当前位置:文档之家› 压裂设计基础参数

压裂设计基础参数

压裂设计基础参数
压裂设计基础参数

压裂设计基础参数

一、油气井参数

设计中油气井参数决定了压裂井的施工条件。主要包括:

1.井的类别与井网密度;

2.井径、井下管柱(套管、油管)与井口装置的规范、尺寸及压力定额;

3.压裂层段的固井质量、井斜角;

4.射孔井段的位置、长度、射孔弹型号、射孔孔数与孔眼尺寸;

5.井下工具的名称、规范、尺寸、压力定额、承受温度与位置。

二、油气层参数

油气层参数决定了井在压裂前后的生产反应。这些参数是:

1.储层有效渗透率、孔隙度与含油饱和度以及这些参数的垂向分布;

2.储层有效厚度及其在平面上的延伸;

3.储层压力梯度与静压力;

4.储层静态温度;

5.储层流体性质,包括密度、粘度与压缩系数等;

6.储层岩石力学性质,如泊松比、杨氏模量、抗压强度与岩石布氏硬度等;

7.储层地应力的垂向分布及最小水平主应力的方位;

8.遮挡层的岩性、厚度与地应力值。

三、压裂工艺参数

压裂参数决定了产生裂缝的几何尺寸与裂缝导流能力。包括:

1.使用二维设计模型时压裂施工所形成的裂缝高度或使用拟三维、全三维模型时,储层与上、下遮挡层的地应力差;

2.裂缝延伸压力和裂缝闭合压力;

3.压裂液视粘度、流态指数和稠度系数;

4.压裂液初滤失和综合滤失系数;

5.压裂液流经井下管柱与射孔孔眼的摩阻损失;

6.压裂液纯滤失高度的垂向分布;

7.支撑剂类型、粒径范围、颗粒密度、体积密度;

8.作为裂缝闭合压力函数的支撑剂导流能力与水力裂缝中支撑剂的渗透率;

9.压裂施工中的泵注排量;

10.动用设备功率及其压力极限。

压裂防砂工艺参数优化及应用

压裂防砂工艺参数优化及应用 发表时间:2014-09-03T16:05:40.030Z 来源:《科学与技术》2014年第6期下供稿作者:武梅英 [导读] 通过多方面探究与应用,形成了自己特有的压裂防砂参数优化理论和优化模板,为压裂防砂设计提供了理论指导。 中石化胜利油田纯梁采油厂工艺所武梅英 随着我厂稠油开发的不断深入,油井出砂日益严重;目前的稠油井层薄、夹层多,储层非均质性强,渗透率低,注汽压力高,敏感性强,粘土含量高;众多的开发难点使得储层的动用程度难以达到理想的要求。但是随着压裂防砂工艺的不断发展,压裂防砂可以产生高导流能力的裂缝、突破地层伤害带、缓解岩石骨架的破坏、减轻冲刷和携带能力、对地层砂产生桥堵等作用,这可以从根本上解决上述稠油井中存在的开发问题,起到增产和防砂的双重目的。从2011 年开始引进实施压裂防砂以来,压裂防砂井数直线增加,2013 年压裂防砂井突破47 口井。虽然我厂在压裂防砂技术方面取得显著成绩,创立了“两少、两大、一高、三优”的防砂模式——即前置少、交联少,加砂量大、排量大,砂比高,优化携砂液、优化裂缝形态、优化施工模式。但是在压裂防砂的设计优化、模拟方面一直没有得到突破,设计施工所采用的参数理论大多依靠现场施工经验总结,没有严格的理论基础,压裂防砂裂缝预测困难,施工参数无法优化,新区块新井压裂防砂优化设计依靠外单位,这都严重限制了我厂在压裂防砂技术方向的深入发展。2013 年下半年,引入“meyer 压裂防砂软件”进行攻关研究,突破压裂防砂软件优化模拟的技术瓶颈,冲出相关科研单位对压裂防砂优化模拟技术的封锁。研究初始,为对摩阻、渗流等基本参数进行设定,我们首选了T38-201 井进行了模拟分析,因为该井有完整的测井数据、压裂防砂采用示踪陶粒、施工过程采用裂缝检测技术,各种数据完善齐全,能对裂缝的模拟起到校正和比对的作用;因此我们首先从测井数据下手,通过地应力计算软件对储层的地应力、泊松比、断裂韧性等参数进行计算分析,建立储层地应力模型之后,将压裂防砂的实际泵注程序导入到软件中进行模拟计算分析,得出模拟裂缝数 据(如图:) 之后将得到的数据跟实际数据进行比对分析:通过多次设定参数进行比对分析,终于在该区块设定合适渗流、摩阻等参数,在该系列参数下,产量的模拟裂缝半缝长126.01m,缝高24.64m,实际裂缝左边134.5m,右边129.8m,缝高26m,模拟数据跟实际数据基本吻合,为下步在T38-10 块的压裂防砂设计施工中打下坚定的基础。为使在下步施工过程中对参数的优化能更直接方便,我们以T38-201 模型为基础进行了深入的分析研究,成功创立了压裂防砂参数优化理论体系,其中主要包括:(1)优化前置控缝长技术;(2)合理排量控缝高技术;(3)变排量施工提缝宽技术;(4)快提排量增缝高,缓提排量延缝长技术等一系列理论基础,成功的指导了压裂防砂施工中参数的合理调整。即压裂防砂工艺参数优化主要是从缝长、缝高、缝宽三方面入手,其中缝长主要与前置液用量、提排量的速度有直接关系,缝宽主要与施工排量、提排量的速度有相关关系,缝宽主要与加砂量、变排量施工参数有相关关系。根据优化理论及现场施工的统计分析,目前压裂防砂工艺的模拟优化主要用在以下几个方面:(1)优化前置液用量(2)预防水窜(3)压开薄互层(4)确定是否采用分层压裂防砂。(1)优化前置液用量…2013 年下半年T38-10 块产能建设的井全部采用“meyer压裂防砂优化模拟软件”进行优化设计施工。其中:前置液用量从上半年23.9 方降低到19.5 方,平均单井前置液降低4.4 方;加砂量从24.5 方增加到37.6 方,平均单井增加13.1 方;最高砂比从81.4%增加到86.2%,施工的合理性与成功率明显增加.(2)预防水窜。通过对储层改造进行模拟预测,及时调整施工参数,避免了窜通水层;如:J29-1 井等上下存在水层的井,采用限排量压裂控缝高技术及变排量提缝宽技术,避免了压窜水层。(3)压开薄互层。T38X429 井,上部存在一较大厚度油层,施工过程中为尽可能多的沟通油层,首先通过模拟施工排量压裂模拟,发现在排量2 方/min 的时候,并不能成功沟通上部油层,在排量2.6 方/min 的时候,可以正好连通道上部油层的顶部,因此施工过程中采用了大排量2.6 方/min 的压裂防砂施工,最终根据裂缝检测数据发现,成功沟通上部油层,在保证施工安全的前提下,合理优化调整施工参数,使得压裂防砂的质量得以大幅度提升。(4)确定是否采用分层压裂防砂。(图2) T38X421 井上下储层物性差距较大,通过模拟优化发现,上下储层同时改造难度较大,如果采用笼统压裂防砂的方式,上层的半缝长在达到65.23m 的时候,下层只有30.54m,下层达不到充分改造的目的,因此准备在该层采用分层压裂防砂设计施工改造储层。经过这一年努力,我厂全年完成压裂防砂47 口井,模拟设计优化20 口井,避免压窜水层4 口井,设计与实际情况符合率达到92.3%,压裂防砂工艺稳居先进水平。 通过多方面探究与应用,形成了自己特有的压裂防砂参数优化理论和优化模板,为压裂防砂设计提供了理论指导。下步将以T38-10 块二砂组生物灰岩油藏为基础,进行裂缝模型改造,建立“酸化+压裂防砂”双重改造裂缝模型;运用“meyer 压裂防砂软件”进行了储层酸化压

