当前位置:文档之家› 粉末冶金知识点

粉末冶金知识点

粉末冶金知识点
粉末冶金知识点

粉末冶金定义:由粉末制备、粉末成形、高温烧结以及加工热处理等重要过程组成的材料制备和生产的工程技术。

工艺过程:粉末的制备、粉末的加工成形、粉末的烧结以及烧结后处理四个工序。

特点:能耗低、材料利用率高以及低成本等优点;与普通熔炼方法相比,有如下特点:1)粉末冶金能生产用普通熔炼无法生产的具有特殊性能的材料。a.能控制制品的孔隙度b.能利用金属和金属、金属和非金属的组合效果,生产具有各种特殊性能的材料c.能生产各种复合材料2)粉末冶金生产的材料,与普通熔炼相比,性能优越。a.高合金元素含量粉末冶金材料的性能比熔炼法生产的合金材料要好。b.粉末冶金法还可用来生产难熔金属材料或制品。

c.在制造机械零件方面,粉末冶金法是一种少切削或无切削的新工艺,可以大大减少机加工量,节约金属材料,提高劳动生产率。缺点:粉末冶金法成本高,制品的大小和形状受到一定的限制,烧结零件的韧性较差。

第二章.粉体制备的原理与技术

1.粉体制备是粉末冶金的第一个重要步骤。

2.方法:1)在固态下制备粉末的方法:机械粉碎法和电化学腐蚀法、还原法、还原-化合法、高温反应合成法2)在液态下制备粉末的方法:雾化法、置换法、溶液氢还原法、水溶液电解法、熔盐电解法3)在气态下:蒸汽冷凝法、热离解法、气相氢还原法、化学气相沉积法

3.机械粉碎是靠压碎、碰撞、击碎和磨削等作用,将粗颗粒金属或合金机械的粉碎成粉末的过程。

4.球磨的三种情况:1)球磨机转速慢时,球和物料沿筒体上升至坡度角,然后滚下,称为泻落。此时物料粉碎主要靠球的磨擦作用2)球磨转速较高时,球在离心力作用下,随着筒体上升至比第一种情况更高的高度,然后在重力作用下掉下来,称为抛落。这时物料不仅靠球与球之间的磨擦作用,主要靠球落下时的冲击作用被粉碎,其效果最好3)继续增加球磨机的转速,当离心力超过球体的重力时,紧靠球磨筒内衬板的球不脱离筒壁而与筒体一起回转,此时物料的粉碎作用停止。这种转速称为临界转速。

5.氧化物还原法。必要条件:还原反应向生成金属方向进行的热力学条件是还原剂的氧化反应的等压位变化小于金属的氧化反应的等压位变化。凡是对氧的亲和力比被还原的金属对氧的亲和力大的物质,都能作为该金属氧化物的还原剂。

6.雾化制粉的基本原理与技术。雾化法属于机械制粉法,是直接击碎液体金属或合金而制的粉末的方法,应用较广泛,生产规模仅次于还原法。雾化法又称喷雾法。

雾化法包括:1)二流雾化法,分气体雾化和水雾化2)离心雾化法,分旋转水流雾化、旋转电极雾化和旋转坩埚雾化

雾化原理:二流雾化是用高速气流或高压水流击碎熔融金属液流以获得金属粉末的方法。7.电解法制备粉末原理:当电解质溶液通入直流电后,将产生正负离子的迁移,正离子向阴极迁移,负离子向阳极迁移,在阳极上发生氧化反应,在阴极上发生还原反应,从而在电极上析出氧化产物和还原产物。

8.影响粉末粒度和电流效率的因素:1)电解液的组成:金属离子浓度的影响、酸度的影响、添加剂的影响2)电解制粉的条件:电流密度的影响、电解液温度的影响、电解时搅拌的影响

第三章粉末结构与性能分析

1.把固态物质按分散程度不同分成致密体、粉末体和胶体三类

2.粉末体:由大量的粉末颗粒组成的一种分散体系,其中的颗粒彼此可以分离,或者说,粉末是由大量的颗粒及颗粒间的空隙所构成的集合体。粉末颗粒:粉末中能分开并独立存在的

在最小实体。单颗粒如果以某种方式聚集,就构成所谓的二次颗粒,其中的原始颗粒称为一次颗粒。粉末体具有流动性。

3.目前采用的形状因子有:1)延伸度,n=l/b,延伸度越大,说明颗粒越细长;而对称性越高的粉末,延伸度就越小;延伸度不能小于 1.(2)扁平度,m=b/t,此值越大,说明颗粒越扁3)球形度,不仅表征了颗粒的对称性,还与颗粒的表面粗糙度有关;球形度均远小于1.(4)粗糙度(皱度系数),球形度的倒数。测量方法是用吸附法准确测定颗粒的比表面积

4.粉末的工艺性能1)松装密度是粉末在规定条件下自然充满容器时,单位体积内的粉末质量,单位为g/cm3。2)振实密度为将粉末装于容器内,在规定条件下,经过振动后测得的粉末密度。3)流动性是指50g粉末从标准的流速漏斗流出所需的时间,单位为s/50g,简称流速。4)粉末粒度指颗粒占据空间的尺寸。

5.频度分布曲线与累积分布曲线的区别:频度分布曲线是以各区间的颗粒数占所统计的颗粒总数的百分比(称颗粒频度)作纵坐标,以粒径为横坐标作成的曲线。累积百分数包括某一级在内的小于该级的颗粒数占全部粉末数的百分含量,以它对平均粒度作图就得到负累积分布曲线;如果按大于某粒级的颗粒数百分含量进行累积和作图,则得到正累积分布曲线

6.粉末比表面积:指单位质量粉末所具有的表面积(m2/g)。分析粉末体表面积主要有气相吸附法和气相渗透法两种

第四章粉末的预处理

1.预处理包括:分级、合批、粉末退火、筛分、混合、制粒、加润滑剂、加成形剂等步骤

2混合与合批的区别:混合一般指将两种或两种以上不同成分的粉末混合均匀的过程;合批是指将成分相同而粒度不同的粉末或不同生产批次的粉末进行均匀混合,保持产品的同一性。它们的共同点是将粉末混合均匀。

避免粉末聚集可以通过研磨分散和表面处理来实现。颗粒剪切强度是影响粉末混合、流动性和填充性的关键因素。

自由填充的粉末松装密度理论上的最大值是95%,如果颗粒尺寸是7:1,则充分混合后的粉末具有较高的松装密度。

筛分:目的是筛选出符合粒度要求的粉末颗粒。

粉体压制成形原理

成形是通过外加压力把粉末压制成所需几何形状且具有一定密度的过程。成形分普通模压成形和特殊成形两大类。

粉末的位移。粉末在松装堆积时,由于表面不规则,彼此之间有摩擦,颗粒相互搭架而形成拱桥孔洞的现象,称为拱桥效应。

粉末的变形。有三种情况:弹性变形、塑性变形、脆性断裂

压制压力:压制压力作用在粉末上后分成两部分,一部分用来使粉末产生位移、变形和克服粉内的摩擦,这部分称为净压力,用P1表示;另一部分,是用来克服粉末颗粒与模壁之间外摩擦的力,称为压力损失,用P2表示。总压力为净压力与压力损失之和。应力分布情况:压模内各部分的应力是不相等的。由于存在着压力损失,上部应力比底部应力大;在接近模冲的上部同一断面,边缘的应力比中心部位大;而在远离模冲的底部,中心部位的应力比边缘应力大。

