当前位置:文档之家› 21条件概率与统计独立性

21条件概率与统计独立性

21条件概率与统计独立性

21条件概率与统计独立性

09-10-1-概率统计A--期末考试试卷答案

诚信应考 考出水平 考出风格 浙江大学城市学院 2009— 2010学年第 一学期期末考试试卷 《 概率统计A 》 开课单位: 计算分院 ;考试形式: 闭卷; 考试时间:2010年 1 月24日; 所需时间: 120 分钟 题序 一 二 三 总 分 得分 评卷人 一. 选择题 (本大题共__10__题,每题2分共__20 分) 1、已知()0.87.0)(,8.0)(===B A P B P A P ,,则下列结论正确的是(B ) )(A 事件B A 和互斥 )(B 事件B A 和相互独立 )(C )()()(B P A P B A P += )(D B A ? 2、设)(1x F 和)(2x F 分别为随机变量1X 和2X 的分布函数,为使)()()(21x bF x aF X F -=为某一随机变量的分布函数,在下列各组数值中应取( A ) )(A 5/2,5/3-==b a )(B 3/2,3/2==b a )(C 2/3,2/-1==b a )(D 2/3,2/1-==b a 3、设随机变量X 服从正态分布),(2σμN ,随着σ的增大,概率() σμ<-X P 满足 ( C ) )(A 单调增大 )(B 单调减少 )(C 保持不变 )(D 增减不定 4、设),(Y X 的联合概率密度函数为?? ???≤+=其他, 01 ,1),(2 2y x y x f π,则X 和Y 为 ( C )的随机变量 )(A 独立且同分布 )(B 独立但不同分布 )(C 不独立但同分布 )(D 不独立 且不同分布 得分 年级:_____________ 专业:_____________________ 班级:_________________ 学号:_______________ 姓名:__________________ …………………………………………………………..装………………….订…………………..线… …………………………………………………… 年级:_____________ 专业:_____________________ 班级:_________________ 学号:_______________ 姓名________________ …………………………………………………………..装………………….订…………………..线………………………………………………………

条件概率与独立性

()()()()()()()()1012+C AB A P AB n P B A P A n P B A B C P B C A P B A P A ?????==????≤≤?????=???定义:对于两个事件A 和B ,在已知事件A 发生 的条件下,事件B 发生的概率。 公式:古典概型条件概率、性质、若事件、互斥,则有 条件概率题型: 题型一:根据公式换算求概率 ()()()()11,,23P B A P A B P A P B ===求(P(B)=1/3) 若P (A )=34,P (B |A )=12 ,则P (AB )等于 ( 3/8 ) 题型二:求条件概率 ()()()P AB P B A P A ?=???? 公式法:条件概率求解基本事件法:确定新的基本事件空间 1、公式法:由条件概率公式 ()()()P AB P B A P A =,分别求出()P AB 和()P A ,代入即可;公式法适用于所有条件概率问题;如例1 2、基本事件法:确定满足已知条件事件A 的基本事件数,确定新的基本事件 空间。基本事件法适用于解决与古典概型或几何概型相关的条件概率问题,比公式法方便,尤其是解决对于有次序的条件概率问题,如例2 用两种方法求解下列问题: 例1、 (公式法)盒中装有形状,大小完全相同的5个球,其中红色球3个, 黄色球2个,若从中随机取出2个球,已知其中一个为红色,则另一个为黄色的概率为( )

A. 3 5 B. C. 2 3 D. 2 5 例2、(基本事件法)袋中装有6个不同的红球和4个不同的白球,不放回地依次摸出2个球,在第1次摸出红球的条件下,第2次摸出的也是红球的概率为() A.5 9 B. 4 9 C. 2 9 D. 2 3 例3、(基本事件法)有一匹叫Harry的马,参加了100场赛马比赛,赢了20场,输了80场.在这100场比赛中,有30场是下雨天,70场是晴天.在30场下雨天的比赛中,Harry赢了15场.如果明天下雨,Harry参加赛马的赢率是(1/2) 解答:此题所求就是Harry在雨天赛马赢的概率即 151 302 P== 例4、(基本事件法)一个袋中装有7个大小完全相同的球,其中4个白球,3个黄球,从中不放回地摸4次,一次摸一球,已知前两次摸得白球, 则后两次也摸得白球的概率为___1 5 _____. 例5、(基本事件法)某生在一次口试中,共有10题供选择,已知该生会答其中6题,随机从中抽5题供考生回答,答对3题及格,求该生在第 一题不会答的情况下及格的概率.(25 42 ) 习题: 1.把一枚骰子连续掷两次,已知在第一次抛出的是偶数点的情况下,第二次抛 出的也是偶数点的概率为 ( ) A.1 B.1 2 C. 1 3 D. 1 4 2.盒中装有形状,大小完全相同的5个球,其中红色球3个,黄色球2个,若 从中随机取出2个球,已知其中一个为红色,则另一个为黄色的概率为() A. 3 5 B. C. 2 3 D. 2 5 9 10 9 10