实验六PID控制系统参数优化设计

实验六 PID 控制系统参数优化设计 一.实验目的: 综合运用MATLAB 中SIMULINK 仿真工具进行复杂控制系统的综合设计与优化设计,综合检查学生的文献查阅、系统建模、程序设计与仿真的能力。 二.实验原理及预习内容: 1.控制系统优化设计: 所谓优化设计就是在所有可能的设计方案中寻找具有最优目标(或结果)的设计方法。控制系统的优化设计包括两方面的内容:一方面是控制系统参数的最优化问题,即在系统构成确定的情况下选择适当的参数,以使系统的某些性能达到最佳;另一方面是系统控制器结构的最优化问题,即在系统控制对象确定的情况下选择适当的控制规律,以使系统的某种性能达到最佳。 在工程上称为“寻优问题”。优化设计原理是“单纯形法”。MATLAB 中语句格式为:min ('')X f s =函数名,初值。 2.微分方程仿真应用:传染病动力学方程求解 三.实验内容: 1.PID 控制系统参数优化设计: 某过程控制系统如下图所示,试设计PID 调节器参数,使该系统动态性能达到最佳。(习题5-6) 1020.1156s s e s s -+++R e PID Y 2.微分方程仿真应用: 已知某一地区在有病菌传染下的描述三种类型人数变化的动态模型为 11212122232 3(0)620(0)10(0)70X X X X X X X X X X X X ααββ?=-=?=-=??==?

式中,X 1表示可能传染的人数;X 2表示已经得病的人数;X 3表示已经治愈的人数;0.0010.072αβ==;。试用仿真方法求未来20年内三种人人数的动态变化情况。 四.实验程序: 建立optm.m 文件: function ss=optm (x) global kp; global ki; global kd; global i; kp=x (1); ki=x (2); kd=x (3); i=i+1 [tt,xx,yy]=sim('optzwz',50,[]); yylong=length(yy); ss=yy(yylong); 建立tryopt.m 文件: global kp; global ki; global kd; global i; i=1; result=fminsearch('optm',[2 1 1]) 建立optzwz.mdl:

压裂设计规范

中国石油天然气集团公司企业标准 油水井压裂设计规范 Specification for fracturing program or oil&water well l范围 本标准规定了压裂井选井选层的依据、地质设计的编写、工艺设计的选择与编写、施工准备、压裂施工、压裂后排液、求产、资料录取、施工总结、压裂施工质量控制和安全与环保的技术要求。 本标准适用于油水井压裂设计。探井、气井压裂设计亦可参照使用。 2引用标准 下列标准所包含的条文,通过在本标准中引用而构成为本标准的条文。本标准出版时,所示标准均为有效。所有标准都会被修订,使用本标准的各方应探讨使用下列标准最新版本的可能性。 SY/T 5107-1995水基压裂液性能评价方法 SY/T 5108-1997压裂支撑剂性能测试推荐方法 SY/T 5289-2000油井压裂效果评价方法 SY/T 5836-93 中深井压裂设计施工方法 SY/T 6088-94深井压裂工艺作法 SY/T 6362-1998石油天然气井下作业健康、安全与环境管理体系指南 3选井、选层 3.1选井、选层应具备的资料 3.1.1地质情况:区块构造,井所处构造的位置,井与周围油、水井的连通情况,井控面积,距断层的距离。 3.1.2钻井资料:钻井液性能、浸泡油层的时间、钻井过程中事故处理、固井情况。 3.1.3井身结构:套管组合,各类套管规格、钢级、壁厚。 3.1.4储层参数和物性:储层岩性、物性、岩石力学参数、地应力剖面参数、地层破裂压力、含油水饱和度、地层天然裂缝的发育情况、储层敏感性分析、气测资料,组合测井资料。3.1.5射孔资料:射孔方式、射孔井段、射孔弹类型、射孔方位角、孔数、孔密。