弹性后效:在压制过程中,当除去压制压力并把压坯压出压模之后,由于内应力的作用,压坯发生弹性膨胀,这种现象称为弹性后效。

压坯的相对密度随压力的增加变化过程:第一阶段:在这个阶段内,由于粉末颗粒发生位移,填充孔隙,因此当压力稍有增加时,压坯的密度增加很快,又称为滑动阶段;第二阶段:压力继续增加时,压坯的密度几乎不变,又称平衡阶段;第三阶段:当压力继续增大超过某一定值后,粉末颗粒开始变形,由于位移和变形都起作用,因此,压坯密度有随之增加,称为

变形阶段。

三个压制理论的公式及假设。1)巴尔申压制理论,假设:①将粉末体当作理想弹性体,运用胡可定律②假设粉末变形时无加工硬化现象③假设没有摩擦力④忽略压制时间的影响⑤只考虑了粉末的弹性性质,忽略了粉末的流动性质。公式:lgpmax-lgp=L(?-1)(2)川北公夫压制理论,假设:①粉末层内所有各点的单位压力相等②粉末层内各点的压力是外力和粉末内固有的内压力之和③粉末层各断面上的外压力与该断面上粉末的实际断面受的压力总和保持平衡④每个粉末颗粒仅能承受它所固有的屈服强度的能力⑤粉末压缩时的各个颗粒位移的几率和它邻接的孔隙大小成比例。公式:C=abp/(1+bp)3)黄培云压制理论,考虑了粉末的非线性弹滞体的特征与压制时应变大幅度变化这些事实。公式:lgln(ρm-ρ0)ρ/(ρm-ρ)ρ0=nlgp-lgM

特殊成形技术

特殊成形包括等静压成形、连续成形、无压成形、注射成形、高能成形等

等静压压制法与钢模压制法相比,优点:1)能够压制具有凹形、空心等复杂形状的压件2)单位压制压力比钢模压制法低3)能够压制各种金属粉末及非金属粉末,压制坯件密度分布均匀,对难熔金属粉末及其化合物尤为有效4)压坯强度较高,便于加工和运输5)模具材料是橡胶和塑料,成本较低廉6)能在较低的温度下制得接近完全致密的材料。缺点:1)对压坯尺寸精度的控制和压坯表面的光洁程度都比钢模压制法低2)生产率低于自动钢模压制法3)所用橡胶或塑料模具的使用寿命比金属模具要短得多。

热等静压工艺首要控制因素是压力、温度和时间。

粉末挤压成形原理:是指粉末体或粉末压坯在压力的作用下,通过规定的挤压模成为坯块或制品的一种成形方法。适用于制备长、薄的结构件。

热压成形与温压成形对比:热压是把粉末装在模腔内,在加压的同时使粉末加热到正常烧结温度或更低一些,经过较短时间烧结成致密而又均匀的制品。温压工艺是指铁基粉末与模具被加热到150摄氏度左右的一种刚性模压制技术,首先,温压粉末采用的是一种专用的铁基粉末;其次。粉末压制工艺温度通常在110—130之间,且模具的温度略高于粉末温度。

粉末轧制原理:将具有一定轧制性能的金属粉末装入一个特质的漏斗中,并保持一定的料柱高度,当轧辊转动时,由于粉末与轧辊之间的外摩擦力以及粉末体内摩擦力的作用,使粉末连续不断地被咬入变形区内受轧辊的压轧。

第七章

按照烧结过程有无明显的液相出现和烧结系统的组成进行分类:单元系烧结,多元系固相烧结,多元系液相烧结(稳定液相烧结系统,瞬时液相烧结系统)

烧结的基本过程:1)黏结阶段,形成烧结颈;2)烧结颈长大阶段,形成连续的孔隙网络;3)闭孔系球化和缩小阶段,孔隙形状趋近球形并不断缩小。

3.烧结的热力学问题:粉末烧结是系统自由能减小的过程,即烧结体相对于粉末体在一定条件下处于能量较低的状态。

4.烧结动力可以用饱和蒸汽压的差表示

5.烧结机构就是研究烧结过程中各种可能的物质迁移方式以及速率的。(黏性流动、蒸发和凝聚、体积扩散、表面扩散、晶界扩散、塑形流动)

6.单元系烧结的主要机构是扩散和流动

7.烧结体显微组织变化:1)空隙变化。连通孔隙的不断消失与隔离闭孔的收缩是贯穿烧结全过程的组织变化特征2)再结晶与晶粒长大①晶粒内再结晶。再结晶具有从接触面向颗粒内扩散的特点②颗粒间聚集再结晶

8.影响烧结过程的因素1)粉末活性。粉末活性包括颗粒的表面活性与晶格活性两方面,前者取决于粉末的粒度和形状,后者由晶粒大小、晶格缺陷和内应力等变化2)外来物质①粉

