当前位置:文档之家› 非常规油气藏与常规油气藏特征的比较

非常规油气藏与常规油气藏特征的比较

非常规油气藏与常规油气藏特征的比较
非常规油气藏与常规油气藏特征的比较

非常规油气藏与常规油气藏特征的比较

油页岩、页岩油、页岩气和煤层气都是在烃源岩内部形成的油气藏,是没有经过运移形成的油气藏类型,烃源岩即是储集层,因此其源储组合特征都是“源储一体”,其保存条件和烃源岩自身的有机质含量及其热演化程度是油气藏丰度的主要控制因素。

致密油气则是在烃源岩以外的致密储集层中形成的油气藏,是经过初次运移和短距离二次运移后形成的油气藏(相对油页岩’页岩油’页岩气和煤层气而言,致密油气源储组合比较复杂,主要存在2 种类型: 一种是源储叠置的’以纵向大面积运移为主的致密油气藏。另一种是以横向推进式运移为主的致密油气藏,由于致密储集层孔渗性差,浮力作用不明显,故形成上水下气的“气水倒置”格局。

油气分布特征

由于非常规油气的成因类型主要受烃源岩和储集层特征控制,因此不同类型的非常规油气藏与常规油气藏在地下空间有序分布(通常,在陆相盆地,从斜坡向盆地内,往往由以砂岩为主的沉积相向以泥岩为主的沉积相演变; 纵向上,随着埋深增大,源岩演化程度增大,由生油期向生气期演化,同时储集层也从常规储集层演化为致密储集层(因此,在同一烃源岩体系中,页岩气’致密气’页岩油’致密油’油页岩在空间上往往自深而浅分布。

勘探方法

非常规油气主要分布于前陆盆地坳陷—斜坡、坳陷盆地中心及克拉通向斜部位等负向构造单元中,油气分布多数游离于二级构造单元高部位以外,主体位于盆地中心及斜坡,呈大面积连续型或准连续型分布。非常规油气勘探,关键是寻找大面积层状储集体,核心工作是突破“甜点区”,确定甜点区的富有机质烃源岩、有利储集体、高含油气饱和度、易于流动的流体、异常超压、发育裂缝、适中的埋藏深度等主要控制因素,确立连续型油气区边界与空间展布。第一步,按照核心区评价标准,评价优选出核心区,结合储层、局部构造、断裂与微裂缝发育状况,筛选出“甜点区”;第二步,在“甜点区”进行开采试验,力争取得工业生产突破,同时探索适合该区的技术路线;第三步,外甩扩大评价范围,探索连续型含油气边界,确定油气资源潜力。

常规油气主要发育在断陷盆地大型构造带、前陆冲断带大型构造、被动大陆边缘以及克拉通大型隆起等正向构造单元,二级构造单元控制油气分布。油气聚集于构造高点,平面上呈孤立的单体式分布;或聚集于岩性圈闭、地层圈闭中,平面上呈较大规模的集群式分布。常规油气勘探,关键是寻找有效聚油圈闭,核心工作是预探获取发现,评价确定圈闭边界。

第一步,进行圈闭识别、圈闭优选和圈闭精细描述,落实有利钻探目标;第二步,选择最有利目标、最佳钻探位置进行预探,力求获得油气发现;

第三步,开展评价钻探,落实油气水界面,确定含油气范围与储

量规模。

技术攻关

非常规油气储集体物性差,如致密油、致密气、页岩油、页岩气和煤层气储层主体孔隙度小于10%,地下渗透率小于0.1mD,一般无自然工业产能,需要采取某种增产措施和特殊的钻井技术,目前生产实践中多采用水平井钻井技术和体积压裂技术,最大限度增大油层接触面积与油气流动通道。

对于常规油气勘探,如何有效识别地下圈闭、评价圈闭有效性、发现油气藏是勘探工作的核心。圈闭评价主要依靠地震技术,高精度地震采集、处理、解释一体化。

非常规油气评价重点是烃源岩特性、岩性、物性、脆性、含油气性与应力各向异性“六特性”及匹配关系,常规油气评价重点是生、储、盖、圈、运、保“六要素”及最佳匹配关系。

气藏工程作业

气藏工程作业题 第一章 1、综述国内外天然气资源现状与发展趋势。 答:一、世界天然气现状: 1、世界天然气资源丰富:据美国地质调查局1994年预测,世界天然气总量大致为立方米;且主要分布在中东、前苏联、美洲。 2、剩余天然气可采储量年年上升:1996——2002年世界天然气剩余可采储量增长率为1.96%;2000年之后,增长率达到3.05%。到2006年为止天然气剩余储量为立方米。 3、世界天然气产量快速增长:2000年以来;世界天然气产量年均增长率为3.12%;2006年世界天然气产量达到立方米,为2000年产量的1.19倍。 4、世界天然气贸易趋于全球化:国际天然气贸易持续强劲增长,2006年世界天然气贸易量达到立方米;增幅3.07%。 二、中国天然气现状: 1、常规天然气资源相对丰富:据初步估算,全国天然气储量已达到立方米,其中可采储量为立方米,与第二轮天然气资源评价相比,增加了立方米。

