构件显然不能算是细长杆件,相反其截面高度和柱构件长度相差不多,属于深梁结构。因此该理论公式不适合于本模型。 图6.1.1 柱构件模型消隐效果 相关知识 另外对于深梁结构,是否考虑剪切变形对结构的计算结果影响很大,在MIDAS 中默认对所有梁结构考虑剪切变形,如果不想考虑剪切变形,可以在定义截面时不选择“考虑剪切

变形”如图6.1.2所示,或者在定义数值型截面时,将剪切面积Asy和Asz输入为0即可。 图6.1.2 截面定义不考虑剪切变形 6.2为什么定义几何刚度初始荷载对结构的屈曲分析结果没有影响? 具体问题 在进行拱桥稳定分析时,考虑拱肋轴力对稳定的影响,将拱肋成桥轴力输入到几何刚度初始荷载中,进行稳定分析,发现几何刚度初始荷载对稳定分析结果没有影响,为什么?如果考虑初始内力对结构稳定的影响? 相关命令 荷载〉初始荷载〉大位移〉几何刚度初始荷载... 荷载〉初始荷载〉小位移〉初始单元内力... 问题解答 MIDAS中的稳定分析属于线性分析,不能与非线性分析同时执行,因此如果考虑结构的初始刚度,需要在初始单元内力中输入结构的初始结构内力。几何刚度初始荷载用于计算非线性时形成结构的初始单元刚度,对线性分析没有影响。 相关知识

(整理)运用midas_Building进行超限分析基本流程指导书

运用midas Building进行超限分析基本流程 指 * 导 * 书 初稿:王明 校对:李法冰 审核:卫江华 审定:陈德良 (2012.12版)

目录 1 运用midas进行超限分析基本流程简介 (3) 2 反应谱分析、设计基本流程及要点 (4) 2.1 概述 (4) 2.2 基本流程 (4) 2.3 反应谱分析要点及注意事项 (5) 3 弹性时程分析基本流程及要点 (10) 3.1 概述 (10) 3.2 基本操作及要点 (10) 4 静力/动力弹塑性时程分析基本流程及要点 (15) 4.1 概述 (15) 4.2弹塑性分析基本流程 (16) 4.3静力弹塑性分析要点 (16) 4.4动力弹塑性分析要点 (20) 5 相关补充分析与计算 (21) 5.1 温差工况分析 (21) 5.2 楼板详细分析 (23) 5.3 转换结构分析 (24) 5.4 舒适度分析 (25) 5.5 工程量统计 (26) 6 主要附件一览表 (29) 7 主要参考文献 (30)

1 运用midas 进行超限分析基本流程简介 midas building/Gen 在超限分析流程中应用的主要环节可见如下示意图1.1。 图1.1 超限分析基本流程示意图 注:1.图中黄色框选内容为可运用midas Building/Gen 进行分析主要内容。 或大震

2 反应谱分析、设计基本流程及要点 2.1 概述 反应谱分析是抗震设计中最常用的分析方法,反应谱分析中需要定义设计反应谱、振型组合方法、地震作用方向等数据。设计规范一般考虑地震强度和远近的影响、建筑的重要性等综合因素提供了设计反应谱函数。 2.2 基本流程 图2.2.1 运用midas Building 进行反应谱分析基本流程图 注: 1. 实际工程中基本以PKPM 导入为主,已进行过的数十个分析显示:模型中构件与荷载能够完全准确导入,但所有参数需要重新定义,具体导入过程详见[附件一]。若导入ETABS 模型,出错较多,可尝试通过广厦或盈建科二次转换; 2. 若仅进行反应谱阶段分析,则无需进行设计(浪费时间); 3. 本过程参数调整阶段基本流程见下图2.2.2。 图2.2.2 参数调整基本流程图

相关主题
文本预览
相关文档 最新文档