当前位置:文档之家› 概率统计chapter6-7例题选讲

概率统计chapter6-7例题选讲

§6.1 总体与样本

一、总体研究对象的全体

指标集量化

R.V . X 或F (x )

规律二、样本

总体的部分个体:

X 1,X 2,…,X n 独立同分布于F (x )

试验前:X 1,X 2,…,X n 为R.V .

试验后:x 1,x 2,… ,x n 为样本观察值(实数)

n :样本容量(样本大小)

基本思想:由样本对总体的分布(特征)进行合理地推断。

抽样模型艺术地刻画了抽样过程抽到的样本为随机变量(对总体X 的n 次copy )一旦具体实施抽样

就得到了数据

总体的例:X ~身高结合例来理解下面的概念

已知和未知统计的关键词

2.经验分布函数F n (x )

**2

*1

21,,,)1(n

n x

x x x x x ≤≤≤→ ??

??

?≥-=<≤<=+*

*1

**

1

11,,2,10)()2(n

k k n x

x n k x x x n k

x x x F 例1. 随机地观测总体X 得8个数据:2.5,3,2.5,3.5,3,2.7,2.5,2,试求X 的一个经验分布函数。解

5.35.3337.27

.25.25..2221

8/78/58/48/10

)(8≥<≤<≤<≤<≤

?=x x x x x x x F 频率估计概率

P(X<=x)

2 < 2.5 = 2.5 = 2.5 < 2.7 <

3 = 3 < 3.5

例1(P 147)随机地观测总体X 得8个数据:2.5,3,2.5,3.5,3,2.7,2.5,2,试求X 的一个经验分布函数。

2 < 2.5 = 2.5 = 2.5 < 2.7 <

3 = 3 < 3.5

5.35.3337.27

.25.25..2221

8/78/58/48/10

)(8≥<≤<≤<≤<≤

?=x x x x x x x F X P 2 2.5 2.7 3 3.51/8 3/8 1/8 2/8 1/8

一般F n (x )对应分布列:P (X =x i )=1/n ,i=1,2,...,n

随机模拟显示

格列汶科定理

1

)0)()(sup lim (==-∞

<<∞-∞→x F x F P n x n

试题随手贴提而不讲

试题随手贴提而不讲

的容量为n 的两个样本(X 11,X 12,…,X 1n )和(X 21,X 22,…,X 2n )的样本均值。试确定n 使两个样本均值之差的绝对值超过σ的概率大于0.01。

例1 (P 158例6.4)设和分别是取自正态总体N(μ,σ2)1X 2X 解2,1),

(~2

=n n

N X i σμ由,相互独立知

)

2

,0(~2

21n

N X X σ

-)(21σ>-X X P }22{

2

2

21n

n

X X P σσ

σ>

-=01

.0)]2

(1[2>Φ-=n

?995.0)2(<Φn ?

?576.22

27.13

矩估计的步骤(用样本矩估计理论矩)

?第0步:准备~写分布等(样本)

?

第1步:辨识未知参数,未知参数个数。

?

第2步:EX k = ∫x k f(x| q )d x 建立理论矩和未知参数的方程

?(有几个参数就建立几个方程)?第3步:用样本矩代替理论矩

?

第4步:解方程,得到未知参数的矩估计

1、未知参数为理论矩,则直接估计

2、未知参数不为理论矩,建立矩与参数之间的方程(组),间接估计

例2 设总体X ~U [a ,b ],试由样本(X 1,…,X n ),

求未知参数a ,b 的矩估计量。

??

???

-==+==12)

()(2)()

1(221a b X D b a X E βα解

?

?????+=-=2

12

133βαβαb a ??

??

?+=-=21213?3?)2(B A b B A a

2

~3S

X -=2

~3S

X +=[缺点]

则a ,b 的估计值为如

为来自X ~U [a ,b ]的样本观察值,

11

1

,,41,31,21 ,01.0?-=a

。414.0?=b 注意到:b x ?5.01>=两个未知参数

七、(本题满分14分) 设总体X 的密度函数为

?

?

?<<+=其它

010)1()(x x x f q

q ,其中1

->q 是未知参数,分别用矩估计法和极大似然估计法求q 的估

计量。

解:1个参数,设n X ,,X ,X 21为简单样本

)2()1()1(++=+=?+∞

∞-q q q q dx x x EX

(1)(2)X q q =++

解方程,得q 的矩估计量

)1()12(?X X --=q

EX2 =DX+(EX)2

?赵本山大赛与极大似然估计原理

?

如何确定谁最像赵本山(估计赵本山)

极大似然估计

极大似然估计求解步骤

?给定总体X~f (x,q)q∈Q(未知)

?样本为x 1, x2,…,x n(已知)

?正确写出似然函数(关键步)

?L(q) = f (x1, q) f (x2, q) f (x3, q)…f (x n, q)

?=∏i=1,n f (x i, q ) (化简)

?(或者对数似然函数)log L(q)=log∏i=1,n f (x i, q )

)

?log L(q)=∑i=1,n log f (x i, q

?大多数情形下求解似然方程(对数似然方程的根)

?d L(q)/d q = 0 ( d log L(q) / d q = 0 ) 向量时为偏导数

?q

?其根为参数q 的极大似然估计

例1(P 171例7.5)设寿命X ~E (1/θ),试由下面(18个)样本观察值求未知参数θ的极大似然估计值。

1121

1

(,,;)(,)(,)(,)()

i

x n

n n i L x x f x f x f x e

q

q q q q q

-

===∏ ∑=

=-

n

i i x n

e

1

1

1

q

q

]1ln [ln x n n L q q q q --??=??02=+-=x n

n q

q 解得估计值

x =q

?=317.94(小时),

估计量X =q

?与矩估计相同。

12,,,n

x x x 样本:

例2(P 172例7.7)设总体X ~N (μ, σ2),求μ和σ2 的极大似然估计。

=--

=n

i x i e L 12)(2

2

221

),(σμσ

πσμ解∑

==--

-n

i i x n e

1

2

2

)(212

2)2(μσπσ∑=---=n

i i

x n L 1

2

2

2

)

(21)2ln(2ln μσ

πσ???

