当前位置:文档之家› 抽样定理和PAM调制解调实验.

抽样定理和PAM调制解调实验.

抽样定理和PAM调制解调实验.
抽样定理和PAM调制解调实验.

《通信原理》实验报告

实验三:抽样定理和PAM调制解调实验

系别:信息科学与工程学院

专业班级:通信1003 班

学生姓名:揭芳073

同组学生:杨亦奥

成绩:

指导教师:惠龙飞

(实验时间:20 12 年12 月7 日——20 12 年12 月7 日)

华中科技大学武昌分校

一、实验目的

1、 通过脉冲幅度调制实验,使学生能加深理解脉冲幅度调制的原理。

2、 通过实验,了解了自然抽样和平顶抽样的区别

3、 对抽样定理的更深一步的了解

4、 通过对电路组成、波形和所测数据的分析,加深理解这种调制方式的优缺点。

二、实验内容

1、 观察模拟输入正弦波信号、抽样时钟的波形和脉冲幅度调制信号,并注意观察它们之

间的相互关系及特点。

2、 改变模拟输入信号或抽样时钟的频率,多次观察波形。

三、实验器材

1、 信号源模块 一块

2、 ①号模块 一块

3、 20M 双踪示波器 一台

4、 连接线 若干

四、实验原理

(一)基本原理 1、抽样定理

抽样定理表明:一个频带限制在(0,H f )内的时间连续信号()m t ,如果以T ≤H

f 21

秒的间隔对它进行等间隔抽样,则()m t 将被所得到的抽样值完全确定。

假定将信号()m t 和周期为T 的冲激函数)t (T δ相乘,如图3-1所示。乘积便是均匀间隔为T 秒的冲激序列,这些冲激序列的强度等于相应瞬时上()m t 的值,它表示对函数()m t 的抽样。若用()m t s 表示此抽样函数,则有:

()()()s T m t m t t δ=

图3-1 抽样与恢复

假设()m t 、()T t δ和()s m t 的频谱分别为()M ω、()T δω和()s M ω。按照频率卷积定理,()

m t ()T t δ的傅立叶变换是()M ω和()T δω的卷积:

[]1

()()()2s T M M ωωδωπ

=

* 因为 2()T T

s n n T

π

δδ

ωω∞

=-∞

=

-∑

T

s πω2=

所以 1()()()s T s n M M n T ωωδωω∞

=-∞??

=*-????

由卷积关系,上式可写成

1()()s s n M M n T ωωω∞

=-∞

=-∑

该式表明,已抽样信号()m t s 的频谱()M s ω是无穷多个间隔为ωs 的()M ω相迭加而成。这就意味着()M s ω中包含()M ω的全部信息。

需要注意,若抽样间隔T 变得大于

H

f 21

,则()M ω和()T δω的卷积在相邻的周期内存

在重叠(亦称混叠),因此不能由()M s ω恢复()M ω。可见,H

f T 21

=是抽样的最大间隔,它被称为奈奎斯特间隔。

上面讨论了低通型连续信号的抽样。如果连续信号的频带不是限于0与H f 之间,而是限制在L f (信号的最低频率)与H f (信号的最高频率)之间(带通型连续信号),那么,其抽样频率s f 并不要求达到H f 2,而是达到2B 即可,即要求抽样频率为带通信号带宽的两倍。

图3-2画出抽样频率s f ≥2B (无混叠)和s f <2B (有混叠)时两种情况下冲激抽样信号的频谱。

(a) 连续信号的频谱

(b ) 高抽样频率时的抽样信号及频谱(无混叠)

(c ) 低抽样频率时的抽样信号及频谱(混叠)

图3-2 采用不同抽样频率时抽样信号的频谱

2、脉冲振幅调制(PAM )

所谓脉冲振幅调制,即是脉冲载波的幅度随输入信号变化的一种调制方式。如果脉冲载波是由冲激脉冲组成的,则前面所说的抽样定理,就是脉冲增幅调制的原理。

但是实际上真正的冲激脉冲串并不能付之实现,而通常只能采用窄脉冲串来实现。因而,研究窄脉冲作为脉冲载波的PAM 方式,将具有实际意义。

0 s T

t

()s f t

m ω-

m ω

s ω

s ω- ω

()s F ω

1

S

T 1 0

m

ω-m ω

ω

()F ω

t

()

f t 1

t

S

T 1 m ω- m ω

s ω

s ω- ω

()s F ω

0 s T

()s f t

自然抽样

平顶抽样

)

(t m )

(t T

图3-3 自然抽样及平顶抽样波形

PAM 方式有两种:自然抽样和平顶抽样。自然抽样又称为“曲顶”抽样,已抽样信号m s (t)的脉冲“顶部”是随m(t)变化的,即在顶部保持了m(t)变化的规律(如图3-3所示)。平顶抽样所得的已抽样信号如图3-3所示,这里每一抽样脉冲的幅度正比于瞬时抽样值,但其形状都相同。在实际中,平顶抽样的PAM 信号常常采用保持电路来实现,得到的脉冲为矩形脉冲。 (二) 电路组成

脉冲幅度调制实验系统如图3-4所示,主要由抽样保持芯片LF398和解调滤波电路两部分组成,电路原理图如图3-5所示。

LF398

N1

话音

输入

模拟开关S 自然抽样/平顶抽样选择

抽样脉冲

N2

PAM 解调

图3-4 脉冲振幅调制电路原理框图

1TP2PAM-SIN

1PAMCLK 1PAM

TH3TH

INPUT 1NC 2V-3NC 4NC 5NC 6OUTPUT 7

Vo s 14

NC 13V+

12LOGIC 11LOGIC REF 10NC 9Ch

8

U2LF398

E2

10u F/16V C1

104C29104

C31222

R41K

C20104

+12V

-12V

R7104

Y01Y22Yo ut

3

Y34

Y15INH 6VEE 7VSS

8

B

9

A 10X311

X012Xo ut 13X114X215VDD

16U3

CD4052VCC GND GND

C2104E1

10u F/16V

1

PAM

TH1TH

OUTPUT

OUTPUT

C4104

VEE D4

4.3V

R9

150

-12V

VEE

平顶抽样输出

自然抽样输出

1

2

U1A

74LS04K1

CLK-IN

CLK-IN

图3-5 脉冲幅度调制电路原理图

(三)实验电路工作原理

1、 PAM 调制电路

如图3-5所示,LF398是一个专用的采样保持芯片,它具有很高的直流精度和较高的采样速率,器件的动态性能和保持性能可以通过合适的外接保持电容达到最佳。

LF398的内部结构如图3-6所示;

MCTR

C1

N1

-+N2

-+。

。。

。。

30K

150

S

Vi MREF LF398

OUT

HOC

OFAD

图3-6 LF398的内部电路结构

N1是输入缓冲放大器,N2是高输入阻抗射极输出器。S 为逻辑控制采样/保持开关,当S 接通时,开始采样;当S 断开时,开始保持。 LF398的引脚功能为:

3、12脚:正负电源输入端。 1脚:Vi ,模拟电压输入端。

11脚:MCTR ,逻辑控制输入端,高电平为采样,低电平为保持。 10脚:MREF ,逻辑控制电平参考端,一般接地。 8脚:HOC ,采样/保持电容接入端。 7脚:OUT ,采样/保持输出端。

如图3-5所示,被抽样信号从PAM-SIN 输入,进入LF398的1脚Vi 端,经内部输入缓冲放大器N1放大后送到模拟开关S ,此时,将抽样脉冲作为S 的控制信号,当LF398的11脚MCTR 端为高电平时开关接通,为低电平时开关断开。然后经过射极输出器N2输出比较理想的脉冲幅度调制信号。K1为“平顶抽样”、“自然抽样”选择开关。

