当前位置:文档之家› 光学设计作业答案.docx

光学设计作业答案.docx

光学设计作业答案.docx
光学设计作业答案.docx

现代光学设计作业

学号:2220110114

姓名:田训卿

一、光学系统像质评价方法 (2)

1.1 几何像差 (2)

1.1.1 光学系统的色差 (3)

1.1.2 轴上像点的单色像差─球差 (4)

1.1.3 轴外像点的单色像差 (5)

1.1.4 正弦差、像散、畸变 (7)

1.2 垂直像差 (7)

二、光学自动设计原理 (9)

2.1 阻尼最小二乘法光学自动设计程序 (9)

2.2 适应法光学自动设计程序 (11)

三、ZEMAX光学设计 (13)

3.1 望远镜物镜设计 (13)

3.2 目镜设计 (17)

四、照相物镜设计 (22)

五、变焦系统设计 (26)

一、光学系统像质评价方法

所谓像差就是光学系统所成的实际像和理想像之间的差异。由于一个光学系统不可能理想成像,因此就存在光学系统成像质量优劣的问题,从不同的角度出发会得出不同的像质评价指标。

(1)光学系统实际制造完成后对其进行实际测量

?星点检验

?分辨率检验

(2)设计阶段的评价方法

?几何光学方法:几何像差、波像差、点列图、几何光学传递函数

?物理光学方法:点扩散函数、相对中心光强、物理光学传递函数

下面就几种典型的评价方法进行说明。

1.1 几何像差

几何像差的分类如图1-1所示。

图1-1 几何像差的分类

1.1.1 光学系统的色差

光波实际上是波长为400~760nm 的电磁波。光学系统中的介质对不同波长光的折射率不同的。如图1-2,薄透镜的焦距公式为

()'121111n f r r ??=-- ???

(1-1) 因为折射率n 随波长的不同而改变,因此焦距也要随着波长的不同而改变,这样,当对无限远的轴上物体成像时,不同颜色光线所成像的位置也就不同。我们把不同颜色光线理想像点位置之差称为近轴位置色差,通常用C 和F 两种波长光线的理想像平面间的距离来表示近轴位置色差,也成为近轴轴向色差。若l ′F 和l ′c 分别表示F 与C 两种波长光线的近轴像距,则近轴轴向色差为

'''FC F C l l l ?=- (1-2)

图1-2 单透镜对无限远轴上物点白光成像

当焦距'f 随波长改变时,像高'y 也随之改变,不同颜色光线所成的像高也不一样。这种像的大小的差异称为垂轴色差,它代表不同颜色光线的主光线和同一基准像面交点高度(即实际像高)之差。通常这个基准像面选定为中心波长的理

想像平面。若'ZF y 和'ZC y 分别表示F 和C 两种波长光线的主光线在D 光理想像平

面上的交点高度,则垂轴色差为

'''FC ZF ZC y y y ?=- (1-3)

图1-3 单透镜对无线远轴外物点白光成像

1.1.2 轴上像点的单色像差─球差

如图1-3所示,轴上有限远同一物点发出的不同孔径的光线通过光学系统以后不再交于一点,成像不理想。为了表示这些对称光线在光轴方向的离散程度,我们用不同孔径光线的聚交点对理想像点A’0的距离A′0A′1.0,A′0A′0.85,…表示,称为球差,用符号δL′表示,δL′的计算公式是

δL′=L′?l′(1-4) 式中,L′代表一宽孔径高度光线的聚交点的像距;l′为近轴像点的像距。球差值越大,成像质量越差。

图1-3 球差示意图

1.1.3 轴外像点的单色像差

轴外物点发出的通过系统的所有光线在像空间的聚交情况比轴上点复杂。为了能够简化问题,同时又能定量地描述这些光线的弥散程度,从整个入射光束中取两个相互垂直的平面光束,用这两个平面光束的结构来近似地代表整个光束的结构。将主光线与光轴决定的平面称为子午面,如图1-4中的平面BM+M?;将过主光线与子午面垂直的平面称为弧矢面,如图1-4中的平面 BD+D?平面。用来描述这两个平面光束结构的几何参数分别成为子午像差和弧矢像差。

图1-4 子午面与弧矢面示意图

1.1.3.1 子午像差

子午光线对通过系统后的所有光线都应交在理想像平面上的同一点。由于有像差存在,光线对的交点既不在主光线上,也不在理想像平面上。为了表示这种差异,我们用子午光线对的交点B′T离理想像平面的轴向距离X′T表示此光线对交点偏离主光线的程度,成为“子午场曲”。如图1-5所示。用光线对交点B′T离开主光线的垂直距离K′T 表示此光线对交点偏离主光线的程度,成为“子午彗差”。当光线对对称地逐渐向主光线靠近,宽度趋于零时,它们的交点B′T趋近于一点B′t,B′t显然应该位于主光线上,它离开理想像平面的距离称为“细光束子午场曲”,用x′t表示。不同宽度子午光线对的子午场曲X′T和细光束子午场曲x′t之差(X′T?x′t),代表了细光束和宽光束交点前后位

置的差。此差值成为“轴外子午球差”,用δL′T表示。

δL′T=X′T?x′t(1-5)

图1-5 子午面光线像差

1.1.3.2 弧矢像差

如图1-6所示,阴影部分所在平面即为弧矢面。把弧矢光线对的交点B′S到理想像平面的距离用X′S表示,称为“弧矢场曲”;B′S到主光线的距离用K′S表示,称为“弧矢彗差”。主光线附近的弧矢细光束的交点B′S到理想像平面的距离用x′s表示,称为“细光束弧矢场曲”;X′S?x′s称为“轴外弧矢球差”,用δL′S表示。

δL′S=X′S?x′s(1-6)

图1-6 弧矢面光线像差

1.1.4 正弦差、像散、畸变

对于某些小视场大孔径的光学系统来说,由于像高本身较小,彗差的实际数值更小,因此用彗差的绝对数值不足以说明系统的彗差特性。一般改用彗差与像高的比值来代替系统的彗差,用符号SC′表示

SC′=lim

Y→0K′S

y′

(1-7)

SC′的计算公式为

SC′=sinU1u′

sinU′u1?l′?l′z

L′?l′z

?1(1-8)

对于用小孔径光束成像的光学系统,它在理想像平面上的成像质量由细光束子午和弧矢场曲x′t,x′s决定。二者之差反映了主光线周围的细光束偏离同心光束的程度,称为“像散”,代表了主光线周围细光束的成像质量,用符号x′ts表示

x′ts=x′t?x′s(1-9) 把成像光束的主光线和理想像平面交点的高度作为光束的实际像高,那么它和理想像高的差值称为“畸变”。畸变不影响像的清晰度,只影响像的变形。

1.2 垂直像差

利用不同孔径子午、弧矢光线在理想像平面上的交点和主光线在理想像平面上的交点之间的距离来表示的像差,称为垂轴几何像差。

为了表示子午光束的成像质量,在整个子午光束截面内取若干对光线,一般取

±1.0h,±0.85h,±0.7071h,±0.5h,±0.3h,0h这11条不同孔径的光线,计算出它们和理想像平面交点的坐标,由于子午光线永远位于子午面内,因此在理想像平面上交点高度之差就是这些交点之间的距离。求出前10条光线和主光线(0孔径光线)高度之差即为子午光束的垂轴像差,如图1-7所示。

δy′=y′?y′

z

(1-10)