?

?∑=-=??n

i i x L 12)(1ln μσμ0)(2112ln 1

2422=-+?-=??∑

=n

i i x n L μσ

σ

σ0

)(1

2=-=μσn x n ,?x =μ

∑==-=n

i i S x x n 1

22

2

~)(1?σ

?

例:~(0.)X U q

,求q 的极大似然估计。

解:总体密度(,

)

1/, 0f x x q q q

=<<;12,,,n x x x 为简单样本 1211

1

1

()(,)(,)(,)

0,,n n

n L f x f x f x x x q q q q q q

q

q

===

≤≤

11

()0n d L n d q q q

+=-< 无根。

极大似然函数的要点是:求解 ()L q q ∈Q max 的最优点作为参数估计。

1/n q q ∈Q max

?Q =

*

[,)n x Q =+∞ (note 12,,,n x x x q ≥ )

()1/n L q q =在*[,)n x Q =+∞上单调递减,从而最大点为*?n

x q = 变换变量视点,未知参数为变量。

例:设总体X 的概率密度为1

()exp(),0x f x μ

q q q -=->

试求未知参数 μ , q 的极大似然估计。

解:设

12,,,n x x x 为简单样本;μ , q ~ 2个未知参数。 1111

1

(,)(,,)exp()

1111exp(())exp(())n

n

i i n n n i n i i i i i x L f x x x n μ

q μq μq q

μμq q q q

====-==-

=--=--∏∏∑∑ 11log((,))log {}i n

i L n x n q μq μq

==---∑

log ()n

n x q μq

=---

log((,))log ()

n

L n x q μq μq

=--

-

2log((,))/()0

n

L n x q μq μq q

?=-+-=? log((,))0

n

L q μμq

?=>?, 未知参数域:*1

11min(,,)),,n n x x x x x μ<=≤

log((,))L q ↑ *

1?x μ=

*1?x x x q μ=-=-

变换变量视点,未知参数为变量。

概率统计练习题答案

《概率论与数理统计》练习题7答案7 考试时间:120分钟 题目部分,(卷面共有22题,100分,各大题标有题量和总分) 一、选择题(10小题,共30分) 1、设随机事件A 、B 互斥,(), (),P A P P B q ==则()P A B =( )。 A 、q B 、1q - C 、 p D 、1p - 答案:D 2、某类灯泡使用时数在500小时以上的概率为0.5,从中任取3个灯泡使用,则在使用500小时之后无一损坏的概率为:( )。 A 、 18 B 、2 8 C 、38 D 、 4 8 答案:A 3、设ξ的分布函数为1()F x ,η的分布函数为2()F x ,而12()()()F x aF x bF x =-是某随机 变量ζ的分布函数,则, a b 可取( )。 A 、32, 55a b = =- B 、2 3a b == C 、13 , 22a b =-= D 、13 , 22 a b ==- 答案:A 4、设随机变量ξ,η相互独立,其分布律为: 则下列各式正确的是( )。 A 、{}1P ξη== B 、{}14 P ξη== C 、{}12 P ξη== D 、{}0P ξη== 答案:C

^^ 5、两个随机变量的协方差为cov(,)ξη=( )。 A 、() () 2 2 E E E ηηξξ-- B 、()()E E E E ξξηη-- C 、()()2 2 E E E ξηξη-? D 、()E E E ξηξη-? 答案:D 6、设随机变量ξ在11,22?? -???? 上服从均匀分布sin ηπξ=的数学期望是( )。 A 、0 B 、1 C 、 1π D 、2π 答案:A 7、设12100,,,ξξξ???服从同一分布,它们的数学期望和方差均是2,那么 104n i i P n ξ=?? <<≥???? ∑( )。 A 、 12 B 、212n n - C 、12n D 、1 n 答案:B 8、设12, , , n X X X 是来自正态总体2(, )N μσ的样本( )。 A 、2 11~(,)n i i X X N n μσ==∑ B 、2 11()~(0, )n i X N n n σμ=-∑ C 、22 2111()~(1)n i i X n n μχσ=?--∑ D 、22 21 11()~()n i i X X n n χσ=?-∑ 答案:B 9、样本12(,, , )n X X X ,2n >,取自总体ξ,E μξ=,2D σξ=,则有( )。

