当前位置:文档之家› 48V-12V的DC-DC转换器电路原理

48V-12V的DC-DC转换器电路原理

48V-12V的DC-DC转换器电路原理
48V-12V的DC-DC转换器电路原理

因本人电动车48V--12V的DC--DC转换器坏了,在网上一直没找到相关资料,特剖析了供同行维修或自制参考,电路图本人检查了若干次,做到万无一失,并另付本人检测场效应管的经验!

工作原理:

本图是根据实物剖析而来,电源经D2、R1为IC1提供+12V左右的电压,6脚输出脉冲经C4和变压器耦合后驱动Q1振荡,当Q1导通后输出电流通过L经C9滤波后向负载供电,当Q1截止时,变压器式电感B3磁能转变为电能,其极性左负右正,续流二极管D4导通,电流通过二极管继续向负载供电,使负载得到平滑的直流,当输出电压过低或过高时,从电阻R11、R10、R9组成的分压电路中得到取样电压送到IC1 2脚与内部2.5V基准电压比较后控制Q1导通脉宽,从而使输出电压得到稳定。当负载电流发生短路或超过8A时,IC1 3脚电压的上升会控制脉宽使Q1截止,以确保Q1的安全。

C8和R7构成振荡时间常数,本电路的振荡频率为65KHz,其计算公式为下:

3845内部结构及引脚功能

①误差放大器输出/补偿

②电压反馈输入

③电流取样输入

④振荡电路时间常数

⑤地

⑥开关管驱动脉冲输出

⑦电源

⑧5V基准电压一般与振荡器相接

附:数字万用表测场效应管的方法:

用二极管档红表笔接栅极G,黑表笔接源极S,数字表显示1,黑表笔接S不动,将红表笔移至漏极D,此时数字表应显示150-300左右的数值,将红表笔接源极S,黑表笔接漏极D,此时应有60-100的数据,然后换过来,即S接黑,D接红,此时数据还是在150-300左右,用手一边接D,一边碰一下栅极G或用镊子短路DS,此时数据会慢慢变为无穷大1,然后交换表笔,即S接红,D接黑,数据将在500左右,此时证明该管是好的!(纯属个人领悟,不足之处还望谅解)

分析全桥ZVS-PWM变换器的分析与设计

上世纪60年代开始起步的DC/DC PWM功率变换技术出现了很大的发展。后然经过发展,越来越多在各个领域当中应用。但由于其通常采用调频稳压控制方式,使得软开关的范围受到限制,且其设计复杂,不利于输出滤波器的优化设计。本文选择了全桥移相控制ZVS-PWM谐振电路拓扑,在分析了电路原理和各工作模态的基础上,设计了输出功率为200W的DC/DC变换器。 1 电路原理和各工作模态分析 1.1 电路原理 图1所示为移相控制全桥ZVS—PWM谐振变换器电路拓扑。Vin为输入直流电压。Si(i=1.2.3,4)为第i个参数相同的功率MOS开关管。为了防止桥臂直通短路,S1和S3,S2和S4之间人为地加入了死区时间△t,它是根据开通延时和关断不延时原则来设置同一桥臂死区时间。S1和S4,S2和S3之间的驱动信号存在移相角α,通过调节α角的大小,可调节输出电压的大小,实现稳压控制。Lf和Cf构成倒L型低通滤波电路。 图2为全桥零电压开关PWM变换器在一个开关周期内4个主开关管的驱动信号、两桥臂中点电压VAB、变压器副边电压V0以及变压器原边下面对电路各工作模态进行分析,分析时时假设: (1)所有功率开关管均为理想,忽视正向压降电压和开关时时间; (2)4个开关管的输出结电容相等,即Ci=Cs,i=1,2,3,4,Cs为常数; (3)忽略变压器绕组及线路中的寄生电阻; (4)滤波电感足够大。