利用测井信息优化压裂酸化设计方案_张瑞瑞

油田高压注汽锅炉在役检验与研究利用测井信息优化压裂酸化设计方案①作者简介:助理工程师,2003-07毕业于大庆石油学院石油工程专业 新疆石油科技2008年第3期(第18卷) 利用测井信息优化压裂酸化设计方案 张瑞瑞① 黄高传 周春燕 新疆油田公司采油工艺研究院,834000新疆克拉玛依 中国石油勘探开发研究院廊坊分院 新疆油田公司重油开发公司 摘要 与储层改造相关的测井信息主要有:地应力、岩石力学性质、物性(孔、渗、饱)等。除此之外对单井还有井径、井斜的变化 情况。作为储层改造方案和重点井的基础工作,过去很少利用测井信息进行地应力、岩石力学性质的系统研究。其中主要原因是辅助手段单一和专业细化使这一领域的研究成为盲区。 主题词测井信息压裂酸化优化设计 1前言 与储层改造相关的测井信息主要有:地应力、岩 石力学性质、储层结构、产状、物性(孔、渗、饱)以及地层流体、温度等。除此之外还有单井的井径、井斜的变化情况。作为储层改造方案和重点井的基础工作,过去很少利用测井信息进行地应力、岩石力学性质的系统研究。主要原因是辅助手段单一和专业细化使这一领域的研究成为盲区。近几年来,准噶尔盆地先后开发了莫北、盆5、陆梁等油田,这些油田的难点是井深、低渗、高温。并且都普遍带边底水;有些区块要进行注水开发,稳产、增产与控水对压裂酸化工艺提出的要求更高,因此必须依据一个共同的地质平台—测井信息深化地层认识为优化方案设计与地层评估提供重要依据。 准噶尔盆地油区,今后将进入注水开发,如何利用压裂酸化工艺技术进行稳油控水,油层或单井的基础地质研究显得尤为重要。本文介绍测井信息在压裂酸化设计方案中的重要作用。 2 与压裂酸化设计方案制定相关的测 井资料 2.1与流体扩散有关的性质 (1)孔隙度;(2)岩性和饱和度;(3)渗透率;(4)孔隙压力。 2.2与岩石变形和破裂相关的性质 (1)弹性性质; (2)断裂韧性、强度和摩擦角。 3压裂设计应用实例 3.1与流体扩散性质有关参数的求取 3.1.1参数的获取 我们在认识一个区块含油性、储层物性等油藏基础资料的过程,是前期地质勘探及工程钻井、录井、测井一个综合的认识过程。在后期油田开发的时候,我们能够掌握到区块的平均孔隙度、平均渗透率及饱和度等基础资料。但是在进行压裂酸化单井设计的时候,我们没有足够的投入去进行系统的单井资料的收集。通过单井测井信息来进行处理分析得到压裂设计所需参数就尤为重要。 通过消化吸收Forward 储层油气藏测井分析平台,能够做到对单井的孔、渗、饱等地层物性、岩性的认识。 (1)单孔隙度分析 可以采用自然伽马、补偿中子、自然电位、中子寿命和电阻率等五种方法计算地层的泥质含量SH 相对体积;利用密度测井、声波测井或补偿中子三种孔隙度测井之一计算地层的孔隙度,并且进行泥质校正;计算出可动油气参数、流体性质分析参数、渗透率和出砂指数等; (2)泥质砂岩分析 采用交会图技术计算孔隙度、泥质体积,在计算过程中对泥质和油气影响进行校正,还计算出粘土含量、粉砂指数、含水饱和度、渗透率、含烃重量、含烃体积; (3)复杂岩性分析 计算出孔隙度、泥质含量、饱和度等储层参数,它除了一般复杂岩性程序中的砂岩、灰岩、白云岩和硬 15··

增能压裂技术研究与参数优化

增能压裂技术研究与参数优化 摘要致密储层,水敏性储层和致密砂岩油气在内的非常规油气藏等,使用二氧化碳或氮气的增能压裂法为提高多种储层油气产量提供了一个很好的方法。CO2增能压裂的泡沫质量一般为30%-52%,其工艺较常规压裂更简便,返排率较高,应用于大规模压裂,具有良好的增产增能作用。 关键词低渗;致密;增能压裂 引言 水力压裂是开采低渗砂岩气藏的重要手段之一,所有改造的油气井中有80%是采用水力压裂来增产的。虽然产生裂缝的作用相当好,但多数压裂处理把含有胶凝剂的聚合物和水作为压裂液,而水因毛细管力作用被束缚在微小孔隙内,低压降下造成液体返排困难,没有返排的水滞留在裂缝面周围的水饱和带。这些储层中,只有少量的水得以返排,所以需要找到常规压裂液的替代品,减少水引起的地层伤害的方法之一就是用气体给液体增能。 1 泡沫增能压裂技术 在水力壓裂过程中,通过在处理液中加入一种可压缩和可溶解的气体可实现增能效果。生产过程中,增能液体膨胀,气体从溶解液中析出。由此促进压裂液的快速返排。 增能液体可以用CO2、N2、甲醇或任何混合气体。这些气体可以单独加入增能压裂液,也可以跟交联凝胶或烃类等混合注入。因为可生成泡沫,普遍在常规水基压裂液中添加CO2和N2,这对大剂量压裂液是有益的。泡沫压裂液跟其他相似组分的增能压裂液具有相同的优势,但比单相压裂液黏度要高。 常规水力压裂模拟都是通过耦合液体流变模型和裂缝构造来评估裂缝面积的。因为液体是不可压缩的,所以一般假定体积是不变的。常规压裂液为单相,就不需要把组分的影响考虑在内了。这个也假定为一个恒温的过程;认定液体处于储层温度等值情况下的。而对于增能压裂液,这些假设就不能成立了。多种流体的存在可引起组分不同程度的漏失,造成整个裂缝里相态发生变化。既然注入的流体温度也许要比储层温度低200℉,这个过程也就不再等温了。 跟常规压裂液不同,增能压裂液体系涉及多种相态变化。压裂作业中,多种机理(相态特性、漏失、多相流动)的存在可能造成液体组分的变化。此外,因温度和压力的变化也会出现相态变化。裂缝体积,还有压裂液携砂能力都取决于压裂液体的组分和相态特性。利用组分平衡法可追踪组分的变化,且可并入裂缝模型,这是一种现有压裂模型所没有的特性。分析这种结果,可以确定组分对压裂性能的影响。以较低的温度把增能压裂液注入地层并不少见。液体和地层间的温度差异使液体注入井内时液体温度升高。因为裂缝面处于储层温度较高的影响

