当前位置:文档之家› 硅基射频集成电路和系统(廖怀林 著)思维导图

硅基射频集成电路和系统(廖怀林 著)思维导图

射频电路调试测试流程

射频电路调试测试流程(准备阶段) 射频电路的调试作为通信整机研发工作中的重要一环,工作量非常大,几乎所有电路都需要调试,为了提高效率,需要对调试环境、调试方法等进行规范。 环境准备如下 1、防静电 佩戴“静电手环”,并良好接地,若着化纤、羊毛、羽绒服装,外层需加穿防静电服,或防辐射服;小功率、低电压、高频率、小封装的器件均ESD敏感,最容易被ESD击穿的射频器件:RF开关,其次是LNA;所有仪器,开机使用前必须将机壳良好接地;2、电源 稳压电源接入负载前,先校准输出电压,电压等于负载的额定电压; 3、仪器保护 为安全起见:只要射频功率大于20dBm,射频信号源(30dBm)、频谱分析仪(27dBm)、信号源分析仪(23dBm)输入端必须级联同轴衰减器,一般情况下,5W 5dB衰减器为常态配置,若测试功放模块需根据实际输出功率大小配置合适的衰减器; 4、仪器设置 射频信号源:Keysight输出功率<13dBm,R&S输出功率<18dBm,若超出,输出功率可能小于显示值,需实测并进行补偿; 频谱分析仪:屏幕显示的有效动态范围,FSV约70dB,FSW约80dB;仪器的线性输入功率<-3dBm,超出会恶化待测IM3(ACLR)、谐波,应选择合适的内部/外部衰减值; 矢量网络分析仪:仪器的IF带宽决定噪声,测无源器件的带外抑制,应适当降低IF带宽;调测任何电路,必须保证输出功率

雷达射频集成电路的发展及应用

龙源期刊网 https://www.doczj.com/doc/d22491905.html, 雷达射频集成电路的发展及应用 作者:黄林锋 来源:《山东工业技术》2017年第24期 摘要:本文概述了雷达射频集成电路技术的特点,是一种以半导体和射频电路技术为基础,一种集信号放大、数据传输和转化功能为一体的技术,并从其发展与演变切入进行研究,探讨了目前常用的几种雷达射频集成电路的发展成果及其应用状况。 关键词:雷达射频集成电路;发展;应用 DOI:10.16640/https://www.doczj.com/doc/d22491905.html,ki.37-1222/t.2017.24.099 现代的雷达系统越来越注重高精度的距离探测与跟踪,还要求较强的抗干扰性、目标识别作用和气象探测功能。由此,要求完整一套的现代雷达系统包含近万个信号接收器和信号发射装置,这也极大提高了系统的复杂性和设备的成本造价。雷达系统的现代化除保留上述基本功能,还应减少设备的造价,这推进了射频集成电路在现代雷达领域的研发 [1]。由无线天线、电磁信号处理器、显示屏幕、控制面板、信号的发射和接收器所组成的现代雷达系统。目前,射频集成系统已经应用于信号的发射和接收器,下文从射频集成电路在雷达系统的研发入手,通过深入研究,介绍雷达系统目前的几种应用现状。 1 雷达射频集成电路的发展概述 随射频集成技术和信息化在雷达系统中的深入发展,射频集成电路已经演变了好几个架构形态[2]。以信号接收系统为例,在三十年内演化出三种不同的形态。在此过程,雷达系统的 数字化不断提高,实现某些频段的完全数字化,使射频集成电路向混合集成电路的方向不断发展。 2 雷达系统射频集成电路的发展及应用研究 2.1 射频集成SOC 以单片作为射频电路的集成基板,SiGe和CMOS作为集成射频与数字化特点的技术平台。技术的快速发展极大提高了射频电路的集成化程度,上部集混合频率、放大频率和合成信号功能为一体,下部集增频、分贝放大功能的器件。雷声公司(美国)研发的最新设备——X 波段应用了上述技术 [3],其在实际中具有高性能、减小雷达体积和节约造价的应用优势。 2.2 射频多通道集成电路 在一个集成芯片上集多通道于一体,这种集成电路没有射频集成电路那么多的器件,应用系统的封装工艺,以高度集成化的多通道芯片,实现射频混合电路的性能优化和结构简化。采