概率论与数理统计试题

07试题 一、填空题(本大题共6小题,每小题3分,总计18分) 1. 设,A B 为随机事件,()()0.7P A P B +=,()0.3P AB =,则() () P AB P AB += 2.10件产品中有4件次品,从中任意取2件,则第2件为次品的概率为 3.设随机变量X 在区间[0,2]上服从均匀分布,则2Y X =的概率密度函数为 4.设随机变量X 的期望()3E X =,方差()5D X =,则期望()2 4E X ??+=? ? 5. 设随机变量X 服从参数为2的泊松分布,则应用切比雪夫不等式估计得 {} 22P X -≥≤ . 6. 设1234,,,X X X X 是来自正态总体X ~()0,4N 的样本,则当a = 时, ()()22 123422Y a X X a X X =++-~()22χ. 二、选择题(在各小题四个备选答案中选出一个正确答案,填在题末的括号中,本大题 共6个小题,每小题3分,总计18分) 1.设,A B 为对立事件, ()01P B <<, 则下列概率值为1的是( ) ~ (A) ()|P A B ; (B) ()|P B A ; (C) () |P A B ; (D) ()P AB 2. 设随机变量X ~()1,1N ,概率密度为()f x ,分布函数()F x ,则下列正确的是( ) (A) {0}{0}P X P X ≤=≥; (B) {1}{1}P X P X ≤=≥; (C) ()()f x f x =-, x R ∈; (D) ()()1F x F x =--, x R ∈ 3. 设()f x 是随机变量X 的概率密度,则一定成立的是( ) (A) ()f x 定义域为[0,1]; (B) ()f x 非负; (C) ()f x 的值域为[0,1]; (D) ()f x 连续 4. 设4{1,1}9P X Y ≤≤= ,5 {1}{1}9 P X P Y ≤=≤=,则{min{,}1}P X Y ≤=( ) (A) 23; (B) 2081; (C) 49; (D) 13 5. 设随机变量(),X Y 的方差()4D X =,()1D Y =,相关系数0.6XY ρ=,则方差 ()32D X Y -= ( ) - (A) 40; (B) 34; (C) ; (D) 6. 设12,,,n X X X 是正态总体X ~() 2,N μσ的样本,其中σ已知,μ未知,则下列不是 统计量的是( ) (A) 1max k k n X ≤≤; (B) 1min k k n X ≤≤; (C) X μ-; (D) 1 n k k X σ =∑ 三、计算题(本大题共6小题,每小题10分,共计60分) 1.甲乙丙三个同学同时独立参加考试,不及格的概率分别为: ,,, (1) 求恰有2位同学不及格的概率; (2) 若已知3位同学中有2位不及格,求其中1位是同学乙的概率.

概率论与数理统计综合试题

Ⅱ、综合测试题 s388 概率论与数理统计(经管类)综合试题一 (课程代码 4183) 一、单项选择题(本大题共10小题,每小题2分,共20分) 在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。 1.下列选项正确的是 ( B ). A. A B A B +=+ B.()A B B A B +-=- C. (A -B )+B =A D. AB AB = 2.设()0,()0P A P B >>,则下列各式中正确的是 ( D ). A.P (A -B )=P (A )-P (B ) B.P (AB )=P (A )P (B ) C. P (A +B )=P (A )+P (B ) D. P (A +B )=P (A )+P (B )-P (AB ) 3.同时抛掷3枚硬币,则至多有1枚硬币正面向上的概率是 ( D ). A. 18 B. 16 C. 14 D. 1 2 4.一套五卷选集随机地放到书架上,则从左到右或从右到左卷号恰为1,2,3,4,5顺序的概率为 ( B ). A. 1120 B. 160 C. 15 D. 12 5.设随机事件A ,B 满足B A ?,则下列选项正确的是 ( A ). A.()()()P A B P A P B -=- B. ()()P A B P B += C.(|)()P B A P B = D.()()P AB P A = 6.设随机变量X 的概率密度函数为f (x ),则f (x )一定满足 ( C ). A. 0()1f x ≤≤ B. f (x )连续 C. ()1f x dx +∞-∞ =? D. ()1f +∞= 7.设离散型随机变量X 的分布律为(),1,2,...2k b P X k k ===,且0b >,则参数b 的 值为 ( D ). A. 1 2 B. 13 C. 15 D. 1

概率统计习题及答案

1、已知P(A)=0.7, P(B)=0.8,则下列判断正确的是( D )。 A. A,B 互不相容 B. A,B 相互独立 C.A ?B D. A,B 相容 2、将一颗塞子抛掷两次,用X 表示两次点数之和,则X =3的概率为( C ) A. 1/2 B. 1/12 C. 1/18 D. 1/9 3、某人进行射击,设射击的命中率为0.2,独立射击100次,则至少击中9次的概率为( B ) A.91 9910098 .02.0C B.i i i i C -=∑100100 9 10098 .02.0 C.i i i i C -=∑100100 10 10098 .02.0 D.i i i i C -=∑- 1009 0100 98 .02.01 4、设)3,2,1(39)(=-=i i X E i ,则)( )3 12 53(32 1=+ +X X X E B A. 0 B. 25.5 C. 26.5 D. 9 5、设样本521,,,X X X 来自N (0,1),常数c 为以下何值时,统计量25 24 23 2 1X X X X X c +++? 服从t 分布。( C ) A. 0 B. 1 C. 2 6 D. -1 6、设X ~)3,14(N ,则其概率密度为( A ) A.6 )14(2 61- -x e π B. 3 2 )14(2 61- - x e π C. 6 )14(2 321- - x e π D. 2 3 )14(2 61-- x e π 7、321,,X X X 为总体),(2 σμN 的样本, 下列哪一项是μ的无偏估计( A ) A. 32 12 110 351X X X + + B. 32 1416131X X X ++ C. 32 112 5 2 13 1X X X + + D. 32 16 13 13 1X X X + + 8 、设离散型随机变量X 的分布列为 则常数C 为( C ) (A )0 (B )3/8 (C )5/8 (D )-3/8