2、PAM 解调与滤波电路

解调滤波电路由集成运放电路TL084组成。组成了一个二阶有源低通滤波器,其截止频率设计在3.4KHz 左右,因为该滤波器有着解调的作用,因此它的质量好坏直接影响着系统的工作状态。该电路还在后续实验接收部分有用到。电路如图3-7所示

R29

10k

1

TP10IN

E10

10uF/16V 3

2

1

4

11

U7A

TL084

5

6

7

U7B

TL084

R393k3

R448k2

C21222

C27223R3710k

R3415k

1

TP11OUT

TH14TH R810k

VCC

1098

U7C

TL0841213

14

U7D TL084

+12V -12V

C3512

C28102

C8222

C22102

C25222

C7152

R4110k

W110K

R4310k

R4210k

图3-7 PAM 解调滤波电路

五、测试点说明

1、输入点参考说明

PAM-SIN :音频信号输入端口 PAMCLK :抽样时钟信号输入端口 IN :PAM 解调滤波电路输入端口 2、输出点说明

自然抽样输出:自然抽样信号输出端口 平顶抽样输出:平顶抽样信号输出端口 OUT :PAM 解调滤波输出端口

六、实验步骤及注意事项

1、 将信号源模块、模块1固定在主机箱上,双踪示波器,设置CH1通道为同步源。

2、 插上电源线,打开主机箱右侧的交流开关,将信号源模块和模块1的电源开关拨下,

观察指示灯是否点亮,红灯为+5V 电源指示灯,绿灯为-12V 电源指示灯,黄色为+12V 电源指示灯。(注意,此处只是验证通电是否成功,在实验中均是先连线,再打开电源做实验,不要带电连线)。 3、 观测PAM 自然抽样波形

1) 用示波器观测信号源“2K 同步正弦波”输出,调节W1改变输出信号幅度,使输

出信号峰-峰值在1V 左右。

2) 将信号源上S4设为“1010”,使“CLK1”输出32K 时钟。 3) 将模块1上K1选到“自然”。

4)关闭电源,按如下方式连线

源端口目标端口连线说明信号源:“2K同步正弦波”模块1:“PAM-SIN”提供被抽样信号信号源:“CLK1”模块1:“PAMCLK”提供抽样时钟

* 检查连线是否正确,检查无误后打开电源

用示波器在“自然抽样输出”处观察PAM自然抽样波形。输出的2K同步正弦波如下图3-1,输出的PAMCLK与自然抽样输出波形如下图3-2

图3-1 2K同步正弦波

图3-2 自然抽样PAM输出

其中,CHI是32K抽样脉冲,CH2是自然抽样输出

分析:1、自然抽样的抽样脉冲顶部是随原始信号变化的,即在顶部保持了原始信号变化的规律。自然抽样的方法是用抽样脉冲与原始信号相乘即可。

2、PAM的波形的脉冲与32K抽样的脉冲一样,但其包络线为原2K同步正弦波,由波形图看出,不含有冲激信号,其波形在一个周期内的均值为0,所以不含有直流分量。

4、观测PAM平顶抽样波形

a)用示波器观测信号源“2K同步正弦波”输出,调节W1改变输出信号幅度,使输

出信号峰-峰值在1V左右。

b)将信号源上S1、S2、S3依次设为“10000000”、“10000000”、“10000000”,将S5

拨为“1000”,使“NRZ”输出速率为128K,抽样频率为:NRZ频率/8(实验中的将K1设为“平顶”。关闭电源,按下列方式进行连线。

源端口目标端口连线说明

信号源:“2K同步正弦波模块1:“PAM-SIN”提供被抽样信号

信号源:“NRZ”模块1:“PAMCLK”提供抽样脉冲c)打开电源,用示波器在“平顶抽样输出”处观察平顶抽样波形。

在示波器上观察到的2K正弦波如下图3-3,和平顶抽样输出波形如下图3-4

图3-3 2K 同步正弦波

图3-4 平顶抽样输出

其中,CH1是16K抽样脉冲,CH2是平顶抽样输出

分析:1、平顶抽样可以由理想抽样和脉冲形成电路得到,原始信号首先与抽样脉冲相乘,形成理想抽样信号,然后让它通过一个脉冲形成电路,其输出即为所需的平顶抽样信号

2、PAM平顶抽样波形脉冲对应的16K抽样脉冲,但脉冲顶部不随包络变化。PAM的包络与2K同步正弦波一致。由波形图看出,没有冲激分量,其波形在一个周期内的均值为0,故不含直流分量。

平顶抽样与自然抽样的不同之处在于抽样信号中的脉冲信号均具有相同的形状,顶部是平坦的矩形脉冲,在进行抽样的时候,自然抽样通过一个保持电路即可得到平顶抽样。设自然抽样信号为f s(t),评顶信号为f h(t)。平顶函数就等于自然抽样和一个Sa相乘。

f s =m(t)δ(t)

Fh=f s.H(t)=f s.

生活实际中没有单纯的冲激脉冲,只能尽可能的接近理性脉冲,平顶脉冲采用的是窄脉冲,平顶即为直流,有直流就会产生功耗,脉冲越宽,功耗越大,对硬件的要求大。

5、改变抽样时钟频率S4=“1110(2K)”,观测自然抽样信号,验证抽样定理。

图3-5 2K抽样时的自然抽样PAM输出

其中CH1是2K抽样脉冲,CH2是自然抽样输出

图3-2 32K抽样时的自然抽样PAM输出

分析:通过32K抽样的波形图和2K抽样的波形图可以看出。当抽样频率小于模拟信号频率的两倍时,会引发频谱混叠现象。

总结,低通信号的取样定理,一个频带限制在0到f内的连续信号,如果取样频率大于等于两倍的f时,可以由取样值序列无失真的重建原始信号。

6、观测解码后PAM波形与原信号的区别

1)步骤3的前3步不变,按如下方式连线

源端口目标端口连线说明信号源:“2K同步正弦波”模块1:“PAM-SIN”提供被抽样信号信号源:“CLK1”模块1:“PAMCLK”提供抽样时钟模块1:“自然抽样输出”模块1:“IN”将PAM信号进行译码

2)将K1设为“自然”,用“PAM-SIN”信号做示波器的触发源,用双踪示波器对比观

测“PAM-SIN”和“OUT”波形。

图3-6 原始信号与解调信号比较

其中,CH1是原始信号,CH2是解调恢复信号

分析:1解调后的信号与原始信号相比有相位差,出现这个现象的原因是原始信号通过低通

滤波器时,经过电容器,直流加到电容上的时候,电压会滞后,造成相位差。

2解调是调制的逆过程,从已调信号中恢复出原始信号,即将原始信号通过低通滤波器,滤除高频分量,恢复出原始信号。

七、实验思考题

1、简述平顶抽样和自然抽样的原理及实现方法。

答:平顶抽样可以由理想抽样和脉冲形成电路得到,实行原理框图如下图(b)所示。从原理框图中可以看到,信号首先与相乘,形成理想抽样信号,然后让它通过一个脉冲形成电路,其输出即为所需的平顶抽样信号

自然抽样即直接由原始信号与脉冲信号相乘即可。

2、在抽样之后,调制波形中包不包含直流分量,为什么?

答:解调滞后不包含直流分量。因为抽样时在离散点取值,使得直流分量被滤除,由波形图图分析,其波形在一个周期内均值为零,不含直流分量。

3、造成系统失真的原因有哪些?