图1-7 子午垂轴像差

为了用垂轴像差表示色差,可以将不同颜色光线的垂轴像差用同一基准像面和同一基准主光线作为基准点计算各色光线的垂轴像差。一般情况下,我们采用平均中心波长光线的理想像平面和主光线作为基准计算各色光光线的垂轴色差。为了了解整个像面的成像质量,同样需要计算轴上点和若干不同像高轴外点的垂轴像差。对轴上点来说,子午和弧矢垂轴像差是完全一样的,因此弧矢垂轴像差没有必要计算0视场的垂轴像差。

二、光学自动设计原理

在光学自动设计中,一般把对系统的全部要求,根据它们和结构参数的关系不同重新划分成两大类。

第一类是不随系统结构参数改变的常数。如物距L ,孔径高H 或孔径角余弦sinU ,视场角ω或物高y ,入瞳或孔径光阑的位置以及轴外光束的渐晕系数K +,K ?,等等。在计算和校正光学系统像差的过程中这些参数永远保持不变,它们是和自变量(结构参数)无关的常量。

第二类是随结构参数改变的参数。它们包括代表系统成像质量的各种几何像差或波像差。同时也包括某些近轴光学特性参数,如焦距f ′,放大率,像距l ′,出瞳距l ′z ,等等。为了简单起见,将第二类参数统称为像差,用符号F 1,…,F m 代表。系统的结构参数用符号x 1,…,x n 代表。两者之间的函数关系可用下列形式表示

f 1(x 1,?,x n )=F 1

(2-1)

f m (x 1,?,x n )=F m

式中,f 1,…,f m 分别代表像差F 1,…,F m 与自变量x 1,…,x n 之间的函数关系。上式称为像差方程组。

2.1 阻尼最小二乘法光学自动设计程序

当像差数大于自变量数的情形:m>n ,这时方程组是一个超定方程组,它不存在满足所有方程式的准确解,只能求它的近似解—最小二乘解。

首先定义一个函数组,他们的意义如以下公式所示:

11111111n n

m m m n m n f f x x F x x f f x x F x x δδ?δδδδ?δδ?=

?+???+?-?????????????????????????????????????????????????=?+???+?-???

φ1…φm 称为“像差残量”,写成矩阵形式为 A X F φ=?-?

取各像差残量的平方和构成另一个函数()X φ?:

21()m

T

i i X φ???-?==∑ ()X φ?在光学自动设计中成为“评价函数”,能够使()0X φ?=的解(即φ1=…=φm =0),就是像差线性方程组的准确解。当m>n 时,它实际上是不存在的。我们改为()X φ?的极小值解,作为方程组的近似解称为像差线性方程组的最小二乘解。

将φ代入评价函数得

21min ()min min[()()]m T i i x A x F A x F φ=Φ?==?-??-?∑

()()()

[()]()

()()

T T T T T T T T T T T T x A x F A x F A x F A x F x A F A x F x A A x F A x x A F F F

Φ?=?-??-?=?-??-?=?-??-?=??-??-??+??

根据多元函数的极值理论,()X φ?取得极小值解的必要条件是一价偏导数等于零

()0x ?Φ?= (2-2) 运用矩阵求导规则求一阶偏导数

()22()0T T T T T x A A x A F A F A A x A F ?Φ?=?-?-?=?-?=

0T T A A x A F ?-?= (2-3)

只要方阵A T A 为非奇异矩阵,即它的行列式值不等于零,则逆矩阵(A T A)-1存在,方程式有解,解的公式为

1()T T x A A A F -?=? (2-4)

要使A T A 非奇异,则要求方程组的系数矩阵A 不产生列相关。即像差线性方程组中不存在自变量相关。在光学设计中,由于像差和结构参数之间的关系是非线性的。同时在比较复杂的光学系统中作为自变量的结构参数很多,很可能在若干自变量之间出现近似相关的现象。这就使矩阵A T A 的行列值接近于零,A T A 接近奇异,按最小二乘法求出的解很大,大大超出了近似线性的区域,用它对系统进行修改,往往不能保证评价函数的下降,因此必须对解向量的模进行限制。

受非线性的影响,必须对解向量的模进行限制。改为求下列函数的极小值解。

2()n i i L x p x =Φ?+?∑

这样做的目的是,既要求评价函数()X φ?下降,又希望解向量的模2n

T i i x x x

?=??∑不要太大。经过这样改进的最小二乘法,称为阻尼最小二乘法,常数p 称为阻尼因子。

上述函数L 的极小值解得必要条件为

?L =2A T A?x ?2A T ?F ?2p?x =0

或者

(A T A +pI )?x =A T ?F 上式为阻尼最小二乘法的法方程组。式中,为单位矩阵;p 为阻尼因子。解的公式为

?x =(A T A +pI)?1A T ?F

以上公式中的逆矩阵(A T A +pI)?1永远存在。在像差线性方程组确定后,即A 和?F 确定后,给定一个p 值就可以求出一个解向量?x 。p 值越大?x 的模越小,像差和结构参数之间越接近线性,越有可能使()x Φ?下降。但是?x 太小,系统改变不大,()x Φ?下降的幅度越小。因此必须优选一个p 值,使()x Φ?达到最大的下降。具体的做法是,给出一组p 值,分别求出相应的解向量?x ,用它们分别对系统结构参数进行修改以后,

用光路计算的方法求出它们的实际像差值,并计算出相应的评价函数值?=∑?F i 2m i ,

公式中?F i 为系统实际像差和目标值的差,即实际的像差残量。比较这些Φ值的大小,选择一个使Φ达到最小的p 值,获得一个新的比原始系统评价函数有所下降的新系统。然后把这个新系统作为新的原始系统,重新建立像差线性方程组,这样不断重复直到评价函数()x Φ?不再下降为止。采用上述求解方法的光学自动设计称为“阻尼最小二乘法”。

2.2 适应法光学自动设计程序

当方程式的个数m 小于自变量个数n 时,方程组是一个不定方程组有无穷多组解,选解向量的模为最小的那组解,在满足像差线性方程组的条件下,求极小值解。

在满足像差线性方程组的条件下,求2()n

T i i x x x x Φ?=?=??∑的极小值解。吧像差线性方程组作为一个约束方程组,求函数()T x x x Φ?=??的极小值。求min ()min()T x x x Φ?=??同时满足约束方程组A x F ?=?。 构造一个拉格朗日函数L 。

()()T L x A x F λ=Φ?+?-?

