当前位置:文档之家› 轴向柱塞泵工作原理

轴向柱塞泵工作原理

轴向柱塞泵工作原理
轴向柱塞泵工作原理

轴向柱塞泵工作原理

轴向柱塞泵中的柱塞是轴向排列的。当缸体轴线和传动轴轴线重合时,称为斜盘

式轴向柱塞泵;当缸体轴线和传动轴轴线不在一条直线上,而成一个夹角丫时,称为斜轴式轴向柱塞泵。轴向柱塞泵具有结构紧凑,工作压力高,容易实现变量等优点。

图3.28a(动画)和图3.28b(动画)分别为斜盘式和斜轴式轴向柱塞泵的工作原理图。工作原理

斜盘式轴向柱塞泵由传动轴1带动缸体4旋转,斜盘2和配油盘5是固定不动

的。柱塞3均布于缸体4内,柱塞的头部靠机械装置或在低压油作用下紧压在斜盘上。斜盘法线和缸体轴线的夹角为Y。当传动轴按图示方向旋转时,柱塞一方面随缸体转动,另一方面,在缸体内作往复运动。显然,柱塞相对缸体左移时工作容腔是压油状态,油液经配油盘的吸油口a吸入;柱塞相对缸体右移时工作容腔是压油状态,

油液从配油盘的压油口b压出。缸体每转一周,每个柱塞完成吸、压油一次。如果可以改变斜角丫的大小和方向,就能改变泵的排量和吸、压油的方向,此时即为双向变量轴向柱塞泵。

在图3.28b(动画)中,当传动轴1在电动机的带动下转动时,连杆2推动柱塞4在缸体3中作往复运动,同时连杆的侧面带动活塞连同缸体一同旋转。配油盘 5 是固定不动的。如果斜角度Y的大小和方向可以调节,就意味着可以改变泵的排量和吸、压油方向,此时的泵为双向变量轴向柱塞泵。

轴向柱塞泵的排量和流量

设柱塞直径为d,柱塞数为Z,柱塞中心分布圆直径为 D ,斜盘倾角为

Y则柱塞行程

& = Z)■ tan y 〔3 34)泵的排量和流量分别为

卩詣/ZDmy (3.35)

cf = 一d~2D tan n T 冲J儕

式中,n —泵的转速;n v—泵的容积效率。

轴向柱塞泵的输出流量是脉动的。理论分析和实验研究表明,当柱塞个数多且为奇数时流量脉动较小。从结构和工艺考虑,柱塞个数多采用7或9。

轴向柱塞泵结构

图3.30 滑靴的静压支承原理图

1.柱塞2?滑靴3?斜盘

(1)斜盘式轴向柱塞泵

图3.29是一种轴向柱塞泵的结构简图。传动轴8通过花键带动缸体6旋转。

柱塞5(七个)均匀安装在缸体上。柱塞的头部装有滑靴4,滑靴与柱塞是球铰连接,

可以任意转动。由弹簧通过钢球和压板3将滑靴压靠在斜盘2上。这样,当缸体转动

时,柱塞就可以在缸体中往复运动,完成吸油和压油过程。配油盘7与泵的吸油口和

压油口相通,固定在泵体上。另外,在滑靴与斜盘相接触的部分有一个油室,压力油通过柱塞中间的小孔进入油室,在滑靴与斜盘之间形成一个油膜,起着静压支承作用,从而减少了磨损。滑靴的静压支承原理如图 3.30(动画)所示。

这种泵的变量机构是手动的。转动手把1,通过丝杠螺母副可以改变斜盘的

倾角,从而改变泵的输出流量。

圈3.29直轴斜盘式桂塞泵结构圈「手把旷斜盘 "压盘4-滑履血柱塞

6-缸体「配油蠱 A传动轴

图3.31 A2F型斜轴式轴向柱塞泵

1.主轴

2.轴承组

3.连杆柱塞副

4.缸体

5.泵体6?球面配油盘7.后盖

8.蝶形弹簧9.中心轴

(2)斜轴式轴向柱塞泵

图3.31是一种斜轴式轴向柱塞泵的结构简图。这是一个定量泵。它由主轴

I、轴承组2、连杆柱塞副3、缸体4、泵体5、球面配油盘6和后盖7等组成。由于缸相对主轴有一个倾角,故称斜轴泵。连杆3和中心轴9的两端都是球铰结构。中心

轴支承着缸体。套在中心轴上的蝶形弹簧8将缸体压在配油盘上,保证了缸体在旋转

时具有良好的密圭寸性和自位性。

当主轴旋转时,连杆与柱塞内壁接触,通过柱塞带动缸体旋转,同时连杆带

动柱塞在缸体柱塞孔内作往复运动,使柱塞底部的密封容积发生周期性的变化,通过

配油盘的吸、压窗口完成吸油和压油过程。这种泵的流量计算公式与斜盘式轴向柱塞泵的形式相同,只不过要用缸体轴线与主轴之间夹角代替斜盘倾角。

【下载本文档,可以自由复制内容或自由编辑修改内容,更多精彩文章,期待你的好评和关注,我将一如既往为您服务】

图文讲解柱塞泵的结构及工作原理

图文讲解柱塞泵的结构及工作原理 【本期内容,由上海神农冠名播出】柱塞泵的结构组成柱塞泵主要由动力端和液力端两大部分组成,并附有皮带轮、止回阀、安全阀、稳压器、润滑系统等组成。 01动力端(1)曲轴 曲轴为此泵中关键部件之一。采用曲拐轴整体型式,它将完成由旋转运动变为往复直线运动的关键一步,为了使其平衡,各曲轴柄销与中心成120°。 (2)连杆 连杆将柱塞上的推力传递给曲轴,又将曲轴的旋转运动转换为柱塞的往复运动,其杆截面采取工字形,大头为剖分式,轴瓦采用对分薄壁瓦形式,小头瓦采用轴套式,并以其定位。 (3)十字头 十字头连接摇摆运动的连杆和往复运动的柱塞,它具有导向作用,它与连杆为闭式连接,与柱塞卡箍相连。 (4)浮动套 浮动套固定在机座上,它一方面起隔绝油箱与污油池的作用,另一方面对十字头导杆起一个浮动支承点的作用,能提高运动密封部件的使用寿命。 (5)机座