末表面的氧化物②烧结气氛对不同粉末的影响3)压制压力。压制压力极高时,烧结后密度降低。

液相烧结的基本条件:1)润湿性。润湿角<90°;2)溶解度;3)液相数量,以不超过烧结体积的35%为宜。

液相烧结的动力是液相表面张力和固-液界面张力。

烧结过程:1)液相流动与颗粒重排阶段2)固相熔解和再析出阶段

烧结机构:颗粒重排机构、溶解-再析出机构和骨架烧结机构

粉末冶金材料是金属和孔隙的复合体。孔隙是粉末冶金材料的固有特征。

粉末冶金原理

1.粉末冶金:制取金属或用金属粉末(或金属粉末与非金属粉末的混合物)作为原料, 经过成形和烧结制造金属材料、复合材料以及各种类型制品的工艺过程。 2.二次颗粒:单颗粒以某种方式聚集就构成二次颗粒 3.松装密度:粉末在规定条件下自然充填容器时,单位体积内自由松装粉末体的质量 g/cm3。 4.孔隙率:孔隙体积与粉末体的表观体积之比的百分数称为孔隙度(θ)。 5.中位径:将各种粒级粉末个数或百分数逐一相加累积并做图,可以得到累积分布曲线, 分布曲线对应50%处称为中位径 弹性后效:在压制过程中,粉末由于受力而发生弹性变形和塑性变形,压坯内存在着很大的内应力,当外力停止作用后,压坯便出现膨胀现象 6.合批:将成分相同而粒度不同的粉末进行混合,称为合批 7.烧结机构:研究烧结过程中各种可能的物质迁移方式及速率。 8.热压:热压又称为加压烧结,是把粉末装在模腔内,在加压的同时使粉末加热到正常 烧结温度或更低一些的温度,经过较短时间烧结成致密而均匀的制品。 9.活化烧结:是指采用化学或物理的措施,使烧结温度降低、烧结过程加快,或使烧结 体的密度和其它性能得到提高的方法。 10.单颗粒:粉末中能分开并独立存在的最小实体称为单颗粒。 11.振实密度:粉末装于振动容器,规定条件下,经振动敲打后测得的粉末密度。 12.粒度:以mm或μm的表示的颗粒的大小称颗粒直径,简称粒径或粒度。 13.混合:将两种或两种以上不同成分的粉末混合均匀。分为机械法和化学法。 14.搭桥:粉末在松装堆集时,由于表面不规则,彼此之间有摩擦,颗粒相互搭架而形成 拱桥孔洞的现象。 15.快速冷凝技术的特点:(1)急冷可大幅度地减小合金成分的偏析;(2)急冷可增加合 金的固溶能力;(3)急冷可消除相偏聚和形成非平衡相;(4)某些有害相可能由于急冷而受到抑制甚至消除;(5)由于晶粒细化达微晶程度,在适当应变速度下可能出现超塑性等。 16.粉末颗粒的聚集形式:聚合体、团粒、絮凝体;区别:通过聚集方式得到的二次颗 粒被称为聚合体或聚集颗粒;团粒是由单颗粒或二次颗粒靠范德华力粘接而成的,其结合强度不大,用研磨。擦碎等方法在液体介质中容易分散成更小的团粒或二次颗粒或单颗粒;絮凝体则是在粉磨悬浊液中,由单颗粒或二次颗粒结合成的更松软的聚集颗粒。 17.减少因摩擦出现的压力损失的措施:1)添加润滑剂、2)提高模具光洁度和硬度、3) 改进成形方式,如采用双面压制等。 18.粉末冶金技术的优点:1. 能生产用普通熔炼方法无法生产的具有特殊性能的材料:① 能控制制品的孔隙度(多孔材料、多孔含油轴承等);②能利用金属和金属、金属和非金属的组合效果,生产各种特殊性能的材料(钨-铜假合金型的电触头材料、金属和非金属组成的摩擦材料等);③能生产各种复合材料。 2.粉末冶金方法生产的某些材料,与普通熔炼法相比,性能优越:①高合金粉末冶金材料的性能比熔铸法生产的好(粉末高速钢可避免成分的偏析);②生产难熔金属材料或制品,一般要依靠粉末冶金法(钨、钼、铌等难熔金属)。缺点:1、粉末成本高;2、制品的大小和形状受到一定限制;3、烧结零件的韧性较差。 19.粉末料预处理的方式及作用:1、退火:还原氧化物,消除杂质,提高纯度;消除加工 硬化,稳定粉末的晶体结构;钝化金属,防止自燃。2、混合:使不同成分的粉末混合均匀,便于压制成形和后续处理。3、筛分:筛分的目的在于把颗粒大小不匀的原始粉

粉末冶金材料标准表

公司制造的铁基粉末冶金零件执行标准与成分性能<一> GB/T14667.1-93 <二> MPIF-35

烧结铁和烧结碳钢的化学成分(%). 材料牌号Fe C F-0000 97.7-100 0.0-0.3 F-0005 97.4-99.7 0.3-0.6 F-0008 97.1-99.4 0.6-0.9 注: 用差减法求出的其它元素(包括为了特殊目的而添加的其它元素)总量的最大值为2.0%。▲烧结铁-铜合金和烧结铜钢的化学成分(%). 材料牌号Fe Cu C FC-0200 83.8-98.5 1.5-3.9 0.0-0.3 FC-0205 93.5-98.2 1.5-3.9 0.3-0.6 FC-020893.2-97.9 1.5-3.9 0.6-0.9 FC-0505 91.4-95.7 4.0-6.0 0.3-0.6 FC-0508 91.1-95.4 4.0-6.0 0.6-0.9 FC-0808 88.1-92.4 7.0-9.0 0.6-0.9 FC-1000 87.2-90.5 9.5-10.5 0.0-0.3 烧结铁-镍合金和烧结镍钢的化学成分(%). 材料牌 号 Fe Ni Cu C FN-0200 92.2-99.0 1.0-3.0 0.0-2.5 0.0-0.3 FN-0205 91.9-98.7 1.0-3.0 0.0-2.5 0.3-0.6 FN-0208 91.6-98.4 1.0-3.0 0.0-2.5 0.6-0.9 FN-0405 89.9-96.7 3.0-5.5 0.2-2.0 0.3-0.6 FN-0408 89.6-96.4 3.0-5.5 0.0-2.0 0.6-0.9 注: 用差减法求出的其它元素(包括为了特殊

粉末冶金材料标准表完整版本

公司制造的铁基粉末冶金零件执行标准与成分性能 <一> GB/T14667.1-93 <二> MPIF-35 编辑版word

烧结铁和烧结碳钢的化学成分(%). 材料牌号Fe C F-0000 97.7-100 0.0-0.3 F-0005 97.4-99.7 0.3-0.6 F-0008 97.1-99.4 0.6-0.9 注: 用差减法求出的其它元素(包括为了特殊目的而添加的其它元素)总量的最大值为2.0%。▲烧结铁-铜合金和烧结铜钢的化学成分(%). 材料牌号Fe Cu C FC-0200 83.8-98.5 1.5-3.9 0.0-0.3 FC-0205 93.5-98.2 1.5-3.9 0.3-0.6 FC-020893.2-97.9 1.5-3.9 0.6-0.9 FC-0505 91.4-95.7 4.0-6.0 0.3-0.6 FC-0508 91.1-95.4 4.0-6.0 0.6-0.9 FC-0808 88.1-92.4 7.0-9.0 0.6-0.9 FC-1000 87.2-90.5 9.5-10.5 0.0-0.3 烧结铁-镍合金和烧结镍钢的化学成分(%). 材料牌 号 Fe Ni Cu C FN-0200 92.2-99.0 1.0-3.0 0.0-2.5 0.0-0.3 FN-0205 91.9-98.7 1.0-3.0 0.0-2.5 0.3-0.6 FN-0208 91.6-98.4 1.0-3.0 0.0-2.5 0.6-0.9 FN-0405 89.9-96.7 3.0-5.5 0.2-2.0 0.3-0.6 FN-0408 89.6-96.4 3.0-5.5 0.0-2.0 0.6-0.9 注: 用差减法求出的其它元素(包括为了特殊 编辑版word

金属粉末冶金材料标准表

公司制造的铁基粉末冶金零件执行标准与成分性能一、GB/T14667.1-93 二、MPIF-35

烧结铁和烧结碳钢的化学成分 (%). 材料牌号Fe C F-0000 97.7-100 0.0-0.3 F-0005 97.4-99.7 0.3-0.6 F-0008 97.1-99.4 0.6-0.9 注: 用差减法求出的其它元素(包括为了特殊目的而添加的其它元素)总量的最大值为2.0%。▲ 注: 用差减法求出的其它元素(包括为了特殊目的而添加的其它元素)总量的最大值为2.0%。烧结铁-铜合金和烧结铜钢的化学 成分(%). 材料牌 号 Fe Cu C FC-0200 83.8-98.5 1.5-3.9 0.0-0.3 FC-0205 93.5-98.2 1.5-3.9 0.3-0.6 FC-0208 93.2-97.9 1.5-3.9 0.6-0.9 FC-0505 91.4-95.7 4.0-6.0 0.3-0.6 FC-0508 91.1-95.4 4.0-6.0 0.6-0.9 FC-0808 88.1-92.4 7.0-9.0 0.6-0.9 FC-1000 87.2-90.5 9.5-10.5 0.0-0.3 烧结铁-镍合金和烧结镍钢的化学成 分(%). 材料牌 号 Fe Ni Cu C FN-0200 92.2-99.0 1.0-3.0 0.0-2.5 0.0-0.3 FN-0205 91.9-98.7 1.0-3.0 0.0-2.5 0.3-0.6 FN-0208 91.6-98.4 1.0-3.0 0.0-2.5 0.6-0.9 FN-0405 89.9-96.7 3.0-5.5 0.2-2.0 0.3-0.6 FN-0408 89.6-96.4 3.0-5.5 0.0-2.0 0.6-0.9 注: 用差减法求出的其它元素(包括为 了特殊目的而添加的其它元素)总量 的最大值为2.0%