北师大数学选修课时分层作业2 条件概率与独立事件 含解析

课时分层作业(二) (建议用时:60分钟) [基础达标练] 一、选择题 1.两人打靶,甲击中的概率为0.8,乙击中的概率为0.7,若两人同时射击一目标,则它们都中靶的概率是() A.0.56B.0.48 C.0.75 D.0.6 A[设甲击中为事件A,乙击中为事件B. 因为A,B相互独立,则P(AB)=P(A)·P(B)=0.8×0.7=0.56.] 2.某人忘记了一个电话号码的最后一个数字,只好任意去试拨,他第一次失败、第二次成功的概率是() A.1 10 B. 2 10 C.8 10 D. 9 10 A[某人第一次失败,第二次成功的概率为P=9×1 10×9 = 1 10,所以选A.] 3.一袋中装有5只白球和3只黄球,在有放回地摸球中,用A1表示第一次摸得白球,A2表示第二次摸得白球,则事件A1与A2是() A.相互独立事件B.不相互独立事件 C.互斥事件D.对立事件 A[由题意可得A2表示“第二次摸到的不是白球”,即A2表示“第二次摸到的是黄球”,由于采用有放回地摸球,故每次是否摸到黄球或白球互不影响,故事件A1与A2是相互独立事件.] 4.如图所示,A,B,C表示3种开关,若在某段时间内它们正常工作的概率分别为0.9,0.8,0.7,那么系统的可靠性是()

A .0.504 B .0.994 C .0.496 D .0.06 B [系统可靠即A ,B , C 3种开关至少有一个能正常工作,则P =1-[1-P (A )][1-P (B )][1-P (C )] =1-(1-0.9)(1-0.8)(1-0.7) =1-0.1×0.2×0.3=0.994.] 5.2018年国庆节放假,甲去北京旅游的概率为1 3,乙,丙去北京旅游的概率分别为14,1 5.假定三人的行动相互之间没有影响,那么这段时间内至少有1个去北京旅游的概率为( ) A.5960 B.35 C.12 D.160 B [用A ,B , C 分别表示甲,乙,丙三人去北京旅游这一事件,三人均不去的概率为P (A B C )=P (A )·P (B )·P (C )=23×34×45=2 5,故至少有一人去北京旅游的概率为1-25=35.] 二、填空题 6.将两枚均匀的骰子各掷一次,已知点数不同,则有一个是6点的概率为________. 1 3 [设掷两枚骰子点数不同记为事件A ,有一个是6点记为事件B .则P (B |A )=2×530=13.] 7.明天上午李明要参加奥运志愿者活动,为了准时起床,他用甲、乙两个闹钟叫醒自己,假设甲闹钟准时响的概率是0.80,乙闹钟准时响的概率是0.90,则两个闹钟至少有一个准时响的概率是________. 0.98 [设A =“两个闹钟至少有一个准时响”,

《概率论与数理统计》期末考试试题及解答

一、填空题(每小题3分,共15分) 1. 设事件B A ,仅发生一个的概率为0.3,且5.0)()(=+B P A P ,则B A ,至少有一个不发 生的概率为__________. 答案:0.3 解: 3.0)(=+B A B A P 即 )(25.0)()()()()()(3.0AB P AB P B P AB P A P B A P B A P -=-+-=+= 所以 1.0)(=AB P 9.0)(1)()(=-==AB P AB P B A P . 2. 设随机变量X 服从泊松分布,且)2(4)1(==≤X P X P ,则==)3(X P ______. 答案: 161-e 解答: λλ λ λλ---= =+==+==≤e X P e e X P X P X P 2 )2(, )1()0()1(2 由 )2(4)1(==≤X P X P 知 λλλ λλ---=+e e e 22 即 0122 =--λλ 解得 1=λ,故 16 1)3(-= =e X P 3. 设随机变量X 在区间)2,0(上服从均匀分布,则随机变量2 X Y =在区间)4,0(内的概率 密度为=)(y f Y _________. 答案: 04,()()0,. Y Y X y f y F y f <<'===? 其它 解答:设Y 的分布函数为(),Y F y X 的分布函数为()X F x ,密度为()X f x 则 2 ()()())))Y X X F y P Y y P X y y y y y =≤=≤ =≤- - 因为~(0,2)X U ,所以(0X F = ,即()Y X F y F = 故

1.2.1条件概率与独立事件

条件概率 【问题导思】 一个家庭有两个孩子,假设男女出生率一样. (1)这个家庭一男一女的概率是多少? (2)预先知道这个家庭中至少有一个女孩,这个家庭一男一女的概率是多少?【提示】 (1)12,(2)2 3 . (1)概念:已知事件B 发生的条件下,A 发生的概率称为B 发生时A 发生的条件概率,记为P (A |B ). (2)公式:当P (B )>0时,P (A |B )= P AB P B .