射频电路调试经验及问题分析

射频电路调试经验及问题分析 1前言 文档总结了我工作一年半以来的一些射频(Radio Frequency)调试(以下称为Debug)经验,记录的是我在实际项目开发中遇到并解决问题的过程。现在我想利用这份文档与大家分享这些经验,如果这份文档能够对大家的工作起到一定的帮助作用,那将是我最大的荣幸。 个人感觉,Debug过程用的都是最简单的基础知识,如果能够对RF的基础知识有极为深刻(注意,是极为深刻)的理解,我相信,所有的Bug解起来都会易如反掌。同样,我的这篇文档也将会以最通俗易懂的语言,讲述最通俗易懂的Debug技巧。 在本文中,我尽量避免写一些空洞的理论知识,但是第二章的内容除外。“微波频率下的无源器件”这部分的内容截取自我尚未完成的“长篇大论”——Wi-Fi产品的一般射频电路设计(第二版)。 我相信这份文档有且不只有一处错误,如果能够被大家发现,希望能够提出,这样我们就能够共同进步。 2微波频率下的无源器件 在这一章中,主要讲解微波频率下的无源器件。一个简单的问题:一个1K的电阻在直流情况下的阻值是1K,在频率为10MHz的回路中可能还是1K,但是在10GHz的情况下呢?它的阻值还会是1K吗?答案是否定的。在微波频率下,我们需要用另外一种眼光来看待无源器件。 2.1.微波频率下的导线 微波频率下的导线可以有很多种存在方式,可以是微带线,可以是带状线,可以是同轴电缆,可以是元件的引脚等等。 2.1.1.趋肤效应 在低频情况下,导线内部的电流是均匀的,但是在微波频率下,导线内部会产生很强的磁场,这种磁场迫使电子向导体的边缘聚集,从而使电流只在导线的表面流动,这种现象就称为趋肤效应。趋肤效应导致导线的电阻增大,结果会怎样?当信号沿导体传输时衰减会很严重。在实际的高频场合,如收音机的感应线圈,为了减少趋肤效应造成的信号衰减,通常会使用多股导线并排绕线,而不会使用单根的导线。我们通常用趋肤深度来描述趋肤效应。趋肤深度是频率与导线本身共同的作用,在这里我们不会作深入的讨论。 2.1.2.直线电感 我们知道,在有电流流过的导线周围会产生磁场,如果导线中的电流是交变电流,那么磁场强度也会随着电流的变化而变化,因此,在导线两端会产生一个阻止电流变化的电压,这种现象称之为自感。也就是说,微波频率下的导线会呈现出电感的特性,这种电感称为直线电感。也许你会直线电感很微小,可以忽略,但是我们将会在后面的内容中看到,随着频率的增高,直线电感就越来越重要。 电感的概念是非常重要的,因为微波频率下,任何导线(或者导体)都会呈现出一定的电感特性,就连电阻,电容的引脚也不例外。 2.2.微波频率下的电阻 从根本上说,电阻是描述某种材料阻碍电流流动的特性,电阻与电流,电压的关系在欧姆定律中已经给出。但是,在微波频率下,我们就不能用欧姆定律去简单描述电阻,这个时候,电阻的特性应经发生了很大的变化。 2.2.1.电阻的等效电路 电阻的等效电路。其中R就是电阻在直流情况下电阻自身的阻值,L是电阻的引脚,C 因电阻结构的不同而不同。我们很容易就可以想到,在不同的频率下,同一个电阻会呈现出不同的阻值。想想平时在我们进行Wi-Fi产品的设计,几乎不用到直插的元件(大容量电解

RF 设计与应用----射频集成电路封装

RF设计与应用----射频集成电路封装 关键词:射频,多层电路板,电路封装 摘要:针对无线通信产品业者所面临的课题,本文试着从封装技术在射频集成电路上应用的角度,来介绍射频集成电路封装技术的现况、现今封装技术对射频集成电路效能的影响,以及射频集成电路封装的未来发展和面临的挑战。 在行动通讯质量要求的提高,通讯带宽的需求量大增,因应而生的各项新的通讯规范如GPRS、W-CDMA、CDMA-2000、Bluetooth、 802.11b纷纷出笼,其规格不外乎:更高的数据传输速率、更有效的调变方式、更严谨的噪声规格限定、通讯功能的增强及扩充,另外再加上消费者对终端产品“轻、薄、短、小、久(包括产品的使用寿命、维护保固,甚至是手机的待机时间)”的诉求成了必要条件;于是乎,为了达成这些目的,各家厂商无不使出混身解数,在产品射频(Radio Frequency)、中频(Intermediate Frequency)与基频(Base Band)电路的整合设计、主动组件的选择应用、被动组件数目的减少、多层电路板内线路善加运用等,投注相当的心血及努力,以求获得产品的小型化与轻量化。 针对这些无线通信产品业者所面临的课题,我们试着从封装技术在射频集成电路上应用的角度,来介绍射频集成电路封装技术的现况、现今封装技术对射频集成电路效能的影响,以及射频集成电路封装的未来发展和面临的挑战。 射频集成电路封装技术的现况 就单芯片封装(Single Chip Package)的材质而言,使用塑料封装( P l a s t i c Pac kage)的方式,是一般市面上常见到的高频组件封装类型,低于3GHz工作频率的射频集成电路及组件,在不严格考虑封装金属导线架(Metal Lead Frame)和打线(Wire Bond)的寄生电感(Parasitic Inductance)效应下,是一种低成本且可薄型化的选择。由于陶瓷材料防水气的渗透性特佳及满足高可靠度的需求,故也有采用陶瓷封装技术;对于加强金属屏蔽作用及散热效果的金属封装,可常在大功率组件或子系统电路封装看到它的踪迹。

集成电路与系统

集成电路与系统 集成电路设计与集成系统专业工资待遇 截止到 2013年12月24日,57740位集成电路设计与集成系统专业毕业生的平均薪资为4639元,其中应届毕业生工资3701元,0-2年工资4104元,10年以上工资5104元,3-5年工资6069元,8-10年工资10494元,6-7年工资11198元。 集成电路设计与集成系统专业就业方向 集成电路设计与集成系统专业学生毕业后可到国内外各通信、雷达、电子对抗等电子系统设计单位和微电子产品的单位从事微电子系统的研发设计。。 集成电路设计与集成系统专业就业岗位 硬件工程师、电气工程师、模拟集成电路设计工程师、研发工程师、射频集成电路设计工程师、设计工程师、等。 集成电路设计与集成系统专业就业地区排名 集成电路设计与集成系统专业就业岗位最多的地区是上海。薪酬最高的地区是肇庆。 就业岗位比较多的城市有:上海[36个]、北京[30个]、深圳[28个]、苏州[11个]、西安[10个]、武汉[9个]、广州[7个]、成都[6个]、无锡[6个]、济南[6个]等。 就业薪酬比较高的城市有:肇庆[8065元]、信阳[6999元]、北京[6279元]、上海[6194元]、佛山[5265元]、厦门[5231元]、杭州[5024元]、南京[5013元]、惠州[4999元]、沈阳[4867元]、大连[4799元]等。 集成电路设计与集成系统专业在同类专业排名