答:抽样的频率引起的失真,当取样频率小于模拟信号最高频率的两倍时引起波形失真由系统的噪声引起的失真。

4、为什么采用低通滤波器就可以完成PAM解调?

答:低通滤波器采用的是均匀滤波,它的抽样频率大于等于模拟信号最高频率的两倍时,不会发生频谱混叠现象,通过低通滤波器的时候可以得到原始波形,既可以完成PAM解调

七.实验总结

通过这次试验,了解了模拟信号变成一数字信号中抽样,取值,量化三步骤中的抽样,加深了我对抽样定理的认识,了解了平顶抽样和自然抽样的区别,在试验中,熟悉了试验所用的试验箱,为我后面的试验更好的进行,体现了同学互相合作团结精神,在试验中,

要耐心和细心.

基于MATLAB的循环码实验报告

课程名称:信息论与编码 课程设计题目:循环码的编码和译码程序设计指导教师: 系别:专业: 学号:姓名: 合作者 完成时间: 成绩:评阅人:

一、实验目的: 1、通过实验了解循环码的工作原理。 2、深刻理解RS 码构造、RS 编译码等相关概念和算法。 二、实验原理 1、RS 循环码编译码原理与特点 设C 使某 线性分组码的码字集合,如果对任C c c c C n n ∈=--),,,(021 ,它的循环 移位),,,(1032)1(---=n n n c c c c C 也属于C ,则称该 码为循环码。 该码在结构上有另外的限制,即一个码字任意循环移位的结果仍是一个有效码字。其特点是:(1)可以用反馈移位寄存器很容易实现编码和伴随式的计算;(2)由于循环码有很多固有的代数结构,从而可以找到各种简单使用的译码办法。 如果一个 线性码具有以下的属性,则称为循环码:如果n 元组 },,,{110-=n c c c c 是子空间S 的一个码字,则经过循环移位得到的},,,{201)1(--=n n c c c c 也 同样是S 中的一个码字;或者,一般来说,经过j 次循环移位后得到的 },,,,,,,{11011)(---+--=j n n j n j n j c c c c c c c 也是S 中的一个码字。 RS 码的编码系统是建立在比特组基础上的,即字节,而不是单个的0和1,因此它是非二进制BCH 码,这使得它处理突发错误的能力特别强。 码长:12-=m n 信息段:t n k 2-= (t 为纠错符号数) 监督段:k n t -=2 最小码段:12+=t d 最小距离为d 的本原RS 码的生成多项式为:g(x)=(x-α)(x -α2)(x -α3)…(x -αd -2) 信息元多项式为::m(x)=m0+m1x+m2x2+…+mk -1xk-1 循环码特点有: 1)循环码是线性分组码的一种,所以它具有线性分组的码的一般特性,且具有循环性,纠错能力强。 2)循环码是一种无权码,循环码编排的特点为相邻的两个数码之间符合卡诺中的邻接条件,即相邻数码间只有一位码元不同,因此它具有一个很好的优点是它满足邻接条件,没有瞬时错误(在数码变换过程中,在速度上会有快有慢,中间经过其他一些数码形式,即为瞬时错误)。 3)码字的循环特性,循环码中任一许用码经过牡环移位后,所得到的码组仍然是许用码组。

戴维南定理实验报告

实验一戴维南定理 班级:17信息姓名:张晨瑞学号:20 一、实验目的 1.深刻理解和掌握戴维南定理。 2.掌握测量等效电路参数的方法。 3.初步掌握用Multisim软件绘制电路原理图的方法。 4.初步掌握Multisim软件中的Multimeter、Voltmeter、Ammeter等仪表的使用方法以及DC Operating Point、Parameter Sweep等SPICE仿真分析方法。 5.掌握电路板的焊接技术以及直流电源、万用表等仪器仪表的使用方法。 6.初步掌握Origin绘图软件的应用方法。 二、实验原理 一个含独立源、线性电阻的受控源的一端口网络,对外电路来说,可以用一个电压源和电子的床帘组合来等效置换,去等效电压源的电压等于该一端口网络的开路电压,其等效电阻等于该一端口网络中所有独立源都置为零后的输入电阻。这一定理成为戴维南定理。 三、实验方法 1.比较测量法 戴维南定理是一个等效定理,因此应想办法验证等效前后对其他电路的影响是否一致,即等效前后的外特性是否一致。 实验中首先测量原电路的外特性,在测量等效电路的外特性,最后比较两者是否一致,等效电路中的等效参数的获取,可通过测量得到,并同根据电路结构所推到计算出的结果相比较。 实验中期间的参数应使用实际测量值。实际值和期间的标称值是有差别的,所有的理论计算应基于器件的实际值。 2.等效参数的获取

等效电压Uoc:直接测量被测电路的开路电压,该电压就是等效电压。 等效电阻Ro:将电路中所有电压源短路,所有电流源开路,使用万用表阻挡测量。 3.测量点个数以及间距的选取 测试过程中测量的点个数以及间距的选取与测量特性和形状有关。对于直线特性,应使测量间距尽量平均,对于非线性特性应在变化陡峭处多测些点。测量的目的是为了用有限的点描述曲线的整体形状和细节特征。因此应注意测试过程中测量的点个数以及间距的选取。 为了比较完整地反映特性和形状,一般选取10个以上的测量点。 本实验中由于特性曲线是直线形状,因此测量点应均匀选取。为了办政策亮点分布合理,迎新测量特性的最大值和最小值,再根据点数合理选择测量间距。 4.电路的外特性测量方法 在输出端口上接可变负载(如电位器),改变负载(调节电位器)测量端口的电压和电流。 四、实验仪器与器件 1.计算机一台 2.通用电路板一块 3.万用表两只 4.直流稳压电源一台 5.电阻若干 五、实验内容 1.测量电阻的实际值,填表,并计算等效电源电压和等效电阻 2.Multisim仿真 (1)创建电路; (2)用万用表测量端口开路电压和短路电流,并计算等效电阻; (3)用万用表的Ω挡测量等效电阻,与(2)比较,将测量结果 填入表1中;

1叠加定理实验

GDOU-B-11-112广东海洋大学学生实验报告书(学生用表) 实验名称叠加定理实验课程名称课程号学院(系)专业班级学生姓名学号19 实验地点科技楼实验日期 一、实验目的 验证线性电路叠加原理的正确性,加深对线性电路的叠加性和齐次性的认识和理解。 二、原理说明 叠加原理指出:在有多个独立源共同作用下的线性电路中,通过每一个元件的电流或其两端的电压,可以看成是由每一个独立源单独作用时在该元件上所产生的电流或电压的代数和。 线性电路的齐次性是指当激励信号(某独立源的值)增加或减小K 倍时,电路的响应(即在电路中各电阻元件上所建立的电流和电压值)也将增加或减小K倍。 四、实验内容 实验线路如图7-1所示,用HE-12挂箱的“基尔夫定律/叠加原理”线路。