ADAMS VIEW 参数化和优化设计实例详解

ADAMS/VIEW 参数化和优化设计实例详解本例通过小球滑落斜板模型,着重详细说明参数化和优化设计的过程。 第一步,启动adams/view(2014版),设置工作路径,设置名称为incline。 名称 存储路径第二部,为满足模型空间,设置工作网格如图参数。 修改尺寸 第三部创建斜板。点击Bodies选项卡,选择BOX,然后建模区点击鼠标右键,分别设置两个点,坐标为(0,0,0)和(-500,-50,0),创建完模型,然后右键Rename,修改名称为xieban。

右键输入坐标,创建点BOX rename 输入xieban

第四部创建小球。点击Bodies选项卡,选择Sphere,然后建模区点击鼠标右键,分别设置两个点,球心坐标为(-500,50,0)和半径坐标(-450,50,0),创建完模型,然后右键Rename,修改名称为xiaoqiu。 输入两点 Rename,及创建效果 第五部创建圆环。点击Bodies选项卡,选择Torus,然后建模区点击鼠标右键,分别设置两个点,圆环中心坐标为(450,-1000,0)和大径坐标(500,-1000,0),创建完模型,然后右键Rename,修改名称为yuanhuan。完成后效果如下图: 第六部修改小球尺寸及位置。首先修改小球半径为25mm,在小球上右键,选择球体,点击Modify,然后设置如下图;然后修改小球位置,将Y坐标移到25mm处,选择Marker_2点,

右键点击Modify,然后设置坐标位置如下图。 右键编辑球半径 修改半径为25 改后效果 修改球的位置

设置球坐标 完成修改后效果 第七部修改圆环尺寸及位置。将圆环绕X轴旋转90度,选择Marker_3点,右键点击Modify,然后设置坐标位置如下图。修改圆环尺寸,大径为40mm,截面圆环半径为12mm,右键,选择圆环体,点击Modify ,然后设置如下图。至此,模型建立完毕。 修改圆环位置