1.2 各工作模态分析 (1)原边电流正半周功率输出过程。在t0之前,Sl和S4已导通,在(t0一t1)内维持S1和S4导通,S2和S3截止。电容C2和C3被输入电源充电。变压器原边电压为Vin,功率由变压器原边传送到负载。在功率输出过程中,软开关移相控制全桥电路的工作状态和普通PWM硬开关电路相同。 (2)(t1一t1′):超前臂在死区时间内的谐振过程。加到S1上的驱动脉冲变为低电平,S1由导通变为截止。电容C1和C3迅速分别充放电,与等效电感(Lr+n2Lf)串联谐振,在谐振结束前(t2之前),使前臂中心电压快速降低到一0.7V,使D3立即导通,为S3的零电压导通作好准备。 (3)(t1′一t3):原边电流止半周箝位续流过程。S3在驱动脉冲变为高电平后实现了零电压导通,由于D3已提前提供了原边电流的左臂续流回路,虽然两臂中点电压为零,但原边电流仍按原方向继续流动,逐步衰减。 (4)(t3-t4):S4关断后滞后臂谐振过程,t3时加到S4的驱动脉冲电压变为低电平,S4由导通变为截止,原边电流失去主要通道。原边电流以最大变化率从正峰值急速下降。 (5)(t4一t5):电感储能回送电网期。t4时刻D2已导通续流,下冲的电流经D2返回到电源EC,补偿了电网在全桥电路上的功耗。滞后臂死区时间应该在该时间段内结束。原边电流下冲到零点。 (6)(t5一t6):原边电流下冲过零后开始负向增大。S2和S3都已导通,形成新的电流回路,开始新的功率输出过程。副边电压被箝位在低电平,出现占空比丢失过程。因此滞后臂死区时间设计是关键。

IR2181S驱动芯片在全桥电路中应用设计和注意事项

IR2181S驱动芯片在全桥电路中应用设计和注意事项 摘要:三相全桥技术具有应用广泛,控制方便,电路简单等特点,因此,广泛应用于逆变电源,变频技术,电力电子等相关领域,但其功率MOSFET以及相关的驱动电路的设计直接与电路的可靠性紧密相关,如MOSFET的驱动电路设计不当,MOSFET很容易损坏,因此本文主要分析和研究了成熟驱动控制芯片IR2181S组成的电路,并设计了具体的电路,为提高MOSFET 的可靠性作一些研究,以便能够为设计人员在设计产品时作一些参考。关键 词:IR2181S驱动芯片;MOSFET;全桥电路;自举电路设计;吸收电路IR2181S的结构和驱动电路设计IR2181S是IR公司研发的一款专用驱动芯片电其内部结构参考图1:主要由:低端功率晶体驱动管,高端功率晶体驱动管,电平转换器,输入逻辑电路等组成。IR2181S优点是可靠性高,外围电路简单。它驱动的MOSFET高压侧电压可以达到600V,最大输出电流可达到1.9A(高端)2.3A(低端)。具体设计电路时如将MOSFET或IGBT 作为高压侧开关(漏极直接接在高压母线上)需在应用的时候需要注意以下几点: (1)栅极电压一定要比漏极电压高10-15V,作为高压侧开关时,栅极电压是系统中电压最高的。(2)栅极电压从逻辑上看必须是可控制的,低压侧一般是以地为参考点的,但在高端是就必须转换成高压侧的源极电位,相当于将栅极驱动的地悬浮在源极上,所以在实际应用中栅极控制电压是在母线电压之间浮动的。(3)栅极驱动电路吸收的功率不会显著影响整个电路的效率。图2是以IR2181S驱动芯片设计的三相全桥电路: 图2中应用到三个IR2181S驱动芯片每路驱动一组桥臂,提供高端和低端两路驱动信号(HO*,LO*),以第一路桥臂为例(其它同理):IR2181S输入是由DSP或其他专用驱动信号发生芯片产生的高端和低端两路驱动信号,经过2181输出同样也为两路,但经过2181内部处理后输出的信号和输入控制信号完全隔离,输出电流可以达到2A,上图中IR218S低端输出(LO1)驱动下管的信号是以直流母线侧负端为参考点,输出信号幅值大概在15V左右满足MOSFET开通要求。高端输出是以U1为参考基准,电位浮在母线上,当上端开通时IR2181S通过自举电路 (C4,C5)将电压举升到栅极开启电压值。其电压值约为: UG=U母线 15V 上述电路中(以Q2为例)电容C4,C5和自举二极管组成的泵电路,其中自举电容和自举二极管等参数都是要经过精密计算的,其工作原理和计算方法如下: (1)工作原理:当电路工作时Vs被拉倒地(输出接负载) 15V通过二极管给自举电容C4,C5充电也因此给Vs一个工作电压满足了电路工作。(2)参数设计:计算电容参数时应考虑到以下几点, ①MGT栅极电荷; ②高压侧栅极静态电流; ③2181内部电平转换电路电流; ④MGT G和S 之间的电流。(备注:因自举电路一般选择非电解电容设计时电容漏电流可以忽略。) 此公式给出了对自举电容电荷的最小要求; Q=2Qg Iqbs/f Qls Icbs/f 注:Qg为高端MOSFET栅极电荷。 f为系统工作频率。 Icbs为自举电容漏电流(本电路为非电解电容可忽略不计)。Qls为每个周期内电平转换电路对电荷的要求。(500/600V IC 为5nc 1200V IC为20nc)。Iqbs为高端驱动电路静态电流。上述计算的电荷量是保证芯片正常工作的前提条件,只有保证自举电容能提供足够的电荷和稳定的电压才不