1. 将两路稳压源的输出分别调节为12V和6V,接入U1和U2处。 2. 令U1电源单独作用(将开关K1投向U1侧,开关K2投向短路侧)。用直流数字电压表和毫安表(接电流插头)测量各支路电流及各电阻元件两端的电压,数据记入表7-1。 3. 令U2电源单独作用(将开关K1投向短路侧,开关K2投向U2侧),重复实验步骤2的测量和记录,数据记入表7-1。 4. 令U1和U2共同作用(开关K1和K2分别投向U1和U2侧),重复上述的测量和记录,数据记入表7-1。 5. 将U2的数值调至+12V,重复上述第3项的测量并记录,数据记入表7-1。 表7-1 五、实验注意事项 1. 用电流插头测量各支路电流时,或者用电压表测量电压降时,应注意仪表的极性,并应正确判断测得值的+、-号。 2. 注意仪表量程的及时更换。 六、预习思考题 1. 在叠加原理实验中,要令U1、U2分别单独作用,应如何操作可否直接将不作用的电源(U1或U2)短接置零 答:①要令Ul单独作用,应该把K2往左拨,要U2单独作用应该把K1往右拨。 ②不可以直接将不作用的电源(Ul或U2)短接置零,因为电压源内阻很小,如果直接短接会烧毁电源 2.实验电路中,若有一个电阻器改为二极管,试问叠加原理的迭加性与齐次性还成立吗为什么 答:①实验电路中,若有一个电阻器改为二极管,叠加原理的迭加性与齐次性不成立,因为叠加原理的迭加性与齐次性只适用于线性电路,二极管是非线性元件,使实验电路为非线性电路,所以不成立。 3.当K1(或K2)拨向短路侧时,如何测U FA(或U AB) 答:①当用指针式电压表时,电压表的红表笔接高电位点,黑表笔接低电位点,如果Kl(或K2)拨向短路侧,只有U2单独作用,B点比A点电位高,要测量U AB,红表笔接B点,黑表笔接A点,但要加负号,同样,A点比F点电位高,要测量U FA,红表笔接A点,黑表笔接F点,也要加负号。对于K2拨向短路侧,原理类似。 ②对于本实验,用的是数字电压表,表笔接法没有讲究,但要注意正、负号。一般红的接线柱接起点,黑的接线柱接终点,如要测量U FA红的接线柱接F点,黑的接线柱接A点,

通信原理实验四 实验报告 抽样定理与PAM系统实训

南昌大学实验报告 学生姓名:学号:专业班级: 实验类型:■验证□综合□设计□创新实验日期:实验成绩:实验四抽样定理与PAM系统实训 一、实验目的 1.熟通过对模拟信号抽样的实验,加深对抽样定理的理解; 2.通过PAM调制实验,使学生能加深理解脉冲幅度调制的特点; 3.通过对电路组成、波形和所测数据的分析,了解PAM调制方式的优缺点。 二、实验原理 1.取样(抽样、采样) (1)取样 取样是把时间连续的模拟信号变换为时间离散信号的过程。 (2)抽样定理 一个频带限制在(0,f H) 内的时间连续信号m(t),如果以≦1/2f H每秒的间隔对它进行等间隔抽样,则m(t)将被所得到的抽 样值完全确定。 (3)取样分类 ①理想取样、自然取样、平顶取样; ②低通取样和带通取样。 2.脉冲振幅调制电路原理(PAM) (1)脉冲幅度调制系统 系统由输入电路、高速电子开关电路、脉冲发生电路、解调滤波电路、功放输出电路等五部分组成。 图 1 脉冲振幅调制电路原理框图 (2)取样电路 取样电路是用4066模拟门电路实现。当取样脉冲为高电位时,

取出信号样值;当取样脉冲为低电位,输出电压为0。 图 2 抽样电路 图 3 低通滤波电路 三、实验步骤 1.函数信号发生器产生2KHz(2V)模拟信号送入SP301,记fs; 2.555电路模块输出抽样脉冲,送入SP304,连接SP304和SP302,记fc; 3.分别观察fc>>2fs,fc=2fs,fc<2fs各点波形; 4.连接SP204 与SP301、SP303H 与SP306、SP305 与TP207,把扬声 器J204开关置到1、2 位置,触发SW201 开关,变化SP302 的输入 时钟信号频率,听辨音乐信号的质量. 四、实验内容及现象 1.测量点波形 图 4 TP301 模拟信号输入 图 5 TP302 抽样时钟波形(555稍有失真) fc=38.8kHz ①fc>>2fs,使fs=5KHz: 图 6 TP303 抽样信号输出1 图7 TP304 模拟信号还原输出1 ②fc=2fs,使fs=20KHz: 图8 TP303 抽样信号输出2 图9 TP304 模拟信号还原输出2 ③fc<2fs,使fs=25KHz: 图10 TP303 抽样信号输出3 图11 TP304 模拟信号还原输出3 2.电路Multisim仿真 图12 PAM调制解调仿真电路 图13 模拟信号输入 图14 抽样脉冲波形 图15 PAM信号 图16 低通滤波器特性 图17 还原波形 更多学习资料请见我的个人主页:

实验6 BCH循环码的编码与译码的matlab实现

实验6 BCH循环码的编码与译码 一、实验内容 用VC或Matlab软件编写循环BCH码的编码与译码程序。利用程序对教科书的例题做一个测试。 二、实验环境 1.计算机 2.Windows 2000 或以上 3.Microsoft Visual C++ 6.0 或以上 4.Matlab 6.0或以上 三、实验目的 1.通过BCH循环码的编码与译码程序的编写,彻底了解并掌握循环BCH的编码与译码原理 2.通过循环BCH码的编码与译码程序的编写,提高编程能力。 四、实验要求 1.提前预习实验,认真阅读实验原理以及相应的参考书。 2.对不同信道的进行误码率分析。特别是对称信道,画出误码性能图。即信道误码率与循环汉明码 之间的关系。 3.认真填写实验报告。 五、实验原理 1.循环BCH的编码与译码原理(略) 2.循环BCH的程序实现。 六、实验步骤 bch_en_decode.m文件 function bch_en_decode() code=bch155 code=code+randerr(5,15,1:3); code=rem(code,2); code=gf(code) %随机产生1-3位错误 decode=debch155(code) end function decode=debch155(code) code=gf(code); M=4; code = gf(code.x,M); [m , n]=size(code);decode=[]; code1=[]; for i=1:m ;code1=code(i,:); M=code1.m;T2=6;N=15; S = code1* ((gf(2,M,code1.prim_poly)).^([N-1:-1:0]'*([1:T2]))); LambdaX = gf([1 zeros(1,T2)],M,code1.prim_poly);

戴维南定理实验报告

戴维南定理 学号:1128403019 姓名:魏海龙班级:传感网技术 一、实验目的: 1、深刻理解和掌握戴维南定理。 2、掌握测量等效电路参数的方法。 3、初步掌握用multisim软件绘制电路原理图。 4、初步掌握multisim软件中的multimeter、voltmeter、ammeter 等仪表的使用以及DC operating point、paramrter sweep等 SPICE仿真分析方法。 5、掌握电路板的焊接技术以及直流电源、万用表等仪器仪表的使 用。 6、初步掌握Origin绘图软件的应用。 二、实验器材: 计算机一台、通用电路板一块、万用表两只、直流稳压电源一台、电阻若干。 三、实验原理:一个含独立源、线性电阻和受控源的一端口网络,对 外电路来说,可以用一个电压源和电阻的串联组合来等效置 换,其等效电压源的电压等于该一端口网络的开路电压,其等 效电阻等于该一端口网络中所有独立源都置为零后的数日电 阻。 四、实验内容: 1、电路图:

2、元器件列表: 2、实验步骤: (1)理论分析: 计 算等效电压: 电桥平衡。∴=,331131R R R R Uoc=3 11 R R R +=2.6087V 。 计算等效电阻:R= ??? ??? ? ?+++ ??? ??? ? ?++3311111221 3111121 R R R R R R =250.355