《概率论与数理统计》实验报告答案

《概率论与数理统计》实验报告 学生姓名李樟取 学生班级计算机122 学生学号201205070621 指导教师吴志松 学年学期2013-2014学年第1学期

实验报告一 成绩 日期 年 月 日 实验名称 单个正态总体参数的区间估计 实验性质 综合性 实验目的及要求 1.了解【活动表】的编制方法; 2.掌握【单个正态总体均值Z 估计活动表】的使用方法; 3.掌握【单个正态总体均值t 估计活动表】的使用方法; 4.掌握【单个正态总体方差卡方估计活动表】的使用方法; 5.掌握单个正态总体参数的区间估计方法. 实验原理 利用【Excel 】中提供的统计函数【NORMISINV 】和平方根函数【SQRT 】,编制【单个正态总体均值Z 估计活动表】,在【单个正态总体均值Z 估计活动表】中,只要分别引用或输入【置信水平】、【样本容量】、【样本均值】、【总体标准差】的具体值,就可以得到相应的统计分析结果。 1设总体2~(,)X N μσ,其中2σ已知,12,,,n X X X L 为来自X 的一个样本,12,,,n x x x L 为 样本的观测值 于是得到μ的置信水平为1-α 的置信区间为 利用【Excel 】中提供的统计函数【TINV 】和平方根函数【SQRT 】,编制【单个正态总体均值t 估计活动表】,在【单个正态总体均值t 估计活动表】中,只要分别引用或输入【置信水平】、【样本容量】、【样本均值】、【样本标准差】的具体值,就可以得到相应的统计分析结果。 2.设总体2~(,)X N μσ,其中2 σ未知,12,,,n X X X L 为来自X 的一个样本,12,,,n x x x L 为样本的观测值 整理得 /2/21X z X z n n P αασαμσ? ?=-??? ?-<<+/2||1/X U z P n ασμα????==-??????-

概率论与数理统计习题集及答案

* 《概率论与数理统计》作业集及答案 第1章 概率论的基本概念 §1 .1 随机试验及随机事件 1. (1) 一枚硬币连丢3次,观察正面H ﹑反面T 出现的情形. 样本空间是:S= ; (2) 一枚硬币连丢3次,观察出现正面的次数. 样本空间是:S= ; 2.(1) 丢一颗骰子. A :出现奇数点,则A= ;B :数点大于2,则B= . (2) 一枚硬币连丢2次, A :第一次出现正面,则A= ; B :两次出现同一面,则= ; C :至少有一次出现正面,则C= . ? §1 .2 随机事件的运算 1. 设A 、B 、C 为三事件,用A 、B 、C 的运算关系表示下列各事件: (1)A 、B 、C 都不发生表示为: .(2)A 与B 都发生,而C 不发生表示为: . (3)A 与B 都不发生,而C 发生表示为: .(4)A 、B 、C 中最多二个发生表示为: . (5)A 、B 、C 中至少二个发生表示为: .(6)A 、B 、C 中不多于一个发生表示为: . 2. 设}42:{},31:{},50:{≤<=≤<=≤≤=x B x x A x x S :则 (1)=?B A ,(2)=AB ,(3)=B A , (4)B A ?= ,(5)B A = 。 \ §1 .3 概率的定义和性质 1. 已知6.0)(,5.0)(,8.0)(===?B P A P B A P ,则 (1) =)(AB P , (2)()(B A P )= , (3))(B A P ?= . 2. 已知,3.0)(,7.0)(==AB P A P 则)(B A P = . §1 .4 古典概型 1. 某班有30个同学,其中8个女同学, 随机地选10个,求:(1)正好有2个女同学的概率, (2)最多有2个女同学的概率,(3) 至少有2个女同学的概率. 2. 将3个不同的球随机地投入到4个盒子中,求有三个盒子各一球的概率. — §1 .5 条件概率与乘法公式 1.丢甲、乙两颗均匀的骰子,已知点数之和为7, 则其中一颗为1的概率是 。 2. 已知,2/1)|(,3/1)|(,4/1)(===B A P A B P A P 则=?)(B A P 。 §1 .6 全概率公式 1. 有10个签,其中2个“中”,第一人随机地抽一个签,不放回,第二人再随机地抽一个 签,说明两人抽“中‘的概率相同。

概率论与数理统计期末考试试题及解答

概率论与数理统计期末考 试试题及解答 Prepared on 24 November 2020

一、填空题(每小题3分,共15分) 1.设事件B A ,仅发生一个的概率为,且5.0)()(=+B P A P ,则B A ,至少有一个不发生的概率为__________. 答案: 解: 即 所以 9.0)(1)()(=-==AB P AB P B A P . 2.设随机变量X 服从泊松分布,且)2(4)1(==≤X P X P ,则 ==)3(X P ______. 答案: 解答: 由 )2(4)1(==≤X P X P 知 λλλλλ---=+e e e 22 即 0122=--λλ 解得 1=λ,故 3.设随机变量X 在区间)2,0(上服从均匀分布,则随机变量2X Y =在区间) 4,0(内的概率密度为=)(y f Y _________. 答案: 解答:设Y 的分布函数为(),Y F y X 的分布函数为()X F x ,密度为()X f x 则 因为~(0,2)X U ,所以(0X F = ,即()Y X F y F = 故 另解 在(0,2)上函数2y x = 严格单调,反函数为()h y =所以 4.设随机变量Y X ,相互独立,且均服从参数为λ的指数分布,2)1(-=>e X P ,则=λ_________,}1),{min(≤Y X P =_________. 答案:2λ=,-4{min(,)1}1e P X Y ≤=- 解答: 2(1)1(1)P X P X e e λ-->=-≤==,故 2λ= 41e -=-. 5.设总体X 的概率密度为 ?????<<+=其它, 0, 10,)1()(x x x f θ θ 1->θ. n X X X ,,,21 是来自X 的样本,则未知参数θ的极大似然估计量为_________. 答案: 解答: 似然函数为 解似然方程得θ的极大似然估计为