粉末冶金原理考试题

第一章 1. 什么是粉末冶金?与传统方法相比的优点是什么? 答:粉末冶金:制取金属粉末或用金属粉末(或金属粉末与非金属粉末的混合物)作为原料,经过成形和烧结制造金属材料、复合材料以及各种类型制品的工艺过程。 粉末冶金的优越性: A. 少切削、无切削,能够大量节约材料,节省能源,节省劳动;普通铸造合金切削量在 30-50%,粉末冶金产品可少于5%。 B. 能够大量能够制备其他方法不能制备的材料。 C. 能够制备其他方法难以生产的零部件。 2. 制粉的方法有哪些? 答:A. 机械法:通过机械破碎、研磨或气流研磨方法将大块材料或粗大颗粒细化的方法。 B. 物理法:采用蒸发凝聚成粉或液体雾化的方法使材料的聚集状态发生改变,获得粉末。 C. 化学法:依靠化学反应或电化学反应过程,生成新的粉态物质。 3. 机械制粉的方法分为机械研磨、漩涡研磨和冷气流研磨。 4. 球磨法制粉时球和物料的运动情况: A.球磨机转速较慢时,球和物料沿筒体上升至自然坡度角,然后滚下,称为泻落。 B.球磨机转速较高时,球在离心力的作用下,随着筒体上升至比第一种情况更高的高度,然后在重力的作用下掉下来,称为抛落。 C.继续增加球磨机的转速,当离心力超过球体的重力时,紧靠衬板的球不脱离筒壁而与筒体一起回转,此时物料的粉碎作用将停止,这种转速称为临界转速。 第二章 1.什么是粉末?粉末与胶体的区别?粉体的分类? 答:粉末是由大量的颗粒及颗粒之间的空隙所构成的集合体。粉末与胶体的区别在于分散程度不同,通常把大小在1mm以上的固态物质称为致密体,把大小在0.1μm以下的固态物质称为胶体颗粒,而介于两者之间的称为粉末体。 粉体分类:A. 粉末中能分开并独立存在的最小实体称为单颗粒。 B. 单颗粒如果以某种方式聚集,就构成二次颗粒。 2. 聚集体、絮凝体、团聚体的划分? 答:A. 聚集体:通过单颗粒聚集得到的二次颗粒被称为聚集体; B. 絮凝体:用溶胶凝胶方法制备的粉末,是一种由单颗粒或二次颗粒结合成的更松软的聚

粉末冶金零件的切削加工

粉末冶金零件的切削加工 内容摘要:粉末冶金是一种以金属粉末为原料,用于烧结成形,制造金属摩擦材料和制品的工艺技术。目前,粉末冶金工业中主导性产品为粉末冶金机械零件和铁氧磁性材料。粉末冶金的机械零件生产主要集中在结构零件、滑动轴承、摩擦零件以及过滤元件、过孔性材料等几方面。 粉末冶金是一种以金属粉末(包括有非金属粉末混入状况)为原料,用于烧结成形,制造金属摩擦材料和制品的工艺技术。粉末冶金生产的材料、零件具有质优、价廉、节能和省材等特点,被广泛应用于汽车、电子、仪器仪表、机械制造、原子反应堆、特种高性能合金制造等工业领域,用途愈来愈广泛。粉末冶金材料的产品结构大体分为粉末冶金机械零件;铁氧体磁性材料。包括永生磁铁磁性材料和软磁铁磁性材料;硬质合金材料和制品;高熔点金属材料和难熔性金属材料;精细陶瓷材料和制品。 目前,粉末冶金工业中主导性产品为粉末冶金机械零件和铁氧磁性材料。粉末冶金的机械零件生产主要集中在结构零件、滑动轴承、摩擦零件以及过滤元件、过孔性材料等几方面。磁性材料则主要分为硬磁材料、软磁材料及磁介质材料3大类。软磁磁性材料生产主要为纯铁、铁铜磷相合金、铁镍合金、铁铝合金材料和制品。硬磁材料生产的主体则为铝镍铁合金、铝镍钻铁合金、钐钻合金、钕铁硼合金材料和制品的生产。而磁介质的生产主要集中在软磁材料和制品的生产。而磁介质的生产主要集中在软磁材料和电介质组合物制成的制品生产方面。随着需求的增加和产品范围的扩大,在该领域新技术的开发和利用愈来愈收到人们的关注。 粉末冶金工艺制造有许多重要独特的优点,如实现净成形,消除切削加工,还有采用粉末冶金工艺制造的零件,可以在零件中有意识留下残余的多空结构,提高零件自润滑和隔音效果,另外使用粉末冶金制造工艺能够生产用传统铸造工艺很难或者不可能制造的复杂合金零件。正由于这些优点,使用粉末冶金工艺制造的初衷之一是消除所有的加工,但是这个目标还没有达到。大多数的零件只是“接近最终形状”,还需要某种精加工。然而和铸件和锻件相比,粉末冶金零件很耐磨,难以加工,这也制约了冶金粉末工艺制造的推广应用。 性能 粉末冶金零件的性能,包括可加工性能,不仅和合金化学成分相关,而且和多孔结构的水平相关。许多粉末冶金制造的结构零件含孔率多大15~20%,用作过滤装置的零件的含孔率可能高达50%。而采用锻造或热离子压铸的粉末冶金的零件含孔率较低,只有1%或更少。后者在汽车和飞机制造应用中正变得特别重要,因为这种材料的零件具有更高的强度。

粉末冶金原理考试题

第一章 1. 什么是粉末冶金与传统方法相比的优点是什么 答:粉末冶金:制取金属粉末或用金属粉末(或金属粉末与非金属粉末的混合物)作为原料,经过成形和烧结制造金属材料、复合材料以及各种类型制品的工艺过程。 粉末冶金的优越性: A. 少切削、无切削,能够大量节约材料,节省能源,节省劳动;普通铸造合金切削量在30-50%,粉末冶金产品可少于5%。 B. 能够大量能够制备其他方法不能制备的材料。 C. 能够制备其他方法难以生产的零部件。 2. 制粉的方法有哪些 答:A. 机械法:通过机械破碎、研磨或气流研磨方法将大块材料或粗大颗粒细化的方法。 B. 物理法:采用蒸发凝聚成粉或液体雾化的方法使材料的聚集状态发生改变,获得粉末。 C. 化学法:依靠化学反应或电化学反应过程,生成新的粉态物质。 3. 机械制粉的方法分为机械研磨、漩涡研磨和冷气流研磨。 4. 球磨法制粉时球和物料的运动情况: A.球磨机转速较慢时,球和物料沿筒体上升至自然坡度角,然后滚下,称为泻落。 B.球磨机转速较高时,球在离心力的作用下,随着筒体上升至比第一种情况更高的高度,然后在重力的作用下掉下来,称为抛落。 C.继续增加球磨机的转速,当离心力超过球体的重力时,紧靠衬板的球不脱离筒壁而与筒体一起回转,此时物料的粉碎作用将停止,这种转速称为临界转速。 第二章 1.什么是粉末粉末与胶体的区别粉体的分类 答:粉末是由大量的颗粒及颗粒之间的空隙所构成的集合体。粉末与胶体的区别在于分散程度不同,通常把大小在1mm以上的固态物质称为致密体,把大小在μm以下的固态物质称为胶体颗粒,而介于两者之间的称为粉末体。 粉体分类:A. 粉末中能分开并独立存在的最小实体称为单颗粒。 B. 单颗粒如果以某种方式聚集,就构成二次颗粒。 2. 聚集体、絮凝体、团聚体的划分 答:A. 聚集体:通过单颗粒聚集得到的二次颗粒被称为聚集体;