2、非常规天然气资源潜力大,开采前景乐观:(1)、煤层气资源潜力大,我国煤层气资源丰富,占世界总煤层气资源的10%;(2)、中国水溶气等非常规气开采前景乐观:中国有大量含油盆地,存在着大量的地层水,其中蕴含着丰富的水溶气资源。 三、国内外天然气资源开发趋势: 1、天然气将成为21世纪世界能源的支柱:目前煤炭、石油的消费比重在不断下降,而天然气的消费比重在快速增长,鉴于石油价格居高不下,天然气的使用量将不断增大。 2、国内天然气资源发展空间巨大:目前我国剩余天然气可采储量为:立方米,天然气年产量为立方米,此外,煤层气等非常规气资源也有一定发展空间。 3、天然气贸易世界贸易的重要组成部分:国内外天然气的需求量逐渐上升,天然气贸易量也在不断增加。 2、气田开发和油田开发有何共同点和差异性。 答:一、气田开发和油田开发的共同点:(1)、埋藏的隐蔽性、模糊性;(2)、地层的非均质性、各向异性、非连续性和非有序性;(3)、油气田开发的风险性;(4)、流体渗流的复杂性。(5)、气藏开发过程的系统性。 二、气藏开发和油藏开发的差异性:(1)、天然气即是开采对象,又是驱动能量;(2)、生气原因的广泛性;(3)、盖底层的严密性:保存条件要求比油藏更严格;(4)、气体流动的活跃性、压缩性、气体显示的隐蔽性;(5)、钻井工艺的复杂性。

圈闭和油气藏类型的识别

圈闭和油气藏类型的识别练习 要求:(一)阅读各图构造等高线及储层分布图。在平面图上找出溢出点位置(用字母C表示),圈定闭合面积,计算闭合高度,确定圈闭及油气藏类型,并写出结果。 (二)结合储集层分布的变化及油气水分布情况,绘制给定剖面线的圈闭和油气藏横剖面。 练习题: 图1—1 某油层顶面构造图 1—正断层;2—油层顶面等高线;3—产气井;4—产油井;5—产水井;6—剖面线; A区:油气藏类型:背斜油气藏;闭合度:h=70m;油柱高度:h o= 40m ;气柱高度:h g= 35m ;B区:油气藏类型:断块油气藏;闭合度:h=85m;油柱高度:h o= 40m;气柱高度:h g= 10m ;(??) E区:油气藏类型:断块油气藏;闭合度:h=45m;油柱高度:h o=20m;气柱高度:h g=10m;

图1—2 某油层顶面C—D剖面图 图2—1 某地层底面构造图及其下伏油层等厚度图 1—某地层顶面等高线(m);2—储层等高线(m);3—产气井;4—产油井;5—产水井;6—剖面线油气藏类型:透镜体油气藏;闭合度:h=160m;油柱高度:h o=80m;气柱高度:h g= 40m ; 图2—2某油层F—E剖面线横剖面图 纵比例尺:1:4000

1—砂层所在地层顶面等高线(m);2—砂层尖灭线;3—砂层等厚线(m);4—剖面线

图3—2 某区地层A—B剖面线横剖面图 纵比例尺:1:4000 图4—1 某区砂层构造图及不整合面等高线图 1—不整合面等高线(m);2—某砂层顶面等高线(m);3—某砂层侵蚀终止线;4—剖面线 图实4—2 某区砂层P—Q剖面线横剖面图 纵比例尺:1:5000