拉格朗日函数L 的无约束极值,就是Φ的约束极值。函数L 中共包含有ΔX 和λ两组自变量,其中ΔX 为n 个分量,而λ为m 个分量,共有m+n 个自变量。

多元函数的无约束极值条件为 L=0。

20T L x A x

λ?=?+=? (2-5) 0L A x F λ

?=?-?=? 求解ΔX

12

T x A λ?=- (2-6) 将其代入公式(2-5)得

102

T AA F λ--?=12()T T A AA F λ-=-? 1()T T x A AA F -?=? (2-7)

上式就是我们所要求的约束极值的解。解存在的条件是逆矩阵(A T A)-1存在,即A T A 为非奇异矩阵,这就要求像差线性方程组的系数矩阵A 不发生行相关,即不发生像差相关。用上面这种方法求解像差线性方程组的光学自动设计方法称为“适应法”。

当像差数m 等于自变量数n 时,像差线性方程组有唯一解,系数矩阵A 为方阵,一下关系成立

(AA T )

?1=(A T )?1A ?1

带入式(2-7)得

?x =A T (A T )?1A ?1?F =A ?1?F

显然上式就是像差线性方程组的唯一解。因此式(2-7)既适用于m ﹤n 的情形,也适用于m=n 的情形。由以上求解过程可以看到,使用适应法光学自动设计程序必须满足的条件是:像差数小于或等于自变量数;像差不能相关。

适应法像差自动校正程序的最大特点是:第一,参加校正的像差个数m 必须小于或等于自变量个数n ;第二,参加校正的像差不能相关。因为适应法求出的解,严格满足像差线性方程组的每个方程式。如果m >n ,或者某两种像差相关,像差线性方程组就无法求解,校正就要中断。这是适应法和阻尼最小二乘法的最大区别。

三、ZEMAX光学设计

3.1 望远镜物镜设计

(1)要求

望远物镜焦距为200,半视场角为4°,相对孔径为1:5。

(2)初始系统结构

根据望远物镜的光学特性要求,选择双胶合结构作为初始结构(视场角2 <10°)。通过查阅,找到与要求相近的初始系统结构,其结构参数如下:

表格1 系统结构参数

Surf Radius Thickness Glass

OBJ Infinity Infinity

STO 117.56 7.238 K9

2 -74.89 3.861 ZK2

3 -243.45

注:此系统的焦距为200,口径40,半视场角4°。

将数据输入ZEMAX编辑框中,此时显示的焦距为198.445,如下图所示:

此时将光路图和MTF函数图显示出来:

该系统的点列图图如下所示

浅析光学显微镜机械结构设计

浅析光学显微镜机械结构设计 发表时间:2019-04-28T09:29:27.077Z 来源:《基层建设》2019年第6期作者:朱濛1 陈振波2 孔欢3 王鹏程4 姚新科5 [导读] 摘要:光学显微镜(Optical Microscope,简写OM)是利用光学原理,把人眼所不能分辨的微小物体放大成像,以供人们提取微细结构信息的光学仪器。 1、南京工程学院电力工程学院 21167; 2、南京工程学院机械工程学院 21167; 3、南京工程学院电力工程学院 21167; 4、南京工程学院建筑工程学院 21167; 5、南京工程学院自动化学院 21167 摘要:光学显微镜(Optical Microscope,简写OM)是利用光学原理,把人眼所不能分辨的微小物体放大成像,以供人们提取微细结构信息的光学仪器。光学显微镜的使用范围非常的广泛,发展至今,也衍生出了非常多的类型,本文结合光学显微镜的结构组成,从人体工程视角探索光学显微镜的机械结构设计,从使用的安全性、科学性、可靠性的角度分析了光学显微镜的机械结构设计的规范和标准。 关键词:光学显微镜;机械结构;人体工程学 光学显微镜的结构主要有光学结构和机械结构组成,机械结构的部分不仅能对光学结构有很好的固定作用,还起着关键性的调节作用,机械结构能够发挥光学系统的最大功效,辅助光学系统完成相关的显微镜观察工作。光学显微镜的机械结构的部分主要在载物台、物镜转换器以及调焦装置等,这些机械结构的设计不仅要遵循基本的机械结构设计原则,还要保证在光学显微镜中的具体的光学操作,除此之外,设计的原则还要迎合人体操作的需求,使得光学显微镜的机械结构更加的吻合人体工程学的设计要求,使得光学显微镜使用更加的舒适方便。 一、光学显微镜的基本构造 对于光学显微镜的机械设计,我们首先要了解光学显微镜的构造组成部分,而且还要知道这些零部件的作用,只有熟知了这些零部件的作用和使用规范,我们才能更加合理的设计光学显微镜的机械结构部分,光学显微镜一般是由载物台、聚光照明系统、物镜,目镜和调焦机构组成。载物台的作用是放置被观察的物体,使用调焦旋钮来驱动调焦机构能完成对载物台的调节工作。聚光灯照明系统由聚光灯和光源组成,聚光灯的作用能够让光更多的聚集到被观察的部位。物镜距离载物台比较近,是第一级的放大装置。目镜则是于人眼靠近的第二级放大镜头。 这三部分是光学显微镜的重要组成部分,构成了光学显微镜的主要工作原理。 那么机械装置有哪些呢?一般光学显微镜的机械装置有镜座、镜臂、载物台、镜筒、物镜转换器、与调焦装置。这些机械装置的主要作用是固定和调节光学镜头,调节标本的位置等。其中镜座是支撑整个显微镜的装置,而镜臂则用来支撑精通和载物台。 二、基于人体工程学的光学显微镜的机械结构设计 人体工程学的设计原理主要是考虑到人体结构和机械结构尺寸,并且综合考虑到人们劳动、工作效果、工作效能等方面,利用系统工程、控制理论、统计学的原理设计出一系列的设计方法。具体到光学显微镜的机械结构设计中,我们就要考虑到人们的身体尺寸和应用习惯,首先我们从有关部分获得了我国成年人的人体部分尺寸的表格(表-1),以此为根据设计光学显微镜结构部分。 1、载物台的设计 从上面的介绍中我们知道,载物台的作用是用来放置被观察物体的,并且式样能够在载物台上自由的移动,以获取最佳的观察效果。一般的移动范围是30mm*70mm和50mm*70mm,主要的设计标准就是,载物台距离工作底面的距离于载物台和人体的水平距离,分别设为B1和B2,考虑到人在调节使用载物台的过程中的行为习惯,得出计算式。 其中y1和y2分别衣着修正指数和身体活动余量修正。同理得出B2的表达式。经过计算得出: B1=307~357mm B2=301~348mm 2、调焦机构设计 调焦机构用于调节光学结构以便于观察人员获取最佳的成像效果,调焦的动作主要包括了上下移动和粗微调节机构,如何合理的设计能够使得人在调焦的过程中更加的舒适和便捷。首先是调焦旋钮的位置,在具体的使用过程中,显微镜是放在工作台上的,我们无法获取具体的使用高度和姿势,所以我们只能将人体的上身活动分为三个维度的多个不同程度的拆解动作,分别为手肘在X、Y、Z轴上的旋转方向,并在matlab的环境下运行得出,人体的手臂舒适度域: 为了适应大多数人的使用习惯,我们从95百分位这一阶段的数据为设计的参考点,确定出调焦按钮的最佳设计尺寸,从而确定调焦按钮在光学显微镜中的位置。其次是调焦按钮的外形和尺寸,旋钮的截面形状对于人手的握持方式有着一定的影响,当旋钮和手掌的接触面积越大的时候,人手的贴合的程度越好,那么使用的手感就越好,但是太大了会让人手在长期的握持中增加疲劳感,所以对于旋钮的直径设计要求为。旋钮的直径设计保持在35mm-75mm之间,厚度的大小在20mm-50mm范围内波动。最后是旋钮的扭矩M,扭矩的大小设计也非常的重要,太大了会使握持不舒服,太小的话又不利于调焦的准确,由于人类的手部关节的操作力范围为12N-18N,根据人体工程学的计算方法得出M的大小为: 除了基本的形态和尺寸设计,我们还要考虑到载物台移动过程中的摩擦力设计,太小的摩擦力会让调节过程难以掌握精确度,阻力太大的话会增加人使用的机体劳累,所以适当的摩擦力设计也是机械结构设计中需要考虑的内容。 3、物镜转换器的设计 物镜转换器是迅速切换物镜的机械装置,有内定位和外定位两种,转换器的设计直接影响了成像的质量,根据人体工程学的原理,内定位型的转换器比较能够减轻操作的负担,同时还能节省操作台的空间,所以很多光学显微镜的采用内定位转换器,其设计也非常的满足心理学和生理学的设计要求。 结语 本文通过对光学显微镜的主要结构做了介绍,并对光学显微镜的机械部分的功能做了相应的阐述,利用人体工程学的设计理论,对光学显微镜的机械结构部分作出了具体的设计标准的研究,是符合我国当前光学显微镜制造标准的。 参考文献: [1]史红伟,石要武,杨爽等.光学显微镜自动调焦指导函数的评价与选择[J].计算机辅助设计与图形学学报,2013,25(2):235-24