概率统计习题含答案

作业2(修改2008-10) 4. 掷一枚非均匀的硬币,出现正面的概率为(01)p p <<,若以X 表示直至掷到正、反面 都出现为止所需投掷的次数,求X 的概率分布. 解 对于2,3,k =L ,前1k -次出现正面,第k 次出现反面的概率是1(1)k p p --,前1k -次出现反面,第k 次出现正面的概率是1(1)k p p --,因而X 有概率分布 11()(1)(1)k k P X k p p p p --==-+-,2,3,k =L . 5. 一个小班有8位学生,其中有5人能正确回答老师的一个问题.老师随意地逐个请学生回答,直到得到正确的回答为止,求在得到正确的回答以前不能正确回答问题的学生个数的概率分布. 第1个能正确回答的概率是5/8, 第1个不能正确回答,第2个能正确回答的概率是(3/8)(5/7)15/56=, 前2个不能正确回答,第3个能正确回答的概率是(3/8)(2/7)(5/6)5/56=, 前3个不能正确回答,第4个能正确回答的概率是(3/8)(2/7)(1/6)(5/5)1/56=, 前4个都不能正确回答的概率是(3/8)(2/7)(1/6)(0/5)0=. 设在得到正确的回答以前不能正确回答问题的学生个数为X ,则X 有分布 6. 设某人有100位朋友都会向他发送电子邮件,在一天中每位朋友向他发出电子邮件的概率都是0.04,问一天中他至少收到4位朋友的电子邮件的概率是多少?试用二项分布公式和泊松近似律分别计算. 解 设一天中某人收到X 位朋友的电子邮件,则~(100,0.04)X B ,一天中他至少收到4位朋友的电子邮件的概率是(4)P X ≥. 1) 用二项分布公式计算 3 1001000(4)1(4)10.04(10.04)0.5705k k k k P X P X C -=≥=-<=--=∑. 2) 用泊松近似律计算 331004 1000 04(4)1(4)10.04(10.04)10.5665! k k k k k k P X P X C e k --==≥=-<=--≈-=∑ ∑ .

《概率论与数理统计》期末考试试题及解答

一、填空题(每小题3分,共15分) 1. 设事件B A ,仅发生一个的概率为0.3,且5.0)()(=+B P A P ,则B A ,至少有一个不发 生的概率为__________. 答案:0.3 解: 3.0)(=+B A B A P 即 )(25.0)()()()()()(3.0AB P AB P B P AB P A P B A P B A P -=-+-=+= 所以 1.0)(=AB P 9.0)(1)()(=-==AB P AB P B A P . 2. 设随机变量X 服从泊松分布,且)2(4)1(==≤X P X P ,则==)3(X P ______. 答案: 161-e 解答: λλ λ λλ---= =+==+==≤e X P e e X P X P X P 2 )2(, )1()0()1(2 由 )2(4)1(==≤X P X P 知 λλλ λλ---=+e e e 22 即 0122 =--λλ 解得 1=λ,故 16 1)3(-= =e X P 3. 设随机变量X 在区间)2,0(上服从均匀分布,则随机变量2 X Y =在区间)4,0(内的概率 密度为=)(y f Y _________. 答案: 04,()()0,. Y Y X y f y F y f <<'===? 其它 解答:设Y 的分布函数为(),Y F y X 的分布函数为()X F x ,密度为()X f x 则 2 ()()())))Y X X F y P Y y P X y y y y y =≤=≤ =≤- - 因为~(0,2)X U ,所以(0X F = ,即()Y X F y F = 故

《概率论与数理统计》期中考试试题汇总

《概率论与数理统计》期中考试试题汇总

《概率论与数理统计》期中考试试题(一) 一、选择题(本题共6小题,每小题2分,共12分) 1.某射手向一目标射击两次,A i表示事件“第i次射击命中目标”,i=1,2,B表示事件“仅第一次射击命中目标”,则B=()A.A1A2B.21A A C.21A A D.21A A 2.某人每次射击命中目标的概率为p(0

6.设随机变量X 与Y 相互独立,X 服从参数2为的指数分布,Y ~B (6,2 1),则D(X-Y)=( ) A .1- B .74 C .54- D .12 - 二、填空题(本题共9小题,每小题2分,共18分) 7.同时扔3枚均匀硬币,则至多有一枚硬币正面向上的概率为________. 8.将3个球放入5个盒子中,则3个盒子中各有一球的概率为= _______ _. 9.从a 个白球和b 个黑球中不放回的任取k 次球,第k 次取的黑球的概率是= . 10.设随机变量X ~U (0,5),且21Y X =-,则Y 的概率密度f Y (y )=________. 11.设二维随机变量(X ,Y )的概率密度 f (x ,y )=? ??≤≤≤≤,y x ,其他,0,10,101则P {X +Y ≤1}=________. 12.设二维随机变量(,)X Y 的协方差矩阵是40.50.59?? ???, 则相关系数,X Y ρ= ________. 13. 二维随机变量(X ,Y ) (1,3,16,25,0.5)N -:,则X : ;Z X Y =-+: . 14. 随机变量X 的概率密度函数为 51,0()50,0x X e x f x x -?>?=??≤?,Y 的概率密度函数为1,11()20,Y y f y others ?-<

概率统计练习题8答案

《概率论与数理统计》练习题8答案 考试时间:120分钟 题目部分,(卷面共有22题,100分,各大题标有题量和总分) 一、选择题(10小题,共30分) 1、设有10个人抓阄抽取两张戏票,则第三个人抓到有戏票的事件的概率等于( )。 A 、0 B 、1 4 C 、18 D 、15 答案:D 2、如果,A B 为任意事件,下列命题正确的是( )。 A 、如果,A B 互不相容,则,A B 也互不相容 B 、如果,A B 相互独立,则,A B 也相互独立 C 、如果,A B 相容,则,A B 也相容 D 、AB A B =? 答案:B 3、设随机变量ξ具有连续的分布密度()x ξ?,则a b ηξ=+ (0,a b ≠是常数)的分布密度为( )。 A 、 1y b a a ξ?-?? ? ?? B 、1y b a a ξ?-?? ??? C 、1y b a a ξ?--?? ??? D 、 1y b a a ξ??? - ? ??? 答案:A 4、设,ξη相互独立,并服从区间[0,1]上的均匀分布则( )。 A 、ζξη=+服从[0,2]上的均匀分布, B 、ζξη=-服从[- 1,1]上的均匀分布, C 、{,}Max ζξη=服从[0,1]上的均匀分布,