机座是安装动力端和连接液力端部分的受力构件,机座后部两侧有轴承孔,前部设有与液力端连接的定位销孔保证滑道中心与泵头中心的对中性,在机座的前部一侧设有放液孔,用来排放渗漏的液体。 2液力端(1)泵头 泵头为不锈钢整体锻造而成,吸、排液阀垂直布置,吸液孔在泵头底面,排液孔在泵头的侧面,同阀腔相通,简化了排出管路系统。 (2)密封函 密封函与泵头以法兰连接,柱塞的密封形式为碳素纤维纺织的矩形软填料,具有良好的高压密封性能。 (3)柱塞 (4)进液阀和排液阀 进、排液阀及阀座,适合输送黏度较大的液体的低阻尼、锥形阀结构,具有降低黏度的特点。接触面有较高的硬度和密封性能,以保证进、排液阀具有足够的使用寿命。 3附属配套部分主要有止回阀、稳压器、润滑系统、安全阀、压力表等。 (1)止回阀 泵头排出的液体,通过低阻尼止回阀流人高压管道,液体反向流动时,止回阀关闭,阻尼高压液体流回泵体。 (2)稳压器

CY系列轴向柱塞泵的使用注意事项

CY系列轴向柱塞泵的使用注意事项 轴向柱塞泵与径向柱塞泵比较,排出压力高,它一般可在20~50MPa范围内工作,效率也高,径向尺寸小、结构紧凑、体积小、重量轻。基于以上特点,轴向柱塞泵在液压机行业使用非常普遍。自己总结了一些使用经验,供同行参考,不周密之处请指正。 1、油泵可以用支座或者法兰安装,泵和原动机应采用共同的基础支座,法兰和 基础都应该有足够的刚醒,对于流量大的油泵,不宜安装在油箱上平面上。 2、泵的传动轴与原动机的输出轴的同轴度不应大于Φ0.05。 3、泵和原动机输出轴间应采用弹性联轴器联接,并严禁在泵轴上安装皮带轮或 齿轮驱动油泵,若一定要用皮带轮或齿轮联接,则应加一对支座来安装皮带轮或齿轮,该支座与泵轴的同轴度误差不应大于Φ0.05。 4、油箱设计,接管布置与液压附件设置等,都应符合机械设计相关规定,并且 在油箱加油前,油箱、管道要经过酸洗或者磷化处理,整个系统应该清洁干净,加油时应采用虑油机进行过滤加油。

5、在使用过程中,严禁由于系统发热而降油箱盖或者注油孔打开,防止灰尘进 入油箱。 6、该系列油泵宜采用倒灌自吸,不得已而将油泵安装成自吸方式,自吸高度不 得大于500mm,且限于全排量启动。 7、在油泵的吸油管道上不允许安装滤油器,吸油管道通径不小于油泵设计数值, 吸油管道上的截止阀通径应该比吸油管道通径大一档,吸油管道长度小于2500mm时,管道弯头不多于两个。 8、油泵的泄油管应该直接接油箱,会有背压应该小于0.05MPa。 9、油泵启动前,必须通过泵壳上的泄油口向泵内灌满合格的工作油,启动时应 先点动数次,油流方向和油泵声音都正常后,在低压下运转5-10分钟,然后投入正常运行。 10工作介质:建议采用N32或N46抗磨液压油。如果使用其他液压油时,要求恩氏粘度°E50在3~5之间,黏度指数大于90.油泵的正常使用温度为15-65℃,当使用中超出这个温度范围时,需要在液压系统中安装加热或者冷却装置。 徐锻集团液压机事业部寻宝明

柱塞泵的工作原理

柱塞泵的工作原理 柱塞泵的工作原理 柱塞泵是液压系统的一个重要装置。它依靠柱塞在缸体中往复运动,使密封工作容腔的容积发生变化来实现吸油、压油。柱塞泵具有额定压力高、结构紧凑、效率高和流量调节方便等优点,被广泛应用于高压、大流量和流量需要调节的场合,诸如液压机、工程机械和船舶中。 柱塞泵是往复泵的一种,属于体积泵,其柱塞靠泵轴的偏心转动驱动,往复运动,其吸入和排出阀都是单向阀。当柱塞外拉时,工作室内压力降低,出口阀关闭,低于进口压力时,进口阀打开,液体进入;柱塞内推时,工作室压力升高,进口阀关闭,高于出口压力时,出口阀打开,液体排出。当传动轴带动缸体旋转时,斜盘将柱塞从缸体中拉出或推回,完成吸排油

过程。柱塞与缸孔组成的工作容腔中的油液通过配油盘分别与泵的吸、排油腔相通。变量机构用来改变斜盘的倾角,通过调节斜盘的倾角可改变泵的排量。 柱塞泵结构形式 柱塞泵分为轴向柱塞泵和径向柱塞泵两种代表性的结构形式;由于径向柱塞泵属于一种新型的技术含量比较高的高效泵,随着不断加快,径向柱塞泵必然会成为柱塞泵应用领域的重要组成部分. 柱塞泵的维护 斜盘式轴向柱塞泵一般采用缸体转动、端面配流的形式。缸体端面上镶有一块由双金属板与钢配油盘组成的摩擦副,而且大多数是采用平面配流的方法,所以维修比较方便。配油盘是轴向柱塞泵的关键部件之一,泵工作时,一方面工作腔的高压油把缸体推向配油盘,另一方面配油盘和缸体间的油膜压力形成对缸体的液压反推力使缸体背离配油盘。缸体对配油盘的设计液压压紧力Fn略大于配油盘对缸体的液压反推力Ff,即 Fn/Ff=1.05~1.1,使泵工作正常并保持较高的容积效率。 常见故障处理 1.液压泵输出流量不足或不输出油液 (1)吸入量不足。原因是吸油管路上的阻力过大或补油量不足。如泵的转速过大,油箱中液面过低,进油管漏气,滤油器堵塞等。 (2)泄漏量过大。原因是泵的间隙过大,密封不良造成。如配油盘被金属碎片、铁屑等划伤,端面漏油;变量机构中的单向阀密封面配合不好,泵体和配油盘的支承面有砂眼或研痕等。可以通过检查泵体内液压油中混杂的异物判别泵被损坏的部位。 (3)倾斜盘倾角太小,泵的排量少,这需要调节变量活塞,增加斜盘倾角。 2.中位时排油量不为零 变量式轴向柱塞泵的斜盘倾角为零时称为中位,此时泵的输出流量应为零。但有时会出现中位偏离调整机构中点的现象,在中点时仍有流量输出。其原因是控制器的位置偏离、松动或损伤,需要重新调零、紧固或更换。泵的角度维持力不够、倾斜角耳轴磨损也会产生这种现象。