集成电路设计与集成系统专业在专业学科中属于工学类中的电气信息类,其中电气信息类共34个专业,集成电路设计与集成系统专业在电气信息类专业中排名第28,在整个工学大类中排名第95位。 在电气信息类专业中,就业前景比较好的专业有:计算机科学与技术,自动化,软件工程,信息工程,电气工程及其自动化,网络工程,计算机软件,电子信息工程,通信工程等。

WiFi产品射频电路调试经验

Wi-Fi产品射频电路调试经验 https://www.doczj.com/doc/d22491905.html,/article/11-04/422921302067041.html?sort=1111_1119_1438_0 2011-04-06 13:17:21 来源:电子发烧友 关键字:Wi-Fi 射频电路调试经验 这份文档是生花通信的一线射频工程师总结了的Wi-Fi产品开发过程中的一些射频调试经验,记录并描述在实际项目开发中遇到并解决问题的过程。 1 前言 这份文档总结了我工作一年半以来的一些射频(Radio Frequency)调试(以下称为Debug)经验,记录的是我在实际项目开发中遇到并解决问题的过程。现在我想利用这份文档与大家分享这些经验,如果这份文档能够对大家的工作起到一定的帮助作用,那将是我最大的荣幸。 个人感觉,Debug过程用的都是最简单的基础知识,如果能够对RF的基础知识有极为深刻(注意,是极为深刻)的理解,我相信,所有的Bug解起来都会易如反掌。同样,我的这篇文档也将会以最通俗易懂的语言,讲述最通俗易懂的Debug技巧。 在本文中,我尽量避免写一些空洞的理论知识,但是第二章的内容除外。“微波频率下的无源器件”这部分的内容截取自我尚未完成的“长篇大论”——Wi-Fi产品的一般射频电路设计(第二版)。 我相信这份文档有且不只有一处错误,如果能够被大家发现,希望能够提出,这样我们就能够共同进步。 2 微波频率下的无源器件 在这一章中,主要讲解微波频率下的无源器件。一个简单的问题:一个1K的电阻在直流情况下的阻值是1K,在频率为10MHz的回路中可能还是1K,但是在10GHz的情况下呢?它的阻值还会是1K吗?答案是否定的。在微波频率下,我们需要用另外一种眼光来看待无源器件。 2.1. 微波频率下的导线 微波频率下的导线可以有很多种存在方式,可以是微带线,可以是带状线,可以是同轴电缆,可以是元件的引脚等等。 2.1.1. 趋肤效应 在低频情况下,导线内部的电流是均匀的,但是在微波频率下,导线内部会产生很强的磁场,这种磁场迫使电子向导体的边缘聚集,从而使电流只在导线的表面流动,这种现象就称为趋肤效应。趋肤效应导致导线的电阻增大,结果会怎样?当信号沿导体传输时衰减会很严重。 在实际的高频场合,如收音机的感应线圈,为了减少趋肤效应造成的信号衰减,通常会使用多股导线并排绕线,而不会使用单根的导线。

射频电路PCB的设计技巧

射频电路PCB的设计技巧 摘要:针对多层线路板中射频电路板的布局和布线,根据本人在射频电路PCB设计中的经验积累,总结了一些布局布线的设计技巧。并就这些技巧向行业里的同行和前辈咨询,同时查阅相关资料,得到认可,是该行业里的普遍做法。多次在射频电路的PCB设计中采用这些技巧,在后期PCB的硬件调试中得到证实,对减少射频电路中的干扰有很不错的效果,是较优的方案。 关键词:射频电路;PCB;布局;布线 由于射频(RF)电路为分布参数电路,在电路的实际工作中容易产生趋肤效应和耦合效应,所以在实际的PCB设计中,会发现电路中的干扰辐射难以控制,如:数字电路和模拟电路之间相互干扰、供电电源的噪声干扰、地线不合理带来的干扰等问题。正因为如此,如何在PCB的设计过程中,权衡利弊寻求一个合适的折中点,尽可能地减少这些干扰,甚至能够避免部分电路的干涉,是射频电路PCB设计成败的关键。文中从PCB的LAYOUT角度,提供了一些处理的技巧,对提高射频电路的抗干扰能力有较大的用处。 1 RF布局 这里讨论的主要是多层板的元器件位置布局。元器件位置布局的关键是固定位于RF路径上的元器件,通过调整其方向,使RF路径的长度最小,并使输入远离输出,尽可能远地分离高功率电路和低功率电路,敏感的模拟信号远离高速数字信号和RF信号。 在布局中常采用以下一些技巧。 1.1 一字形布局 RF主信号的元器件尽可能采用一字形布局,如图1所示。但是由于PCB板和腔体空间的限制,很多时候不能布成一字形,这时候可采用L形,最好不要采用U字形布局(如图2所示),有时候实在避免不了的情况下,尽可能拉大输入和输出之间的距离,至少1.5 cm 以上。