独立事件 【问题导思】 在一次数学测试中,甲考满分,对乙考满分有影响吗? 【提示】 没有影响. (1)定义:对两个事件A ,B ,如果P (AB )=P (A )P (B ),则称A ,B 相互独立. (2)性质:如果A ,B 相互独立,则A 与B ,A 与B ,A 与B 也相互独立. (3)如果A 1,A 2,…,A n 相互独立,则有P (A 1A 2…A n )=P (A 1)P (A 2)…P (A n ). 应用 在100件产品中有95件合格品,5件不合格品,现从中不放回地 取两次,每次任取一件,试求: (1)第一次取到不合格品的概率; (2)在第一次取到不合格品后,第二次再次取到不合格品的概率. 【思路探究】 求解的关键是判断概率的类型.第一问是古典概型问题;第二问是条件概率问题. 【自主解答】 设“第一次取到不合格品”为事件A ,“第二次取到不合格品”为事件B . (1)P (A )=5 100 =0.05. (2)法一 第一次取走1件不合格品后,还剩下99件产品,其中有4件不合格品.于是第二次再次取到不合格品的概率为 4 99 ,这是一个条件概率,表示为P (B |A )=499 . 法二 根据条件概率的定义计算,需要先求出事件AB 的概率. P (AB )=5100×499,∴有P (B |A )=P AB P A =5100× 4995100 =499 . 1.注意抽取方式是“不放回”地抽取. 2.解答此类问题的关键是搞清在什么条件下,求什么事件发生的概率. 3.第二问的解法一是利用缩小样本空间的观点计算的,其公式为P (B |A )= n AB n A ,此法常应用于古典概型中的条件概率求法.

概率论与数理统计期末考试

一 填空 1.设随机变量X 服从)1,1(-R ,则由切比雪夫不等式有{}≤≥1X P 2. 设B A 、是两相互独立事件,4.0)(,8.0)(==A P B A P ,则._____)(=B P 3. .__________)3(,3)(,2)(=-==Y X D Y X Y D X D 独立,则、且 4. 已知._________)20(,533.0)20(4.06.0=-=t t 则 5. n X X X ,,,21 是来自正态总体),(2σμN 的样本,S 是样本标准差,则 ________)( 2 2 =σ nS D 6. 设._______}3|{|,)(,)(2≤>-==σμσμX P X D X E 则由车比雪夫不等式 7. 假设一批产品中一、二、三等品各占%10%20%70、、 ,从中随意取一种,结果不是三等品,则取到的是一等品的概率是____________. 8、m X X X ,,,21 是取自),(211σμN 的样本,n Y Y Y ,,,21 是来自),(2 22σμN 的样本,且这两种样本独立,则___ ___ Y X -服从____________________. 9. 设____}3|{|,)(,)(2≤>-==σμσμX P X D X E 则由车比雪夫不等式得. 10、已知.__________)12(2)(=-=X D X D ,则 11、已知分布服从则变量)1(___________),1(~),,(~22--n t n Y N X χσμ 12设随机变量X 服从)1,1(-R ,则由切比雪夫不等式有{}≤≥1X P 。 13.已知1 1 1(),() ,()432 P A P B A P A B ===,则()P AB = , ()P A B = 。 14.若()0.5,()0.4,()0.3,P A P B P A B ==-=则()P A B = 。 15.若随机变量X 服从(1,3)R -,则(11)P X -<<= 。 16.已知随机变量X 和Y 相互独立,且它们分别在区间[-1,3]和[2,4]上服从均匀分布,则E (XY )= 。 17.设随机变量,X Y 相互独立,且X 服从(2)P ,Y 服从(1,4)N ,则(23)D X Y -= 。

事件的独立性与条件概率练习专题

事件的独立性与条件概率专题 1.口袋内装有100个大小相同的红球、白球和黑球,其中红球有45个,从口袋中摸出一个球,摸出白球的概率为0.23,则摸出黑球的概率为( ) A .0.31 B .0.32 C .0.33 D .0.36 2.在5道题中有3道理科题和2道文科题.如果不放回地依次抽取2道题,在第1次抽到文科题的条件下,第2次抽到理科题的概率为 ( ) A.12 B.35 C.34 D.310 3.打靶时甲每打10次可中靶8次,乙每打10次可中靶7次,若两人同时射击一个目标,则它们都中靶的概率是( ) A.35 B.34