(2)测量如下表中所列各电阻的实际值,并填入表格: 然后根据理论分析结果和表中世纪测量阻值计算出等效电源电压和等效电阻,如下所示: Uc=2.6087V R=250.355Ω (3)multisim仿真: a、按照下图所示在multisim软件中创建电路 b、用万用表测量端口的开路电压和短路电流,并计算等 效电阻,结果如下:Us= 2.609V I= 10.42mA R=250.38Ω

做叠加定理实验的心得体会

做叠加定理实验的心得体会篇一:电路实验心得体会 电路实验心得体会 电路实验,作为一门实实在在的实验学科,是电路知识的基础和依据。它可以帮助我们进一步理解巩固电路学的知识,激发我们对电路的学习兴趣。在大一上学期将要结束之际,我们进行了一系列的电路实验,从简单的戴维南定理到示波器的使用,再到回转路-----,一共五个实验,通过这五个实验,我对电路实验有了更深刻的了解,体会到了电路的神奇与奥妙。 不过说实话在做这次试验之前,我以为不会难做,就像以前做的实验一样,操作应该不会很难,做完实验之后两下子就将实验报告写完,直到做完这次电路实验时,我才知道其实并不容易做。它真的不像我想象中的那么简单,天真的以为自己把平时的理论课学好就可以很顺利的完成实验,事实证明我错了,当我走上试验台,我意识到要想以优秀的成绩完成此次所有的实验,难度很大,但我知道这个难度是与学到的知识成正比的,因此我想说,虽然我在实验的过程中遇到了不少困难,但最后的成绩还是不错的,因为我毕竟在这次实验中学到了许多在课堂上学不到的东西,终究使我在这次实验中受益匪浅。 下面我想谈谈我在所做的实验中的心得体会:

在基尔霍夫定律和叠加定理的验证实验中,进一步学习了基尔霍夫定律和叠加定理的应用,根据所画原理图,连接好实际电路,测量出实验数据,经计算实验结果均在误差范围内,说明该实验做的成功。我认为这两个实验的实验原理还是比较简单的,但实际操作起来并不是很简单,至少我觉得那些行行色色的导线就足以把你绕花眼,所以我想说这个实验不仅仅是对你所学知识掌握情况的考察,更是对你的耐心和眼力的一种考验。 在戴维南定理的验证实验中,了解到对于任何一个线性有源网络,总可以用一个电压源与一个电阻的串联来等效代替此电压源的电动势Us等于这个有源二端网络的开路电压Uoc ,其等效内阻Ro等于该网络中所有独立源均置零时的等效电阻。这就是戴维南定理的具体说明,我认为其实质也就是在阐述一个等效的概念,我想无论你是学习理论知识还是进行实际操作,只要抓住这个中心,我想可能你所遇到的续都问题就可以迎刃而解。不过在做这个实验,我想我们应该注意一下万用表的使用, 尽管它的操作很简单,但如果你马虎大意也是完全有可能出错的,是你整个的实验前功尽弃! 在接下来的常用电子仪器使用实验中,我们选择了对示波器的使用,我们通过了解示波器的原理,初步学会了示

实验三_抽样定理和PAM调制解调实验

实验三 抽样定理和PAM 调制解调实验 一、实验目的 1、 通过脉冲幅度调制实验,使学生能加深理解脉冲幅度调制的原理。 2、 通过对电路组成、波形和所测数据的分析,加深理解这种调制方式的优缺 点。 二、实验内容 1、 观察模拟输入正弦波信号、抽样时钟的波形和脉冲幅度调制信号,并注意 观察它们之间的相互关系及特点。 2、 改变模拟输入信号或抽样时钟的频率,多次观察波形。 三、实验器材 1、 信号源模块 一块 2、 ①号模块 一块 3、 60M 双踪示波器 一台 4、 连接线 若干 四、实验原理 (一)基本原理 1、抽样定理 抽样定理表明:一个频带限制在(0,H f )内的时间连续信号()m t ,如果以T ≤H f 21 秒的间隔对它进行等间隔抽样,则()m t 将被所得到的抽样值完全确定。 假定将信号()m t 和周期为T 的冲激函数)t (T 相乘,如图3-1所示。乘积便是均匀间隔为T 秒的冲激序列,这些冲激序列的强度等于相应瞬时上()m t 的值,它表示对函数()m t 的抽样。若用()m t s 表示此抽样函数,则有:

()()()s T m t m t t δ= 图3-1 抽样与恢复 假设()m t 、()T t δ和()s m t 的频谱分别为()M ω、()T δω和()s M ω。按照频率卷积定理,()m t ()T t δ的傅立叶变换是()M ω和()T δω的卷积: []1 ()()()2s T M M ωωδωπ = * 因为 2()T T s n n T π δδ ωω∞ =-∞ = -∑ T s πω2= 所以 1 ()()()s T s n M M n T ωωδωω∞ =-∞??= *-? ??? ∑ 由卷积关系,上式可写成 1()() s s n M M n T ωωω∞ =-∞ =-∑ 该式表明,已抽样信号()m t s 的频谱()M s ω是无穷多个间隔为ωs 的()M ω相迭加而成。这就意味着()M s ω中包含()M ω的全部信息。 需要注意,若抽样间隔T 变得大于 H f 21 ,则()M ω和()T δω的卷积在相邻的周期内存在重叠(亦称混叠),因此不能由()M s ω恢复()M ω。可见,H f T 21 =是抽样的最大间隔,它被称为奈奎斯特间隔。 上面讨论了低通型连续信号的抽样。如果连续信号的频带不是限于0与H f 之间,而是限制在L f (信号的最低频率)与H f (信号的最高频率)之间(带通型连续信号),那么,其抽样频率s f 并不要求达到H f 2,而是达到2B 即可,即要求抽样频率为带通信号带宽的两倍。

实验6 循环码的软件编、译码实验

实验六循环码的软件编、译码实验 一、实验目的 (1)通过实验了解循环码的工作原理。 (2)了解生成多项式g(x)与编码、译码的关系。 (3)了解码距d与纠、检错能力之间的关系。 (4)分析(7.3)循环码的纠错能力。 二、实验要求 用你熟悉的某种计算机高级语言或单片机汇编语言,编制一(7,3)循环码的编、译码程序,并改变接受序列R(x)和错误图样E(x),考查纠错能力情况。 设(7,3)循环码的生成多项式为:g(x)=x4+x3+x2+1 对应(11101)(1)按编、译码计算程序框图编写编、译码程序 (2)计算出所有的码字集合,可纠的错误图样E(x)表和对应的错误伴随式表。 (3)考查和分析该码检、纠一、二位错误的能力情况。 (4)整理好所有的程序清单,变量名尽量用程序框图所给名称,并作注释。 (5) 出示软件报告. 三、实验设计原理 循环码是一类很重要的线性分组码纠错码类,循环码的主要优点是编、译码器较简单,编码和译码能用同样的反馈移存器重构,在多余度相同的条件下检测能力较强,不检测的错误概率随多余度增加按指数下降。另外由于循环码具有特殊的代数结构,使得循环码的编、译码电路易于在微机上通过算法软件实现。 1、循环码编码原理 设有一(n,k)循环码,码字C=[C n-1…C r C r-1…C0],其中r=n-k。码字多项式为: C (x ) = C n-1x n-1+ C n-2x n-2+… +C1x+C0。 码字的生成多项式为: g(x)= g r-1x r-1+g r-2x r-2+…+g1x+g0 待编码的信息多项式为:m(x)=m K-1x K-1+…+m0 x n-k.m(x)=C n-1x n-1+…+C n-K x n-K