(完整版)光学系统设计(一)答案

光学系统设计(一) 参考答案及评分标准 20 分) 二、填空题(本大题14小题。每空1分,共20 分) 21.球心处、顶点处、齐明点处(r n n n L '+=) 22.%100y y y q z ?''-'=' 23.0 24.球差 25.冕牌、火石 26.?ννν?2111-=、?ννν?2 122--= 27.两面的公共球心处、两面的公共球心处 28.阿贝常数、C F D D n n 1n --= ν 29.畸变 30.圆 31.0 32.二级光谱 33.f 00052.0L FCD '='? 34.EFFL 三、名词解释(本大题共5 小题。每小题2 分,共 10 分) 35.像差:实际光学系统所成的像和近轴区所成的像之间的差异称为像差。 评分标准:主要意思正确得2分。 36.子午场曲:某一视场的子午像点相对于高斯像面的距离称为子午像面弯曲,简称子午场曲。 评分标准:答对主要意思得2分。 37.二级光谱:如果光学系统已对两种色光校正了位置色差,这两种色光的公共像点相对于第三种色光的像点位置仍有差异,该差异称为二级光谱。 评分标准:答对主要意思得2分。 38.色球差:F 光的球差和C 光的球差之差,称为色球差,该差值也等于边缘光和近轴光色差之差。 评分标准:答对得2分。 39.渐晕:轴外点成像光束的宽度较轴上点成像光束的宽度要小,造成像平面边缘部分照度要比像平面中心部分照度低的现象,称为渐晕。 评分标准:答对主要意思得2分。

四、简答题(本大题共 6 小题。每小题 5 分,共30 分) 40.一物体的峰-谷比(peak to valley )是λ23.0,问是否满足Rayleigh 条件? 答:满足Rayleigh 条件,因为根据Rayleigh 判断,实际波面和参考波面之间的最大波像差(峰谷比)不超过0.25λ时,此波面可看作是无缺陷的成像质量较好。 评分标准:答对主要意思得5分。 41.在七种几何像差中,仅与孔径有关的像差有哪些?仅与视场有关的像差有哪些?与视场和孔径都有关系的又有哪些? 答:仅与孔径有关的像差有:球差、位置色差;仅与视场有关的像差有:像散、场曲、畸变、倍率色差;与视场和孔径都有关系的有:彗差 评分标准:第一问中每个答案正确得1分,第二问中每个答案正确得0.5分,第三问中每个答案正确得1分。 42.一物体置于折射球面的球心处,其像在哪?放大倍率多少?若物在球面顶点,其像又在何位置?放大倍率多少? 答:像分别在球心处和顶点处,放大倍率分别为n 1和1。 评分标准:两位置答对各得1分,第一个放大倍率答对得2分,第二个得1分。 43. 什么是焦深,若像面向前或向后离焦半倍焦深,引起的波像差多大? 答:(1)实际像点无论在高斯像点之前或之后'?0l 范围内,波像差都不会超过1/4 波长,所以把'02l 定义为焦深,即20u n l 2''='λ (2)引起的波像差为4/λ。 评分标准:第一问答对大意得3分,第二问答案正确得2分。 44. 近视眼应佩戴何种透镜加以矫正?为什么? 答:应佩戴凹透镜加以矫正,使光线经过水晶体后发散,重新汇聚到视网膜上。 评分标准:答对大意得5分。 45. 在对称式光学系统中,当1-=β时,哪几种初级像差可以得到自动校正?其它初级像差有何特性? 答:垂轴像差:彗差、畸变、倍率色差均为0。 轴向像差:球差、像散、场曲、位置色差均为半部系统相应像差的两倍。 评分标准:第一问每个答案正确得1分,共3分;第二问每个答案正确得0.5分,共2分。 五、计算题(每题10分,共20分) 46.设计一齐明透镜,第一面曲率半径95m m r 1-=,物点位于第一面曲率中心处,第二球面满足启明条件,若该透镜厚度5mm d =,折射率5.1n =,该透镜位于空气中,求 (1)该透镜第二面的曲率半径; (2)该启明透镜的垂轴放大率。 解: (1)根据题意得,物点发出光线经第一面后按直线传播,相对于第二面,其物距100m m 595l 2-=--=,根据齐明条件100mm r n n n l 22 222-='+=,可得

用zemax设计光学显微镜光学系统设计实验报告

课 程 设 计 光学显微镜设计 设计题目 学 号 专业班级 指导教师 学生姓名 测量显微镜

根据学号得到自己设计内容的数据要求: 1.目镜放大率10(即焦距25) 2.目镜最后一面到物面距离110 3.对准精度1.2微米 按照实验步骤,先计算好外形尺寸。然后根据数据要求选取目镜与物镜。 我先做物镜。因为这个镜片比较少。按物镜放大率选好物镜后,将参数输入。简单优化,得到比较接近自己要求的物镜。 然后做目镜,同样的做法,这个按照焦距选目镜,将参数输入。将曲率半径设为可变量,调入默认的优化函数进行优化。发现“优化不了”,所有参数均没有变化。而且发现把光源放在“焦点”位置,目镜出射的不是平行光。我百思不得其解。开始认为镜头库的参数可能有问题。最后我问老师,老师解释,那个所谓的“焦点”其实不是焦点,我错误的把“焦点”到目镜第一个面的距离当成了焦距。这个目镜是有一定厚度的,不能简单等效成薄透镜。焦点到节点的距离才是焦距。经过老师指点后,我尝试调节光源到目镜第一面的距离,想得到出射平行光,从而找到焦点。但这个寻找是很费力气的,事倍功半。老师建议我把目镜的参数倒着顺序输入参数。然后用平行光入射,然后可以轻松找到焦点。 但是,按照这个方法,倒着输入参数,把光源放在无限

远的地方(平行光入射),发现光线是发散的。不解。还是按照原来的方法。把光源放在目镜焦点上,尽量使之出射平行光。然后把它与优化好的物镜拼接起来。后来,加入理想透镜(会聚平行光线),加以优化。 还有一个问题,就是选物镜的时候,发现放大倍率符合了自己的需求,但工作距离与共轭距,不符合自己的要求。这个问题在课堂上问过老师,后来经老师指点,通过总体缩放解决。 物镜参数及优化函数