柱塞泵结构、类型及工作原理分析

柱塞泵结构、类型及工作原理分析 塞泵在液压系统中起着重要的作用,依靠柱塞在缸体中往复运动,使密封工作容腔的容积发生变化来实现吸油、压油。作为一种重要的工业设备,我们有必要来了解它的构造、分类和工作原理。 柱塞泵结构 柱塞泵主要由动力端和液力端两大部分组成,并附有皮带轮、止回阀、安全阀、稳压器、润滑系统等组成。 动力端 (1)曲轴 曲轴为此泵中关键部件之一。采用曲拐轴整体型式,它将完成由旋转运动变为往复直线运动的关键一步,为了使其平衡,各曲轴柄销与中心成120°。 (2)连杆 连杆将柱塞上的推力传递给曲轴,又将曲轴的旋转运动转换为柱塞的往复运动,其杆截面采取工字形,大头为剖分式,轴瓦采用对分薄壁瓦形式,小头瓦采用轴套式,并以其定位。 (3)十字头 十字头连接摇摆运动的连杆和往复运动的柱塞,它具有导向作用,它与连杆为闭式连接,与柱塞卡箍相连。 (4)浮动套 浮动套固定在机座上,它一方面起隔绝油箱与污油池的作用,另一方面对十字头导杆起一个浮动支承点的作用,能提高运动密封部件的使用寿命。 (5)机座 机座是安装动力端和连接液力端部分的受力构件,机座后部两侧有轴承孔,前部设有与液力端连接的定位销孔保证滑道中心与泵头中心的对中性,在机座的前部一侧设有放液孔,用来排放渗漏的液体 (1)泵头 泵头为不锈钢整体锻造而成,吸、排液阀垂直布置,吸液孔在泵头底面,排液孔在泵头的侧面,同阀腔相通,简化了排出管路系统。 (2)密封函 密封函与泵头以法兰连接,柱塞的密封形式为碳素纤维纺织的矩形软填料,具有良好的高压密封性能。 (3)柱塞 (4)进液阀和排液阀

进、排液阀及阀座,适合输送黏度较大的液体的低阻尼、锥形阀结构,具有降低黏度的特点。接触面有较高的硬度和密封性能,以保证进、排液阀具有足够的使用寿命。 附属配套部分 主要有止回阀、稳压器、润滑系统、安全阀、压力表等。 (1)止回阀 泵头排出的液体,通过低阻尼止回阀流人高压管道,液体反向流动时,止回阀关闭,阻尼高压液体流回泵体。 (2)稳压器 泵头排出的高压脉动液体,经过稳压器后,变为较平稳的高压液体流动。 (3)润滑系统 主要是由齿轮油泵从油箱中抽油,给曲轴、十字头等转动部位润滑。 (4)压力表 压力表有普通压力表和电接点压力表两种。电接点压力表属仪表系统,它能够达到自动控制的目的。 (5)安全阀 在排出管路上安装有弹簧微启式安全阀,文章由上海泽德水泵整理它能保证泵在额定工作压力时的密封,超压时自行开启,起泄压保护作用。

轴向柱塞泵工作原理

轴向柱塞泵工作原理-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

轴向柱塞泵工作原理 轴向柱塞泵中的柱塞是轴向排列的。当缸体轴线和传动轴轴线重合时,称为斜盘式轴向柱塞泵;当缸体轴线和传动轴轴线不在一条直线上,而成一个夹角γ时,称为斜轴式轴向柱塞泵。轴向柱塞泵具有结构紧凑,工作压力高,容易实现变量等优点。 图3.28a(动画)和图3.28b(动画)分别为斜盘式和斜轴式轴向柱塞泵的工作原理图。工作原理 斜盘式轴向柱塞泵由传动轴1带动缸体4旋转,斜盘2和配油盘5是固定不动的。柱塞3均布于缸体4内,柱塞的头部靠机械装置或在低压油作用下紧压在斜盘上。斜盘法线和缸体轴线的夹角为γ。当传动轴按图示方向旋转时,柱塞一方面随缸体转动,另一方面,在缸体内作往复运动。显然,柱塞相对缸体左移时工作容腔是压油状态,油液经配油盘的吸油口a吸入;柱塞相对缸体右移时工作容腔是压油状态,油液从配油盘的压油口b压出。缸体每转一周,每个柱塞完成吸、压油一次。如果可以改变斜角γ的大小和方向,就能改变泵的排量和吸、压油的方向,此时即为双向变量轴向柱塞泵。 在图3.28b(动画)中,当传动轴1在电动机的带动下转动时,连杆2推动柱塞4在缸体3中作往复运动,同时连杆的侧面带动活塞连同缸体一同旋转。配油盘5是固定不动的。如果斜角度γ的大小和方向可以调节,就意味着可以改变泵的排量和吸、压油方向,此时的泵为双向变量轴向柱塞泵。 轴向柱塞泵的排量和流量 设柱塞直径为d,柱塞数为Z,柱塞中心分布圆直径为D,斜盘倾角为γ,则柱塞行程 泵的排量和流量分别为

式中,n一泵的转速;ηpv一泵的容积效率。 轴向柱塞泵的输出流量是脉动的。理论分析和实验研究表明,当柱塞个数多且为奇数时流量脉动较小。从结构和工艺考虑,柱塞个数多采用7或9。 表3.3流量脉动率与柱塞数Z的关系 Z56789101112 δq(%) 4.9814 2.537.8 1.53 4.98 1.02 3.45 轴向柱塞泵结构 图3.30 滑靴的静压支承原理图 1.柱塞 2.滑靴 3.斜盘 (1)斜盘式轴向柱塞泵 图3.29是一种轴向柱塞泵的结构简图。传动轴8通过花键带动缸体6旋转。柱塞5(七个)均匀安装在缸体上。柱塞的头部装有滑靴4,滑靴与柱塞是球铰连接,可以任意转动。由弹簧通过钢球和压板3将滑靴压靠在斜盘2上。这样,当缸体转动时,柱塞就可以在缸体中往复运动,完成吸油和压油过程。配油盘7与泵的吸油口和压油口相通,固定在泵体上。另外,在滑靴与斜盘相接触的部分有一个油室,压力油通过柱塞中间的小孔进入油室,在滑靴与斜盘之间形成一个油膜,起着静压支承作用,从而减少了磨损。滑靴的静压支承原理如图3.30(动画)所示。 这种泵的变量机构是手动的。转动手把1,通过丝杠螺母副可以改变斜盘的倾角,从而改变泵的输出流量。