射频集成电路综述

射频集成电路低噪声放大器研究前景

摘要 近年来,随着无线通信技术在移动通信、全球互联接入以及物联网等领域越来越广泛的应用。对于现代通信系统往往要求提供两个甚至更多的无线服务,因此就要求射频电路前端中的关键部件低噪声放大器(Low Noise Amplifier,LNA)能在多个频带下具有放大能力。因此如何能够放大多个频带的宽带低噪声放大器成为研究热点。 低噪声放大器是现代无线通信、雷达、电子对抗系统等应用中的十分重要的部分,常用于接收系统的前端,在放大信号的同时降低噪声干扰,提高系统灵敏度。如果在接受系统的前端连接高性能的低噪声放大器,在低噪声放大器增益足够大的情况下,就能抑制后级电路的噪声,则整个接收机系统的噪声系数将主要取决于放大器的噪声。如果低噪声放大器的噪声系数降低,接收机系统的噪声系数也会变小,信噪比得到改善,灵敏度大大提高。由于可见噪声放大器的性能制约了整个接收系统的性能,对于整个接收系统技术水平的提高,也起了决定性的作用。 宽带低噪声放大器是一种需要有良好的输入匹配的部分。输入匹配是要求兼顾阻抗匹配和噪声系数的,对于这两个指标一般来说是耦合在一起的。现有的宽带匹配技术需要反复协调电路各部分参数,通过对阻抗匹配和噪声系数这两个指标的折中设定来达到输入匹配的要求,因此给设计增大了难度。 噪声抵消技术是一种可以有效的将上述两个重要参数进行分离的方法,对降低设计复杂度、缩短设计周期、降低设计成本具有重要意义。现有的噪声抵消电路结构基本上都是基于CMOS工艺的。近年来,随着SiGe 技术的发展,SiGe BiCMOS工艺逐渐成为射频集成电路工艺的主流。然而,基于 SiGe工艺的采用噪声抵消结构的设计方法还未见报道。因此,本文基于SiGe工艺,开展对工作于0.8-5.2GHz频段低噪声放大器的噪声抵消电路结构的设计研究。

射频电路设计困境及对策

射频电路设计地困境及对策 hc360慧聪网通信行业频道 2004-04-16 11:23:41 射频电路地设计技术一度专属于少数专家掌握并拥有其自己地专用芯片组,如今已能和数字电路模块及模拟电路模块集成在同一块 IC 里了.再则,射频电路设计中固有地临界尺寸要求,更增加了工程压力. 要点●射频电路设计师必须经常采用间接测量电路性能地方式,来推断电路故障地原因. ●射频电路设计问题正在影响数字电路设计和模拟电路设计. ●将射频电路集成在同一块印制电路板或 IC 上,这会促使人们使用一种新地设计方法. ● EDA 厂商正在开始提供集成时域仿真和频域仿真地分析工具. 射频电路设计就是对发射电磁信号地电路进行设计.射频意为无线电频率,因为射频电路在其初期,只能发射调幅和调频两个波段地无线电信号.今天,把高频电路设计称为“射频电路设计”,只是沿用了历史名称.图1表明,自从 20 世纪 60 年代使用 UHF 电视技术以来,广播设备使用高于 300000 MHz地频率.从那时以来,通信设备地内容、频率和带宽都增加了.安捷伦科技平台地经理Joe Civello说,对模拟/混合信号 IC 设计师地挑战正以前所未有地速度在加剧.在加大带宽和提高最终产品功能地市场需求推动下,设计正在进入更高地频率范围,并不断提高复杂性.工程师们正在把射频电路与模拟及数字纳M电路集成在一起.吉比级数据速率正在使数字电路像微波电路那样工作.不断扩充而更复杂地无线通信标准,如 WiFi<无线相容性认证)802.11a/b/g、超宽带和蓝牙标准,都要求设计师去评估其设计对系统整体性能地影响. 形状因子、功耗和成本推动着模拟电路设计、射频电路设计和数字电路设计地日益集成化.便携式设备小巧轻便,功耗和成本尽可能低.集成度直接影响着最终电子产品地制造成本、尺寸和重量,通常也决定所需功率地大小.设计师从材料清单中每去掉一个元件,维持该元件地供应链所需日常开支就会随之减少,最终产品地制造成本就会下降,产品尺寸也会缩小. 德州仪器公司(TI>负责无线应用地研究经理Bill Krenik说,射频电路地设计一向是很困难地,因为缺乏恰当地检测仪器,使高频信号地分析复杂化了.工程师们不得不采取间接地测量方法,并根据他们能够观察到地电路行为状态来推断电路特性.随着工程师们在同一块芯片上实现数字电路、模拟电路和射频电路,种种集成问题就使这一问题进一步复杂化.通过衬底传输或通过 IC 表面辐射地数字信号会影响射频或模拟部分地噪声敏感度.这些潜在地影响大多会结合在一起,从而使最初地硅片存在各种问题.传统地调试方法也许不再适用,这意味着你必须正确地进行设计,并在设计投片之前就要准确无误地对尽可能多地物理效应建立模型.当设计方法不能准确地建立硅片地模型时,设计小组通常别无选择,只能把器件制造出来,再去观察其工作状态.走这条途径就像一场赌注很高地赌博,多数公司只是把它作为最后地一招. 模拟电路和射频电路历来都制作在各自地芯片上,这样可以更方便地在系统中隔离噪声,防止耦合到电路地敏感节点中.工程师们把这几类设计元件都集成在同一块芯片上时,就不能忽视噪声问题.假如没有某种形式地精确硅衬底模型,工程师们也许要到硅片从工厂退回后才会知道问题地存在.这类产品地开发几乎总是需要一个由各个工程领域地专家组成地小组.很少有哪个设计师既有射频专业知识,又有模拟电路专业知识;再则,射频电路专家和模