C.1225 D.1425 4.已知盒中装有3个红球、2个白球、5个黑球,它们大小形状完全相同,现需一个红球,甲每次从中任取一个不放回,在他第一次拿到白球的条件下,第二次拿到红球的概率为( ) A.310 B.13 C.38 D.29 5.(优质试题·济南质检)优质试题年国庆节放假,甲去北京旅游的 概率为13,乙,丙去北京旅游的概率分别为14,15 .假定三人的行动相互之间没有影响,那么这段时间内至少有1个去北京旅游的概率为 ( ) A.5960 B.35 C.12 D.160 6.(优质试题·合肥月考)周老师上数学课时,给班里同学出了两道选择题,她预估计做对第一道题的概率为0.8,做对两道题的概率为0.6,则预估计做对第二道题的概率为( ) A .0.80 B .0.75 C .0.60 D .0.48 7.从应届毕业生中选拔飞行员,已知该批学生体型合格的概率为13 ,视力合格的概率为16,其他几项标准合格的概率为15 ,从中任选一名学生,则该学生三项均合格的概率为(假设三次标准互不影响)( )

概率统计 期末考试试卷及答案

任课教师 专业名称 学生姓名 学号 密 封 线 X X 工业大学概率统计B 期末考试试卷(A 卷) } 分 分 108

求:(1)常数k ,(2)P(X<1,Y<3) (3) P(X<1.5); (4) P(X+Y ≤4) 解:(1)由()1)6(1 )(20 4 =--=???? +∞∞-+∞ ∞ -dx dy y x k dxdy xy f 即 解得24 1 = k 2分 (2)P(X<1,Y<3)=()dx dy y x )6241(1030--??=2 1 4分 (3) P(X<1.5)=()16 13 )6241(5.1040=--??dx dy y x 7分 (4)P(X+4≤Y ) =()9 8 21616241)6241(2202040=+-=--???-dx x x dx dy y x x 10分 4. 已知随机变量)3,1(~2N X ,)4,0(~2N Y ,且X 与Y 相互独立,设 2 3Y X Z += (1) 求)(Z E ,)(Z D ; (2) 求XZ ρ 解:(1)??? ??+=23)(Y X E Z E )(21)(3 1 y E X E += 021131?+?= 3 1 = 2分 =??? ??+=23)(Y X D Z D ()()2 2 22)23(23?? ? ??+-??? ??+=-Y X E Y X E EZ Z E =22 2)2 3()439( EY EX Y XY X E +-++ = 9 1 4392 2 -++EY EXEY EX 又因为()10192 2=+=+=EX DX EX 16016)(22=+=+=EY DY EY 所以DZ= 59 1 416910=-+ 6分 (2)),(Z X Cov ) ,(1 1Y X X Cov += =EX( 23Y X +)-EXE(23Y X +) EXEY -EX -EXEY +EX =21 )(31213122 233 1 ?==3 则XZ ρ= ()DZ DX Z X Cov ,= 5 5 5 33= 10分 5. 设二维随机变量),(Y X 的概率密度为 ?????≤≤≤≤=其它, 00,20,163),(2x y x xy y x f (1) 求X 的数学期望EX 和方差DX (2) 求Y 的数学期望EY 和方差DY 解:(1)dx x xf X E X )()(? ∞ +∞ -= ()()xyd dy y x f x f x x ? ? ==∞ +∞ -20 16 3 ,y dx x xf X E X )()(? ∞ +∞ -= = 分 27 12)163(2 2 =? ?dx xydy x x () ()分 549 3)712( 33)16 3 (22 2 22 2 22 =-====EX EX -EX =???∞ +∞ -DX dx xydy x dx x f x DX x X () ()分 72)16 3 (),()()(24 02====?? ???+∞∞ -+∞ ∞ -∞ +∞ -dy xydx y dy dx y x yf dy y yf Y E y Y ()()5 24 4323)163(),()(4034 02 2 22 2 =-====?????? +∞ ∞ -+∞∞ -∞ +∞-dy y y dy xydx y dy dx y x f y dy y f y EY y Y DY=()分 105 4452422 =-=EY -EY 6. 设随机变量X 的概率密度为) 1(1 )(2 x x f X += π,求随机变量 31X Y -=的概率密度函数。 ()()( )( ) ()() ( ) ()()()() ()()()()( )() ()() 分 分 解:10111311311315)1(111)1(16 2 3 2 2 33 3 3 3y y y f y y y f dy y dF y f y F y X y X y X y Y y F X X Y Y X Y -+-= --=----== ∴ --=-