10SCY14轴向柱塞泵设计

10SCY手动变量柱塞泵结构设计 第1章绪论 随着中国综合国力的增强,中国经济也得到了飞速发展,在纷繁复杂的国际环景中发展并不容易,很多关键技术受到国外封锁,而液压系统也是其中一项,很多国内知名企业如三一重工,中联重科都还在进口国外液压成套系统,很大一部分利润被分走。工业技术的不断发展,对液压元件的需求也越来越广。而作为液压传动系统不可或缺的液压泵就显得尤为重要了。只有在结构和技术上不断的开拓创新,我国轴向柱塞泵技术和产品一定可以上一个新台阶,我相信,随着国力的增强,国家对自我创新力和研发力度加大,中国的液压技术水平会越来越强,在关键技术上也会得到更大的突破,摆脱国外技术封锁,让国内的液压技术走在世界前列。1.1选题的背景及意义 轴向柱塞泵是液压系统中重要的动力元件和执行元件,广泛地应用在工业液压和行走液压领域,是现代液压元件中使用最广的液压元件之一。轴向柱塞泵是利用与传动轴平行的柱塞在柱塞孔内往复运动所产生的容积变化来进行工作的。轴向柱塞泵的优点是结构紧凑,运转平稳,流量均匀性好,噪声低,径向尺寸小,转动惯量小,工作压力高,效率高,并易于实现变量。此外,山于轴向柱塞泵结构复杂,对制造工艺、材料的要求非常高,因此它乂是技术含量很高的液压元件之一。随着高科技的发展,现在机械对小型化、高效率的要求越来越高,而液压传动,随着现在加工工艺、信息化的发展,其缺点也越来越完善,而泵是液压传动的核心。1.2轴向柱塞泵概述 柱塞泵是液压系统中重要的动力元件和执行元件,广泛地应用在工业和农业机械。柱塞式液压泵是依靠若干个柱塞在缸体柱塞孔内做往复远动使密闭工作容积发生变化来实现吸油和压油的。由于密闭工作容积是由缸体中若干个柱塞和缸体内柱塞孔构成,且柱塞和缸体内柱塞孔都是圆柱表面,其加工精度容易保证,它具有重量轻、结构紧凑、密封性好、工作压力高,在高压下仍能保持较高的容积率和总效率,SCY14柱塞泵的丄作圧力可以达到32MP&,容易实现变量等优点;其缺点是对液压工作介质的污染较敬感、滤油精度要求高、结构复杂、加工精度、日常维护要求比较高、价格比较便贵。而柱塞泵分为轴向和径向。

柱塞泵工作原理

斜盘式轴向柱塞泵的工作原理 柱塞装在柱塞泵缸体中,沿轴向圆周均匀分布。柱塞端部带有滑靴,由弹簧通过回程盘将其压紧在斜盘上,同时在弹簧力和工作油压力作用下,缸体被压向固定的配流盘。配流盘上有两个腰形配流窗和,一个与泵壳体的吸油口相连,称进油窗口;另一个壳体的排油口相连,称排油窗口。配流窗口之间的宽度应大于缸体底部通油口宽度,以防高低压腔串通。 轴向液压柱塞泵在工作中,主传动轴带动缸体转动。由于斜盘具有倾角,当柱塞泵缸体转动时柱塞就在缸体的柱塞孔内作往复运动,完成液压泵的吸油压油过程。 轴向柱塞泵工作原理 轴向柱塞泵工作原理 轴向柱塞泵中的柱塞是轴向排列的。当缸体轴线和传动轴轴线重合时,称为斜盘式轴向柱塞泵;当缸体轴线和传动轴轴线不在一条直线上,而成一个夹角γ时,称为斜轴式轴向柱塞泵。轴向柱塞泵具有结构紧凑,工作压力高,容易实现变量等优点。 图3.28a(动画)和图3.28b(动画)分别为斜盘式和斜轴式轴向柱塞泵的工作原理图。工作原理 斜盘式轴向柱塞泵由传动轴1带动缸体4旋转,斜盘2和配油盘5是固定不动的。柱塞3均布于缸体4内,柱塞的头部靠机械装置或在低压油作用下紧压在斜盘上。斜盘法线和缸体轴线的夹角为γ。当传动轴按图示方向旋转时,柱塞一方面随缸体转动,另一方面,在缸体内作往复运动。显然,柱塞相对缸体左移时工作容腔是压油状态,油液经配油盘的吸油口a吸入;柱塞相对缸体右移时工作容腔是压油状态,油液从配油盘的压油口b压出。缸体每转一周,每个柱塞完成吸、压油一次。如果可以改变斜角γ的大小和方向,就能改变泵的排量和吸、压油的方向,此时即为双向变量轴向柱塞泵。 在图3.28b(动画)中,当传动轴1在电动机的带动下转动时,连杆2推动柱塞4在缸体3中作往复运动,同时连杆的侧面带动活塞连同缸体一同旋转。配油盘5是固定不

轴向柱塞泵工作原理

轴向柱塞泵工作原理 轴向柱塞泵中的柱塞是轴向排列的。当缸体轴线和传动轴轴线重合时,称为斜盘 式轴向柱塞泵;当缸体轴线和传动轴轴线不在一条直线上,而成一个夹角γ时,称为 斜轴式轴向柱塞泵。轴向柱塞泵具有结构紧凑,工作压力高,容易实现变量等优点。 图3.28a(动画)和图3.28b(动画)分别为斜盘式和斜轴式轴向柱塞泵的工作原理图。工作原理 斜盘式轴向柱塞泵由传动轴1带动缸体4旋转,斜盘2和配油盘5是固定不动的。柱塞3均布于缸体4内,柱塞的头部靠机械装置或在低压油作用下紧压在斜盘上。斜 盘法线和缸体轴线的夹角为γ。当传动轴按图示方向旋转时,柱塞一方面随缸体转动,另一方面,在缸体内作往复运动。显然,柱塞相对缸体左移时工作容腔是压油状态, 油液经配油盘的吸油口a吸入;柱塞相对缸体右移时工作容腔是压油状态,油液从配 油盘的压油口b压出。缸体每转一周,每个柱塞完成吸、压油一次。如果可以改变斜 角γ的大小和方向,就能改变泵的排量和吸、压油的方向,此时即为双向变量轴向柱 塞泵。 在图3.28b(动画)中,当传动轴1在电动机的带动下转动时,连杆2推动柱塞4 在缸体3中作往复运动,同时连杆的侧面带动活塞连同缸体一同旋转。配油盘5是固 定不动的。如果斜角度γ的大小和方向可以调节,就意味着可以改变泵的排量和吸、 压油方向,此时的泵为双向变量轴向柱塞泵。 轴向柱塞泵的排量和流量 设柱塞直径为d,柱塞数为Z,柱塞中心分布圆直径为D,斜盘倾角为γ,则 柱塞行程 泵的排量和流量分别为