全桥变换器主电路分析

全桥变换器主电路分析 王振存 2006.04 1.电源概述 本电源,额定电流1000A。主电路采用全桥拓扑结构,两路并联的供电方式。主电路原理框图如图1所示。 2. 输入整流滤波电路的设计 电源交流输入采用三相三线输入方式,经三相桥式整流器输出脉动直流,经直流母线滤波供给后级功率变换电路。输入整流电路如图2所示。 图 1 对图中元件说明如下: D1-D6:三相整流桥,PE:输入端保护熔断器,PV压敏电阻; R56缓起电阻,C5、C6、C7:共模滤波电容; KA:接触器,C8直流母线滤波电容: 为限制刚开始投入时电解电容充电产生的电流浪涌,在输入整流电路增加了缓起电路。具体工作原理是,电源经外部加电,此时A、C线电压经R56、R55、D1、D2、D5、D6给电容充电,直流母线电压慢慢上升,上升到辅助电源启动电压时,辅助电源工作控制板得电将接触器闭合,将R56、R55短路,缓起动过程结束。 输入滤波电容的选择过程如下:取整流滤波后的直流电压的最大脉动值为低

交流峰值电压的10%,按照下面步骤计算电容的容量: ● 输入电压的有效值%10380±V 即342V ~418V; ● 输入交流电压峰值:482V ~591V ; ● 整流滤波后直流电压的最大脉动值:V V 2.4810482%=?; ● 整流后直流电压的范围:433.8V ~542.8V ; ● 电源总功率按50KW 计算则等效电阻为Ω== 76.350000 8.4332 L R ; ● 一般取放电时间常数τ=R L C=(3~5)T/6故最小电容F C μ265076 .301.0== ; 3. 全桥逆变电路工作状况分析 3.1 工作模态分析 电源由全桥逆变器和输出整流滤波电路构成。全桥逆变器的主电路如图2所示,由四功率管Q1~Q4及其反并二级管D1~D4,和输出变压器(L LK 为主变压器漏感),吸收电路,隔直电容等组成。 LD R V 图2 在一个开关周期中,电流连续的情况下,全桥变换器共有有4种开关模态。 在t0时刻,对应于图3(a )。Q1、Q4导通。电压经Q1、Q4、C3、加到变压

ZVS移相全桥变换器设计

电气工程学院课程设计说明书 设计题目: 系别: 年级专业: 学生姓名: 指导教师:

电气工程学院《课程设计》任务书 课程名称:电力电子与电源综合课程设计 基层教学单位:电气工程及自动化系指导教师:朱艳萍 说明:1、此表一式三份,系、学生各一份,报送院教务科一份。 2、学生那份任务书要求装订到课程设计报告前面。 电气工程学院教务科

电力电子与电源课程设计组内自评表

摘要 首先,本文阐述PWM DC/DC变换器的软开关技术,且根据移相控制PWM全桥变换器的主电路拓扑结构,选定适合于本论文的零电压开关软开关技术的电路拓扑,并对其基本工作原理进行阐述,同时给出ZVS软开关的实现策略。 其次,对选定的主电路拓扑结构进行电路设计,给出主电路中各参量的设计及参数的计算方法,包括输入、输出整流桥及逆变桥的器件的选型,输入整流滤波电路的参数设计、高频变压器及谐振电感的参数设计以及输出整流滤波电路的参数设计。 然后,论述移相控制电路的形成,对移相控制芯片进行选择,同时对移相控制芯片UC3875进行详细的分析和设计。对主功率管MOSFET的驱动电路进 最后,基于理论计算,对系统主电路进行仿真,研究其各部分设计的参数是否合乎实际电路。搭建移相控制ZVS DC/DC全桥变换器的实验平台,在系统实验平台上做了大量的实验。 实验结果表明,本文所设计的DC/DC变换器能很好的实现软开关,提高效率,使输出电压得到稳定控制,最后通过调整移相控制电路,可实现直流输出的宽范围调整,具有很好的工程实用价值。行分析和设计。 关键词开关电源;高频变压器;移相控制;零电压开关;UC3875