概率 2 条件概率与相互独立事件

概率 2 条件概率与相互独立事件 基础梳理 1.条件概率及其性质 (1)对于任何两个事件A 和B ,在已知事件A 发生的条件下,事件B 发生的概率叫做条件概率,用符号P (B |A )来表示,其公式为P (B |A )= P (AB ) P (A ) . 在古典概型中,若用n (A )表示事件A 中基本事件的个数,则P (B |A )=n (AB ) n (A ) . (2)条件概率具有的性质: ①0≤P (B |A )≤1; ② 如果B 和C 是两互斥事件,则P (B ∪C |A )=P (B |A )+P (C |A ). 2.相互独立事件 (1)对于事件A 、B ,若A 的发生与B 的发生互不影响,则称A 、B 是相互独立事件. (2)若A 与B 相互独立,则P (B |A )=P (B ), P (AB )=P (B |A )·P (A )=P (A )·P (B ). (3)若A 与B 相互独立,则A 与B ,A 与B ,A 与B 也都相互独立. (4)若P (AB )=P (A )P (B ),则A 与B 相互独立. 基础训练 1.甲、乙两队进行排球决赛,现在的情形是甲队只要再赢一局就获冠军,乙队需要再赢两局才能得冠军.若两队胜每局的概率相同,则甲队获得冠军的概率为( ). A.34 B.23 C.35 D.12 2.如图,用K 、A 1、A 2三类不同的元件连接成一个系统,当K 正常工作且A 1、A 2至少有一个正常工作时,系统正常工作,已知K 、A 1、A 2正常工作的概率依次为0.9,0.8,0.8,则系统正常工作的概率为( ). A .0.960 B .0.864 C .0.720 D .0.576

条件概率与独立事件、二项分布练习题及答案

条件概率与独立事件、二项分布 1.(2012·广东汕头模拟)已知某射击运动员,每次击中目标的概率都是0.8,则该射击运动员射击4次至少击中3次的概率为( ) A .0.85 B .0.819 2 C .0.8 D .0.75 2.(2011·广东高考)甲、乙两队进行排球决赛,现在的情形是甲队只要再赢一局就获冠军,乙队需要再赢两局才能得冠军.若两队胜每局的概率相同,则甲队获得冠军的概率为( ) A.34 B.23 C.35 D.12 3.(2011·湖北高考)如图,用K 、A 1、A 2三类不同的元件连接成一个系统.当K 正常工作且A 1、A 2至少有一个正常工作时,系统正常工作.已知K 、A 1、A 2正常工作的概率依次为0.9、0.8、0.8,则系统正常工作的概率为( ) A .0.960 B .0.864 C .0.720 D .0.576 4.(2011·辽宁高考)从1,2,3,4,5中任取2个不同的数,事件A =“取到的2个数之和为偶数”,事件B =“取到的2个数均为偶数”,则P (B |A )=( ) A.18 B.14 C.25 D.1 2 5.(2012·山西模拟)抛掷一枚硬币,出现正反的概率都是1 2 ,构造数列{a n },使得a n = ????? 1 (第n 次抛掷时出现正面),-1 (第n 次抛掷时出现反面), 记S n =a 1+a 2+…+a n (n ∈N *),则S 4=2的概率为( ) A.116 B.18 C.1 4 D.1 2 6.高三毕业时,甲、乙、丙等五位同学站成一排合影留念,已知甲、乙二人相邻,则甲、丙相邻的概率是( ) A.12 B.13 C.14 D.25 7.某篮球队员在比赛中每次罚球的命中率相同,且在两次罚球中至多命中一次的概率为16 25 ,则该队员每次罚球的命中率为________. 8.某次知识竞赛规则如下:在主办方预设的5个问题中,选手若能连续正确回答出两个问题,即停止答题,晋级下一轮.假设某选手正确回答每个问题的概率都是0.8,且每个问题的回答结果相互独立,则该选手恰好回答了4个问题就晋级下一轮的概率等于

概率论与数理统计期末考试题及答案

模拟试题 填空题(每空3分,共45 分) 1、已知P(A) = 0.92, P(B) = 0.93, P(B| A) = 0.85,则P(A| B)= P( A U B)= 1 2、设事件A与B独立,A与B都不发生的概率为—,A发生且B不发生的概率与 B 9 发生且A不发生的概率相等,则A发生的概率为:_______________________ ; 3、一间宿舍内住有6个同学,求他们之中恰好有4个人的生日在同一个月份的概率: ;没有任何人的生日在同一个月份的概率 I Ae x, X c 0 4、已知随机变量X的密度函数为:W(x) = {1/ 4, 0 < X V 2,则常数A= 0, x>2

分布函数F(x)= ,概率P{—0.51} =5/ 9,贝U p = 若X与丫独立,则Z=max(X,Y)的分布律: 6、设X ~ B(200,0.01), Y - P(4),且X 与丫相互独立,则D(2X-3Y)= COV(2X-3Y , X)= 7、设X1,X2,III,X5是总体X ~ N(0,1)的简单随机样本,则当k = 时, 丫"⑶; 8、设总体X~U(0,巧日:>0为未知参数,X i,X2,lil,X n为其样本, -1n X =—S X i为 n i 二 样本均值,则日的矩估计量为: 9、设样本X i,X2,川,X9来自正态总体N(a,1.44),计算得样本观察值X = 10,求参 数a的置信度为95%的置信区间: 计算题(35分) 1、(12分)设连续型随机变量X的密度函数为:

概率论与数理统计期末考试试题及解答.doc

《概率论与数理统计》期末试题 一、填空题(每小题 3 分,共 15 分) 1.设事件A, B仅发生一个的概率为,且 P( A) P(B) 0.5 ,则 A, B 至少有一个不发生的概率为 __________. 答案: 解: P( AB AB)0.3 即 0.3 P( AB ) P( AB) P(A) P( AB) P(B) P( AB) 0.52P( AB) 所以 P( AB) 0.1 P(A B) P( AB) 1 P(AB) 0.9. 2.设随机变量X服从泊松分布,且P ( X 1) 4P(X 2) ,则P(X 3) ______. 答案: 1 e1 6 解答: 2 P( X 1) P( X 0) P( X 1) e e , P( X 2) e 2 2e 2 由 P(X 1) 4P( X 2) 知 e e 即 2 2 1 0 解得1,故 1 P(X 3) e 1 6 3.设随机变量X在区间(0,2)上服从均匀分布,则随机变量Y X 2在区间(0,4) 内的概率密度为 f Y ( y) _________. 答案: 1 1 , 0 y 4, f Y ( y) F Y ( y) f X ( y ) 4 y y 2 0 , 其它. 解答:设 Y 的分布函数为F Y( y), X 的分布函数为 F X (x) ,密度为 f X (x) 则 F Y (y) P(Y y) P(X 2 y) P( y X y ) F X ( y) F X ( y ) 因为 X ~U(0, 2) ,所以F X( y ) 0 ,即 F Y ( y) F X ( y )

故 1 1 , 0 y 4, f Y ( y) F Y ( y) 4 y f X ( y ) 2 y 0 , 其它 . 另解在 (0, 2) 上函数 y x2严格单调,反函数为h( y) y 所以 1 1 , 0 y 4, f Y ( y) f X ( y) 4 y 2 y , 其它 . 4.设随机变量X ,Y 相互独立,且均服从参数为的指数分布,P( X 1) e 2,则_________,P{min( X ,Y) 1} =_________. 答案: 2 ,P{min( X ,Y) 1} 1 e-4 解答: P( X 1) 1 P( X 1) e e 2,故 2 P{min( X ,Y ) 1} 1 P{min( X ,Y ) 1} 1 P( X 1)P(Y 1) 1 e 4. 5.设总体X的概率密度为 ( 1) x , 0 x 1, f ( x) 1 . 0, 其它 X1 , X 2 , , X n是来自X的样本,则未知参数的极大似然估计量为 _________. 答案: $ 1 1 n 1 ln x i n i 1 解答: 似然函数为 n 1)n ( x1 ,L , x n ) L( x1 ,L , x n ; ) ( 1)x i ( i 1 n ln L n ln( 1) ln x i i 1 d ln L n n ln x i @0 d 1 i 1 解似然方程得的极大似然估计为

北邮概率论与数理统计条件概率1.3

§1.3 条件概率 条件概率是概率论中的一个基本概念,也是概率论中的一个重要工具,它既可以帮助我们认识更复杂的随机事件,也可以帮助我们计算一些复杂事件的概率。 1. 条件概率的定义及计算 在一个随机试验中或随机现象中,当我们已知一个事件B 发生了,这时对另外一个事件A 发生的概率往往需要重新给出度量.称事件A 的这个新概率为在事件B 发生的条件下事件A 发生的条件概率,记为)|(B A P .为了对条件概率有一个直观的认识以及考虑该如何给出条件概率的数学定义,我们先看一个例子. 例1 一批同类产品由甲、乙两个车间生产,各车间生产的产品数及正品和次品的情况如下表 甲车间 乙车间 合计 正品 465 510 975 次品 15 10 25 合计 480 520 1000 从这批产品中任取一件,则这件产品是次品的概率为 %5.21000 25= 现在假设被告知取出的产品是由甲车间生产的,那么这件产品为次品的概率就不再是 %5.2,而是 %125.3480 15= 在本例中,设B 表示事件“取出的产品是由甲车间生产的”,A 表示事件“取出的产品是次品”,前面算出的事件A 的概率是在没有任可进一步的信息的情况下得到的,而后面算出的事件A 的概率是在有了 “事件B 发生了”这一信息的情况下得到的.后一个概率就是在事件B 发生的条件下事件A 发生的条件概率.与此对应,我们可以把前一个概率称为无条件概率。经过简单计算有 ) ()(1000/4801000/1548015)|(B P AB P B A P === 这个关系式尽管是从本例得出的,但它具有普遍意义.受由启发,我们可以在一般的样本空间中给出条件概率的数学定义. 定义 设B A ,是样本空间Ω中的两个事件,且0)(>B P ,在事件B 发生的条件下,事件A 的条件概率定义为 ) ()()|(B P AB P B A P = 根据条件概率的定义,不难验证条件概率满足概率定义中的三条公理: (1)非负性:对任一事件B ,有0)|(≥A B P ; (2)规范性:1)|(=ΩA P ;