式中,n 一泵的转速;ηpv 一泵的容积效率。 轴向柱塞泵的输出流量是脉动的。理论分析和实验研究表明, 当柱塞个数多且为奇数时流量脉动较小。从结构和工艺考虑,柱塞个数多采用7或9。 表3.3 流量脉动率与柱塞数Z 的关系 Z 5 6 7 8 9 10 11 12 δq (%) 4.98 14 2.53 7.8 1.53 4.98 1.02 3.45 轴向柱塞泵结构 图3.30 滑靴的静压支承原理图 1.柱塞 2.滑靴 3.斜盘 (1)斜盘式轴向柱塞泵 图3.29 是一种轴向柱塞泵的结构简图。传动轴8通过花键带动缸体6旋转。柱塞5(七个)均匀安装在缸体上。 柱塞的头部装有滑靴4,滑靴与柱塞是球铰连接,可以任意转动。由弹簧通过钢球和压板3将滑靴压靠 在斜盘2上。这样,当缸体转动时,柱塞就可以在缸体中往复运动,完成吸油和压油过程。配油盘7与泵的吸油口和压油口相通,固定在泵体上。另外,在滑靴与斜盘相接触的部分有一个油室,压力油通过柱塞中间的小孔进入油室,在滑靴与斜盘之间形成一个油膜,起着静压支承作用,从而减少了磨损。 滑靴的静压支承原理如图3.30(动画) 所示。 这种泵的变量机构是手动的。转动手把1,通过丝杠螺母副可以改变斜盘的倾角,从而改变泵的输出流量。

轴向柱塞泵材料

轴向柱塞泵 轴向柱塞泵是一种典型的同轴的泵,它的汽缸和传动轴式平行的,它的往复运动被一个平板型凸轮带动,也叫摆动盘,倾斜盘,或旋转斜盘。这个盘位于一个平面穿过主动轴和气缸筒的同一轴线,所以不能旋转。在定量泵中,凸轮盘必须要求严格的安装在合适的位置上,结果它与气缸筒的中心线以垂直方向倾斜25度的角度交叉。变量传输的轴向柱塞泵的设计是有意图的,所以凸轮盘与气缸筒中心线的正交处变化范围在0°到20°或25°到两侧。每个活塞杆的末端被用来与凸轮盘相接触,因为汽缸体和活塞的转配同传动轴,一起旋转。这引起了活塞在气缸内的互换。活塞的长度是与角度成比例的,这个角度是凸轮盘的位置与气缸筒中心线垂直方向的角度。 一个变化的轴向柱塞泵是一个倾向轴的类型,如图4-14。这种类型的泵没有倾斜的凸轮盘,类似于同轴泵。取而代之,汽缸体轴不同于传动抽。连杆的末端保留在圆盘上面的孔内这样与传动轴一起旋转。汽缸体随传动端一起旋转在传动轴与汽缸体活塞杆的通用交叉点的带动下。为了去改变泵的排量,汽缸体和阀盘被连接好并且整个装置是摆动的,在一对装备枢轴的周围放在泵房上。 轴向柱塞泵的动作是由万向接头或链接促成的。图4-15是一系列的图那些是举例说明在泵的操作过程中怎样使用万向接头。 首先摇杆臂被安装在水平杆上(看图4-15图A),臂被一个销钉连接在杆状物上所以能来回的摇动,就像图B所示。接下来,一个环放在杆状物的周围来保护摇杆臂,所以换可以左右来回转,如图C所示。这样可以提供你可能需要的在同一时间不同位面变化比例的两个旋转运动。摇杆臂能在一弧形内来回摇摆,并且环能同时在另一弧形内前后的摇摆,在平面内以一个恰当的角度,这个平面式摇杆臂旋转。 下一个在总装中增加一个倾斜的平面。这个倾斜的平面放在杆状物轴心倾斜的位置上,像图4-15中D描述的那样。摇杆臂在这时倾斜的位置与倾斜盘的是同一位置,所以基本上是与倾斜盘上平行的。这个环也是平行的,它与倾斜盘相接触。环的位置与摇杆臂是有关联的,而且是无法改变的,从

柱塞泵设计与计算

目录 第1章绪论 第2章斜盘式轴向柱塞泵工作原理与性能参数斜盘式轴向柱塞泵工作原理 斜盘式轴向柱塞泵主要性能参数 第3章斜盘式轴向柱塞泵运动学及流量品质分析柱塞运动学分析 柱塞行程s 柱塞运动速度v 柱塞运动加速度a 滑靴运动分析 瞬时流量及脉动品质分析 脉动频率 脉动率 第4章柱塞受力分析与设计 柱塞受力分析 柱塞底部的液压力P b 柱塞惯性力P g 离心反力P l 斜盘反力N 柱塞与柱塞腔壁之间的接触力P 1和P 2 摩擦力p 1f和P 2 f 柱塞设计 柱塞结构型式 柱塞结构尺寸设计 柱塞摩擦副比压p、比功pv验算第5章滑靴受力分析与设计 滑靴受力分析 分离力P f 压紧力P y 力平衡方程式 滑靴设计 剩余压紧力法 最小功率损失法 滑靴结构型式与结构尺寸设计 滑靴结构型式 结构尺寸设计 第6章配油盘受力分析与设计 配油盘受力分析 压紧力P y 分离力P f 力平横方程式 配油盘设计 过度区设计 配油盘主要尺寸确定 验算比压p、比功pv 第7章缸体受力分析与设计

缸体地稳定性 压紧力矩M y 分离力矩M f 力矩平衡方程 缸体径向力矩和径向支承径向力和径向力矩 缸体径向力支承型式缸体主要结构尺寸的确定 通油孔分布圆半径R f ′和面积F α 缸体内、外直径D 1、D 2 的确定 缸体高度H 结论 摘要 斜盘式轴向柱塞泵是液压系统中的主要部件,斜盘式轴向柱塞泵是靠柱塞在柱塞腔内的往复运动,改变柱塞腔内容积实现吸油和排油的,是容积式液压泵,对于斜盘式轴向柱塞泵柱塞、滑靴、配油盘缸体是其重要部分,柱塞是其主要受力零件之一,滑靴是高压柱塞泵常采用的形式之一,能适应高压力高转速的需要,配油盘与缸体直接影响泵的效率和寿命,由于配油盘与缸体、滑靴与柱塞这两对高速运动副均采用了一静压支承,省去了大容量止推轴承,具有结构紧凑,零件少,工艺性好,成本低,体积小,重量轻,比径向泵结构简单等优点,由于斜盘式轴向柱塞泵容易实现无级变量,维修方便等优点,因而斜盘式轴向柱塞泵在技术经济指标上占很大优势。 关键词斜盘柱塞泵滑靴缸体 Abstract The inclined dish type and axial pump with a pillar is a main part in liquid press system,The inclined dish type and axial pump with a pillar is a back and forth movement by pillar to fill the inside of the pillar cavity,in order to change the pillar fills the contents of cavity to realize the oil of inhaling with line up oily,Is a capacity type liquid to press the pump .Fill to pillar to pump for the inclined dish type stalk the pillar fill, slip the boots and go together with the oil dish an is its importance part. The pillar fills is it suffer the one of the dint spare parts primarily. The slippery boots is one of the form that high pressure pillar fill the pump to often adopt. It can adapt to the high demand turning soon in high pressure dint, go together with the oil dish and the efficiency of the direct influence in a pump with life span. Because of going together with the oil dish fills ,pillar and a slippery boots these two rightness of high speeds the sport the vice- all adopting a the static pressure accepts. The province went to the big capacity push the bearings, have the construction tightly packed, the spare parts is little, the craft is good, the cost is low, the physical volume is small, the weight is light, comparing the path face to pump the construction simple etc. Because the inclined dish type stalk fills to pillar the pump to realizes to have no easily the class changes the deal, maintain convenience and so on.

