当前位置:文档之家› 平顶山十三矿突水特征与原因分析示范文本

平顶山十三矿突水特征与原因分析示范文本

平顶山十三矿突水特征与原因分析示范文本
平顶山十三矿突水特征与原因分析示范文本

平顶山十三矿突水特征与原因分析示范文本

In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each

Link To Achieve Risk Control And Planning

某某管理中心

XX年XX月

平顶山十三矿突水特征与原因分析示范

文本

使用指引:此解决方案资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。

矿井突水是威胁煤矿安全生产的重要灾害之一。对突

水机理及突水危险性评价和预测是解决突问题的关键技术

基础,构造裂隙是造成煤层底板突水的主要因素。平顶山

十三矿是1座设计能力180万t/a的大型矿井,矿井水文

地质条件复杂,在生产过程中出现了2次较大的突水事

故。井田煤系地层属于石炭二叠纪,二叠系已煤组的二?煤

(或已16-17煤层)为该矿井的主采厚煤层。煤田分布在

汝河和沙河之间的分水岭地带,构造形态为一地垒型的复

向斜构造,四周受接近东西向两组张性断裂的控制,形成

一多边形的地垒型断块,由于煤田相对抬起,切断了与周

围区域含水层的直接水力联系,阻隔了区域基岩地下水向

井田的侧向补给,使本井田成为一相对独立的水文地质单元。

1 采面概况及突水过程特征

平顶山十三矿目前开采已组煤层,发生的2次突水事件分布在已一和已二的2个采区。第一次突水发生在已15-17-12010采面,该采面位于一水平已二采区东翼第一区段,东至侯村保护煤柱线,西到上山保安煤柱,北至防水煤柱,南部尚未布置采面。采面走向长1 285m,倾斜宽130m,采面煤层倾角平均为26°,煤层厚平均为5.28m。采煤方法为走向长壁,沿煤层顶板放顶煤一次采全高,工字钢金属支架支护(图1)。第二次突水发生在已15-17-11090采面,该采面位于一水平已一采区东翼第五区段,东邻襄郏背斜轴部,西至上山和东风井保安煤柱线,南北

均未布置采面。回采走向长1 090m,倾斜宽128m,采面煤层倾角平均为20°,煤层厚平均为5.4m。巷道掘进沿煤层走向和顶板施工,工字钢金属支架支护。采面里段采煤方法为分层综采,采高2.2m左右,全部陷落法管理顶板(图2)。

图1 12010工作面平面示意图

图2 11090工作面平面示意图

1999年12月27日12:20,12010采面切眼里帮下机头以上7~11m范围内底板突水,标高-236.4m,最大突水量240m3/h,12h后衰减为227 m3/h。28日15:30测得二灰水位开始以0.15m/d的速度下降,突水过程呈现出水量相对稳定的非稳定流状态。29日0:00后相对稳定,

15d后水量稳定在150 m3/h。

20xx年11月15日15:00,11090采面采空区侧底板有水涌出,水量为5~6 m3/h;18:00水量增大到150 m3/h,同时听到采面有响声,并伴有煤尘飞扬,14 #架后底板鼓起0.4m,水伴着大量煤沿运输机和支架间人行道奔涌而下,最大突水量达435 m3/h,采面下出口封顶后的平均出水量为300 m3/h,采面突水点标高由-496.6m上升至-457.4m。由于突水最较大,致使机巷最高点(-457.4m)以里共淹没巷道508m,最高点以外自流850m。30d后,水量稳定在168 m3/h,水温在38℃左右。

总之,2次突水具有突发性、矿压显现明显、水量大且稳定、水温高等特征。

2 突水原因分析

2.1 水文地质条件

已15-17-12010采面煤层直接底板为黑色的砂泥岩互层,厚2.14m。老底为细砂岩,厚7.71m。采面区段岩层平均倾角为28°,掘进过程中揭露断层28条,走向大致为NE,最大落差10m(图3)。11090采面直接底为砂质泥岩,厚1.8~3.25m;老底为细砂岩,厚6.9m。采面在掘进期间共揭露大小断层17条,影响走向长398m,断层组的2条主要断层间距23m,对采面影响较大(图4)。两采面下部为晚石炭世上古生界石炭系太原群上部灰岩段1~7层和寒武系(表1)。

表1 煤层与底板地层情况表古生界

二叠系

已煤段

已15-17煤厚10.6m

裂缝承压水

砂泥岩厚8.1m

石炭系

上部灰岩段

一灰岩厚10m 岩

二灰岩厚8.0m 三灰岩厚7.8m 砂泥岩段

砂泥岩厚16.6m

下部灰岩段

四灰岩厚7m

五至七灰岩厚7.4m

铝土岩厚8.2m

寒武系灰色白云质灰岩

图3 12010采面水文地质单元示意图

图4 11090采面水文地质单元示意图

已15-17-12010采面处于正断层F2(∠63°,H=47m)、F6(∠77°,H=52m)之间,风巷上部有正断层

F3(∠65°,H=11m)、F4(∠58°,H=18m)(图3)。11090采面南北方向以襄郏一号正断层和灵武山向斜为骨干构成边界。东西方向以11090逆断层带和沟李封断层为边界。沟李封断层和襄郏一号正断层交汇处应力集中,裂隙也相对发育,和富水带共同构成了突水的富水区和迳流带(图4)。两采面均为相对独立的水文地质单元,静储量丰富,富含承压水。

2.2 充水水源分析

石炭系一灰岩是泥灰岩,二灰岩是两采面突水的直接

富含水层;三灰岩的富水性最差;四至七灰岩含水层单位涌水量为0.075~0.019L/(s·m),四灰岩不发育,富水性差,六灰岩和七灰岩局部富含水,五灰岩富含水;二灰岩和五至七灰岩存在水力联系。寒武系白云质灰岩单位涌水量为0.226L/(s·m),在石炭系110m以下,岩溶较发育。

2个采面突水水量大且较为稳定,水压高,说明有丰富的补给水源,呈现出承压水的一般规律。据突水水质分析结果知,2次突水水源不是顶板或第四系水,而是灰岩含水层水。两采区恒温带在地表以下25~30m附近,温度为17.2℃,地温梯度为3.2~3.5℃/hm。

12010采面突水温度为22℃,出水点距地面高-300m 左右,预计水温为24℃,与二灰水水位基本相符,突水后二灰水水位一直下降也说明了突水水源主要是二灰水。地

质勘探表明,在没有大量疏水的情况下,12010采面下的二灰水水位下降了150m以上,说明该面二灰水的补给条件差,以消耗储量为主。二灰水水头高度为210m,由于该面回采时最大突水量达2403/h,至采面回采结束底板二灰水的涌水量尚有30m3/h,表明二灰岩有一定的富水性和渗透性,在有足够排水能力的情况下,不会影响安全生产(图5)。

图5 突水水量、水温、二灰岩水动态曲线示意图

11090采面突水之初水温为30℃,4d后稳定在38℃左右。11090采面突水处标高为-498m,预计该处水温为35℃,而实际水温为38 ℃左右,说明突水补给水源应在-550m以下,是石灰系五灰水和寒武系中白云质灰岩水。从五炭岩观测孔水位动态看,五灰水水位稍有下降

相关主题
文本预览
相关文档 最新文档