粉末冶金材料学

1.粉末冶金技术的特点(优越性) 能制造熔铸法无法获得的材料和制品 1、难熔金属及其碳化物、硼化物和硅化物; 2、孔隙可控的多孔材料 3、假合金 4、复合材料;5 微、细晶(准晶)和过饱和固溶的块体金属和制品; 能制造性能优于同成分熔铸金属的粉末冶金材料 1、制造细晶粒、均匀组织和加工性能好的稀有金属坯锭; 2、制造成分偏析小、细晶、过饱和固熔的高性能合金; 具有高的经济效益 1、少无切削; 2、工序短,效率高; 3、设备通用性好,适合于大批量生产; 2.粉末冶金材料的分类 1、机械材料和零件; 2、多孔材料及制品; 3、硬质工具材料 4、电接触材料; 5、粉末磁性材料; 6、耐热材料; 7、原子能工程材料; 3.粉末冶金材料的孔隙产生过程及其存在形态 产生过程:颗粒间隙(松装粉末聚集体或粉末成形素坯)烧结形成孔隙。存在形态:开孔:与外表面连通的孔隙,半开孔:孔隙只有一端与外表面连通的孔隙,闭孔:与外表面不连通的孔隙,连通孔:互相连通的孔隙 4. 孔隙对材料性能影响的基本理论; 减小承载面积;应力集中剂(减小孔隙尺寸、孔隙球化、孔隙内表面圆滑处理能有效降低应力集中,从而提高强度和韧性)应力松弛剂:裂纹遇到孔隙后被磨钝,提高断裂水平 5.哪些力学性能对孔隙形状敏感:强度、弹性模量、延伸率、断裂韧性、冲击韧性、硬度 6. 提高粉末冶金材料密度的方法:复压复烧,溶浸、粉末冶金热锻 7.固溶强化机理:晶体中有合金元素,固溶原子与晶体中缺陷的交互作用,溶质元素使基体(溶剂)金属的塑性变形抗力、强度、硬度增大,延性和韧性降低 8.影响固溶度(合金溶解度)的因素:晶格因素,相对尺寸因素,化学亲和力,电子浓度因素 9.什么是金属材料热处理?将固态金属或合金采用适当的方式进行加热、保温和冷却,以改变金属或合金的内部组织结构,使材料满足使用性能要求。 10.加热奥氏体化时影响粒度的因素:加热温度和保温时间,加热速度,合金元素,原始组织 11.刚冷却时等温转变的基本类型及对应组织结构的名称 共析钢等温转变:珠光体,贝氏体,马氏体;亚共析钢等温转变:奥氏体,铁素体,珠光体;过共析钢等温转变:奥氏体,渗碳体,珠光体 12.烧结钢热处理的工艺特点及注意事项 工艺特点:奥氏体化温度高:致密钢为AC+30~50℃,烧结钢为AC+100~200℃,密度的要求:烧结钢密度过低(<6.0g/cm3)淬火无任何效果,淬透性比致密钢差 注意事项:(1)孔隙率>10%易腐蚀,不能在盐浴中加热(2)表面热处理前应进行封孔处理:滚压、精整、或氮化、硫化处理 (3)加热时应气氛保护或添加保护性填料 (4)淬火介质不能用水。 13.烧结钢淬透性的影响因素:孔隙度,合金元素,氧、碳含量 14.身高结钢合金化的特点:1、孔隙的影响:密度低于6.5g/cm3,合金的强化作用很弱;2、某些强化效果好合金元素,如Cr、Mn易氧化,常以中间合金粉或预合金粉引入;3、铜和磷常用,4、烧结钢中常用的合金元素除碳外,主要有Cu、Ni、Mo、Cr、P等 15. C含量对烧结Fe-C系结构与性能的影响 珠光体随C含量而增大而增大,渗碳体随C含量而增大而增大强度有极大值,塑性(延伸率、断面收缩率)单调下降;由于碳分布不均匀,一般烧结钢显微组织为:珠光体+铁素体+少量渗碳体+孔隙+夹杂 16.常见烧结碳钢显微组织:铁素体,珠光体,渗碳体 17.影响烧结碳钢化合碳含量的因素:1、石墨加入量,2、烧结气氛3、烧结温度4、烧结时间5、氧含量

粉末冶金材料学

粉末冶金材料学 一、填空题 1、液相沉淀法在粉末冶金中的应用主要有以下四种:金属置换法、溶液气体还原法、从熔盐中沉淀法、辅助金属浴法。 2、多相反应一个突出特点就是反应中反应物间具有界面。按界面的特点,多相反应一般包括五种类型:固气反应、固液反应、固固反应、液气反应、液液反应。 3、雾化法制粉过程中,根据雾化介质对金属液流作用的方式不同,雾化具有多种形式:平行喷射、垂直喷射、互成角度的喷射。 从液态金属制取快速冷凝粉末有传导传热和对流传热两种机制,其中基于传导传热的方法有:熔体喷纺法、熔体沾出法;基于对流传热机制有:超声气体雾化法、离心雾化法、气体雾化与旋转盘雾化相结合的雾化法。 粉体颗粒粒度测定方法中的比表面粒径包括以下三种:吸附法、透过法、润湿热法。 钢的合金化基本原则是多元适量、复合加入。细化晶粒对钢性能的贡献是既提高强度又提高塑韧性。 7、在钢中,常见碳化物形成元素有Ti、Nb、V、W、Mo、Cr 按强弱顺序排列,列举5个以上)。钢中二元碳化物分为两类:rc/rM ≤

0.59为简单点阵结构,有MC 和M2C 型,其性能特点是硬度高、熔点高、稳定性好; rc/rM > 0.59为复杂点阵结构,有M3C 、M7C3 和M23C7 型。 8、选择零件材料的一般原则是力学性能、工艺性能、经济性和环境协调性等其它因素。 9、奥氏体不锈钢1Cr18Ni9晶界腐蚀倾向比较大,产生晶界腐蚀的主要原因是 在晶界上析出了Cr23C6 ,为防止或减轻晶界腐蚀,在合金化方面主要措施有加入Ti、Nb 等强碳化物形成元素、降低钢中的含C量。 10、影响铸铁石墨化的主要因素有化学成分、冷却速度。球墨铸铁在浇注时要经过孕育处理和球化处理。QT600-3是球墨铸铁。 11、对耐热钢最基本的性能要求是热强性、抗氧化性。 12、铁基固溶体的形成有一定规律,影响组元在置换固溶体中溶解情况的因素有:点阵结构、电子因素、原子半径。 13、提高钢淬透性的主要作用是获得均匀的组织,满足力学性能要求、 能采取比较缓慢的冷却方式以减少变形、开裂倾向。 14、钢的强化机制主要有固溶强化、位错强化、细晶强化、沉淀强化。其中细晶强化对钢性能的贡献是既提高强度又改善