戴维南定理实验报告

戴维南定理 学号:19 姓名:魏海龙班级:传感网技术 一、实验目的: 1、深刻理解和掌握戴维南定理。 2、掌握测量等效电路参数的方法。 3、初步掌握用multisim软件绘制电路原理图。 4、初步掌握multisim软件中的multimeter、voltmeter、ammeter 等仪表的使用以及DC operating point、paramrter sweep等 SPICE仿真分析方法。 5、掌握电路板的焊接技术以及直流电源、万用表等仪器仪表的使 用。 6、初步掌握Origin绘图软件的应用。 二、实验器材: 计算机一台、通用电路板一块、万用表两只、直流稳压电源一台、电阻若干。 三、实验原理:一个含独立源、线性电阻和受控源的一端口网络,对 外电路来说,可以用一个电压源和电阻的串联组合来等效置 换,其等效电压源的电压等于该一端口网络的开路电压,其等 效电阻等于该一端口网络中所有独立源都置为零后的数日电 阻。 四、实验内容: 1、电路图:

2、元器件列表: 2、实验步骤: (1)理论分析: 计算等效电压:电桥平衡。 ∴=,331131R R R R Θ Uoc=3 11 R R R +=。 计算等效电阻:R= ??? ??? ? ?+++ ??? ??? ? ?++3311111221 3111121 R R R R R R = (2)测量如下表中所列各电阻的实际值,并填入表格:

然后根据理论分析结果和表中世纪测量阻值计算出等效电源 电压和等效电阻,如下所示: Uc= R=Ω (3)multisim 仿真: a 、按照下图所示在multisim 软件中创建电路 b 、用万用表测量端口的开路电压和短路电流,并计算等效电阻,结果如下:Us= I= R=Ω c 、用万用表的欧姆档测量等效电阻,与b 中结果比较,将测量结果填入下表中:

老师的:实验三 叠加定理、戴文宁定理和诺顿定理

实验三叠加定理、戴文宁定理和诺顿定理 一、实验目的 (1)进一步熟悉虚拟实验,可熟练使用Pspice; (2)验证叠加定理、戴文宁定理和诺顿定理; (3)理解电路等效的意义,了解一个电路的戴文宁形式和诺顿形式的相互转 二、实验内容与实验方法 1、叠加定理的验证 叠加定理指出:当一个线性电路中有多个电源作用时,电路中任一个电压或电流参数都等于单个电源作用时该参数的代数和。 按下图用Pspice画出电路,在本电路中共有三个电源,分别是一个12伏的电压源V1,一个24伏的电压源V2,一个10mA的电流源I1。 图3-1 实验步骤 (1)设置V1=12V、V2=0、I1=0。测量R2(4K电阻)上的电压和流过该电阻的电流,记录在表一的第二行。 (2)设置V2=24V、V1=0、I1=0。测量R2(4K电阻)上的电压和流过该电阻的电流,记录在表一的第三行。 (3)设置I1=10mA、V2=0、V1=0。测量R2(4K电阻)上的电压和流过该电阻的电

流,记录在表一的第四行。 (4)设置V1=12V、V2=24V、I1=10mA。测量R2(4K电阻)上的电压和流过该电阻的电流,记录在表一的第五行。 2、文宁定理和诺顿定理 对于任意一个两端口电路,可以等效为一个电压源和一个电阻的串联,这就是戴文宁定理。 而诺顿定理又指出:对于任意一个两端口电路,可以等效为一个电流源和一个电阻的并联。 根据上述的定理,对于如图3-2的电路,可以等效为图3-3的戴文宁形式,或图3-4的诺顿形式。 图3-2 图3-3 图3-4 实验步骤 (1)按图3-2用Pspice画出电路图,在a-b两端接一个电阻R3,调节R3为100,500,1K,2K,5K,10K,20K,50K。分别记录下在每种阻值情况下R3上的电压和流过该电阻的电流(表二第二行)。

通信原理抽样定理及其应用实验报告

实验1 抽样定理及其应用实验 一、实验目的 1.通过对模拟信号抽样的实验,加深对抽样定理的理解; 2.通过PAM 调制实验,使学生能加深理解脉冲幅度调制的特点; 3.学习PAM 调制硬件实现电路,掌握调整测试方法。 二、实验仪器 1.PAM 脉冲调幅模块,位号:H (实物图片如下) 2.时钟与基带数据发生模块,位号:G (实物图片见第3页) 3.20M 双踪示波器1台 4.频率计1台 5.小平口螺丝刀1只 6.信号连接线3根 三、实验原理 抽样定理告诉我们:如果对某一带宽有限的时间连续信号(模拟信号)进行抽样,且抽 样速率达到一定数值时,那么根据这些抽样值就能准确地还原原信号。这就是说,若要传输模拟信号,不一定要传输模拟信号本身,可以只传输按抽样定理得到的抽样值。 PAM 实验原理:它采用模拟开关CD4066实现脉冲幅度调制。抽样脉冲序列为高电平时, 模拟开关导通,有调制信号输出;抽样脉冲序列为低电平,模拟开关断开, 无信号输出 图1-2 PAM 信道仿真电路示意图 32W01 C1 C2 32P03 R2 32TP0

四、可调元件及测量点的作用 32P01:模拟信号输入连接铆孔。 32P02:抽样脉冲信号输入连接铆孔。 32TP01:输出的抽样后信号测试点。 32P03:经仿真信道传输后信号的输出连接铆孔。 32W01:仿真信道的特性调节电位器。 五、实验内容及步骤 1.插入有关实验模块: 在关闭系统电源的条件下,将“时钟与基带数据发生模块”、“PAM脉冲幅度调制模块”,插到底板“G、H”号的位置插座上(具体位置可见底板右下角的“实验模块位置分布表”)。注意模块插头与底板插座的防呆口一致,模块位号与底板位号的一致。 2.信号线连接: 用专用铆孔导线将P03、32P01;P09、32P02;32P03、P14连接(注意连接铆孔的箭头指向,将输出铆孔连接输入铆孔)。 3.加电: 打开系统电源开关,底板的电源指示灯正常显示。若电源指示灯显示不正常,请立即关闭电源,查找异常原因。

抽样定理

实验一抽样定理实验 一、实验目的 1、了解抽样定理在通信系统中的重要性 2、掌握自然抽样及平顶抽样的实现方法 3、理解低通采样定理的原理 4、理解实际的抽样系统 5、理解低通滤波器的幅频特性对抽样信号恢复的影响 6、理解低通滤波器的相频特性对抽样信号恢复的影响 7、理解平顶抽样产生孔径失真的原理 8、理解带通采样定理的原理 二、实验内容 1、验证低通采样定理原理 2、验证低通滤波器幅频特性对抽样信号恢复的影响 3、验证低通滤波器相频特性对抽样信号恢复的影响 4、验证带通抽样定理原理 5、验证孔径失真的原理

三、实验原理 抽样定理原理:一个频带限制在(0,H f)内的时间连续信号() m t,如 果以T≤H f21 秒的间隔对它进行等间隔抽样,则() m t将被所得到的抽样值完 全确定。(具体可参考《信号与系统》) 我们这样开展抽样定理实验:信号源产生的被抽样信号和抽样脉冲经抽样/保持电路输出抽样信号,抽样信号经过滤波器之后恢复出被抽样信号。抽样定理实验的原理框图如下: 被抽样信号 抽样脉冲 抽样恢复信号 图1抽样定理实验原理框图 被抽样信号抽样恢复信号 图2实际抽样系统 为了让学生能全面观察并理解抽样定理的实质,我们应该对被抽样信号进行精心的安排和考虑。在传统的抽样定理的实验中,我们用正弦波来作为被抽样信号是有局限性的,特别是相频特性对抽样信号恢复的影响的实验现象不能很好的展现出来,因此,这种方案放弃了。 另一种方案是采用较复杂的信号,但这种信号不便于观察,如错误!未找到引用源。所示:

被抽样信号抽样恢复后的信号 图3复杂信号抽样恢复前后对比 你能分辨错误!未找到引用源。中抽样恢复后信号的失真吗因此,我们选择了一种不是很复杂,但又包含多种频谱分量的信号:“3KHz正弦波”+“1KHz正弦波”,波形及频谱如所示: 图1被抽样信号波形及频谱示意图 对抽样脉冲信号的考虑 大家都知道,理想的抽样脉冲是一个无线窄的冲激信号,这样的信号在现实系统中是不存在的,实际的抽样脉冲信号总是有一定宽度的,很显

实验三戴维南定理

戴维南定理(有源二端网络等效参数的测定) 一、 实验目的 1、验证戴维南定理的正确性。 2、掌握测量有源二端网络等效参数的一般办法。 二、 原理说明 1、 任何一个线性含源网络,如果仅研究其中的一条支路的电压和电流,则可以将电路的其余部分看作是一个有源二端网络(或者称为含源——端口网络)。 戴维南定理指出,任何一个线性有源网络,总可以用一个等效电压源来代替,此电压源的电动势s E 等于这个有源二端网络的开路电压oc U ,其等效内阻0R 等于该网络中所有独立源均置零(理想电压源视为短接,理想电流源视为开路)时的等效电路。 oc U 和0R 称为有源二端网络的等效参数。 2、 有源二端网络等效参数的测量方法 (1) 开路电压、短路电流法 在有源二端网络输出端开路时,用电压表直接测量其输出端的开路电压oc U ,然 后再将其输出端短路,用电流表测其短路电流sc I ,则内阻为:sc oc I U R =0 (2) 伏安法 用电压表、电流表测出有源二端网络的外特性如图3-1所示,根据外特性曲线求出斜率 ?tan 则内阻: sc oc I U I U R =??= =?tan 0 用伏安法,主要是测量开路电压及电流为额定值N I 时的输出端电压N U ,则内阻为: N N oc I U U R -= 若二端网络的内阻值很低时,则不宜测其短路电流。

(3)半电压法 如图3-2所示,当负载电压为被测网 络开路电压的一半时,负载电阻(由 电阻箱的读数确定)即为被测有源二 端网络的等效内阻值。 (4)零示法 在测量具有高内阻有源二端网络的 开路电压时,用电压表直接测量会造 成较大的误差,为了消除电压表内阻 的影响,往往采用零示测量法,如图 3-3所示。 零示法测量原理是用一低内阻的稳 压电源与被测有源二端网络进行比 较,当稳压电源的输出电压与有源二端网络的开路电压相等时,电压表的读数将为“0”,然后电路断开,测量此时稳压电源的输出电压,即为有源二端网络的开路电压。 三、实验设备

(7,4)循环码的编码和译码

(7,4)循环码的编码译码 编码的实验原理: 根据循环码的代数性质建立系统编码的过程,可以把消息矢量用如下多项式表示: 要编码成系统循环码形式,把消息比特移入码字寄存器的最右边k 位,而把监督比特加在最左边的n-k 个中,则要用k n x -乘以m(x)得到 k n x - m(x)= k n x - m(x)= q(x) g(x)+ p(x),其中p(x)可以表示为 p(x)= ,则p(x)+ k n x - m(x) = + 另U(x)= p(x)+ k n x - m(x),则U=(0p ,1p ,2p ,·,1--k n p ,0m ,1m ,·,1-k m )。 本实验根据以上原理,用matlab 实现书上例6.8系统形式的循 环码,生成多项式为g(x)= (7,4)循环码的编码的程序如下:clear; clc; a=[1 0 1 1]; %高次项系数在前的生成多项式 Gx=[1 0 1 1]; %将数组a 的高位依次放在数组Data 的低位 Data=zeros(1,7); Data(1)=a(4); Data(2)=a(3); Data(3)=a(2); Data(4)=a(1); %Data 除以Gx 得到余数Rx [Qx,Rx]=deconv(Data,Gx); 12211...)(m x m x m x m x m k k k k ++++=----k n k n n k n k x m x m x m x m -+-----++++0112211 (011) 1...p x p x p k n k n +++----0 111...p x p x p k n k n +++----k n k n n k n k x m x m x m x m -+-----++++0112211 (3) 1x x ++

抽样定理

第一章信源编码技术 实验一抽样定理实验 一、实验目的 1、了解抽样定理在通信系统中的重要性。 2、掌握自然抽样及平顶抽样的实现方法。 3、理解低通采样定理的原理。 4、理解实际的抽样系统。 5、理解低通滤波器的幅频特性对抽样信号恢复的影响。 6、理解低通滤波器的相频特性对抽样信号恢复的影响。 7、理解带通采样定理的原理。 二、实验器材 1、主控&信号源、3号模块各一块 2、双踪示波器一台 3、连接线若干 三、实验原理 1、实验原理框图 图1-

1 抽样定理实验框图 2、实验框图说明 抽样信号由抽样电路产生。将输入的被抽样信号与抽样脉冲相乘就可以得到自然抽样信号,自然抽样的信号经过保持电路得到平顶抽样信号。平顶抽样和自然抽样信号是通过开关S1切换输出的。 抽样信号的恢复是将抽样信号经过低通滤波器,即可得到恢复的信号。这里滤波器可以选用抗混叠滤波器(8阶3.4kHz的巴特沃斯低通滤波器)或FPGA数字滤波器(有FIR、IIR两种)。反sinc滤波器不是用来恢复抽样信号的,而是用来应对孔径失真现象。 要注意,这里的数字滤波器是借用的信源编译码部分的端口。在做本实验时与信源编译码的内容没有联系。 四、实验步骤 实验项目一抽样信号观测及抽样定理验证 概述:通过不同频率的抽样时钟,从时域和频域两方面观测自然抽样和平顶抽样的输出波形,以及信号恢复的混叠情况,从而了解不同抽样方式的输出差异和联系,验证抽样定理。 1、关电,按表格所示进行连线。 2、开电,设置主控菜单,选择【主菜单】→【通信原理】→【抽样定理】。调节主控模块的W1使A-out输出峰峰值为3V。 3、此时实验系统初始状态为:被抽样信号MUSIC为幅度4V、频率3K+1K正弦合成波。抽样脉冲A-OUT为幅度3V、频率9KHz、占空比20%的方波。 4、实验操作及波形观测。 (1)观测并记录自然抽样前后的信号波形:设置开关S13#为“自然抽样”档位,用示波器分别观测MUSIC主控&信号源和抽样输出3#。