光学设计作业答案Word版

现代光学设计作业 学号:2220110114 姓名:田训卿

一、光学系统像质评价方法 (2) 1.1 几何像差 (2) 1.1.1 光学系统的色差 (3) 1.1.2 轴上像点的单色像差─球差 (4) 1.1.3 轴外像点的单色像差 (5) 1.1.4 正弦差、像散、畸变 (7) 1.2 垂直像差 (7) 二、光学自动设计原理9 2.1 阻尼最小二乘法光学自动设计程序 (9) 2.2 适应法光学自动设计程序 (11) 三、ZEMAX光学设计.13 3.1 望远镜物镜设计 (13) 3.2 目镜设计 (17) 四、照相物镜设计 (22) 五、变焦系统设计 (26)

一、光学系统像质评价方法 所谓像差就是光学系统所成的实际像和理想像之间的差异。由于一个光学系统不可能理想成像,因此就存在光学系统成像质量优劣的问题,从不同的角度出发会得出不同的像质评价指标。 (1)光学系统实际制造完成后对其进行实际测量 ?星点检验 ?分辨率检验 (2)设计阶段的评价方法 ?几何光学方法:几何像差、波像差、点列图、几何光学传递函数 ?物理光学方法:点扩散函数、相对中心光强、物理光学传递函数 下面就几种典型的评价方法进行说明。 1.1 几何像差 几何像差的分类如图1-1所示。 图1-1 几何像差的分类

1.1.1 光学系统的色差 光波实际上是波长为400~760nm 的电磁波。光学系统中的介质对不同波长光的折射率不同的。如图1-2,薄透镜的焦距公式为 ()'121111n f r r ??=-- ??? (1-1) 因为折射率n 随波长的不同而改变,因此焦距也要随着波长的不同而改变, 这样,当对无限远的轴上物体成像时,不同颜色光线所成像的位置也就不同。我们把不同颜色光线理想像点位置之差称为近轴位置色差,通常用C 和F 两种波长光线的理想像平面间的距离来表示近轴位置色差,也成为近轴轴向色差。若l ′F 和l ′c 分别表示F 与C 两种波长光线的近轴像距,则近轴轴向色差为 '''FC F C l l l ?=- (1-2) 图1-2 单透镜对无限远轴上物点白光成像 当焦距'f 随波长改变时,像高'y 也随之改变,不同颜色光线所成的像高也不 一样。这种像的大小的差异称为垂轴色差,它代表不同颜色光线的主光线和同一基准像面交点高度(即实际像高)之差。通常这个基准像面选定为中心波长的理 想像平面。若'ZF y 和'ZC y 分别表示F 和C 两种波长光线的主光线在D 光理想像平面 上的交点高度,则垂轴色差为 '''FC ZF ZC y y y ?=- (1-3)

LED(Tracepro官方LED建模光学仿真设计教程)

Requirements Models: None Properties: None Editions: TracePro LC, Standard and Expert Introduction In this example you will build a source model for a Siemens LWT676 surface mount LED based on the manufacturer’s data sheet. The dimensions will be used to build a solid model and the source output will be defined to match the LED photometric curve. Copyright ? 2013 Lambda Research Corporation.

Create a Thin Sheet First analyze the package to determine the best method of constructing the geometry in TracePro. The symmetry of the package suggests starting from a Thin Sheet and extruding the top and bottom halves with a small draft angle. Construct Thin Sheet in the XY plane. 1. Start TracePro 2. Select View|Profiles|XY or click the View XY button on the toolbar, and switch to silhouette mode, View|Silhouette. 3. Select Insert|Primitive Solid and select the Thin Sheet tab. 4. Enter the four corners of the Thin Sheet in mm in the dialog box, as shown below, and click Insert. 5. Click the Zoom All button or select View|Zoom|All to see the new object.

光学设计教程小知识点

1.2光学系统有哪些特性参数和结构参数? 特性参数:(1)物距L(2)物高y或视场角ω(3)物方孔径角正弦sinU或光速孔径角h(4)孔径光阑或入瞳位置(5)渐晕系数或系统中每一个的通光半径 结构参数:每个曲面的面行参数(r,K,a4,a6,a8,a10)、各面顶点间距(d)、每种介质对指定波长的折射率(n)、入射光线的位置和方向 1.3轴上像点有哪几种几何像差? 轴向色差和球差 1.4列举几种主要的轴外子午单色像差。 子午场曲、子午慧差、轴外子午球差 1.5什么是波像差?什么是点列图?它们分别适用于评价何种光学系统的成像质量? 波像差:实际波面和理想波面之间的光程差作为衡量该像点质量的指标。适用单色像点的成像。 点列图:对于实际的光学系统,由于存在像差,一个物点发出的所有光线通过这个光学系统以后,其像面交点是一弥散的散斑。适用大像差系统 2.1叙述光学自动设计的数学模型。 把函数表示成自变量的幂级数,根据需要和可能,选到一定的幂次,然后通过实验或数值计算的方法,求出若干抽样点的函数值,列出足够数量的方程式,求解出幂级数的系数,这样,函数的幂级数形式即可确定。像差自动校正过程,给出一个原始系统,线性近似,逐次渐进。 2.2适应法和阻尼最小二乘法光学自动设计方法各有什么特点,它们之间有什么区别? 适应法:参加校正的像差个数m必须小于或等于自变量个数n,参加校正的像差不能相关,可以控制单个独立的几何像差,对设计者要求较高,需要掌握像差理论阻尼最小二乘法:不直接求解像差线性方程组,把各种像差残量的平方和构成一个评价函数Φ。通过求评价函数的极小值解,使像差残量逐步减小,达到校正像差的目的。它对参加校正的像差数m没有限制。 区别:适应法求出的解严格满足像差线性方程组的每个方程式;如果m>n或者两者像差相关,像差线性方程组就无法求解,校正就要中断。 3.1序列和非序列光线追迹各有什么特点? 序列光线追迹主要用于传统的成像系统设计。以面作为对象,光线从物平面开始,按照表面的先后顺序进行追迹,对每个面只计算一次。光线追迹速度很快。 非序列光线追迹主要用于需考虑散射和杂散光情况下,非成像系统或复杂形状的物体。以物体作为对象,光线按照物理规则,沿着自然可实现的路径进行追迹。计算时每一物体的位置由全局坐标确定。非序列光线追迹对光线传播进行更为细节的分析,计算速度较慢。3.2叙述采用光学自动设计软件进行光学系统设计的基本流程。 (1)建立光学系统模型: 系统特性参输入:孔径、视场的设定、波长的设定 初始结构输入:表面数量及序号、面行、表面结构参数输入 (2)像质评价 (3)优化:设置评价函数和优化操作数、设置优化变量、进行优化 (4)公差分析:公差数据设置、执行公差分析 3.3Zemax软件采用了什么优化算法? 构造评价函数:最小二乘法、正交下降法(非序列光学系统)

光学第五版课后答案.doc

光学第五版课后答案【篇一:第五版有机化学-华北师范大学-李景宁-全册-习 题答案】 3、指出下列各化合物所含官能团的名称。(1) ch3ch=chch3 答: 碳碳双键(2) ch3ch2cl 答:卤素(氯) (3) ch3chch3 答:羟基 (4) ch3ch2 c=o 答:羰基(醛基) ch3cch3(5) o 答:羰基(酮基) (6) ch3ch2cooh 答:羧基(7) 2 答: 氨基 (8) ch3- c≡c-ch3 答:碳碳叁键 4、根据电负性数据,用和标明下列键或分子中带部分正电荷和负电 荷的原子。 答: 6、下列各化合物哪个有偶极矩?画出其方向 (1)br2 (2)ch2cl2 (3)hi (4)chcl3 (5)ch3oh (6) ch3och3 答:以上化合物中(2)、(3)、(4)、(5)、(6) 均有偶极矩 (2)h 2c (6)h 3c cl (3 )i (4) cl3 (5)h 3c oh ch3 7、一种化合物,在燃烧分析中发现含有84% 的碳[ar (c)=12.0] 和 16 的氢[ar (h)=1.0] ,这个化合物的分子式可能是 (1)ch4o (2)c6h14o2 (3)c7h16 (4)c6h10 (5)c14h22 答:根据分析结果,化合物中没有氧元素,因而不可能是化合物(1)