粉末冶金原理考试题标准答案

2006 粉末冶金原理课程I考试题标准答案 一、名词解释:( 20 分,每小题 2 分) 临界转速:机械研磨时,使球磨筒内小球沿筒壁运动能够正好经过顶点位置而不发生抛落时,筒体的转动速度 比表面积:单位质量或单位体积粉末具有的表面积 一次颗粒:由多个一次颗粒在没有冶金键合而结合成粉末颗粒称为二次颗粒; 离解压:每种金属氧化物都有离解的趋势,而且随温度提高,氧离解的趋势越大,离解后的氧形成氧分压越大,离解压即是此氧分压。 电化当量:这是表述电解过程输入电量与粉末产出的定量关系,表达为每 96500库仑应该有一克当量的物质经电解析出 气相迁移:细小金属氧化物粉末颗粒由于较大的蒸气压,在高温经挥发进入气相,被还原后沉降在大颗粒上,导致颗粒长大的过程 颗粒密度:真密度、似密度、相对密度 比形状因子:将粉末颗粒面积因子与体积因子之比称为比形状因子 压坯密度:压坯质量与压坯体积的比值 粒度分布:将粉末样品分成若干粒径,并以这些粒径的粉末质量(颗粒数量、粉末体积)占粉末样品总质量(总颗粒数量、总粉末体积)的百分数对粒径作图,即为粒度分布 二、分析讨论:( 25 分) 1 、粉末冶金技术有何重要优缺点,并举例说明。( 10 分) 重要优点: * 能够制备部分其他方法难以制备的材料,如难熔金属,假合金、多孔材料、特殊功能材料(硬质合金); * 因为粉末冶金在成形过程采用与最终产品形状非常接近的模具,因此产品加工量少而节省材料; * 对于一部分产品,尤其是形状特异的产品,采用模具生产易于,且工件加工量少,制作成本低 , 如齿轮产品。重要缺点: * 由于粉末冶金产品中的孔隙难以消除,因此粉末冶金产品力学性能较相同铸造加工产品偏低; * 由于成形过程需要模具和相应压机,因此大型工件或产品难以制造; * 规模效益比较小 2 、气体雾化制粉过程可分解为几个区域,每个区域的特点是什么?( 10 分) 气体雾化制粉过程可分解为金属液流紊流区,原始液滴形成区,有效雾化区和冷却区等四个区域。其特点如下: 金属液流紊流区:金属液流在雾化气体的回流作用下,金属流柱流动受到阻碍,破坏了层流状态,产生紊流; 原始液滴形成区:由于下端雾化气体的冲刷,对紊流金属液流产生牵张作用,金属流柱被拉断,形成带状 - 管状原始液滴; 有效雾化区:音高速运动雾化气体携带大量动能对形成带状 - 管状原始液滴的冲击,使之破碎,成为微小金属液滴冷却区。此时,微小液滴离开有效雾化区,冷却,并由于表面张力作用逐渐球化。 3 、分析为什么要采用蓝钨作为还原制备钨粉的原料?( 5 分) 采用蓝钨作为原料制备钨粉的主要优点是 * 可以获得粒度细小的一次颗粒,尽管二次颗粒较采用 WO3 作为原料制备的钨粉二次颗粒要大。 * 采用蓝钨作为原料,蓝钨二次颗粒大,(一次颗粒小),在 H2 中挥发少,通过气相迁移长大的机会降低,获得 WO2 颗粒小;在一段还原获得 WO2 后,在干氢中高温进一步还原,颗粒长大不明显,且产量高。

粉末冶金材料牌号

牌号密度(g/cm3) Fe C Cu Ni Sn Cr Mo 其他合计SMF1010 6.2以上余1以下SMF1015 6.8以上余1以下SMF1020 7.0以上余1以下SMF2015 6.2以上余0.5~3 1以下SMF2025 6.6以上余0.5~3 1以下SMF2030 6.8以上余0.5~3 1以下SMF3010 6.2以上余0.2~0.6 1以下SMF3020 6.4以上余0.4~0.8 1以下SMF3030 6.6以上余0.4~0.8 1以下SMF3035 6.8以上余0.4~0.8 1以下SMF4020 6.2以上余0.2~1.0 1~5 1以下SMF4030 6.4以上余0.2~1.0 1~5 1以下SMF4040 6.6以上余0.2~1.0 1~5 1以下SMF4050 6.8以上余0.2~1.0 1~5 1以下SMF5030 6.6以上余0.8以下0.5~3 1~5 1以下SMF5040 6.8以上余0.8以下0.5~3 2~8 1以下SMF6040 7.2以上余0.3以下15~25 4以下SMF6055 7.2以上余0.3~0.7 15~25 4以下SMF6065 7.4以上余0.3~0.7 15~25 4以下SMF7020 6.6以上余1~5 1以下SMF7025 6.8以上余1~5 1以下SMF8035 6.6以上余0.4~0.8 1~5 1以下SMF8040 6.8以上余0.4~0.8 1~5 1以下SMS1025 6.4以上余0.08以下8~14 16~20 2~3 3以下SMS1035 6.8以上余0.08以下8~14 16~20 2~3 3以下SMS2025 6.4以上余0.2以下12~14 3以下SMS235 6.8以上余0.2以下12~14 3以下