JBT液压轴向柱塞泵

液压轴向柱塞泵

前言 本标准修改采用《液压轴向柱塞泵JB/T7043-2006》 本标准归口单位: 本标准起草单位: 本标准主要起草人: 本标准批准人:

液压轴向柱塞泵 1 范围 本标准规定了液压轴向柱塞泵(以下简称轴向柱塞泵)的基本参数、技术要求、试验方法、检验规则及标志和包装等要求。 本标准适用于以液压油液或性能相当的其他液体为工作介质,额定压力≤45MPa的轴向柱塞泵。 2 引用标准 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 GB/ 液压气动图形符号(GB/,eqv ISO 1219-1: 1991) GB/T2346 流体传动系统及元件公称压力系列(GB/T2346-2003,ISO2944: 2000,MOD) GB/T2347 液压泵及马达公称排量系列(GB/T2347-1980,eqv ISO 3662: 1976) GB/T2353 液压泵和马达的安装法兰和轴伸的尺寸系列及标注代号(GB/T2353-2005,ISO3019-2: 2001, MOD) GB/ 计数抽样检验程序第1部分:按接收质量限(AQL)检索的逐批检验抽(GB/, ISO 2859-1: 1999, IDT) GB/T2878 液压元件螺纹连接油口型式和尺寸(GB/T2878-1993,neqISO 6149: 1980) GB/T7935-2005 液压元件通用技术条件 GB/T7936 液压泵、马达空载排量测定方法 GB/T14039一2002 液压传动油液固体颗粒污染等级代号(ISO 4406: 1999, MOD) GB/T17446 流体传动系统及元件术语(GB/T17446-1998,idt ISO5598: 1985) GB/T17483 液压泵空气传声噪声级测定规范(Gb/T17483-1998,eqvISO4412-1: 1991) JB/T7858 液压元件清洁度评定方法及液压元件清洁度指标 3 术语和定义 GB/T 17446 确立的以及下列术语和定义适用于本标准。 额定压力rated pressure 在规定转速范围内连续运转,并能保证设计寿命的最高输出压力。 空载压力derived pressure 不超过额定压力5%或的输出压力。

CY14-1B型轴向柱塞泵参数型号说明

名称:YCY14-1B 压力补偿变量 描述描述:: CY14-1B 型轴向柱塞泵,是采用配油盘、缸体旋转的轴向柱塞泵。由于滑靴和变量头之间、配油盘和缸体之间采用了液压力平衡结构,因而与其它类型的泵相比较,它具有结构简单、体积小、效率高、寿命长、重量轻、自吸能力强等优点。它适用于机床、锻压、冶金、工程、矿山等机械及其液压传动系统中。 型号说明型号说明:: 6363 Y C Y 1414 - 1B 1B F 1 2 3 4 5 6 7 1、 公称排量(ml/r) 2、 变量形式:M-定量,S-手动变量,D-电动变量,C-伺服变量,Y-压力补偿变量,MY-定级压力补偿变量,P-恒压变量,LZ-零位对中液动变量 3、 公称压力:C 为31.5Mpa,G 为24.5Mpa 4、 Y 表示泵,M 表示马达 5、 结构形式:缸体旋转轴向柱塞泵(马达) 6、 结构设计序号 7、 转向(从轴端看):无标记为正旋转泵,F 为反转泵(逆时针) 性能参数性能参数:: *CY *CY((CM CM))1414--1B 轴向柱塞泵轴向柱塞泵((马达马达))的系列参数的系列参数 公称流量L/min 最大传动功率KW 型号 公称压力Mpa 公称排量ml/r 1000r/min1500r/min1000r/min1500r/min 最大理论扭矩 Nm 重量Kg 1.25MCY (M)14-1B 31.5 1.25 1.25 1.88 0.7 1.1 6.3 6.9 2.5MCY(M)14-1B 31.5 2.5 2.5 3.75 1.43 2.2 12.6 7.2 10*CY(M)14-1B 31.5 10 10 15 6.2 9.3 56 16.4-26

斜盘式阀配流轴向柱塞泵结构分析(1000r)

斜盘式阀配流高压纯水泵设计计算 对于高压水泵而言,主要结构参数有:缸孔分布圆直径R 2(mm )、斜盘倾角α(?)、柱塞数量Z 、柱塞直径p d (mm )等,需要根据已确定的高压水泵技术指标p p 、p Q 及n 来设计计算。 一、主要结构参数 1.转速 n 当需要尽力提高转速,以缩小泵的尺寸时,有1/3 n q -∝(q 为泵的排量),2/3 Q nq q =∝,那么 泵的极限转速应满足以下关系式: 41/21.410n Q -≤?=2556r/min 此时选取n =1000r/min ; 2.R 、d 、z 、α确定 (1)确定排量 r ml n Q q v /.537% 80100030 10001000=??== η 假设排量按37.5ml/r 设计,当容积效率取为90%,则流量应为33.75L/min, 当容积效率超过80%,则流量不小于30L/min. (2)确定分布圆直径 确定7=Z 、 12=α 初算,取 75.02≈R Zd π,则计算R 得: 92.312125.1.5 377125.1333 3=? ???==tg tg Zq R παπ(cm) 计算圆整为33mm ,考虑到后端配流阀布置对泵整体结构上的影响,取柱塞分布圆直径为100mm. (3) 柱塞直径 高压水泵的理论排量th q (mm 3 /r )为: απαπ tg RZd Rtg d Z q p p th 2 22 124=?? = (1) 则高压水泵的实际输出流量p Q (L/min )为: αηηtg ZRd n nq Q p v v th p 2 61057.1??==- (2) 式中p p 、p Q 及n 已知,综合考虑材料强度、刚度、结构紧凑性、工艺性以及摩擦学性能等因素,通过计算机优化设计,因水的粘度比液压油小得多,可设高压水泵的容积效率9.0=v η,由式(2)可计算出柱塞直径p d :