移相全桥ZVS变换器的原理与设计

移相全桥ZVS变换器的原理与设计 移相全桥ZVS变换器的原理与设计 摘要:介绍移相全桥ZVS变换器的原理,并用UC3875控制器研制成功3kW 移相全桥零电压高频通信开关电源。 1引言 传统的全桥PWM变换器适用于输出低电压(例如5V)、大功率(例如1kW) 的情况,以及电源电压和负载电流变化大的场合。其特点是开关频率固定,便于控制。为了提高变换器的功率密度,减少单位输出功率的体积和重量,需要将开 关频率提高到1MHz级水平。为避免开关过程中的损耗随频率增加而急剧上升,在移相控制技术的基础上,利用功率MOS管的输出电容和输出变压器的漏电感作为谐振元件,使全桥PWM变换器四个开关管依次在零电压下导通,实现恒频软开关,这种技术称为ZVS零电压准谐振技术。由于减少了开关过程损耗,可保证整个变换器总体效率达90%以上,我们以Unitrode公司UC3875为控制 芯片研制了零电压准谐振高频开关电源样机。本文就研制过程,研制中出现的问题及其改进进行论述。 2准谐振开关电源的组成 ZVS准谐振高频开关电源是一个完整的闭环系统,它包括主电路、控制电路及CPU通讯和保护电路,。 从图1可以看出准谐振开关电源的组成与传统PWM开关电源的结构极其相似,不同的是它在DC/DC变换电路中采用了软开关技术,即准谐振变换器(QRC)。它是在PWM型开关变换器基础上适当地加上谐振电感和谐振电容而形成的,由于运行中,工作在谐振状态的时间只占开关周期的一部分,其余时间都是运行在非谐振状态,所以称为“准谐振”变换器。准揩振变换器又分为两种,一种是零电流开关(ZCS),一种是零电压开关(ZVS),零电流

移相全桥为主电路的软开关电源设计详解

移相全桥为主电路的软开关电源设计详解 2014-09-11 11:10 来源:电源网作者:铃铛 移相全桥变换器可以大大减少功率管的开关电压、电流应力和尖刺干扰,降低损耗,提高开关频率。如何以UC3875为核心,设计一款基于PWM软开关模式的开关电源?请见下文详解。 主电路分析 这款软开关电源采用了全桥变换器结构,使用MOSFET作为开关管来使用,参数为1000V/24A。采用移相ZVZCSPWM控制,即超前臂开关管实现ZVS、滞后臂开关管实现ZCS。电路结构简图如图1,VT1~VT4是全桥变换器的四只MOSFET开关管,VD1、VD2分别是超前臂开关管VT1、VT2的反并超快恢复二极管,C1、C2分别是为了实现VTl、VT2的ZVS设置的高频电容,VD3、VD4是反向电流阻断二极管,用来实现滞后臂VT3、VT4的ZCS,Llk为变压器漏感,Cb为阻断电容,T 为主变压器,副边由VD5~VD8构成的高频整流电路以及Lf、C3、C4等滤波器件组成。 图1 1.2kw软开关直流电源电路结构简图 其基本工作原理如下:

当开关管VT1、VT4或VT2、VT3同时导通时,电路工作情况与全桥变换器的硬开关工作模式情况一样,主变压器原边向负载提供能量。通过移相控制,在关断VT1时并不马上关断VT4,而是根据输出反馈信号决定移相角,经过一定时间后再关断VT4,在关断VT1之前,由于VT1导通,其并联电容C1上电压等于VT1的导通压降,理想状况下其值为零,当关断VT1时刻,C1开始充电,由于电容电压不能突变,因此,VT1即是零电压关断。 由于变压器漏感L1k以及副边整流滤波电感的作用,VT1关断后,原边电流不能突变,继续给Cb充电,同时C2也通过原边放电,当C2电压降到零后,VD2自然导通,这时开通VT2,则VT2即是零电压开通。 当C1充满电、C2放电完毕后,由于VD2是导通的,此时加在变压器原边绕组和漏感上的电压为阻断电容Cb两端电压,原边电流开始减小,但继续给Cb 充电,直到原边电流为零,这时由于VD4的阻断作用,电容Cb不能通过VT2、VT4、VD4进行放电,Cb两端电压维持不变,这时流过VT4电流为零,关断VT4即是零电流关断。 关断VT4以后,经过预先设置的死区时间后开通VT3,由于电压器漏感的存在,原边电流不能突变,因此VT3即是零电流开通。 VT2、VT3同时导通后原边向负载提供能量,一定时间后关断VT2。由于C2的存在,VT2是零电压关断,如同前面分析,原边电流这时不能突变,C1经过VD3、VT3。Cb放电完毕后,VD1自然导通,此时开通VT1即是零电压开通,由于VD3的阻断,原边电流降为零以后,关断VT3,则VT3即是零电流关断,经过预