粉末冶金考试试题及答案

一、名词解释:( 20 分,每小题 2 分) 临界转速:机械研磨时,使球磨筒内小球沿筒壁运动能够正好经过顶点位置而不发生抛落时,筒体的转动速度 二次颗粒:由多个一次颗粒在没有冶金键合而结合成粉末颗粒称为二次颗粒; 离解压:每种金属氧化物都有离解的趋势,而且随温度提高,氧离解的趋势越大,离解后的氧形成氧分压越大,离解压即是此氧分压。 电化当量:这是表述电解过程输入电量与粉末产出的定量关系,表达为每 96500库仑应该有一克当量的物质经电解析出 气相迁移:细小金属氧化物粉末颗粒由于较大的蒸气压,在高温经挥发进入气相,被还原后沉降在大颗粒上,导致颗粒长大的过程 颗粒密度:真密度、似密度、相对密度 比形状因子:将粉末颗粒面积因子与体积因子之比称为比形状因子 压坯密度:压坯质量与压坯体积的比值 粒度分布:将粉末样品分成若干粒径,并以这些粒径的粉末质量(颗粒数量、粉末体积)占粉末样品总质量(总颗粒数量、总粉末体积)的百分数对粒径作图,即为粒度分布 加工硬化:金属粉末在研磨过程中由于晶格畸变和位错密度增加,导致粉末硬度增加,变形困难的现象称为加工硬化; 二流雾化:由雾化介质流体与金属液流构成的雾化体系称为二流雾化; 假合金:不是根据相图规律构成的合金体系,假合金实际是混合物; 保护气氛:为防止粉末或压坯在高温处理过程发生氧化而向体系因入还原性气体或真空条件 成形性:粉末在经模压之后保持形状的能力。 压缩性:粉末在模具中被压缩的能力称为压缩性。 流动性:50 克粉末流经标准漏斗所需要的时间称为粉末流动性。 粉末粒度:一定质量(一定体积)或一定数量的粉末的平均颗粒尺寸成为粉末粒度 比表面积:一克质量或一定体积的粉末所具有的表面积与其质量或体积的比值称为比表面积 孔隙度:粉体或压坯中孔隙体积与粉体体积或压坯体积之比; 松装密度:粉末自由充满规定的容积内所具有的粉末重量成为松装密度 标准筛:用筛分析法测量粉末粒度时采用的一套按一定模数(根号 2 )金属网筛。 弹性后效:粉末经模压推出模腔后,由于压坯内应力驰豫,压坯尺寸增大的现象称作 单轴压制:在模压时,包括单向压制和双向压制,压力存在压制各向异性 密度等高线:粉末压坯中具有相同密度的空间连线称为等高线,等高线将压坯分成具有不同密度的区域 合批:具有相同化学成分,不同批次生产过程得到的粉末的混合工序称为合批 雾化介质:雾化制粉时,用来冲吉破碎金属流柱的高压液体或高压气体称为雾化介质; 活化能:发生物理或化学反应时,形成中间络合物所需要的能量称为活化能 平衡常数:在某一温度,某一压力下,反应达到平衡时,生成物气体分压与反应物气体分压之比超硬材料:以金刚石或立方氮化硼单晶为原料制取的磨料、聚晶、及与其它材料结合而成的复合材料及制品。 熔焊:触头闭合后出现融化使开关不能再断开的现象。静焊:电触头本身电阻使表面局部熔化。动焊:接通时,动触头打击静触头,弹跳,引起了电弧。 等静压制:是借助高压泵的作用把液体介质(气体或液体)压入耐高压的钢体密封容器内,高压流体的静压力直接作用在弹性模套内粉末上,使粉末体在同一时间内各个方法均匀受压而获得密度分布均匀和强度较高的压坯。 粉浆浇注:金属粉末在不施加外压力的情况下而实现成形的过程。对于压制性差的脆性粉末,如碳化物、硅化物、氮化物、铬和硅等粉末,粉浆浇注是特别有效的成形方法。 高性能粉末冶金材料:采用传统的或特殊的粉末冶金方法所制备的性能更高的粉末冶金材料。全致密化技术优点:材料与能量的合理利用,成分设计的灵活性,微观组织的完整性。 固溶强化:加入与基体金属原子尺寸不同的元素( 铬、钨、钼等) 引起基体金属点阵的畸变,加

粉末冶金原理-黄培云 制粉这章思考题

制粉这章思考题 1.碳还原法制取铁粉的过程机理是什么?影响铁粉还原过程和铁粉质量的因素 有哪些? 答:过程机理:还原过程2334Fe O Fe O FeO Fe ??→??→??→ (热力学) 可认为是CO 的间接还原反应与C 的气化反应的加和反应。当只 考虑间接还原反应时,根据Fe-O-C 系平衡气相组成与温度关系 图: ①当温度>570℃时,分三阶段还原: 2334Fe O Fe O ??→??→ 浮斯体(34FeO Fe O ?固溶体)Fe ??→ ②当温度<570℃时,氧化亚铁不能稳定存在,因此,34Fe O 直接还 原成金属铁。 ③对于23Fe O 还原:23Fe O 很容易还原,即2CO 不易使34Fe O 氧化。 由于是放热反应,温度升高,p K 减小,平衡气相中二氧化碳 含量升高。 ④对于34Fe O 还原:T>570℃,升高温度,34Fe O 还原成FeO 所需一 氧化碳越少,对34Fe O 还原成FeO 有利。 T<570℃,34Fe O 被直接还原成Fe 。 ⑤对于FeO 还原:温度越高,还原所需CO%越大,对还原反应越 不利。 当同时考虑间接还原反应和碳气化反应时: 22C O C C O +??→ 2F e O C O F e C O +??→+ ①T<650℃,被氧化成34Fe O FeO 。 ②650℃685℃时,固体碳直接还原FeO 为Fe 。

影响铁粉还原过程和铁粉质量的因素: 原料的影响: ①杂质的影响:如二氧化硅超过一定量,使还原事件延长,并且还原 不完全,铁粉中铁含量降低。 ②原料粒度的影响:粒度越细,界面面积越大,促进反应。 固体碳还原剂的影响: ①还原剂类型的影响:还原能力:木炭>焦炭>无烟煤。 ②还原剂用量影响:主要根据氧化铁含氧量而定。 还原工艺条件: ①还原温度和还原时间的影响:随着还原温度的提高,还原时间可以 缩短。 ②料层厚度的影响:随着料层厚度的增加,还原时间也随之增长。 ③还原罐密封程度的影响:密封可使还原充分。 添加剂: ①加入一定固体碳的影响:起疏松剂和辅助还原剂的作用。 ②返回料(废铁粉)的影响:加入一定量的废铁粉于原料中,可在一 定程度上消除与产生金属相有关的能量 上的困难,缩短还原过程的诱导期,从 而加速还原过程。 ③引入气体还原剂的影响:可加速还原过程。 ④碱金属盐的影响:可加速还原过程。 ⑤海绵铁的处理:还原退火起到如下作用: 1.退火软化作用,提高铁粉的塑性,改善铁粉的压 缩性。 2.补充还原作用。增加铁的百分含量。 3.脱碳作用,降低碳含量。 2.制取铁粉的主要还原方法有哪些?比较其优缺点。 答:还原方法:碳还原法,气体(氢气,分解氨,转化天然气,各种煤气等)还原法, 气体还原法优缺点:①与固体碳还原氧化铁相比,达到同样的还原程度,所 需温度可低一些,所需还原时间可短一些。 ②用氢还原氧化铁时,提高压力对还原是有利的,相当 于提高温度来提高还原速度,或者说,当采用高压还 原时,还原温度可以大大降低。还原温度低,所得铁 粉不会粘结成块。 ③但氢气还原难度大,成本高,效率低。 碳还原法优缺点:①成本低,效率高。 ②但碳在还原铁粉时容易发生渗碳。 3.发展复合型铁粉的意义何在? 答:复合型粉可制造出高密度,高强度,高精度的粉末冶金铁基零部件。