D 、(,)ξη服从区域01 01x y ≤≤??≤≤? 上的均匀分布 答案:D 5、~(0, 1), 21,N ξηξ=-则~η( )。 A 、(0, 1)N B 、(1, 4)N - C 、(1, 2)N - D 、(1, 3)N - 答案:B 6、设1ξ,2ξ都服从区间[0,2]上的均匀分布,则12()E ξξ+=( )。 A 、1 B 、2 C 、0.5 D 、4 答案:B 7、设随机变量ξ满足等式{||2}116P E ξξ-≥=,则必有( )。 A 、14D ξ= B 、14 D ξ> C 、1 4 D ξ< D 、{} 15216 P E ξξ-<= 答案:D 8、设1(,,)n X X 及1(,,)m Y Y 分别取自两个相互独立的正态总体21(, )N μσ及 2 2(, )N μσ的两个样本,其样本(无偏)方差分别为21 S 及22 S ,则统计量2 122 S F S =服从F 分 布的自由度为( )。 A 、(1, 1)n m -- B 、(, )n m C 、(1, 1)n m ++ D 、( 1, 1,)m n -- 答案:A 9、在参数的区间估计中,给定了置信度,则分位数( )。 A 、将由置信度的大小唯一确定; B 、将由有关随机变量的分布唯一确定; C 、可按置信度的大小及有关随机变量的分布来选取; D 、可以任意规定。 答案:C 10、样本容量n 确定后,在一个假设检验中,给定显著水平为α,设此第二类错误的概率为β,则必有( )。

概率论与数理统计实验报告

概率论与数理统计 实验报告 概率论部分实验二 《正态分布综合实验》

实验名称:正态分布综合实验 实验目的:通过本次实验,了解Matlab在概率与数理统计领域的应用,学会用matlab做概率密度曲线,概率分布曲线,直方图,累计百分比曲线等简单应用;同时加深对正态分布的认识,以更好得应用之。 实验内容: 实验分析: 本次实验主要需要运用一些matlab函数,如正态分布随机数发生器normrnd函数、绘制直方图函数hist函数、正态分布密度函数图形绘制函数normpdf函数、正态分布分步函数图形绘制函数normcdf等;同时,考虑到本次实验重复性明显,如,分别生成100,1000,10000个服从正态分布的随机数,进行相同的实验操作,故通过数组和循环可以简化整个实验的操作流程,因此,本次实验程序中要设置数组和循环变量。 实验过程: 1.直方图与累计百分比曲线 1)实验程序 m=[100,1000,10000]; 产生随机数的个数 n=[2,1,0.5]; 组距 for j=1:3 for k=1:3 x=normrnd(6,1,m(j),1); 生成期望为6,方差为1的m(j)个 正态分布随机数

a=min(x); a为生成随机数的最小值 b=max(x); b为生成随机数的最大值 c=(b-a)/n(k); c为按n(k)组距应该分成的组数 subplot(1,2,1); 图形窗口分两份 hist(x,c);xlabel('频数分布图'); 在第一份里绘制频数直方图 yy=hist(x,c)/1000; yy为各个分组的频率 s=[]; s(1)=yy(1); for i=2:length(yy) s(i)=s(i-1)+yy(i); end s[]数组存储累计百分比 x=linspace(a,b,c); subplot(1,2,2); 在第二个图形位置绘制累计百分 比曲线 plot(x,s,x,s);xlabel('累积百分比曲线'); grid on; 加网格 figure; 另行开辟图形窗口,为下一个循 环做准备 end end 2)实验结论及过程截图 实验结果以图像形式展示,以下分别为产生100,1000,10000个正态分布随机数,组距分别为2,1,0.5的频数分布直方图和累积百分比曲线,从实验结果看来,随着产生随机数的数目增多,组距减小,累计直方图逐渐逼近正态分布密度函数图像,累计百分比逐渐逼近正态分布分布函数图像。

概率论与数理统计第一章测试题

第一章 随机事件和概率 一、选择题 1.设A, B, C 为任意三个事件,则与A 一定互不相容的事件为 (A )C B A ?? (B )C A B A ? (C ) ABC (D ))(C B A ? 2.对于任意二事件A 和B ,与B B A =?不等价的是 (A )B A ? (B )A ?B (C )φ=B A (D )φ=B A 3.设A 、B 是任意两个事件,A B ?,()0P B >,则下列不等式中成立的是( ) .A ()()P A P A B < .B ()()P A P A B ≤ .C ()()P A P A B > .D ()()P A P A B ≥ 4.设()01P A <<,()01P B <<,()()1P A B P A B +=,则( ) .A 事件A 与B 互不相容 .B 事件A 与B 相互独立 .C 事件A 与B 相互对立 .D 事件A 与B 互不独立 5.设随机事件A 与B 互不相容,且()(),P A p P B q ==,则A 与B 中恰有一个发生的概率等于( ) .A p q + .B p q pq +- .C ()()11p q -- .D ()()11p q q p -+- 6.对于任意两事件A 与B ,()P A B -=( ) .A ()()P A P B - .B ()()()P A P B P AB -+ .C ()()P A P AB - .D ()()() P A P A P AB +- 7.若A 、B 互斥,且()()0,0P A P B >>,则下列式子成立的是( ) .A ()()P A B P A = .B ()0P B A > .C ()()()P AB P A P B = .D ()0P B A = 8.设()0.6,()0.8,()0.8P A P B P B A ===,则下列结论中正确的是( ) .A 事件A 、B 互不相容 .B 事件A 、B 互逆