采用数值模拟方法优化水平气井压裂参数

采用数值模拟方法优化水平气井压裂参数 谭海嵘 杨德冰 唐直平 ①② ③ ③ (长江大学研究生部 ②川庆钻探长庆工程技术研究院③吐哈油田井下技术作业公司) ①摘要关键词本文通过数值模拟方法,以实际气藏为基础进行模拟,对裂缝长度与方位、裂缝导流能力和压裂级数进行了优化设计。结果表明,当水平井水平段的延伸方向垂直于最大水平地应力方向时,随着垂直缝长度的增加和导流能力的提高,水平井累积产气量也呈上升趋势,但上升速度逐渐变缓。压裂后,裂缝数目越多的气井,日产量越大,但随着生产时间的延续,日产量之间的差距越来越小。这为低渗气藏压裂方案设计提供一些理论依据。 水平井压裂数值模拟裂缝级数裂缝导流能力近年来,随着勘探开发实力的提升,水平井钻井技术的进步和钻井成本的降低,一些低渗透的油气藏被陆续发现和开发利用起来。水平井所具有的泄油面积大、单井产量高、穿透度大、储量动用程度高的优点被广泛地应用于各种气藏开发中。但是由于气藏的储量有限,在开发一段时间后,产量往往达不到经济开发要求,通常需要对气井进行增产改造。而水平井压裂改造的基础在于压裂参数的优化设计。因此,本文通过数值模拟方法,对这些压裂参数包括裂缝长度、裂缝方位、裂缝导流能力和压裂级数(即裂缝条数)进行了初步的预测, 这些数据可以为水平井压裂方案设计提供相应的参考。(1)裂缝长度的优化。为了研究水平井压裂裂缝长度对水平井产能的影响,本文以国内某气藏基本储层参数为基础,建立数值模拟机理模型,模型所选用的网格为:x×y×z=60×60×9,在缝长与缝宽所在的平面上所选用的网格步长相等,即DX=DY=20m,而缝高选择的是DZ=2m,模型能代表的实际区域大小为1200m×1200×18m。 根据该区块气藏工程关于井网井距的研究成果,水平井单井控制面积可认为是1200m×600m,如果在该区域中部署2口水平井,水平段长度设为800m,水平井间距设为600m,水平井压裂投产后,采取定产气量衰竭式开采,设定初期产能水平为60000m/d,模拟时间15年,而且每口井有4条压裂缝,裂缝导流能力取为30×10?cm。考虑到地应力的方向问题,一般部署水平段垂直于最大主应力方向的水平井。因此,水平井的最优方位是水平段垂直于最大主应力方向的水平井,且裂缝方位平行于最大主应力方向。 所建立的机理模型如图1所示。 模拟方案设计:设计20m、100m、200m、300m、400m、500m共计6个不同裂缝长度的模拟方案,以研究在不同裂缝长度条件下,采用不同的方案对应累积产气量的变化情况,对比各方案,确定合理的裂缝长度。 经模拟计算得到的裂缝长度与累积产气量的关系如图2所示。由图2可以看出,随着裂缝长度的增加,水平井累积产气量也呈上升趋势,但上升速度逐渐变缓,在裂缝长度超过300m之后再增加裂缝长度累积产气量增长速度明显变缓。这是因为在压裂气井中,气体渗流速度快,气体流入井的流动由达西流转变为非达西流。由于非达西流动的影响,使得裂缝内和地层内气体流人井筒的流量相对减少,因此气井的产量增加幅度有所减小。因此,合理的裂缝长度应该在200~300m之间,即裂缝半长应该在100~150m之间。 (2)裂缝方位的优化。裂缝方位是指裂缝与水平井筒之间的夹角。为研究裂缝方位对水平井产能的影响,选取同样的模型进行数值模拟,并将裂缝半长设为100m,选择裂缝与水平段垂直和裂缝与水平段呈一定的夹角2个不同裂缝方向的模拟方案,以研究裂缝方向与水平段延伸方位夹角对累积产气量的影响。 所建立的机理模型如图3和4所示。 经模拟计算得到的各方案累积产气量的关系如图5所示。 由图5可以看出,当裂缝方向与水平段垂直的时候,水平气井累积产气量要高于裂缝方向与水平段成45°时的累积产气量。这是因为当缝的长度和缝的条数一定、裂缝与井筒角度较大时,缝间干扰小,产能较大,因此,在进行压裂设计时,裂缝的方位与水平段延伸方向垂直或接近于垂直,以提高压裂水平井产能。 (3)裂缝导流能力优化。裂缝导流能力对压裂水平井产能影响较大,当储层渗透率、裂缝长度和裂缝条数和裂缝的方位确定时,可能存在一个最佳裂缝导流能力值。本文选取同样的模型进行数值模拟,将裂缝半长设为100m,裂缝方向与水平段垂直,不考虑水平井多条垂直裂缝相互干扰,设计不同的导流能力,以研究与之相对应的产量。 方案所设的计裂缝导流能力分别为0、5、10、15、20、30、40、50、60×10?cm共9个模拟方案,以便于对比。随着裂缝导流能力的增加,累积产气量也会随之发生变化。方案最终通过累积产气量来优选比较合适的裂缝导流能力。 裂缝导流能力与方案累积产气量之间的关系曲线如图6所示。 从图6可以看出,随着裂缝导流能力的提高,水平井压后产能增加,但增加幅度逐渐变缓,这与裂缝长度对产量的影响结果很相似。当裂缝导流能力达到30×10?cm以后累积产气量上升趋势变缓,因此在理论上,合理的裂缝导流能力应在20~30×10?cm之间。但是,最佳的裂缝导流能力与气藏基质渗透率相关。对于非均质气藏来说,还要参考其他的因素才能确定最佳导流能力。同时,在一定裂缝长度和裂缝的条数下,裂缝导流能力的增加,势必使压裂的加砂量增加,导致施工成本增加。在设计时应合理选取合适的 [1] 3-3-3-3-31 压裂参数的优化设计 图2裂缝长度与累积产气量的关系图 图5裂缝方位与水平段垂直和成45°时对应累积产气量 图6裂缝导流能力与累积产气量关系图 图1不同裂缝长度方案模型示意图图3裂缝与水平段垂直图4裂缝与水平段有夹角

5.压裂设计依据讲解

水力压裂优化设计2006年 11月 26日

1 压裂设计依据 1.1 井概况 1.2测试解释结果 1.3 岩石学特征 对整个区块进行系统的岩石学研究。 1.4 粘土矿物特征与储层敏感性 粘土矿物成分及其分布方式研究,开展储层敏感性评价试验。 1.5 储层参数评估 压裂设计前,必须了解压裂侯选井的储层地质及构造情况、进行地层测试与评价、结合所在区块位置和井对应关系,以便设计出合理的、可靠的压裂施工参数。 1.5.1 地应力 地应力包括地应力的大小和方向,地应力在水力压裂设计中十分重要的位置。剖面上的地应力影响水力裂缝高度,平面上的地应力场影响施工压力和与井网的最优裂缝几何尺寸匹配关系。 目前,所涉及到的区块并没有对地应力分布进行研究,依据我国地应力特点从整体估计地应力状况。中国大陆板块受到外部两大板块的推挤,即印度板块每年以5cm的速度推挤和太平洋板块每年以数厘米的速度推挤,同时受到西伯利亚和菲律宾板块的约束。在这样的边界条件下,板块发生变形。据陈宗基预测,其最大水平主应力迹线将沿图示曲线延伸。

图1-1 我国地应力分布概图 据李方全研究,按行政区域划分:(1)中等构造应力区包括河北、山西、吉林延吉地区、辽宁南部、山东等;(2) 低构造应力区包括:江苏、浙江、黑龙江、吉林及内蒙古大部分地区。 水力压裂设计中,没有地应力资料和其它测试资料以判定人工裂缝方位,并结合水平主应力方向与井网部署确定压裂改造规模。但作为探井压裂,必须考虑到存在的附加风险,应将地应力适当高估。 1.5.2 岩石力学性质 岩石力学性质主要指储层、盖层和底层的杨氏模量、泊松比和断裂韧性值,它们对裂缝几何尺寸有很大的影响, 它可能决定了压裂的成功或失败。岩石力学性质可通过取心在实验室测试,由于储层岩石的非均质性、地面与储层条件的差异,测试结果与实际情况有一定出入。现场常用长源