条件概率与事件的独立性

条件概率与事件的独立性 1. 条件概率及其性质 (1)条件概率的定义:设A 、B 为两个事件,且P(A)>0,称P(A|B)= 为在 发生的条件下, 发生的概率。 2.相互独立事件:事件A (或B )是否发生对事件B (或A )发生的概率没有影响,这样的两个事件叫做 . 若A 与B 是相互独立事件,则A 与B ,A 与B ,A 与B 也相互独立. 3.相互独立事件同时发生的概率:()()()P A B P A P B ?=? 4.互斥事件与相互独立事件是有区别的: 互斥事件与相互独立事件研究的都是两个事件的关系,但互斥的两个事件是一次实验中的两个事件,相互独立的两个事件是在两次试验中得到的,注意区别。 如果A 、B 相互独立,则P (A +B )=P (A )+P (B )-P (A ?B ) 如:某人射击一次命中的概率是0.9,射击两次,互不影响,至少命中一次的概率是0.9+0.9-0.9×0.9=0.99,(也即1-0.1×0.1=0.99) 5.独立重复试验 (1)独立重复试验的定义: (2)n 次独立重复试验的概率公式: 三、基础再现 1.一学生通过英语听力测试的概率是2 1 ,他连续测试两次,那么其中恰好一次通过的概率是 ( ) A. 41 B. 31 C. 21 D. 4 3 2.已知,53 )(,103)(==A P AB P 则)|(A B P 等于 ( ) A. 50 9 B. 21 C. 109 D. 41 3.某人射击一次击中的概率为0.6,经过3次射击,此人至少有两次击中目标的概率为( ) A . 125 81 B . 125 54 C . 125 36 D . 125 27 4.甲、乙两人独立地解同一问题,甲解决这个问题的概率是p 1,乙解决这个问题的概率是p 2,那么恰好有1人解决这个问题的概率是 ( ) A. p 1p 2 B.p 1(1-p 2)+p 2(1-p 1) C.1-p 1p 2 D.1-(1-p 1)(1-p 2) 5.(浙江)甲、乙两人进行乒乓球比赛,比赛规则为“3局2胜”,即以先赢2局者为胜.根据经验,每局比赛中甲获胜的概率为0.6,则本次比赛甲获胜的概率是 ( ) (A) 0.216 (B)0.36 (C)0.432 (D)0.648 6.一道数学竞赛试题,甲生解出它的概率为21,乙生解出它的概率为3 1 ,丙生解出它的概率为 4 1 ,由甲、乙、丙三人独立解答此题只有一人解出的概率为______.

概率论与数理统计期末考试题及答案

模拟试题一 一、 填空题(每空3分,共45分) 1、已知P(A) = 0.92, P(B) = 0.93, P(B|A ) = 0.85, 则P(A|B ) = 。 P( A ∪B) = 。 3、一间宿舍内住有6个同学,求他们之中恰好有4个人的生日在同一个月份的概率: ;没有任何人的生日在同一个月份的概率 ; 4、已知随机变量X 的密度函数为:,0 ()1/4, 020,2 x Ae x x x x ??为未知参数,12,,,n X X X L 为其样本,1 1n i i X X n ==∑为 样本均值,则θ的矩估计量为: 。 9、设样本129,,,X X X L 来自正态总体(,1.44)N a ,计算得样本观察值10x =,求参数a 的置信度为95%的置信区间: ; 二、 计算题(35分) 1、 (12分)设连续型随机变量X 的密度函数为: 1, 02()2 0, x x x ??≤≤?=???其它

求:1){|21|2}P X -<;2)2 Y X =的密度函数()Y y ?;3)(21)E X -; 2、(12分)设随机变量(X,Y)的密度函数为 1/4,||,02,(,)0, y x x x y ?<<??

条件概率(教案)