关于柱塞泵的结构分析

关于柱塞泵的结构分析 一.摘要 讲述斜盘式柱塞泵的工作原理与分类以及特点,对缸体,柱塞,滑靴,配流盘的结构进行简单的分析。 二.概述 原理 图1 斜盘式柱塞泵二维图 缸体上均布有若干个轴向排列的柱塞,柱塞与缸体孔以很精密的间隙配合,一端顶在斜盘上,当泵轴与缸体固连在一起旋转时,柱塞既能随缸体在泵轴的带动下一起转动,又能在缸体的孔内灵活往复移动,柱塞在缸体内自下而上旋转的左上半周内逐渐向左伸出,使缸体孔右端的T作腔体积不断增加。产生局部真空。油液经配油盘上吸油腔被吸进来,反之,当柱塞在其自上而下回转的右下半周内逐渐向右缩回缸内,使密封工作腔体积不

断减小,将油从配油盘上的排油胶向外坏出。缸体每转一转,每个柱塞往复运动一次,完成一次压油和一次吸油。缸体连续旋转,则每个柱塞不断吸油和压油,给液压系统提供连续的压力油。另外,在滑靴与斜盘相接触的部分有一个油室,压力油通过柱塞中间的小孔进人油室,在滑靴与斜盘之间形成一个油膜,起着相互支承作用,从而减少了磨损。 分类 按照不同的分类方式 ●配流方式:端面配流、轴配流、阀配流 ●结构特点:斜盘式和斜轴式(连杆) ●柱塞排列形式:轴向、径向 特点 ●优点:结构紧凑、比功率大、压力高、易变量 ●缺点:对油液污染敏感、滤油精度高、加工精度高、使用维护要求高、价格高三.结构分析 缸体 缸体的材料通常为ZCuPb15Sn8,ZQSn10-1 或ZQAlFe9-4,此外也可用耐磨铸铁或球墨铸 铁等。为了节省铜,常用20Cr、12CrNi3A或 GCr15作基体而在柱塞孔处镶嵌铜套或真空 炉扩散焊接工艺。 尺寸与斜盘倾角、柱塞直径、柱塞数量 和柱塞分布圆直径有关。 图2 斜盘式柱塞泵缸体

(完整版)Rexroth力士乐柱塞泵工作原理与说明

Rexroth力士乐柱塞泵工作原理与说明 Rexroth柱塞泵是靠柱塞在缸体中作往复运动造成密封容积的变化来实现吸油与压油的液压泵,与齿轮泵和叶片泵相比,这种泵有许多优点。首先,构成密封容积的零件为圆柱形的柱塞和缸孔,加工方便,可得到较高的配合精度,密封性能好,在高压工作仍有较高的容积效率;第二,只需改变柱塞的工作行程就能改变流量,易于实现变量;第三,柱塞泵中的主要零件均受压应力作用,材料强度性能可得到充分利用。由于柱塞泵压力高,结构紧凑,效率高,流量调节方便,故在需要高压、大流量、大功率的系统中和流量需要调节的场合,如龙门刨床、拉床、液压机、工程机械、矿山冶金机械、船舶上得到广泛的应用。柱塞泵按柱塞的排列和运动方向不同,可分为径向柱塞泵和轴向柱塞泵两大类 Rexroth柱塞泵工作原理与说明柱塞泵原理 一、径向柱塞泵特征:各柱塞排列在传动轴半径方向,即柱塞中心线垂直于传动轴中心线 1. 径向柱塞泵的工作原理结构:定子、转子、柱塞、配油轴等↓ ↓ 偏心固定工作原理:V 密形成——同上上半周,吸油 V密变化——转子顺转< 下半周,压油排量V = πd22ez/4 2)流量 qt = Vn =πd22ezn/4 q = Vnηpv =πd22eznηpv/4 变量原理:径向柱塞泵的排量和流量改变偏心距的大小和方向,即可以改变输出油液的大小和方向。阀配流径向柱塞泵的工作原理径向柱塞泵的特点:流量大,压

力高,便于作成多排柱塞的形式,工作可靠但径向尺寸大,自吸能力差,配流轴径向力不平衡,易磨损,间隙不能补偿,故限制了转速和压力的提高。1.轴向柱塞泵的工作原理轴向柱塞泵是将多个柱塞配置在一个共同缸体的圆周上,并使柱塞中心线和缸体中心线平行的一种泵。轴向柱塞泵有两种形式,直轴式(斜盘式)和斜轴式(摆缸式), 二、轴向柱塞泵特征:柱塞轴线平行或倾斜于缸体的轴线 1. 轴向柱塞泵的工作原理 1)斜盘式轴向柱塞泵组成:配油盘、柱塞、缸体、倾斜盘等工作原理:V密形成——柱塞和缸体配合而成右半周,V密增大,吸油 V密变化,缸体逆转< 左半周,V密减小,压油吸压油口隔开—配油盘上的封油区及缸体底部的通油孔 2)斜轴式轴向柱塞泵特点:传动轴轴线与缸体轴线倾斜一γ角。组成:工作原理:V密形成——同上右半周,吸油 V密变化——传动轴逆转< 左半周,压油吸压油口隔开——同上2. 轴向柱塞泵的排量和流量 1)排量若柱塞数为z,柱塞直径为d,柱塞孔的分布圆直径为D, 斜盘倾角为γ,则柱塞的行程为:h=Dtanγ,故缸体转一转,泵的排量为:V=Zhπd /4= π d2 ZD(tanγ)/4 2)流量理论流量:qT = Vn = πd2D(tanγ)z/4 实际流量:q = qTηpv =πd2D(tanγ)zηpv/4 结论: (1) qT = f(几何参数、 n、γ)

JBT液压轴向柱塞泵完整版

J B T液压轴向柱塞泵 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

液压轴向柱塞泵

前言 本标准修改采用《液压轴向柱塞泵 JB/T7043-2006》本标准归口单位: 本标准起草单位: 本标准主要起草人: 本标准批准人:

液压轴向柱塞泵 1 范围 本标准规定了液压轴向柱塞泵(以下简称轴向柱塞泵)的基本参数、技术要求、试验 方法、检验规则及标志和包装等要求。 本标准适用于以液压油液或性能相当的其他液体为工作介质,额定压力≤45MPa的轴向柱塞泵。 2 引用标准 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文 件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励 根据本标准达成协议的各方研是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 GB/ 液压气动图形符号(GB/,eqv ISO 1219-1: 1991) GB/T2346 流体传动系统及元件公称压力系列(GB/T2346-2003,ISO2944: 2000,MOD) GB/T2347 液压泵及马达公称排量系列(GB/T2347-1980,eqv ISO 3662: 1976) GB/T2353 液压泵和马达的安装法兰和轴伸的尺寸系列及标注代号(GB/T2353-2005,ISO3019-2: 2001, MOD) GB/ 计数抽样检验程序第1部分:按接收质量限(AQL)检索的逐批检验抽(GB/, ISO 2859-1: 1999, IDT) GB/T2878 液压元件螺纹连接油口型式和尺寸(GB/T2878-1993,neqISO 6149: 1980) GB/T7935-2005 液压元件通用技术条件 GB/T7936 液压泵、马达空载排量测定方法 GB/T14039一2002 液压传动油液固体颗粒污染等级代号(ISO 4406: 1999, MOD) GB/T17446 流体传动系统及元件术语(GB/T17446-1998,idt ISO5598: 1985) GB/T17483 液压泵空气传声噪声级测定规范(Gb/T17483-1998,eqvISO4412-1: 1991) JB/T7858 液压元件清洁度评定方法及液压元件清洁度指标 3 术语和定义 GB/T 17446 确立的以及下列术语和定义适用于本标准。