HY016射频设计6_射频匹配电路调试

HY016射频设计6_射频匹配电路调试 全部频段在QSPR中校准通过后,便可以进行电路优化了,也就是我们通常说的调匹配。 我们实验室采用的是盲调,即以最终实测性能的好坏来决定最终的匹配电路;与之对应的另一种方法是根据器件规格书,用网络分析仪逐个端口调试,使其和规格书要求相对应。对于RDA PhaseII方案,盲调性能挺好。 对于频分电路(FDD LTE/WCDMA/CDMA),重点是调双工器的输入输出端匹配;对于时分电路(TDD-LTE/TDSCDMA),重点是调滤波器的输入输出匹配。双工的调试相对复杂,本文会以HY016欧洲版中B20双工为例进行说明。 射频电路调试的最终原则包括: 1,发射端兼顾电流和线性度,也就是在ACLR余量足够的情况下尽可能的降低最大发射功率的电流,同时兼顾整个频段中高中低信道的平坦度。 2,接收端以提高接收灵敏度为最终原则 3,不是把某块板子的性能调到最佳为准;而是要留够余量,保证量产大批量板子的性能都能达到良好为准 双工器电路我通常的调试步骤: 1,初始bom采用datasheet的参考匹配 2,调节公共端的到地电感,让低、中、高信道特性一致,包括电流和ACLR 3,调节公共端的串联电感/电容,找出ACLR和电流的最佳权衡 4,调节发射端输入匹配,找出ACLR和电流的最佳权衡,最终确认发射端匹配 5,在QSPR下直接校准接收进行接收调试:若信道间差距过大就优先到地电感;若信道间差距不大则优化串联电感/电容;调试完成后实测灵敏度最终确认接收匹配 调试发射电路时,需要和仪表相连。通常在用QSPR完成校准后,再在QPST->PDC中导入并激活ROW_Gen_Commercial.MBN便可以和仪表通信了。关于MBN激活这部分,会在后续工厂文件部分详细说明,这里不再展开。

最新北师大版七年级数学上册第四单元基本平面图形知识点

第四章:基本平面图形 知识梳理 一、线段、射线、直线 1、线段、射线、直线的定义 (1)线段:线段可以近似地看成是一条有两个端点的崩直了的线。线段可以量出长度。 (2)射线:将线段向一个方向无限延伸就形成了射线,射线有一个端点。射线无法量出长度。 (3)直线:将线段向两个方向无限延伸就形成了直线,直线没有端点。直线无法量出长度。 : 联系:射线是直线的一部分。线段是射线的一部分,也是直线的一部分。 2、点和直线的位置关系有两种: ①点在直线上,或者说直线经过这个点。 ②点在直线外,或者说直线不经过这个点。 3、直线的性质 (1)直线公理:经过两个点有且只有一条直线。简称两点确定一条直线。 (2)过一点的直线有无数条。 (3)直线是是向两方面无限延伸的,无端点,不可度量,不能比较大小。 (4)直线上有无穷多个点。 (5)两条不同的直线至多有一个公共点。 4、线段的比较 (1)叠合比较法(用圆规截取线段);(2)度量比较法(用刻度尺度量)。 5、线段的性质 (1)线段公理:两点之间的所有连线中,线段最短。 (2)两点之间的距离:两点之间线段的长度,叫做这两点之间的距离。 (3)线段的中点到两端点的距离相等。 (4)线段的大小关系和它们的长度的大小关系是一致的。 6、线段的中点:如果线段上有一点,把线段分成相等的两条线段,这个点叫这条线段的中点。 若C 是线段AB 的中点,则:AC=BC= 2 1 AB 或AB=2AC=2BC 。 二、角 1、角的概念: (1)角可以看成是由两条有共同端点的射线组成的图形。两条射线叫角的边,共同的端点叫角的顶点。 (2)角还可以看成是一条射线绕着它的端点旋转所成的图形。 2、角的表示方法: 角用“∠”符号表示,角的表示方法有以下四种: ①用数字表示单独的角,如∠1,∠2,∠3等。 ②用小写的希腊字母表示单独的一个角,如∠α,∠β,∠γ,∠θ等。 ③用一个大写英文字母表示一个独立(在一个顶点处只有一个角)的角,如∠B ,∠C 等。 C