和(2);在化合物(3)、(4)、(5)中根据碳、氢的比例计算 (计算略)可判断这个化合物的分子式可能是(3)。 习题解答 1、用系统命名法命名下列化合物(1)2,5-二甲基-3-乙基己烷 (3)3,4,4,6-四甲基辛烷(5)3,3,6,7-四甲基癸烷 (6)4-甲基-3,3-二乙基-5-异丙基辛烷 2、写出下列化合物的构造式和键线式,并用系统命名法命名之。 (3)仅含有伯氢和仲氢的c5h12 答:符合条件的构造式为ch3ch2ch2ch2ch3 ; 键线式为;命名:戊烷。3、写出下令化合物的构造简式(2) 由一个丁基和一个异丙基组成的烷烃(4) 相对分子质量为100,同时含有伯、叔、季碳原子的烷烃 答:该烷烃的分子式为c7h16 。由此可以推测同时含有伯、叔、季 碳原子的烷烃的构造式为(ch3)3cch(ch3)2 (6) 2 ,2,5-trimethyl-4-propylnonane (2,2,5-三甲基-4-丙基 壬烷) 3h73 ch3ch2ch2ch223 3 3 8、将下列烷烃按其沸点由高至低排列成序。 (1)2-甲基戊烷(2)正已烷(3)正庚烷(4)十二烷 答:对于饱和烷烃,随着分子量的逐渐增大,分子间的范德华引力 增大,沸点升高。支链的存在会阻碍分子间的接近,使分子间的作 用力下降,沸点下降。由此可以判断,沸点由高到低的次序为:十 二烷>正庚烷>正己烷>2-甲基戊烷。([4)>(3)>(2)>(1)] 10、根据以下溴代反应事实,推测相对分子质量为72 的烷烃异构 式的构造简式。答:相对分子质量为72 的烷烃的分子式应该是 c5h12 。溴化产物的种类取决于烷烃分子内氢的种类(指核磁共振概 念中的氢),既氢的种类组与溴取代产物数 (1)只含有一种氢的化合物的构造式为(ch3)3cch3 (2)含三种氢 的化合物的构造式为ch3ch2ch2ch2ch3 (3)含四种氢的化合物的 构造式为ch3ch2ch(ch3)2 14 、答:

浅析光学显微镜机械结构设计

浅析光学显微镜机械结构设计 摘要:光学显微镜(Optical Microscope,简写OM)是利用光学原理,把人眼所 不能分辨的微小物体放大成像,以供人们提取微细结构信息的光学仪器。光学显 微镜的使用范围非常的广泛,发展至今,也衍生出了非常多的类型,本文结合光 学显微镜的结构组成,从人体工程视角探索光学显微镜的机械结构设计,从使用 的安全性、科学性、可靠性的角度分析了光学显微镜的机械结构设计的规范和标准。 关键词:光学显微镜;机械结构;人体工程学 光学显微镜的结构主要有光学结构和机械结构组成,机械结构的部分不仅能 对光学结构有很好的固定作用,还起着关键性的调节作用,机械结构能够发挥光 学系统的最大功效,辅助光学系统完成相关的显微镜观察工作。光学显微镜的机 械结构的部分主要在载物台、物镜转换器以及调焦装置等,这些机械结构的设计 不仅要遵循基本的机械结构设计原则,还要保证在光学显微镜中的具体的光学操作,除此之外,设计的原则还要迎合人体操作的需求,使得光学显微镜的机械结 构更加的吻合人体工程学的设计要求,使得光学显微镜使用更加的舒适方便。 一、光学显微镜的基本构造 对于光学显微镜的机械设计,我们首先要了解光学显微镜的构造组成部分, 而且还要知道这些零部件的作用,只有熟知了这些零部件的作用和使用规范,我 们才能更加合理的设计光学显微镜的机械结构部分,光学显微镜一般是由载物台、聚光照明系统、物镜,目镜和调焦机构组成。载物台的作用是放置被观察的物体,使用调焦旋钮来驱动调焦机构能完成对载物台的调节工作。聚光灯照明系统由聚 光灯和光源组成,聚光灯的作用能够让光更多的聚集到被观察的部位。物镜距离 载物台比较近,是第一级的放大装置。目镜则是于人眼靠近的第二级放大镜头。 这三部分是光学显微镜的重要组成部分,构成了光学显微镜的主要工作原理。 那么机械装置有哪些呢?一般光学显微镜的机械装置有镜座、镜臂、载物台、镜筒、物镜转换器、与调焦装置。这些机械装置的主要作用是固定和调节光学镜头,调节标本的位置等。其中镜座是支撑整个显微镜的装置,而镜臂则用来支撑 精通和载物台。 二、基于人体工程学的光学显微镜的机械结构设计 人体工程学的设计原理主要是考虑到人体结构和机械结构尺寸,并且综合考 虑到人们劳动、工作效果、工作效能等方面,利用系统工程、控制理论、统计学 的原理设计出一系列的设计方法。具体到光学显微镜的机械结构设计中,我们就 要考虑到人们的身体尺寸和应用习惯,首先我们从有关部分获得了我国成年人的 人体部分尺寸的表格(表-1),以此为根据设计光学显微镜结构部分。 1、载物台的设计 从上面的介绍中我们知道,载物台的作用是用来放置被观察物体的,并且式 样能够在载物台上自由的移动,以获取最佳的观察效果。一般的移动范围是 30mm*70mm和50mm*70mm,主要的设计标准就是,载物台距离工作底面的距 离于载物台和人体的水平距离,分别设为B1和B2,考虑到人在调节使用载物台 的过程中的行为习惯,得出计算式。 其中y1和y2分别衣着修正指数和身体活动余量修正。同理得出B2的表达式。经过计算得出: B1=307~357mm

光学设计cad答案

光学系统设计(三) 一、单项选择题(本大题共 20小题。每小题 1 分,共 20 分) 在每小题列出的四个备选项中只有一个是正确的,请将其代码填写在题后的括号内。错选、多选或未选均无分。 1.系统的像散为零,则系统的子午场曲值( )。 A.大于零 B.小于零 C.等于零 D.无法判断 2.双胶合薄透镜组,如果位置色差校正为零,则倍率色差值为 ( )。 A.大于零 B.小于零 C.等于零 D.无法判断 3.下列像差中,对孔径光阑的大小和位置均有影响的是( )。 A.球差 B. 彗差 C. 像散和场曲 D.畸变 4.除球心和顶点外,第三对无球差点的物方截距为 ( ) 。 A.r n n n L '+= B. r n n n L ''+= C. r n n n L '-= D. r n n n L ''-= 5.下列像差中,属于轴外点细光束像差的是( )。 A.球差 B.子午彗差 C.子午场曲 D.畸变 6.瑞利判据表明,焦深是实际像点在高斯像点前后一定范围内时,波像差不会超过 ( )。 A.λ21 B. λ31 C. λ41 D. λ51 7.对于目视光学系统,介质材料的阿贝常数定义为 ( )。 A.C F D D n n 1n --=ν B. C F D D n n 1n ++=ν C. C F D D n n 1n -+=ν D. C F D D n n 1n +-=ν 8.9K 玻璃和6ZF 玻璃属于 ( )。 A.冕牌玻璃和火石玻璃 B.火石玻璃和冕牌玻璃 C.均属火石玻璃 D.均属冕牌玻璃 9.在ZEMAX 软件中进行显微物镜镜设计,输入视场数据时,应选择 ( )。