中联煤层气压裂设计方案格式要求

中联沁水煤层气田枣园示范项目 压裂作业施工设计要求 为做好中联沁水煤层气田枣园示范项目的压裂作业施工设计,中联公司对设计格式、设计内容及有关要求规定如下,望遵照执行。 1、设计格式、内容及技术要求按设计编写大纲编写。 2、设计书名称、封面、扉页按照后附样本执行。 3、请务必于2000年9月20日前将送审稿2份送达中联公司勘探开发事业部。为避免反复修改,望就计算机模拟设计等关键性问题事先能与中联公司沟通。 4、设计书统一采用A4幅面,装钉按甲方要求。甲方审批后的正式设计汇交10份,并在扉页加设计单位盖公章。 5、其它施工资料按甲方标书要求执行。 如有疑问,请与郭本广、马方明、张遂安联系。联系电话为: 马方明010-******** 张遂安010-******** 中联煤层气有限责任公司勘探开发事业部 技术管理部

压裂、作业施工设计 (编写大纲) 一、目的、任务 1.施工目的 2.任务 (1)简单叙述甲方方案对应内容。 (2)明确射孔井段、压裂井段等内容。 二、基本数据 1.钻井基本数据 2.煤层基本数据 (1)综合测井解释结果 (2)注入/压降测试(试井)解释数据 (3)煤层煤质特征、含气量及等温吸附数据 3.煤层顶底板岩石力学数据 三、压裂施工设计 1.施工方案 (1)层号、层位、井段、厚度 (2)注入方式 (3)压裂管柱

(4)压裂液名称及其配方 (5)支撑剂名称及其规范数量 (6)压裂井口 (7)施工最高限压 2.计算机模拟 (1)入机参数及其选择(可以利用经验数据、借用邻井资料参考,不合理数据应予以剔除) (2)设计模拟结果(要求压裂优化缝长90-120米。要有模拟裂缝剖面图、砂堤剖面图等) 3.泵注程序表 4.压前准备工作 (1)设备、工具(动力、机械等) (2)井筒准备 (3)压裂液准备 (4)支撑剂准备 5.施工步骤及技术要求(按程序进度顺序直到完井结束) 6.压裂管柱示意图 四、作业施工设计 1.施工准备(设备、材料、入井液等) 2.施工步骤及技术要求(按程序进度顺序)

精细压裂施工工艺参数优化研究

精细压裂施工工艺参数优化研究 摘要:传统的压裂施工参数已不能满足现场的需要,分别开展了三个方面的压裂参数优化,即砂比结构优化、暂堵剂用量优化和施工排量优化。砂比结构优化可保持缝口最大导流能力;暂堵剂用量优化可达到暂时封堵高渗透井段;施工排量优化保证压裂液的滤失量在合理范围内,防止砂堵现象的发生。应用表明,施工工艺参数优化后措施效果显著,达到了预期目的,为各项精细压裂工艺的发展提供了技术保障。 关键词:精细压裂;暂堵剂;砂比;排量;参数优化 Abstract: the traditional fracturing construction parameters already cannot satisfy the need of fields, respectively, in the three aspects of the fracture parameters optimization, namely sand structure optimization, than temporary plugging agent optimization and operation discharge optimization. Sand than structure optimization can keep the seam biggest diverting capacity; Temporary plugging agent optimization to temporarily blocked high penetration interval; Operation discharge optimization guarantee of fracturing fluid filtration in the reasonable scope, prevent the happening of the sand blocking phenomenon. Application shows that the construction technology parameters optimization measures after effect significantly, achieve the expected purpose, for all the fine fracturing technology development provides technical support. Keywords: fine fracturing; temporary plugging agent; sand ratio; displacement; parameters optimization 1施工工艺参数优化 1.1 砂比结构优化 砂比结构是保证支撑剂随压裂液顺利进入地层的重要工艺参数。针对不同条件的地层进行砂比结构优化,确保裂缝楔形嵌入地层,保持缝口最大导流能力。 (1)针对油层厚度大,剩余油丰富的地层采用高砂比压裂技术,平均砂比在35-40%,以短宽缝为主,增大泄油面积。见表1。

极化磁系统参数优化设计方法的研究

极化磁系统参数优化设计 方法的研究 The document was prepared on January 2, 2021

极化磁系统参数优化设计方法的研究 摘要:永磁继电器是一种在国防军事、现代通信、工业自动化、电力系统继电保护等领域中应用面很广的电子元器件,其极化磁系统的参数优化设计是实现永磁继电器产品可靠性设计的前提工作之一。该文采用六因素三水平多目标的正交试验设计方法,分析并研究了极化磁系统的参数优化设计方法。在永磁继电器产品设计满足输出特性指标要求的前提下,给出了输出特性值受加工工艺分散性影响而波动最小的最佳参数水平组合。 1 引言 具有极化磁系统的永磁继电器具有体积小、重量轻、功耗低、灵敏度高、动作速度快等一系列优点,是被广泛应用于航空航天、军舰船舶、现代通信、工业自动化、电力系统继电保护等领域中的主要电子元器件。吸力特性与反力特性的配合技术是电磁继电器产品可靠性设计的关键技术。在机械反力特性及电磁结构已知的情况下,如何对电磁系统进行参数优化设计,使得在保证输出特性值满足稳定性要求的前提下,电磁系统的成本最低,这是继电器可靠性设计必不可少的前提工作之一。