射频发射机电路设计

射频发射机电路设计 文献综述 前言 超外差接收是一种巧妙的接收方法,利用它,能使因无线电信号直接接收和放大而引起的一系列困难得到解决。在费森登思想的基础上,1912年,阿姆斯特朗在接收机中设置了本机振荡(简称“本振”)电路,通过双联可变电容器进行同步调谐,保证本振频率始终跟踪外来信号频率的变化,而且始终比外来信号高一个固定的中频。这样,不管所接收的各个电台的载波频率差别多大,与本振频率混频后,产生的都是统一的中频信号。再对这个统一的中频信号进行放大、检波,就可得到所需要的音频信号。利用超外差原理设计的电路,能使接收机电路大大简化,接收机的性能与灵敏度也得到提高。当时阿姆斯特朗还成功地组装出一台超外差接收机。同年,阿姆斯特朗与德·福雷斯特及兰茂尔各自独立发明了再生电路。 超外差接收原理不仅适用于收音机电路,还具有广泛的应用价值,它适用于电视广播、微波通信、雷达等无线电技术的各个领域。超外差原理已成为现代无线电接收理论的基础,凡是涉及无线电信号接收的电子设备,都离不开超外差接收电路。阿姆斯特朗的这项重要发明,不仅推动了无线电技术早期发展的进程,而且在无线电事业的征途上至今还闪现着它的技术光芒。 超外差原理的典型应用是超外差接收机。从天线接收的信号经高频放大器(见调谐放大器)放大,与本地振荡器产生的信号一起加入混频器变频,得到中频信号,再经中频放大、检波和低频放大,然后送给用户。接收机的工作频率范围往往很宽,在接收不同频率的输入信号时,可以用改变本地振荡频率f1的方法使混频后的中频fi保持为固定的数值。 概述 超外差接收机是超外差电路的典型应用,是全面学习模拟电路基础知识最好的切入点之一。通过简单分析超外差式接收机中输入电路、变频电

射频电路和射频集成电路线路设计

射频电路和射频集成电路线路设计(9天) 培训时间为9天 课程特色 1)本讲座总结了讲演者20多年的工作,报告包括 o设计技术和技巧的经验, o获得的美国专利, o实际工程设计的例子, o讲演者的理论演译。 o 【主办单位】中国电子标准协会 【协办单位】智通培训资讯网 【协办单位】深圳市威硕企业管理咨询有限公司 o 2)本讲座分为三个部分: A. 第一部分讨论和強调在射频电路设计中的设计技术和技巧, 着重论述设计中关鍵性 的技术和技巧,譬如,阻抗匹配,射频接地, 单端线路和差分线路之間的主要差別,射频集成电路设计中的难题……可以把它归类为橫向论述. 到目前为止,这种着重于设计技巧的論述是前所未有的,也是很独特的。讲演者认为,作为一位合格的射频电路设计的设计者,不论是工程师,还是教授,应当掌握这一部分所论述的基本的设计技术和技巧,包括: ?阻抗匹配; ?接地; ?射频集成电路设计; ?测试 ?画制版图; ? 6 Sigma 设计。 B. 第二部分: 描述射频系统的基本参数和系统设计的基本原理。

C. 第三部分: 提供个别射频线路设计的基本知识。这一部份和现有的有关射频电路和 射频集成电路设计的书中的论述相似, 其內容是讨论一个个射频方块,譬如,低噪声放大器,混频器,功率放大器,壓控振蕩器,頻率综合器……可以把它归类为纵向论述,其中的大多数内容来自本讲座的讲演者的设计 ?在十几年前就已经找到了最佳的低噪声放大器的设计方法但不曾经发表过。在低噪声放大器的设计中可以同时达到最大的增益和最小的噪 声; ?获得了可调谐濾波器的美国专利; ?本讲座的讲演者所建立的用单端线路的设计方法来进行差分对线路的设计大大简化了设计并缩短了线路仿真的时间; ?获得了双线巴伦的美国专利。 学习目标在本讲座结束之后,学员可以了解到 o比照数码电路,射頻电路设计的主要差別是什麼? o什么是射频设计中的基本概念? o在射频电路设计中如何做好窄带的阻抗匹配? o在射频电路设计中如何做好宽带的阻抗匹配? o在射频线路板上如何做好射频接地的工作? o为什么在射频和射频集成电路设计中有从单端至双差分的趋势? o为什么在射频电路设计中容许误差分析如此重要? o什么是射频和射频集成电路设计中的主要难题?射频和射频集成电路设计师如何克服这些障碍?

七年级数学上册第四章基本平面图形

第四章基本平面图形 第一节线段、射线和直线 【学习目标】 1.使学生在了解直线概念的基础上,理解射线和线段的概念,并能理解它们的区别与联系. 2.通过直线、射线、线段概念的教学,培养几何想象能力和观察能力,用运动的观点看待几何图形.3.培养对几何图形的兴趣,提高学习几何的积极性. 【学习重难点】重点:直线、射线、线段的概念. 难点:对直线的“无限延伸”性的理解. 【学习方法】小组合作学习 【学习过程】 模块一预习反馈 一、学习准备 1.请同学们阅读教材,并完成随堂练习和习题 2.(1)绷紧的琴弦、人行横道线都可以近似地看做。线段有端点。 (2)将线段向一个方向无限延长就形成了。射线有端点。 (3)将线段向两个方向无限延长就形成了。直线端点。 3.线段射线和直线的比较 概念图形表示方法向几个方向延伸端点数可否度量 线段 射线 直线 4.点与直线的位置关系 点在直线上,即直线点;点在直线外,即直线点。 5.经过一点可以画条直线;经过两点有且只有条直线,即确定一条直线。 二、教材精读 6.探究:(1)经过一个已知点A画直线,可以画多少条? 解: (2)经过两个已知点A、B画直线,可以画多少条? 解: (3)如果你想将一根细木条固定在墙上,至少需要几枚钉子? 解: 归纳:经过两点有且(“有”表示“存在性”,“只有”表示“唯一性”) 实践练习:如图,已知点A、B、C是直线m上的三点,请回答 A B C m (1)射线AB与射线AC是同一条射线吗? (2)射线BA与射线BC是同一条射线吗? (3)射线AB与射线BA是同一条射线吗? (4)图中共有几条直线?几条射线?几条线段? 分析:线段有两个端点;射线有一个端点,向一方无限延伸;直线没有端点,向两方无限延伸 解: 三、教材拓展 7.已知平面内有A,B,C,D四点,过其中的两点画一条直线,一共能画几条? 分析:因题中没有说明A,B,C,D四点是否有三点或四点在同一直线上,所以应分为三种情况讨论 解: 实践练习:如图,图中有多少条线段?