概率统计例题

已知二维连续型随机向量),(Y X 的联合密度函数为 ?? ?<<<<=其他。 ,; ,, 010104),(y x xy y x f 则X 与Y 相互独立 【解:由二维连续型随机向量),(Y X 的联合密度函数为 ?? ?<<<<=其他。 , ; ,, 010104),(y x xy y x f 可得两个边缘密度函数分别为: ?? ?<<==?∞+∞ -其他。, ; , 0102),()(x x dy y x f x f X ?? ?<<==? ∞ +∞ -其他。 , ; , 0102),()(y y dx y x f y f Y 从而可得)()(),(y f x f y x f Y X ?=,所以X 与Y 相互独立。 ■12、设二维随机变量(X , Y ) ~4,01,01 (,)0,xy x y f x y <<<===??? ()1()0.5P Y X P X Y ≥=->=】

概率论与数理统计实验报告

概率论与数理统计实验报告 一、实验目的 1.学会用matlab求密度函数与分布函数 2.熟悉matlab中用于描述性统计的基本操作与命令 3.学会matlab进行参数估计与假设检验的基本命令与操作 二、实验步骤与结果 概率论部分: 实验名称:各种分布的密度函数与分布函数 实验内容: 1.选择三种常见随机变量的分布,计算它们的方差与期望<参数自己设 定)。 2.向空中抛硬币100次,落下为正面的概率为0.5,。记正面向上的次数 为x, (1)计算x=45和x<45的概率, (2)给出随机数x的概率累积分布图像和概率密度图像。 3.比较t(10>分布和标准正态分布的图像<要求写出程序并作图)。 程序: 1.计算三种随机变量分布的方差与期望 [m0,v0]=binostat(10,0.3> %二项分布,取n=10,p=0.3 [m1,v1]=poisstat(5> %泊松分布,取lambda=5 [m2,v2]=normstat(1,0.12> %正态分布,取u=1,sigma=0.12 计算结果: m0 =3 v0 =2.1000 m1 =5 v1 =5 m2 =1 v2 =0.0144 2.计算x=45和x<45的概率,并绘图 Px=binopdf(45,100,0.5> %x=45的概率 Fx=binocdf(45,100,0.5> %x<45的概率 x=1:100。 p1=binopdf(x,100,0.5>。 p2=binocdf(x,100,0.5>。 subplot(2,1,1>

plot(x,p1> title('概率密度图像'> subplot(2,1,2> plot(x,p2> title('概率累积分布图像'> 结果: Px =0.0485 Fx =0.1841 3.t(10>分布与标准正态分布的图像 subplot(2,1,1> ezplot('1/sqrt(2*pi>*exp(-1/2*x^2>',[-6,6]> title('标准正态分布概率密度曲线图'> subplot(2,1,2> ezplot('gamma((10+1>/2>/(sqrt(10*pi>*gamma(10/2>>*(1+x^2/10>^(-(10+1>/2>',[-6,6]>。b5E2RGbCAP title('t(10>分布概率密度曲线图'> 结果:

概率论与数理统计题库及答案

概率论与数理统计题库及答案 一、单选题 1. 在下列数组中,( )中的数组可以作为离散型随机变量的概率分布. (A) 51,41,31,21 (B) 81,81,41,21 (C) 2 1,21,21,21- (D) 16 1, 8 1, 4 1, 2 1 2. 下列数组中,( )中的数组可以作为离散型随机变量的概率分布. (A) 4 1414121 (B) 161814121 (C) 16 3 16 14 12 1 (D) 8 18 34 12 1- 3. 设连续型随机变量X 的密度函数 ???<<=, ,0, 10,2)(其他x x x f 则下列等式成立的是( ). (A) X P (≥1)1=- (B) 21)21(==X P (C) 2 1)21(= < X P (D) 2 1)21(= > X P 4. 若 )(x f 与)(x F 分别为连续型随机变量X 的密度函数与分布函数,则等式( )成 立. (A) X a P <(≤?∞ +∞-=x x F b d )() (B) X a P <(≤? = b a x x F b d )() (C) X a P <(≤? = b a x x f b d )() (D) X a P <(≤? ∞+∞ -= x x f b d )() 5. 设 )(x f 和)(x F 分别是随机变量X 的分布密度函数和分布函数,则对任意b a <,有 X a P <(≤=)b ( ). (A) ? b a x x F d )( (B) ? b a x x f d )( (C) ) ()(a f b f - (D) )()(b F a F - 6. 下列函数中能够作为连续型随机变量的密度函数的是( ).

概率论与数理统计(经管类)复习试题及答案

概率论和数理统计真题讲解 (一)单项选择题(本大题共10小题,每小题2分,共20分) 在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。 1.设随机事件A与B互不相容,且P(A)>0,P(B)>0,则() A.P(B|A)=0 B.P(A|B)>0 C.P(A|B)=P(A) D.P(AB)=P(A)P(B) 『正确答案』分析:本题考察事件互不相容、相互独立及条件概率。 解析:A:,因为A与B互不相容,,P(AB)=0,正确; 显然,B,C不正确;D:A与B相互独立。 故选择A。 提示:① 注意区别两个概念:事件互不相容与事件相互独立; ② 条件概率的计算公式:P(A)>0时,。 2.设随机变量X~N(1,4),F(x)为X的分布函数,Φ(x)为标准正态分布函数,则F(3)=() A.Φ(0.5) B.Φ(0.75) C.Φ(1) D.Φ(3) 『正确答案』分析:本题考察正态分布的标准化。 解析:, 故选择C。 提示:正态分布的标准化是非常重要的方法,必须熟练掌握。 3.设随机变量X的概率密度为f(x)=则P{0≤X≤}=() 『正确答案』分析:本题考察由一维随机变量概率密度求事件概率的方法。第33页 解析:, 故选择A。 提示:概率题目经常用到“积分的区间可加性”计算积分的方法。