显微镜系统设计实验报告

光学系统设计实验报告 设计题目:测量显微镜光学系统 专业班级:光信息08-1班 学生姓名: 学号: 指导老师:

一实验目的 1.了解光学系统设计的基本步骤,学会基本外形尺寸的计算。 2.熟悉ZEMAX软件的操作,了解操作要领,学会应用基本的相差 评价函数并进行优化。 二、实验器材 ZEMAX软件、相关实验指导书 三、设计要求 1)设计说明书和镜头文件。镜头文件包括物镜镜头文件、目镜镜头文件和光学系统镜头文件。 2)部分技术参数选择: ①目镜放大率10 ②沿光轴,目镜最后一面到物面沿光轴的几何距离280毫米 ③对工件实边缘的对准精度为2.2微米 ④其它参数自定 3)其他要求 ①视场大小自定,尽可能大些,一般达到商用仪器的一半。 ②可以不加棱镜。如加棱镜,折转角大小自定。棱镜可以按照等效玻璃板处理。 ③可以对物镜和目镜进行整体优化或独立优化。 ④可以加上CCD。 四、具体设计 1.系统结构设计思路 1)系统结构框图

物体经物镜所成的放大的实像与分划板重合,两者一同经目镜成一放大的虚像。棱镜的型式为斯米特屋脊棱镜,它能使系统成正像,并且使光路转折45°角,以便于观察和瞄准(此处可以不加设计)。为避免景深影响瞄准精度,物镜系统采用物方远心光路,即孔径光阑位于物镜像方焦面上。 (图1 显微镜系统结构图) 2)等效光路原理图

(图2 显微镜无光轴偏转的等效光路图) 2.外形尺寸计算 1)首先绘出光学系统的等效光路原理图。如图所示,首先将棱镜作为等效空气平板处理。 2)求实际放大率。系统的有效放大率由系统的瞄准精度决定。用米字形虚线瞄准被测件轮廓,得系统有效放大率 由于工具显微镜一般要求有较大的工作距和物方线视场,又要求共轭距不能太长,因而工具显微镜的实际放大率和物镜的放大率均不宜过大。取实际放大率为 3)求数值孔径 4)求物镜和目镜的放大率 目镜的放大率 物镜的放大率 5)求目镜的焦距 ? -=Γ30102.02 .21.500055 .061.061.0 nsinU ≈??===δλk NA 3 -=ΓΓ =e β?=Γ10e mm f e e 25250 =Γ= '? ≥?=≥ Γ222 .21.55 .725.72δk

SYNOPSYS 光学设计软件课程第16课:实用的相机镜头

第16课:实用的相机镜头 在第15课中设计的镜头非常好,但它有点太长。实际上希望它更短,同时希望非常高的分辨率。以下是本课的目标: 1.焦距90毫米 2.半视场角20度 3.半孔径25.4毫米 4.透镜元件长度约100毫米 5.后焦距50毫米或更大 在本课程中,将让DSEARCH找到一个起点。在命令窗口中键入MDS,打开设计搜索菜单,如下所示。 输入箭头所示的数据,然后单击“确定”。看到结果时,可以稍后修改此输入。假设镜头需要七个透镜元件。程序会要求您输入文件名,因此请键入LENS_7等名称。这将打开一个编辑器窗口,其中包含运行该程序所需的输入。 CORE 14 TIME DSEARCH 1 QUIET SYSTEM ID DSEARCH SAMPLE OBB 0 20 12.7 WAVL 0.6563 0.5876 0.4861 UNITS MM END GOALS ELEMENTS 7 FNUM 3.54 BACK 0 0 TOTL 100 0.1 STOP MIDDLE STOP FREE RSTART 400 THSTART 5 ASTART 12 RT 0.5 FOV 0.0 0.75 1.0 0.0 0.0 FWT 5.0 3.0 3.0 NPASS 40 ! this gives the number of passes in the final MACro ANNEAL 200 20 Q COLORS 3 SNAPSHOT 10 QUICK 30 30 ! this option runs much faster END SPECIAL PANT END SPECIAL AANT LLL 50 .1 1 A BACK END GO TIME

光学实验报告 (一步彩虹全息)

光学设计性实验报告(一步彩虹全息) 姓名: 学号: 学院:物理学院

一步彩虹全息 摘要彩虹全息是用激光记录全息图, 是用白光再现单色或彩色像的一种全息技术。彩虹全息术的关键之处是在成像光路( 即记录光路) 中加入一狭缝, 这样在干板上也会留下狭缝的像。本文研究了一步彩虹全息图的记录和再现景象的基本原理、一步彩虹全息图与普通全息图的区别和联系、一步彩虹全息的实验光路图,探讨了拍摄一步彩虹全息图的技术要求和注意事项,指出了一步彩虹全息图的制作要点, 得出了影响拍摄效果的佳狭缝宽度、最佳狭缝位置及曝光时间对彩虹全息图再现像的影响。 关键词:一步彩虹全息;狭缝;再现 1 光学实验必须要严密,尽可能地减少实验所产生的误差; 2 实验仪器 防震全息台激光器分束镜成像透镜狭缝干板架光学元件架若干干板备件盒洗像设备一套线绳辅助棒扩束镜2个反射镜2个 3 实验原理 3.1 像面全息图 像面全息图的拍摄是用成像系统使物体成像在全息底板上,在引入一束与之相干的参考光束,即成像面全息图,它可用白光再现。再现象点的位置随波长而变化,其变化量取决于物体到全息平面的距离。 像面全息图的像(或物)位于全息图平面上,再现像也位于全息图上,只是看起来颜色有变化。因此在白光照射下,会因观察角度不同呈现的颜色亦不同。 3.2 彩虹全息的本质 彩虹全息的本质是要在观察者与物体的再现象之间形成一狭缝像,使观察者通过狭缝像来看物体的像,以实现白光再现单色像。若观察者的眼睛在狭缝像附近沿垂直于狭缝的方向移动,将看到颜色按波长顺序变化的再现像。若观察者的眼睛位于狭缝像后方适当位置, 由于狭缝对视场的限制, 通过某一波长所对应的狭缝只能看到再现像的某一条带, 其色彩与该波长对应, 并且狭缝像在空间是连