射频通信电路课程设计报告

射频通信电路课程设计报告 引言 混频器在通信工程和无线电技术中,应用非常广泛,在调制系统中,输入的基带信号都要经过频率的转换变成高频已调信号。在解调过程中,接收的已调高频信号也要经过频率的转换,变成对应的中频信号。特别是在超外差式接收机中,混频器应用较为广泛,如AM 广播接收机将已调幅信号535KHZ-一1605KHZ要变成为465KHZ中频信号,电视接收机将已调48.5M一870M 的图象信号要变成38MHZ的中频图象信号。 常用的振幅检波电路有包络检波和同步检波两类。输出电压直接反映调幅包络变化规律的检波电路,称为包络检波电路,它适用于普通调幅波的检波。通常根据信号大小的不同,将检波器分为小信号平方律检波和大信号峰值包络检波两信号检波。 目前, 在应用较广泛的电路仿真软件中, Pspice是应用较多的一种。Psp ice 能够把仿真与电路原理图的设计紧密得结合在一起。广泛应用于各种电路分析,可以满足电路动态仿真的要求。其元件模型的特性与实际元件的特性十分相似,因而它的仿真波形与实验电路的测试结果相近,对电路设计有重要的指导意义。 由此可见,混频电路是应用电子技术和无线电专业必须掌握的关键电路。 [3]

目录 引言 (2) 一.概述 (3) 二. 方案分析 (4) 三.单元电路的工作原理 (6) 1.LC正弦波振荡器 (6) 2.模拟乘法器电路 (8) 3.谐振电路 (9) 4.包络检波 (12) 四.电路性能指标的测试 (16) 五.课程设计体会..................................................................................................... 错误!未定义书签。参考文献..................................................................................................................... 错误!未定义书签。

利用思维导图进行高中元素及其化合物教学

利用思维导图进行高中元素及其化合物教学 徐野在中学化学教学中有许多教学方法,若得到合理使用就能极大的提高学生的学习效率和教师的教学效率。其中一种较为有效的手段——“思维导图",对学生逻辑思维能力的提升以及知识整理能力有很大帮助。化学这门学科的知识点较琐碎,并且涉及许多的化学元素及化合物间的反应方程式。基于此,要想将此门学科讲授的生动形象且内容丰富是非常难的,尤其是在学生学习了化学元素及化合物的性质及各种反应等内容后,在记忆方面也是非常大的考验。因此,在化学元素及化合物的教学中,“思维导图”的运用可以帮助学生理清思路,通过制作思维导图明确每一种元素及化合物之间的转化关系,将多种物质之间的关系串联起来,在头脑中形成知识网,理解性记忆,不再是死记硬背,生搬硬套。比如需要讲解一个化学的反应方程式,就必须要让学生理解物质的性质及反应原理,而物质性质可以从元素的原子结构、物质组成上入手,在关系上就可以表现为将这个元素作为一个主题,然后将它的单质、化合物作为二级内容,接着再根据其性质进行延伸,这样接连的延展过程最终就形成“思维导图”。学生按照自己的思维方式制作出各种形式的思维导图,可以是图画、也可以是流程图,让学生理解每一级、每一个分支的由来,有助于记忆枯燥乏味的化学反应方程式。 1.“思维导图”的制作方法 “思维导图”能够建构出更加有条理的知识框架体系,对所要建构

的内容能够形成知识体系网状结构,有更加清晰明了的认知,这样不仅有利于提高学习的效率,也能为之后的复习打好基础,极大地方便了知识的提取。思维导图的制作步骤如下:首先要选取好一个“主题”,然后对这个主题关联的内容、对象向外进行二级、三级等延展,进行思维的发散。就像是一颗大树干上接了很多的小树杈分支。注意每个级别的“树杈”上都要标注关键词,这样就能形成一个知识点的通路,思维导图也就制作完成了。 2.“思维导图”的课堂应用 在教学过程中,教师可以对某个知识点进行“思维导图”的制作,方便教学,也能够让学生加深对此知识点的理解。也可以做为复习的手段之一,以小组为单位分配制作“思维导图”任务,给学生布置一个相同或者不同的知识点,让他们自己动手去制作“思维导图”,当成课堂作业来完成达到复习的目的。这样他们就能够自己去展开某个知识点的生成以及被生成过程,或者对元素的分类等内容进行展开。也可以做为学生课前自主预习的工具,上课时结合自己的思维导图找到知识疏漏并及时得到补充。同时,在学生制作完成之后上台对自己的作品进行说明,以小组为单位由学生进行作品评选,得选率最高的作品主人就可以得到相应的奖品。这样不仅锻炼了他们的动手能力,又活跃了课堂氛围,在轻松愉悦的环境下对知识进行主动的学习。3.“思维导图”应用的意义 思维导图的利用可以对新知识进行有效的预习,也可以对之前学过的旧知识进行复习。有利于加深之前所学内容的印象,并形成系统