4.设随机变量X的概率密度为f(x)=则常数c=() A.-3 B.-1 C.- D.1 『正确答案』分析:本题考察概率密度的性质。 解析:1=,所以c=-1, 故选择B。 提示:概率密度的性质: 1.f(x)≥0; 4.在f(x)的连续点x,有F′(X)=f(x);F(x)是分布函数。课本第38页 5.设下列函数的定义域均为(-∞,+∞),则其中可作为概率密度的是() A.f(x)=-e-x B. f(x)=e-x C. f(x)= D.f(x)= 『正确答案』分析:本题考察概率密度的判定方法。 解析:① 非负性:A不正确;② 验证:B:发散; C:,正确;D:显然不正确。 故选择C。 提示:判定方法:若f(x)≥0,且满足,则f(x)是某个随机变量的概率密度。 6.设二维随机变量(X,Y)~N(μ1,μ2,),则Y ~() 『正确答案』分析:本题考察二维正态分布的表示方法。 解析:显然,选择D。

概率论与数理统计习题集及答案

《概率论与数理统计》作业集及答案 第1章 概率论的基本概念 §1 .1 随机试验及随机事件 1. (1) 一枚硬币连丢3次,观察正面H ﹑反面T 出现的情形. 样本空间是:S= ; (2) 一枚硬币连丢3次,观察出现正面的次数. 样本空间是:S= ; 2.(1) 丢一颗骰子. A :出现奇数点,则A= ;B :数点大于2,则B= . (2) 一枚硬币连丢2次, A :第一次出现正面,则A= ; B :两次出现同一面,则= ; C :至少有一次出现正面,则C= . §1 .2 随机事件的运算 1. 设A 、B 、C 为三事件,用A 、B 、C 的运算关系表示下列各事件: (1)A 、B 、C 都不发生表示为: .(2)A 与B 都发生,而C 不发生表示为: . (3)A 与B 都不发生,而C 发生表示为: .(4)A 、B 、C 中最多二个发生表示为: . (5)A 、B 、C 中至少二个发生表示为: .(6)A 、B 、C 中不多于一个发生表示为: . 2. 设}42:{},31:{},50:{≤<=≤<=≤≤=x B x x A x x S :则 (1)=?B A ,(2)=AB ,(3)=B A , (4)B A ?= ,(5)B A = 。 §1 .3 概率的定义和性质 1. 已知6.0)(,5.0)(,8.0)(===?B P A P B A P ,则 (1) =)(AB P , (2)()(B A P )= , (3))(B A P ?= . 2. 已知,3.0)(,7.0)(==AB P A P 则)(B A P = . §1 .4 古典概型 1. 某班有30个同学,其中8个女同学, 随机地选10个,求:(1)正好有2个女同学的概率, (2)最多有2个女同学的概率,(3) 至少有2个女同学的概率. 2. 将3个不同的球随机地投入到4个盒子中,求有三个盒子各一球的概率. §1 .5 条件概率与乘法公式 1.丢甲、乙两颗均匀的骰子,已知点数之和为7, 则其中一颗为1的概率是 。 2. 已知,2/1)|(,3/1)|(,4/1)(===B A P A B P A P 则=?)(B A P 。 §1 .6 全概率公式 1. 有10个签,其中2个“中”,第一人随机地抽一个签,不放回,第二人再随机地抽一个 签,说明两人抽“中‘的概率相同。 2. 第一盒中有4个红球6个白球,第二盒中有5个红球5个白球,随机地取一盒,从中 随机地取一个球,求取到红球的概率。

概率论与数理统计题型

1、甲,乙两人向同一目标独立地各射击一次,命中率分别为2 1 ,31现已知目标被击 中,则它是甲命中的概率为() A 、1/3 B 、2/5 C 、1/2 D 、2/3 2、设C B A ,,是三个相互独立的随机事件,且1)(0<?VarY VarX ,则() A 、Y X ,独立 B 、Y X ,不相关 C 、0),cov(>Y X D 、1),(=Y X Corr 4、设n x x x ,,21为取自正态总体()2,σμN 的一组简单随机样本,其中μ未知,2 σ 已知.令 )1()(1x x n -=η,σ η2 12x x += ,σ μ ησ ημη∑∑∑===-= = -= n i i n i i n i i x x n x 1 51 41 3,,其中统计量个数是() A 、 1 B 、 2 C 、 3 D 、4 5、设当事件A 与B 同时发生时,事件C 必发生,则() A 、 1)()()(-+≤B P A P C P B 、1)()()(-+≥B P A P C P C 、)()(AB P C P = D 、)()(B A P C P = 6、设B A ,为两事件,且0)(>B P ,0)(=B A P 则() A 、A 与 B 为互不相容事件 B 、AB 是不可能事件 C 、φ=B A D 、AB 未必是不可能事件 7、设,)(,)(βα==B P A P 则10≤+≤βα,)(B A P 可能取值的最大值为() A 、βα+ B 、αββα-+ C 、),max(βα D 、),min(βα 8、若()() ρσσμμ,,,,~,2 22 121N Y X ,则0=ρ是Y X ,独立的() A 、充分条件 B 、必要条件 C 、充要条件 D 、既非充分也非必要条件 9、掷两枚均匀硬币,已知其中一枚是反面,则另一枚也是反面的概率为() A 、1/2 B 、1/4 C 、1/8 D 、1/3 变式:已知一家庭中有两个小孩,已知其中至少有一个为女孩,则另一个也是女孩的概率为() A 、1/2 B 、1/3 C 、1/4 D 、2/3 10、设n x x ,,1???是总体)4,2(~U X 的一个样本,则=>)3()(n x P

相关主题
文本预览
相关文档 最新文档