光学系统设计zemax初级教程

光学系统设计(Zemax初学手册) 内容纲目: 前言 习作一:单镜片(Singlet) 习作二:双镜片 习作三:牛顿望远镜 习作四:Schmidt-Cassegrain和aspheric corrector 习作五:multi-configuration laser beam expander 习作六:fold mirrors和coordinate breaks 习作七:使用Extra Date Editor, Optimization with Binary Surfaces 前言 整个中华卫星二号「红色精灵」科学酬载计划,其量测仪器基本上是个光学仪器。所以光学系统的分析乃至于设计和测试是整个酬载发展重要一环。 这份初学手册提供初学者使用软件作光学系统设计练习,整个需要Zemax光学系统设计软件。它基本上是Zemax使用手册中tutorial的中文翻译,由蔡长青同学完成,并在Zemax E. E. 7.0上测试过。由于蔡长青同学不在参和「红色精灵」计划,所以改由黄晓龙同学接手进行校稿和独立检验,整个内容已在Zemax E. E. 8.0版上测试过。我们希望藉此初学手册(共有七个习作)和后续更多的习作和文件,使团队成员对光学系统设计有进一步的掌握。(陈志隆注) (回内容纲目) 习作一:单镜片(Singlet)

你将学到:启用Zemax,如何键入wavelength,lens data,产生ray fan,OPD,spot diagrams,定义thickness solve以及variables,执行简单光学设计最佳化。 设想你要设计一个F/4单镜片在光轴上使用,其focal length 为100mm,在可见光谱下,用BK7镜片来作。 首先叫出ZEMAX的lens data editor(LDE),什么是LDE呢?它是你要的工作场所,譬如你决定要用何种镜片,几个镜片,镜片的radius,thickness,大小,位置……等。 然后选取你要的光,在主选单system下,圈出wavelengths,依喜好键入你要的波长,同时可选用不同的波长等。现在在第一列键入0.486,以microns为单位,此为氢原子的F-line 光谱。在第二、三列键入0.587及0.656,然后在primary wavelength上点在0.486的位置,primary wavelength主要是用来计算光学系统在近轴光学近似(paraxial optics,即 first-order optics)下的几个主要参数,如focal length,magnification,pupil sizes 等。 再来我们要决定透镜的孔径有多大。既然指定要F/4的透镜,所谓的F/#是什么呢?F/#就是光由无限远入射所形成的effective focal length F跟paraxial entrance pupil的直径的比值。所以现在我们需要的aperture就是100/4=25(mm)。于是从system menu上选general data,在aper value上键入25,而aperture type被default为Entrance Pupil diameter。也就是说,entrance pupil的大小就是aperture的大小。 回到LDE,可以看到3个不同的surface,依序为OBJ,STO及IMA。OBJ就是发光物,即光源,STO即aperture stop的意思,STO不一定就是光照过来所遇到的第一个透镜,你在设计一组光学系统时,STO可选在任一透镜上,通常第一面镜就是STO,若不是如此,则可在STO这一栏上按鼠标,可前后加入你要的镜片,于是STO就不是落在第一个透镜上了。而IMA 就是imagine plane,即成像平面。回到我们的singlet,我们需要4个面 (surface),于是在STO栏上,选取insert cifter,就在STO后面再插入一个镜片,编号为2,通常OBJ为0,STO为1,而IMA为3。 再来如何输入镜片的材质为BK7。在STO列中的glass栏上,直接打上BK7即可。又孔径的大小为25mm,则第一面镜合理的thickness为4,也是直接键入。再来决定第1及第2面镜的曲率半径,在此分别选为100及-100,凡是圆心在镜面之右边为正值,反之为负值。而再令第2面镜的thickness为100。 现在你的输入数据已大致完毕。你怎么检验你的设计是否达到要求呢?选analysis中的fans,其中的Ray Aberration,将会把transverse的ray aberration对pupil coordinate 作图。其中ray aberration是以chief ray为参考点计算的。纵轴为EY的,即是在Y方个的aberration,称作tangential或者YZ plane。同理X方向的aberration称为XZ plane 或sagittal。 Zemax主要的目的,就是帮我们矫正defocus,用solves就可以解决这些问题。solves 是一些函数,它的输入变量为curvatures,thickness,glasses,semi-diameters,conics,以及相关的parameters等。parameters是用来描述或补足输入变量solves的型式。如curvature的型式有chief ray angle,pick up,Marginal ray normal,chief ray normal,Aplanatic,Element power,concentric with surface等。而描述chief ray angle solves

光学全息照相实验报告

光学全息照相实验报告

实验II 光学全息照相 光学全息照相是利用光波的干涉现象,以干涉条纹的形式,把被摄物表面光波的振幅和位相信息记录下来,它是记录光波全部信息的一种有效手段。这种物理思想早在1948年伽柏(D.Gabor)即就已提出来了,但直到1960年,随着激光器的出现,获得了单色性和相干性极好的光源时,才使光学全息照相技术的研究和应用得到迅速地发展。光学全息照相在精密计量、无损检测、遥感测控、信息存储和处理、生物医学等方面的应用日益广泛,另外还相应出现了微波全息,X光全息和超声全息等新技术,全息技术已发展成为科学技术上的一个新领域。 本实验通过对三维物体进行全息照相并再现其立体图像,了解全息照相的基本原理及特点,学习拍摄方法和操作技术,为进一步学习和开拓应用这一技术奠定基础。 实验目的

了解光学全息照相的基本原理和主要特点; 学习静态光学全息照相的实验技术; 观察和分析全息全图的成像特性。 仪器用具 全息台、He —Ne 激光器及电源、分束镜、全反射镜、扩束透镜、曝光定时器、全息感光底版等。 基本原理 全息照片的拍摄 全息照相是利用光的干涉原理将光波的振幅和相位信息同时记录在感光板上的过程.相干光波可以是平面波也可以是球面波,现以平面波为例说明全息照片拍摄的原理。如图1所示,一列波函数为t i ae y πυ21=、振幅为a 、频率为υ、波长为λ 的平面单色光波作为参考光垂直入射到感光板上。另一列同频率、波函数为t i r T t i Be be y πυλπ222==??? ??-的相 干平面单色光波从物体出发,称为物光,以入射角θ同时入射到感光板上,物光与参考光产生干涉,在感光板上形成的光强分布为 ax ab b a I cos 222++= (1)

光学设计误差概述

Tolerancing概述 ?一个好的设计是要求能够实际制造出来的。 ?设计好的光学系统需要进行公差分析才算真正完成。需要在制造误差的范 围之内能够满足要求; ?一个好的设计没必要完全和设计要求一致,应该是能够制造出来,并尽量 满足设计要求。 ?公差分析是将各种扰动或像差引入到光学系统中去,看系统在实际制造各 种误差范围内的效果。也就是在能满足设计要求的情况下,系统中各个量允许的最大偏差是多少。 误差来源 有很多方面需要考虑: ?Errors in fabrication9(加工误差) ?Errors in materials(材料误差) ?Errors in assembly(装配误差) ?Errors due to environment(环境误差) ?Residual design errors(剩余设计误差) 1、制造方面的误差包括: ?曲率半径有误差(radius of curvature) ?厚度有误差(element thickness) ?面形误差(surface shape) ?曲率中心与机械中心有偏差(center offset) ?二次项或其它非球面项系数误差 2、材料误差包括: ?折射率的精度误差 ?折射率均匀性误差(homogeneity) ?折射率分布误差(distribution) ?Abbe 数(dispersion) 3、装配误差包括(Element error): ?元件对机械轴(X,Y)的偏差 ?元件在Z轴上的位置有偏差 ?元件的排列的偏差 ?元件对光轴倾斜的偏差 4、环境方面的包括温度,湿度,气压: ?光学和机械材料的热胀冷缩 ?湿度对折射率的影响 ?压强和湿度对折射率的影响 ?系统受振动的影响 ?机械方面的应力

相关主题
文本预览
相关文档 最新文档