由于极化磁路的非线性及漏磁的影响,使极化磁系统的输出特性值(吸力值)与磁系统各参数水平组合之间存在着非线性函数关系。在各种干扰影响下,各参数存在一定的波动范围。当各参数取不同的水平组合时,参数本身波动所引起的输出特性值的波动亦不相同。由于非线性效应,必定存在一组最优水平组合,使得各参数波动所造成的输出特性值的波动最小,即输出特性的一致性最好。极化磁系统参数优化设计的目的就是要找到各参数的最优水平组合(即方案择优),使得质量输出特性尽可能不受各种干扰的影响,稳定性最好。 影响永磁继电器产品质量使其特性发生波动的主要干扰因素有:①内干扰(内噪声),是不可控因素,如触点磨损、老化等;②外干扰(外噪声),亦是不可控因素,如环境温度、湿度、振动、冲击、加速度等;③可控因素(设计变量)加工工艺的分散性等。其中前两种因素均与产品实际使用环境有关,这里暂不予考虑,本研究只考虑后者对产品质量特性波动的影响。 正交试验设计法是实现参数优化设计的重要手段之一,以往人们在集成电路制造工艺、电火花成型加工工艺、轴承故障诊断等方面得到了很好应用[1-4],但大多是采用单一目标函数的正交试验设计。文献[2]应用正交试验设计法对永磁继电器磁钢尺寸进行了参数优化设计,但没有采用正交试验设计法对永磁继电

《采油工程方案设计》试题及答案

《采油工程方案设计》综合复习资料参考答案 一、名词解释 1.油气层损害2.吸水指数3.油井流入动态 4. 蜡的初始结晶温度5.面容比 6.化学防砂 7. 破裂压力梯度8.财务内部收益率9.油田动态监测 10. 单位采油(气)成本 二、填空题 1.砂岩胶结方式可分为、、、。 2.油气层敏感性评价实验有、、、、和等评价实验。 3.常用的射孔液有、、、和等。 4.油田常用的清防蜡技术,主要有、、、、和等六大类。 5.碳酸盐岩酸化工艺分为、和三种类型。 6.目前常用的出砂预测方法有、、和等四类方法。 7.采油工程方案经济评价指标包括、、、、、和等。8.按防砂机理及工艺条件,防砂方法可分为、、和等。9.电潜泵的特性曲线反映了、、和之间的关系。 10.酸化过程中常用的酸液添加剂有、、、等类型。 11.水力压裂常用支撑剂的物理性质主要包括、、、等。 三、简答题 1.简述采油工艺方案设计的主要内容。 2.简述油井堵水工艺设计的内容。 3.试分析影响酸岩复相反应速度的因素。

4.简述完井工程方案设计的主要内容。 5.简述注水井试注中排液的目的。 6.试分析影响油井结蜡的主要因素。 7. 简述油水井动态监测的定义及其作用。 8. 简述采油工程方案经济评价进行敏感性分析的意义。 9. 简述注水工艺方案设计目标及其主要内容。 10. 简述低渗透油藏整体压裂设计的概念框架和设计特点。

《采油工程方案设计》综合复习资料参考答案 一、名词解释 1.油气层损害:入井流体与储层及其流体不配伍时造成近井地带油层渗透率下降的现象。 2.吸水指数:单位注水压差下的日注水量。 3.油井流入动态:油井产量与井底流动压力的关系。 4.蜡的初始结晶温度:随着温度的降低,原油中溶解的蜡开始析出时的温度。 5. 面容比:酸岩反应表面积与酸液体积之比。 6.化学防砂:是以各种材料(如水泥浆、酚醛树脂等)为胶结剂,以轻质油为增孔剂,以硬质颗粒为支撑剂,按一定比例搅拌均匀后,挤入套管外地层中,凝固后形成具有一定强度和渗透性的人工井壁,阻止地层出砂的工艺方法。 7.破裂压力梯度:地层破裂压力与地层深度的比值。 8.财务内部收益率:项目在计算期内各年净现金流量现值累计等于零时的折现率。 9.油田动态监测:通过油水井所进行的专门测试与油藏和油、水井等的生产动态分析工作。 10.单位采油(气)成本:指油气田开发投产后,年总采油(气)资金投入量与年采油(气)量的比值。表示生产1t原油(或1m3天然气)所消耗的费用。 二、填空题 1.砂岩胶结方式可分为基质胶结、接触胶结、充填胶结、溶解胶结。 2.油气层敏感性评价实验有速敏、水敏、盐敏、碱敏、酸敏和应力敏等评价实验。 3.常用的射孔液有无固相清洁盐水射孔液、聚合物射孔液、油基射孔液、酸基射孔液、乳化液射孔液等。 4.油田常用的清防蜡技术,主要有机械清蜡技术、热力清防蜡技术、表面能防蜡技术、化学药剂清防蜡技术、磁防蜡技术、微生物清防蜡技术等六大类。