2.2.1条件概率 寿阳县第一职业中学` 付慧萍 教学目标: 知识与技能:通过对具体情景的分析,了解条件概率的定义。 过程与方法:掌握一些简单的条件概率的计算。 情感、态度与价值观:通过对实例的分析,会进行简单的应用。 教学重点:条件概率定义的理解 教学难点:概率计算公式的应用 授课类型:新授课 课时安排:1课时 教具:多媒体 教学设想:引导学生形成“自主学习”与“合作学习”等良好的学习方式。 教学过程: 一、复习引入: 探究: 三张奖券中只有一张能中奖,现分别由三名同学无放回地抽取,问最后一名同学抽到中奖奖券的概率是否比前两名同学小. 若抽到中奖奖券用“Y ”表示,没有抽到用“Y”,表示,那么三名同学的抽奖结果共有三种可能:Y Y Y,Y Y Y和Y Y Y.用B 表示事件“最后一名同学抽到中奖奖券”, 则B 仅包含一个基 本事件Y Y Y.由古典概型计算公式可知,最后一名同学抽到中奖奖券的概率为 1 () 3 P B=. 思考:如果已经知道第一名同学没有抽到中奖奖券,那么最后一名同学抽到奖券的概率又是多少? 因为已知第一名同学没有抽到中奖奖券,所以可能出现的基本事件只有Y Y Y和Y Y Y.而“最后一名同学抽到中奖奖券”包含的基本事件仍是Y Y Y.由古典概型计算公式可知.最后一名同学抽到中奖 奖券的概率为1 2 ,不妨记为P(B|A ) ,其中A表示事件“第一名同学没有抽到中奖奖券”. 已知第一名同学的抽奖结果为什么会影响最后一名同学抽到中奖奖券的概率呢? 在这个问题中,知道第一名同学没有抽到中奖奖券,等价于知道事件A 一定会发生,导致可能出现的基本事件必然在事件A 中,从而影响事件B 发生的概率,使得P ( B|A )≠P ( B ) . 思考:对于上面的事件A和事件B,P ( B|A)与它们的概率有什么关系呢? 用Ω表示三名同学可能抽取的结果全体,则它由三个基本事件组成,即Ω={Y Y Y, Y Y Y,Y Y Y}.既然已知事件A必然发生,那么只需在A={Y Y Y, Y Y Y}的范围内考虑问题,即只有两个基本事件Y Y Y和Y Y Y.在事件A 发生的情况下事件B发生,等价于事件A 和事件B 同时发生,即AB 发生.而事件AB 中仅含一个基本事件Y Y Y,因此 (|) P B A=1 2 = () () n AB n A .

概率论与数理统计期末考试试卷答案

《概率论与数理统计》 试卷A (考试时间:90分钟; 考试形式:闭卷) (注意:请将答案填写在答题专用纸上,并注明题号。答案填写在试卷和草稿纸上无效) 一、单项选择题(本大题共20小题,每小题2分,共40分) 1、A ,B 为二事件,则A B = () A 、A B B 、AB C 、AB D 、A B 2、设A ,B ,C 表示三个事件,则ABC 表示( ) A 、A , B , C 中有一个发生 B 、A ,B ,C 中恰有两个发生 C 、A ,B ,C 中不多于一个发生 D 、A ,B ,C 都不发生 3、A 、B 为两事件,若()0.8P A B = ,()0.2P A =,()0.4P B =, 则( )成立 A 、()0.32P A B = B 、()0.2P AB = C 、()0.4P B A -= D 、()0.48P B A = 4、设A ,B 为任二事件,则( ) A 、()()()P A B P A P B -=- B 、()()()P A B P A P B =+ C 、()()()P AB P A P B = D 、()()()P A P AB P AB =+ 5、设事件A 与B 相互独立,则下列说法错误的是() A 、A 与 B 独立 B 、A 与B 独立 C 、()()()P AB P A P B = D 、A 与B 一定互斥 6、设离散型随机变量X 的分布列为 其分布函数为()F x ,则(3)F =() A 、0 B 、0.3 C 、0.8 D 、1 7、设离散型随机变量X 的密度函数为4,[0,1] ()0, cx x f x ?∈=??其它 ,则常数c =( ) A 、 15 B 、1 4 C 、4 D 、5

《概率论与数理统计》期末考试试题及解答

、填空题(每小题3分,共15 分) 1.设事件A, B仅发生一个的概率为0.3,且P(A) P(B)二0.5,则代B至少有一个不发生的概率为_______________ . 答案:0.3 解: P(AB AB) =0.3 即 0.3=P(AB) P(AB) =P(A) — P(AB) P(B) —P(AB)=0.5 —2P(AB) 所以 P(AB) =0.1 P(A B) =P(AB) =1 - P(AB) =0.9. 2.设随机变量X服从泊松分布,且P(X岂1) =4P(X =2),贝U P(X =3)= 答 案: 1 二e 6 解 答: -2 P(X 乞1) =P(X =0) P(X =1) =e°:;2;e—', P(X =2) e_, 2 由F 即2 >(X 空1) =4P(X =2) 知^-^2'2e_ ■_ ■ -1 = 0 解得'-1,故 P(X =3) =-e4 6 3.设随机变量X在区间(0,2)上服从均匀分布,则随机变量Y=X2在区间(0,4)内的概率 密度为 答 案: f Y(y) = ” 1 r \~^~r, °v y<:4, f Y (y) = F Y (y)= —尸f X(V?) = <4V7 2J y[ 0 ,其它. 解答:设Y的分布函数为F Y(y), X的分布函数为F x(x),密度为f x(x)则 F Y (y)二PZ y)二P(X2乞y)二P(「勺咗X 沢勺)二F x C F X (_ . y) 因为X ~U (0, 2),所以F X(=y)=0,即F Y(y)二F X G.y)故

1 — I —尸,° c y c 4, f Y (y)十丫 (y) . f x (;y)二 y 2“ . o ,其它. 另解 在(0,2)上函数y=x 2严格单调,反函数为h(y)=“『y 所以 f Y (y) = f X ("厂斗"477 0

相关主题
文本预览
相关文档 最新文档