实验三 基尔霍夫定律、戴维南定理的的验证

实验三 基尔霍夫定律、戴维南定理的的验证 一、实验目的 1. 加深对基尔霍夫定律、戴维南定理的理解。 2. 加深对参考方向、等效电路概念的理解。 3. 进一步熟悉直流稳压电源、万用表的使用。 二、实验仪器及设备 电工实验箱、直流稳压电源、万用表 三、实验原理 基尔霍夫定律是电路的基本定律。测量某电路的各支路电流及每个元件两端的电压,应能分别满足基尔霍夫电流定律(KCL )和电压定律(KVL )。即对电路中的任一个节点而言,应有ΣI =0;对任何一个闭合回路而言,应有ΣU =0。 戴维南定理指出:任何一个线性有源网络,总可以用一个电压源与一个电阻的串联来等效代替,此电压源的电动势Us 等于这个有源二端网络的开路电压Uoc , 其等效内阻R 0等于该网络中所有独立源均置零(理想电压源视为短接,理想电流源视为开路)时的等效电阻。 四、实验内容及步骤 1. 基尔霍夫定律的验证 ⑴验证KCL 定律,在图3-1所示电路中,任选一个节点,测量流入流出节点的各支路电流数值和方向,记入表3-1. ⑵验证KVL 定律,在图3-1所示电路中,任选一回路,测量回路内所有支路的元件电压值和电压方向,对应记入表3-1。 图3-1 2. 验证戴维南定理 ⑴在图3-2所示电路中,测量有源二端网络的开路 电压U oc (1-1′)。 ⑵在图3-2所示电路中,测量有源二端网络的等效电阻R 0。 ⑶验证戴维南定理, 理解等效概念 1〉戴维南等效电路外接负载。首先组建戴维南等效电路,即用外电源Us2(其值调到U oc 值)与戴维南等效电阻R 0相串后,外接R L =100Ω的负载,然后测电阻R L 两端电压U RL 和流过R L 的电流值I RL ,记入表3-2。 2〉原有源二端网络1-1′外接负载。同样接R L =100Ω的负载,测电压U RL 与电流I RL ,结果记入表3-2,与1〉测试结果进行比较,验证戴维南定理。 五、数据记录与分析 表3-1基尔霍夫定律的验证 图3-2 120Ω 360Ω 240Ω 180Ω

卷积码实验报告

卷积码实验报告 篇一:卷积码实验报告 实验五信道编解码() 本章目标 掌握数字频带传输系统调制解调的仿真过程掌握数字频带传输系统误码率仿真分析方法 5.1实验目的 1. 使用MATLAB进行卷积码编/译码器的仿真。 2. 熟练掌握MATLAB软件、语句。 3. 了解卷积码编/译码器的原理、知识。 5.2实验要求 1. 编写源程序、准备测试数据。 2. 在 MATLAB环境下完成程序的编辑、编译、运行,获得程序结果。如果结果有误, 应找出原因,并设法更正之。 5.3 实验原理 (一)卷积码编码器 1. 连接表示 卷积码由3个整数n,k,N描述。k/n也表示编码效率(每编码比特所含的信 N称为约束长度,息量);但n与线性分组码中的含义不同,不再表示分组或码子长度; 表示在编码移位寄存器中k元组的级数。卷积码不同于分组码的一个重要特征就是编码器的记忆性,即卷积码编码过程中产生的n元组,不仅是当前输入k元组的函数,而且

还是前面N?1个输入k元组的函数。实际情况下,n和k经常取较小的值,而通过N的变化来控制编码的能力和复杂性。 下面以图1中的卷积码编码器为例介绍卷积码编码器。该图表示一个约束长度 K?3的(2,1)卷积译码器,模2加法器的数目为n?2,因此,编码效率k/n?1/2。 在每个输入比特时间上,1位信息比特移入寄存器最左端的一级,同时将寄存器中原有比特均右移一级,接着便交替采样两个模2加法器,得到的码元就是与该输入比特相对应的分支字。对每一个输入信号比特都重复上述采样过程。 图1卷积码编码器(编码效率1/2,K?3) 用于描述反馈移位寄存器实现循环码时所使用的生成多项式也可用户描述卷积码编码器的连接。应用n个生成多项式描述编码的移位寄存器与模2加法器的连接方式,n个生成多项式分别对应n个模2加法器,每个生成多项式不超过K?1阶。仍以图 1中的编码器为例,用生成多项式g1(X)代表上方连接,g2(X)代表下方连接,则有: g1(X)?1?X?X2g2(X)?1?X 2 多项式中的最低阶项对应于寄存器的输入级。输出序

实验三 抽样定理实验(PAM)

实验三抽样定理实验(PAM) 一、实验目的 1、掌握抽样定理的概念。 2、掌握模拟信号抽样与还原的原理及实现方法。 3、了解模拟信号抽样过程的频谱。 二、实验内容 1、采用不同频率的方波对同一模拟信号抽样并还原,观测并比较抽样信号及还原信号 的波形和频谱。 2、采用同一频率但不同占空比的方波对同一模拟信号抽样并还原,观测并比较抽样信 号及还原信号的波形和频谱。 三、实验仪器 1、信号源模块一块 2、模拟信号数字化模块一块 3、20M双踪示波器一台 4、带话筒立体声耳机一副 5、频谱分析仪一台 四、实验原理 1、图8-1是模拟信号的抽样原理框图。 图8-1 模拟信号的抽样原理框图 实际上理想冲激脉冲串物理实现困难,实验中采用DDS直接数字频率合成信源产生的矩形脉冲来代替理想的窄脉冲串。 抽样信号规定在音频信号300~3400Hz范围内,由信号源模块提供。抽样脉冲的频率根据抽样定理的描述,应大于或等于输入音频信号频率的2倍。 抽样信号和抽样脉冲送入模拟信号数字化模块抽样电路中,产生PAM抽样信号。 3、抽样信号的还原 若要解调出原始语音信号,将抽样信号送入截止频率为3400Hz的低通滤波器即可。 图8-2 抽样信号的还原原理框图

五、实验步骤 1、将模块小心地固定在主机箱中,确保电源接触良好。 2、插上电源线,打开主机箱右侧的交流开关,再分别按下两个模块中的电源开关,对 应的发光二极管灯亮,两个模块均开始工作。(注意,此处只是验证通电是否成功,在实验中均是先连线,后打开电源做实验,不要带电连线) 3、信号源模块调节“2K调幅”旋转电位器,使“2K正弦基波”输出幅度为3V左右。 4、实验连线如下: 信号源模块模拟信号数字化模块 2K正弦基波——————抽样信号 DDS-OUT——————抽样脉冲 模拟信号数字化模块内连线 PAM输出———————解调输入 5、不同频率方波抽样 (1)信号源模块“DDS-OUT”测试点输出选择“方波A”,调节“DDS调幅”旋转电位器,使其峰峰值为3V左右。 (2)示波器双踪观测“抽样信号”与“PAM输出”测试点波形,对比方波A的频率为4KHz、8KHz、16KHz等典型频率值时“PAM输出”测试点波形区别。 (3)示波器双踪观测“抽样信号”和“解调输出”测试点波形,对比方波A的频率为4KHz、8KHz、16KHz等典型频率值时抽样信号还原的效果。 6、同频率但不同占空比方波抽样 (1)信号源模块“DDS-OUT”测试点输出选择“方波B”,以4KHz频率为例,其峰峰值不变。 说明:为能稳定观测“抽样信号”与“PAM输出”测试点波形,每次方波B的占空比调节好后,均要重新按“功能切换”键,将“占空比”菜单切换回“步进”菜 单。 (2)示波器双踪观测“抽样信号”与“PAM输出”测试点波形,对比方波B的占空比为20%、50%、80%等比值相差较大时“PAM输出”测试点波形及频谱的区别。 (3)示波器双踪观测“抽样信号”和“解调输出”测试点波形,对比方波B的占空比为20%、50%、80%等比值相差较大时抽样信号还原的效果。 (4)改变方波B的频率,重复上述实验步骤。 7、模拟语音信号抽样与还原 用信号源模块模拟语音信源输出的“T-OUT”话音信号代替2K正弦信号输入模拟信号数字化模块中,还原的“解调输出”信号送回信号源模拟语音信源“R-IN”测试点,耳机接收话筒语音信号,完成模拟语音信号抽样与还原的整个过程。

相关主题
文本预览
相关文档 最新文档