粉末冶金原理

课程名称:粉末冶金学 Powder Metallurgy Science 第一章导论 1粉末冶金技术的发展史History of powder metallurgy 粉末冶金是采用金属粉末(或非金属粉末混合物)为原料,经成形和烧结操作制造金属材料、复合材料及其零部件的加工方法。 粉末冶金既是一项新型材料加工技术,又是一项古老的技术。 .早在五千年前就出现了粉末冶金技术雏形,古埃及人用此法制造铁器件; .1700年前,印度人采用类似方法制造了重达6.5T的“DELI柱”(含硅Fe合金,耐蚀性好)。 .19世纪初,由于化学实验用铂(如坩埚)的需要,俄罗斯人、英国人采用粉末压制、烧结和热锻的方法制造致密铂,成为现代粉末冶金技术的基础。 .20世纪初,现代粉末冶金的发展起因于爱迪生的长寿命白炽灯丝的需要。钨灯丝的生产标志着粉末冶金技术的迅速发展。 .1923年硬质合金的出现导致机加工的革命。 .20世纪30年代铜基含油轴承的制造成功,并在汽车、纺织、航空、食品等工业部门的广泛应用。随后,铁基粉末冶金零部件的生产,发挥了粉末冶金以低的制造成本生产高性能零部件的技术优点。 .20世纪40年代,二战期间,促使人们开发研制高级的新材料(高温材料),如金属陶瓷、弥散强化合金作为飞机发动机的关键零部件。 .战后,迫使人们开发研制更高性能的新材料,如粉末高速钢、粉末超合金、高强度铁基粉末冶金零部件(热锻)。大大扩大了粉末冶金零部件及其材料的应用领域。 .粉末冶金在新材料的研制开发过程中发挥其独特的技术优势。 2粉末冶金工艺 粉末冶金技术的大致工艺过程如下: 原料粉末+添加剂(合金元素粉末、润滑剂、成形剂) ↓ 成形(模压、CIP、粉浆浇注、轧制、挤压、温压、注射成形等) ↓ 烧结(加压烧结、热压、HIP等) ↓ 粉末冶金材料或粉末冶金零部件—后续处理 Fig.1-1 Typical Processing flowchart for Powder Metallurgy Technique 3粉末冶金技术的特点 .低的生产成本: 能耗小,生产率高,材料利用率高,设备投资少。 ↑↑↑ 工艺流程短和加工温度低加工工序少少切削、无切削

SINT粉末冶金材料

M ATERIALS FOR S INTERED S TRUCTURAL C OMPONENTS AN D S ELF-LUBRICATING B EARINGS

2 The GKN Sinter Metals List of Materials provides an overview of PM alloys that are commonly used for powder metal structural components and self-lubricating bearings including selected material properties. Other compositons can be supplied by GKN Sinter Metals when agreed with sales and technology. Modifications and supplements to the list materials will be introduced without reference or notification. This does not refer to the duty of information on the current supply of parts. Additional information and refences are given in the brochures related to special processes or products and in the GKN Sinter Metals General Brochure. Remarks Referring to the Tables The tables are divided into the main sections “Admissible Range“ and “Informative Values“.Admissible ranges of density and porosity as well as the range of chemical composition are given in the left section. Also included are minimum hardness values that are attained even at the lowest possible density and with unfavourable chemical composi-tions within the admissible range. These hardness values can be verified on the finished components.The section on the right contains informative values of selected material properties representing a given specified density value and a certain chemical composition within the range specified in the section on the left. These properties should not be regarded as guaranteed properties in a legal sense. Informative property values have been determined on test bars (ISO 2740) in the as-sintered state; therefore they cannot be verified on the finished component. The use of micro tensile test bars cut out of a supplied component is not allowed nor can the tensile strenght be deducted from a hardness measurement. Many material properties are positively affected by subsequent sizing or heat treatment. It is strongly recommended to inquire the consequences of these processes on mechanical and physical properties as well as on part dimensions from the supplying plant. Determination of Properties Mechanical and physical properties stated in the tables haven been determined on the basis of Sint Test Standards (DIN 30910 Part 1, Part 3 and Part 4).Further details are given in DIN 30910 Part 1 Section 6. The chemical composition is determined according to the respective standards. Where these are not applicable, suitable test methods should be agreed.

(冶金行业)第五章非铁金属材料与粉末冶金材料

(冶金行业)第五章非铁金属材料与粉末冶 金材料

第五章非铁金属材料和粉末冶金材料 非铁金属材料是指除钢铁材料以外的其它金属及合金的总称(俗称有色金属)。 非铁金属材料种类繁多,应用较广的是Al、Cu、Ti及其合金以及滑动轴承合金。 §5-1铝及铝合金 壹、工业纯铝(阅读,回答问题) 1.铝合金为什么不能进行热处理强化?可通过什么手段提高其强度? 2.为什么纯铝在大气中有良好的耐蚀性? 3.纯铝有哪些优点和缺点?主要应用? 二、铝合金 铝合金是向铝中加人适量的Si、Cu、Mg、Mn等合金元素,进行固溶强化和第二相强化而得到的。合金化可提高纯铝的强度且保持纯铝的特性。壹些铝合金仍可经冷变形强化或热处理,进壹步提高强度。 1.铝合金的分类 二元铝合金壹般形成固态下局部互溶的共晶相图,如图5-1所示。 根据铝合金的成分和工艺特点可把铝合金分为变形铝合金和铸造铝合金。 (1)变形铝合金由图5-1可知,凡成分在D'点以左的合金(加热时能形成单相固溶体组织,具有良好的塑性,适于压力加工),均称变形铝合金。 变形铝合金又可分为俩类: ·不能热处理强化的铝合金成分在F点以左的合金; ·能热处理强化的铝合金成分在F点和D'点之间的铝合金。 (2)铸造铝合金成分在D'点以右的铝合金,具有共晶组织,塑性较差,但熔点低,流动性好,适于铸造,故称铸造铝合金。上述分类且不是绝对的。 2、铝合金的时效强化 (1)概念 1)固溶处理将铝合金加热到α单相区某壹温度,经保温,使第二相溶入α中,形成均匀的单相α固溶体,随后迅速水冷,使第二相来不及从α固溶体中析出,在室温下得到过饱和的α固溶体,这种处理方法称为固溶热处理或固溶(俗称淬火)。 2)固溶处理的性能特点①硬度、强度无明显升高,而塑性、韧性得到改善;②组织不稳定,有向稳定组织状态过渡的倾向。

粉末冶金原理习题库

粉末制备习题 * 粉末冶金产品在汽车工业中有许多用途,请列举三种汽车用粉末冶金产品。 * 有什么方法可以取代粉末冶金技术制备钨灯丝,为什么电熔断器中不采用钨灯丝材料。 * 粉末冶金一度称为金属陶瓷( Metal ceiamics) ,是什么工序类似于陶瓷产品制备。 * 粉末冶金与陶瓷的主要差别是什么?这些差别是如何影响过程的。 * 粉末冶金的定义是什么? * 粉末冶金的工程含义是什么? * 减少加工成本是粉末冶金产品过程的重要方面,要求减少模具结构误差,以确保产品尺寸精度与性能,在什么步骤上有利于减少产品加工成本(净静成形技术) * 金属基复合材料,如 SiC 纤维强化铝合金,是粉末冶金应用的领域,你能说明复合材料制备方法吗? * 在水雾化制粉时,怎样获得球形颗粒。 * 雾化青铜粉末经气流研磨成碟状。 ①如何测试该碟状粉末的粒度。 ②改变碟状粉末厚度的方法。 ③哪些工艺参数有助于获得碟状粉末。 * 用气体雾化制备合金粉末,雾化融液金属温度略高于液相线,对于粒径为100μm的颗粒,固化时间为0.04s,估算在同样条件下10μm粒径粉末颗粒的固化时间。 * 采用水平雾化时,发现所得粉末颗粒太小,不适合后续的工序,建议改变三个过程参数以增大粒径。 * 在气体雾化时,如果颗粒尺寸随融体粘度增加而增大,粒度对颗粒形状会有何种作用?高的过热温度会有利于形成球形颗粒吗? * 离心雾化粉末通常有双峰形粒度分布曲线,讨论产生这种结果的原因。 * 分别用水雾化,气体雾化和还原方法制备Cμ粉(理论密度=8.9g/cm3),测试指数如下: 性能 A B C 平均粒度μm 48 25 40 松装密度g/cm3 2.8 1.7 4.4

相关主题
文本预览
相关文档 最新文档