基于精细地质模型的大型压裂裂缝参数优化

第34卷 第6期 OIL&GASGEOLOGY2013年12月  收稿日期:2012-09-17;修订日期:2013-10-21。 第一作者简介:苟波,(1984—),男,博士研究生,油气田增产理论与技术。E-mail:gouboyouxiang@163.com。 基金项目:国家科技重大专项(2011ZX05006-002);四川省青年科技创新研究团队资助计划项目(2011JTD0018)。 文章编号:0253-9985(2013)06-0809-06 doi:10.11743/ogg20130614 基于精细地质模型的大型压裂裂缝参数优化 苟 波,郭建春 (西南石油大学油气藏地质及开发工程国家重点实验室,四川成都610500) 摘要:以Z23北区特低渗透油藏为例,基于Petrel软件建立的储层精细地质模型分析了控制工区压裂效果的关键地质因素。根据控制压裂效果的地质因素(油层厚度、渗透率),将改造目的层一砂组、二砂组和三砂组各分为4类储层。以储层精细地质模型为基础,采用数值模拟方法和经济净现值法优选了8类储层的大型压裂裂缝参数。裂缝参数优选结果表明:对于非均质性强的储层,与储层相匹配的裂缝参数差异较大;要获得理想产能,低渗透储层需要造长缝,而渗透率相对较高的储层需要高导流能力裂缝。现场应用实践表明:按照此方法优选的裂缝参数压裂效果好,储层改造针对性强,可以推广。关键词:大型压裂;裂缝参数优化;经济净现值;储层精细地质模型;低渗透油藏中图分类号:TE122.2 文献标识码:A Fractureparameteroptimizationoflargehydraulic fracturingbasedonthefinegeologicalmodel GouBo,GuoJianchun (StateKeyLaboratoryofOilandGasReservoirGeologyandExploitation,Southwest PetroleumUniversity,Chengdu,Sichuan610500,China) Abstract:ThekeygeologicalfactorsdeterminingfracturingeffectinnorthZ23ultra-lowpermeabilityreservoirareana-lyzedbasedonthefinegeologicalmodelofreservoirestablishedbyusingthePetrelsoftware.Accordingtothekeygeolo-gicalfactors(reservoirthickness,permeability),thetargetlayersofsandunit1,2and3areclassifiedintofourtypes.FracturingparametersofeightreservoirtypesareoptimizedbyusingnumericalsimulationandENPVmethodsbasedonthefinegeologicalmodel.Theresultsshowthatthefracturingparametersvarygreatlyforreservoirswithintenseheteroge-neity.Toobtainidealproductivity,longfracturesareneededforthelowpermeabilityreservoir,whilefractureswithhighflowconductivityisneededinreservoirswithrelativehighpermeability.Fieldtestshowsthatthehydraulicfracturingwithfractureparametersoptimizedbyusingthismethodiseffective. Keywords:largehydraulicfracturing,fractureparameteroptimization,ENPV,finegeologicalmodelofreservoirs,ultra-lowpermeabilityreservoir 低渗透砂岩油藏是指空气渗透率小于或等于 50×10-3μm2 的油藏,储层物性差、非均质性严重、油层联通性差、自然产能低,压裂是此类油藏经济高效开 发的关键技术[1-2] 。对于低渗透油藏,水力裂缝参数(裂缝缝长、导流能力)与储层地质特征相匹配才能获 得经济产能,提高压裂效果[3] ,因此国内外学者非常注重裂缝参数优化研究。目前裂缝参数优化的方法分为解析法和数值模拟法。解析法中最有代表性的是Economides等人提出的以支撑剂指数优化油井无因次采油指数和裂缝参数,假设油藏各向同性均质,不考虑地应力与水力裂缝的匹配,这与实际的油藏地质特征 存在差异 [4-5] 。数值模拟方法以整个油藏为研究对 象,建立地质模型,利用大型数值模拟软件模拟不同水力裂缝参数对油藏生产动态的影响,以一定的生产参数为指标优选裂缝参数;要实现裂缝参数与储层地质特征相匹配,地质模型的建立非常关键。目前裂缝参数优化的地质模型主要是依据储层物性参数、井网特 征以及宏观非均质性而建立[6-9] 。这样的地质模型在宏观上反映了储层特征,以优化的一套裂缝参数作为整个油藏压裂的指导依据,实际上没有考虑储层的砂体展布和微观的非均质性。因此,为实现压裂裂缝参数与储层地质特征的真正匹配,需要基于储层精细地

汽车动力传动系参数优化设计

汽车理论Project 第一章汽车动力性与燃油经济性数学模型立 1.汽车动力性与燃油经济性的评价指标 1.1 汽车动力性评价 汽车的动力性是指汽车在良好路面上直线行驶时由汽车受到的纵向外力决定的、所能达到的平均行驶速度。汽车的动力性主要可由以下三方面的指标来评定: (1)最高车速:最高车速是指在水平良好的路面(混凝土或沥青)上汽车能达到的最高行驶速度。它仅仅反映汽车本身具有的极限能力,并不反映汽车实际行驶中的平均车速。 (2)加速能力:汽车的加速能力通过加速时间表示,它对平均行驶车速有着很大影响,特别是轿车,对加速时间更为重视。当今汽车界通常用原地起步加速时间与超车加速时间来表明汽车的加速能力。原地起步加速时间是指汽车由第I挡或第II挡起步,并以最大的加速强度(包括选择适当的换挡时机)逐步换至最高挡后达到某一预定的距离或车速所需要的时间。超车加速时间是指用最高挡或次高挡内某一较低车速全力加速至某一高速所需要的时间。 (3)爬坡能力:汽车的爬坡能力是指汽车满载时用变速器最低挡

在良好路面上能爬上的最大道路爬坡度。 1.2 汽车燃油经济性评价 汽车的燃油经济性是指在保证汽车动力性能的前提下,以尽量少的燃油消耗量行驶的能力。汽车的燃油经济性主要评价指标有以下两方面: (1)等速行驶百公里燃油消耗量:它指汽车在一定载荷(我国标准规定轿车为半载、货车为满载)下,以最高挡在良好水平路面上等速行驶100km的燃油消耗量。行驶的燃油消耗量。 (2)多工况循环行驶百公里燃油消耗量:由于等速行驶工况并不能全面反映汽车的实际运行情况。汽车在行驶时,除了用不同的速度作等速行驶外,还会在不同情况下出现加速、减速和怠速停车等工况,特别是在市区行驶时,上述行驶工况会出现得更加频繁。因此各国都制定了一些符合国情的循环行驶工况试验标准来模拟实际汽车运行 状况,并以百公里燃油消耗量来评价相应行驶工况的燃油经济性。1.3 汽车动力性与燃油经济性的综合评价 由内燃机理论和汽车理论可知,现有的汽车动力性和燃油经济性指标是相互矛盾的,因为动力性好,特别是汽车加速度和爬坡性能好,一般要求汽车稳定行驶的后备功率大;但是对于燃油经济性来说,后备功率增大,必然降低发动机的负荷率,从而使燃油经济性变差。从汽车使用要求来看,既不可脱离汽车燃油经济性来孤立地追求动力性,也不能脱离动力性来孤立地追求燃油经济性,最佳地设计方案是在汽车的动力性与燃料经济性之间取得最佳折中。目前,在进行动力

相关主题
文本预览
相关文档 最新文档