SPWM全桥逆变器主功率电路设计说明

SPWM全桥逆变器主功率电路设计 一.设计目的 通过电力电子技术的学习,熟悉无源逆变概念;采用全桥拓扑并用全控器件MOSFET形成主电路拓扑,设计逆变器硬件电路,并能开环工作。熟悉全桥逆变器拓扑,掌握逆变原理,实现正弦波输出要素,设计SPWM逆变器控制信号发生电路。 参数指标: 输入:48Vdc, 输出:40Vac/400Hz 二.设计任务 (1) 熟悉交流电路中功率因数的意义; (2) 掌握全桥逆变概念,分析全桥逆变器中每个元件的作用; (3) 分析正弦脉宽调制(SPWM)原理,及硬件电路实现形式: (4) 应用protel制作SPWM逆变器线路图; (5) 根据原理图制作硬件,并调试; 三. 设计总体框图 图1设计总体框图 四.设计原理分析 SPWM脉宽调制原理

PWM(Pulse Width Modulation)控制就是对脉冲的宽度进行调制的技术。即通过对一系列脉冲的宽度进行调制,来等效地获得所需要波形(含形状和幅值)。当采用正弦波作为调制信号来控制输出PWM脉冲的宽度,使其按照正弦波的规律变化,这种脉冲宽度调制控制策略就称为正弦脉冲宽度调制(Sine pulse width modulation,SPWM),产生SPWM脉冲,采用最多的载波是等腰三角波;因为等腰三角波上任一点的水平宽度和高度成线性关系且左右对称,当它与任何一个平缓变化的调制信号波相交时,如果在交点时刻对电路中开关器件的通断进行控制,就可以得到宽度正比于信号波幅值的脉冲。在调制信号波为正弦波时,所得到的就是SPWM波形。 SPWM波形的产生(如图2) 图2 SPWM波形的产生 1).全桥倍增SPWM控制 主电路和其他全桥逆变电路完全一致,控制脉冲的发生类似双极性SPWM 的模式,所不同的是,其桥臂之一所使用的互补控制脉冲由正弦调制波和三角载波比较产生,而另一个桥臂脉冲由同一正弦波和反相的三角载波比较产生(或者是反相三角载波和同一正弦波比较产生)。这种调制输出谐波性能等效于2倍载

单相电压型全桥逆变电路设计

第一章绪论 1.1整流技术的发展概况 正电路广泛应用于工业中。整流与逆变一直都是电力电子技术的热点之一。桥式整流是利用二极管的单向导通性进行整流的最常用的电路。常用来将交流电转化为直流电。从整流状态变到有源逆变状态,对于特定的实验电路需要恰到好处的时机和条件。基本原理和方法已成熟十几年了,随着我国交直流变换器市场迅猛发展,与之相应的核型技术应用于发展比较将成为业内企业关注的焦点。 目前,整流设备的发展具有下列特点:传统的相控整流设备已经被先进的高频开关整流设备所取代。系统的设计已经由固定式演化成模块化,以适应各种等级、各种模块通信设备的要求。加上阀控式密封铅酸蓄电池的广泛应用,为分散供电创造了条件。从而大大提高了通信网运行可靠和通信质量。高频开关整流器采用模块化设计、N1配置和热插拨技术,方便了系统的扩展,有利于设备的维护。由于整流设备和配电设备等配备了微机监控器,使系统设备具有了智能化管理功能和故障保护及自保护功能。新旗舰、新技术、新材料的应用,使高频开关整流器跃上了一个新台阶。

第二章设计方案及其原理 2.1电压型逆变器的原理图 原理框图 等效图及其输出波形 当开关S1、S4闭合,S2、S3断开时,负载电压u o 为正; 当开关S1、S4断开,S2、S3闭合时,u o 为负,如此交替进行下去,就在负载上得到了由直流电变换的交流电,u o 的波形如上图 (b)所示。 输出交流电的频率与两组开关的切换频率成正比。这样就实现了直流电到交流电的逆变。 (b)(a) u o

2.2电压型单相全桥逆变电路 它共有4个桥臂,可以看成由两个半桥电路组合而成。 两对桥臂交替导通180°。输出电压和电流波形与半桥电路形状相同,幅值高出一倍。改变输出交流电压的有效值只能通过改变直流电压U d来实现。可采用移相方式调节逆变电路的输出电压,称为移相调压。各栅极信号为180o正偏,180o反偏,且T1和T2互补,T3和T4互补关系不变。T3的基极信号只比T1落后q ( 0

相关主题
文本预览
相关文档 最新文档