(完整版)七年级数学上册思维导图

第一章 有理数 思维导图 ?????????????????????????????????????????????????????????????????????????????????????????????????????????????????<≤??????????????????分配律乘法结合律加法结合律结合律乘法交换律加法交换律交换律运算律乘方的运算符号法则有理数的除法法则有理数的乘法法则有理数的减法法则有理数的加法法则法则运算方法叫做科学记数法是正整数),这种记数,的形式(其中把一个数表示乘——科学记数法数相同因数的个数叫做指相同的因数叫做底数,叫做幂叫做乘方,乘方的结果个相同因数的积的运算求——乘方的两个数互为倒数—乘积是—倒数的绝对值叫做数的点与原点的距离,一般地,数轴上表示数——绝对值数,叫做互为相反数—只有符号不同的两个—相反数相关概念负有理数正有理数按性质符号分分数整数按定义分分类有理数n 10a 110a n 1a a 0n

第二章 整式的加减 思维导图 ?????????????????? ????????????????????????????????????????????????????????????????合并同类项去括号步骤反的符号与原来的符号相去括号后原括号内各项——括号外因数为负同的符号与原来的符号相去括号后原括号内各项——括号外因数为正去括号作为合并后项的系数所得的结果把同类项的系数相加,——合并同类项同字母的指数也相同—所含字母相同并且相—同类项整式的加减的次数—多项式中次数最高项—次数—不含字母的项—常数项项式—组成多项式的每个单—项—几个单项式的和—定义多项式指数的和—单项式中所有字母的 —次数—单项式中的数字因数—系数的式子—由数或字母的积组成—定义单项式用字母表示数减加的式整

RF电路设计

在射频电路中,放大器应用非常的多,放大器的功能就是将直流的能量转换为射频信号的能量,所以射频放大器需要加入直流的偏置提供射频放大器的直流工作点。在频率相对低的射频电路中(GHZ以下或者是几个GHZ),一般采用高频扼流圈或者电感串在供电的线路中,为了阻断射频的信号通过直流偏置电路进入供电线路中,也起到了防止射频功率的损失。在更高的频率的射频电路中,往往采用四分之一波长线和扇形电容的提供直流的偏置。射频信号沿着四分之一波长线到电源,相当于是四分之一波长的短路线,射频信号进入四分之一波长的短路线并不会对信号功率造成损失,同时扇型电容的作用更是加强了这种作用,当线路供电线路中加入扇型电容后,只要扇型电容的角度和半径足够大,那么射频主线路中的射频的能量就很少损失。在射频电路中,有时为了测试方便,经常要加入一些测试点,测试点会极大的方便电路的调试,准确的链路各级的信号状态。但是测试点的加入要注意,在非测试模式下,尽量不影响主线路的信号的能量的传输。为了有效的作到这点,一个比较有效的方法是,把测试电路中的串连电容和主线路中测试电容共用一个焊点,当测试时,焊接测试用电容,主线路电容不焊接,可以准确检测该点的信号。当正常工作时,则需要将测试用的电容取下,焊接上主线路中的电容,测试线路不会对于主信号造成影响。在这里着重提到的是,如果不是按照上述方法,而是在主线路中分出一路微带线,如果微带线刚好是四分之一波长,那么这会对信号造成极大的损失。 在射频放大线路中,为了有限的调节功率和提高驻波比,从而提高链路的稳定性,经常在线路中引入PI型的衰减网络。为了方便工程中的使用,特将一些常用的衰减值的网络列举出 衰减量串连电阻并联电阻实际衰减量(dB)回波损耗(dB) 1 dB 51 820 -0.97 -40 2dB 10 430 -1.88 -37 3 dB 18 300 -3 -44 5 dB 30 180 -4.9 -65 6 dB 39 150 -6.1 -43.6 8dB 50 120 --7.68 -56 9dB 68 100 -9.6 -49 12dB 100 82 -12.4 -47 PI型衰减器对于线路中的功率调节起到了重要的作用,熟悉这些值对于快捷的电路调节是非常有效的。对于一些多级高增益的电路,PI型的衰减器可以有效的防止自激振荡现象。 在射频的电路,有时需要将一路信号分成两路信号,在低频时,常采用简单的电阻功分网络实现。电阻的功分网络会对信号造成一定的衰减,损失信号的功率。最常用的时在主线路和其他两个线路中都串联18欧姆的电阻,起到功分和匹配的作用,在其他不需要等功分的场合就需要调节电阻的值来实现功率的分配。

七年级数学上册思维导图82902

精品教育 第一章 丰富的图形世界 ?????????????????????????????????棱柱:n 棱柱有__个顶点,__条棱,__个面柱体圆柱几何体生活中的立体图形棱锥:n 棱锥有__个顶点,__条棱,__个面锥体圆锥:构成:点动成__,线动成__,面动成__平面展开图正方体展开与折叠丰对立面 富的图形正方体______________________________世界圆柱___________________截一个几何体??????????????????????????????????????????????????????????????????? ____________圆锥_________________________________圆_________________________________主视图左视图从三个方向看俯视图

精品教育 第二章 有理数 ________________________________________________________________________________________?????????????????按定义分分类按性质符号分数轴:三要素:几何意义:代数意义:____________________,叫做互为相反数。相反数——字母表示:a 的相反数是____,a+b 的相反数是__理数相关概念________01a ?????????≥????≤????__性质:若a,b 互为相反数,则_____________.几何意义:___________________________,a 0绝对值——代数意义:a=____,a 0性质:非负性倒数——乘积是的两个数互为倒数. 正数的倒数是___,负数的倒数是___,0的倒数是_____._____________________乘方——1a 10n ???????????????????????????????????????≤

相关主题
文本预览
相关文档 最新文档