柱塞泵的结构和工作原理解析

柱塞泵主要由动力端和液力端两大部分组成,并附有皮带轮、止回阀、安全阀、稳压器、润滑系统等组成。下面,我们就来详细看看其具体的结构已经工作原理是怎么样的吧。 设备结构: 一、动力端 1、曲轴 曲轴为此泵中关键部件之一。采用曲拐轴整体型式,它将完成由旋转运动变为往复直线运动的关键一步,为了使其平衡,各曲轴柄销与中心成120°。 2、连杆 连杆将柱塞上的推力传递给曲轴,又将曲轴的旋转运动转换为柱塞的往复运动,其杆截面采取工字形,大头为剖分式,轴瓦采用对分薄壁瓦形式,小头瓦采用轴套式,并以其定位。 3、十字头 十字头连接摇摆运动的连杆和往复运动的柱塞,它具有导向作用,它与连杆为闭式连接,与柱塞卡箍相连。 4、浮动套

浮动套固定在机座上,它一方面起隔绝油箱与污油池的作用,另一方面对十字头导杆起一个浮动支承点的作用,能提高运动密封部件的使用寿命。 5、机座 机座是安装动力端和连接液力端部分的受力构件,机座后部两侧有轴承孔,前部设有与液力端连接的定位销孔保证滑道中心与泵头中心的对中性,在机座的前部一侧设有放液孔,用来排放渗漏的液体。 二、液力端 1、泵头 泵头为不锈钢整体锻造而成,吸、排液阀垂直布置,吸液孔在泵头底面,排液孔在泵头的侧面,同阀腔相通,简化了排出管路系统。 2、密封函 密封函与泵头以法兰连接,柱塞的密封形式为碳素纤维纺织的矩形软填料,具有良好的高压密封性能。 3、柱塞 4、进液阀和排液阀

进、排液阀及阀座,适合输送黏度较大的液体的低阻尼、锥形阀结构,具有降低黏度的特点。接触面有较高的硬度和密封性能,以保证进、排液阀具有足够的使用寿命。 工作原理: 柱塞泵柱塞往复运动总行程L是不变的,由凸轮的升程决定。柱塞每循环的供油量大小取决于供油行程,供油行程不受凸轮轴控制是可变的。供油开始时刻不随供油行程的变化而变化。转动柱塞可改变供油终了时刻,从而改变供油量。柱塞泵工作时,在喷油泵凸轮轴上的凸轮与柱塞弹簧的作用下,迫使柱塞作上、下往复运动,从而完成泵油任务,泵油过程可分为以下两个阶段。 一、进油过程 当凸轮的凸起部分转过去后,在弹簧力的作用下,柱塞向下运动,柱塞上部空间(称为泵油室)产生真空度,当柱塞上端面把柱塞套上的进油孔打开后,充满在油泵上体油道内的柴油经油孔进入泵油室,柱塞运动到下止点,进油结束 二、回油过程 柱塞向上供油,当上行到柱塞上的斜槽(停供边)与套筒上的回油孔相通时,泵油室低压油路便与柱塞头部的中孔和径向孔及斜槽沟通,油压骤然下降,出油

柱塞泵工作原理图

柱塞泵工作原理图 柱塞泵工作原理,当传动轴1 在电动机的带动下转动时,连杆2 推动柱塞4 在缸体3 中作往复运动,同时连杆的侧面带动活塞连同缸体一同旋转。配油盘5 是固定不动的。如果斜角度gamma;的大小和方向可以调节,就意味着可以改变泵的排量和吸、压油方向,此时的泵为双向变量轴向柱塞泵。 柱塞泵的优点 1. 参数高:额定压力高,转速高,泵的驱动功率大 2. 效率高,容积效率为95%左右,总效率为90%左右 3. 寿命长 4. 变量方便,形式多 5. 单位功率的重量轻 6. 柱塞泵主要零件均受压应力,材料强度性能可得以充分利用 工作时,在喷油泵凸轮轴上的凸轮与柱塞弹簧的作用下,迫使柱塞作上、下往复运动,从而完成泵油任务,泵油过程可分为以下三个阶段。 进油过程 当凸轮的凸起部分转过去后,在弹簧力的作用下,柱塞向下运动,柱塞上部空间(称为泵油室)产生真空度,当柱塞上端面把柱塞套上的进油孔打开后,充满在油泵上体油道内的柴油经油孔进入泵油室,柱塞运动到下止点,进油结束。 供油过程 当凸轮轴转到凸轮的凸起部分顶起滚轮体时,柱塞弹簧被压缩,柱塞向上运动,燃油受压,一部分燃油经油孔流回喷油泵上体油腔。当柱塞顶面遮住套筒上进油孔的上缘时,由于柱塞和套筒的配合间隙很小(0.0015-0.0025mm)使柱塞顶部的泵油室成为一个密封油腔,柱塞继续上升,泵油室内的油压迅速升高,泵油压力>出油阀弹簧力+高压油管剩余压力时,推开出油阀,高压柴油经出油阀进入高压油管,通过喷油器喷入燃烧室。 回油过程 柱塞向上供油,当上行到柱塞上的斜槽(停供边)与套筒上的回油孔相通时,泵油室低压油路便与柱塞头部的中孔和径向孔及斜槽沟通,油压骤然下降,出油阀在弹簧力的作用下迅速关闭,停止供油。此后柱塞还要上行,当凸轮的凸起部分转过去后,在弹簧的作用下,柱塞又下行。此时便开始了下一个循环。 结论:通过上述讨论,得出下列结论 ①柱塞往复运动总行程L 是不变的,由凸轮的升程决定。 ②柱塞每循环的供油量大小取决于供油行程,供油行程不受凸轮轴控制是可变的。 ③供油开始时刻不随供油行程的变化而变化。 ④转动柱塞可改变供油终了时刻,从而改变供油量。 3. 国产系列柱塞式喷油泵

相关主题
文本预览
相关文档 最新文档