天然气开采技术

第一章 绪论 1、 天然气:是指在不同地质条件下生成、运移并以一定压力储集在地下构造中的气体。 2、 我国天燃气工程技术特点: 1) 地层和储层特性的特殊性:埋藏深(3000-6000m )开发开采难度大; 中低渗气藏居多,自然产能低: 储集量不富集,中小型气田居多,开发分散性、复杂性 2) 气藏产水危害的严重性 3) 流体性质的高腐蚀性 4) 天然气的可爆性和高压危险性 第二章 天然气物理化学性质 1、天然气组成: 烃类气体:甲烷、乙烷、丙烷、丁烷及以上气体 非烃类气体:氮气、氢气、硫化氢、二氧化碳、水等 惰性气体:氦气、氩气等 3、 天然气组成的表示方法: 已知天然气由k 种组分组成,组分i 的摩尔数为n i 体积为v i 质量为m i 1) 摩尔分数法:i i k i i=1 n y n = ∑ 2)体积分数法:i i k i i=1 V y V = ∑ 3)质量分数法:i i k i i=1 m w m = ∑ 4、 天然气按烃类气体分类: 1) 按戊烷及以上组分分: 干气:1m 3井口流出物中戊烷及以上液态烃含量低于13.5cm 3的天然气。 湿气:1m 3井口流出物中戊烷及以上液态烃含量高于13.5cm 3的天然气。 2) 按丙烷及以上组分分: 贫气:1m 3井口流出物中丙烷及以上烃类含量低于100cm 3 的天然气。 富气:1m 3井口流出物中丙烷及以上烃类含量高于100cm 3的天然气。 5、 天然气的相对分子量、密度、相对密度、比容: 相对分子量:n i i i=1 M y M = ∑ 密度:g P M R T ρ= 相对密度:g g a 28.96 M ργρ= = 比容:g 1 νρ= 6、 天然气的偏差系数Z :指相同温度、压力下,真实气体体积与同质量理想气体体积之比。 影响因素:组成、温度、压力 确定方法:1)实验法 2)图版法:H 2S 、CO 2校正;凝析气校正 3)计算法

油气藏类型

油气藏类型 油气藏的类型很多,它们在成因、形态、规模与大小及储层条件、遮挡条件,烃类相态等方面的差别很大。为了便于研究和指导油气田勘探,有必要对它们进行分类。到目前为止已提出了上百种分类方案。 油气藏的分类要遵循两条最基本的原则: 1.科学性:充分反映圈闭成因、油气藏形成条件、各类之间的区别与联系。 2.实用性:能有效地指导勘探工作,比较简便实用。 本书的分类,分为五大类:构造、地层、岩性、水动力、复合(表7-1、7-2)。 表7-1 A A 表7-2

A §1 油田生产上的一些分类 一、按产量大小分 高产油藏:100t/d 中产:10~100t/d 低产:2~10t/d 二、按形态分: 层状油气藏:油气呈层状分布,如背斜油气藏。 块状油气藏:油气呈块状分布,如古潜山。 不规则油气藏:分布无一定形态,如断层油气藏。 三、按烃类组成分:油藏、油气藏、气藏、凝析气藏 §2 构造圈闭及其油气藏 由于地壳发生变形和变位而形成的圈闭,称为构造圈闭。油气在其中聚集,就形成了构造油气藏。它是最重要的一类油气藏。它进一步可分为背斜、断层、裂缝及岩体刺穿构造油气藏。

一、背斜油气藏 在构造运动作用下,地层发生褶皱弯曲变形而形成的背斜圈闭,称为背斜圈闭,油气在其中的聚集称为背斜油气藏。这是一类在勘探史上一直占据最重要位置的油气藏。在油气勘探历史早期,因为这类油气藏易发现,所以认识较早。随后在1885年由美国地质学家提出了“背斜学说”,在油气勘探史上起到了很重要的作用。到目前为止,背斜油气藏在油气储量和产量中仍占居重要位置,并且是油气勘探早期阶段的主要对象。后来,随油气勘探的深入,易于发现的背斜油气藏越来越少,并发现了一些非背斜油气藏。到二十世纪初由美国石油地质学家莱复生,系统地提出了非背斜油气藏的学说并进行了系统分类。 背斜油气藏的形成条件和形态较简单,油气聚集机理简单,也易于用地震方法发现,是油气勘探的首选对象。背斜油气藏从成因上看,也可分为五个亚类。 (一)挤压背斜油气藏 由侧向挤压应力为主的褶皱作用而形成的背斜圈闭的油气聚集。 特点:两翼倾角陡,常呈不对称状;闭合度高,闭合面积小;常伴有断裂(图7-1)。 m 气水 界面 气水 界面 图7-1四川盆地卧龙河气田剖面图 主要分布在挤压型盆地的变形带,我国西部盆地以此类为主。 (二)基底升降背斜油气藏 由于基底断块热隆升的差异沉降作用而形成的平缓、巨大的背斜构造圈闭油气聚集。 特点:两翼地层倾角平缓,闭合度小,闭合面积大,常呈穹窿状。 主要分布在地台内部坳陷和边缘坳陷中,常呈组或带出现,形成长垣或大隆起带。如大庆长垣,世界上最大的油田加瓦尔。 (三)披覆背斜油气藏 这类背斜是由地形突起及差异压实作用形成的。 形成机理:在沉积基底上常存在有各种地形突起,由结晶基岩、坚硬致密的沉积岩或生物礁块等组成。当其上有新的沉积物堆积后,这些突起部分的上覆沉积物一般较薄,而其周围的沉积物较厚,因而在成岩过程中,由于沉积物厚度和自身重量的不同,所受到的压实程度不同,结果便在地形突起(潜山)的部位,上覆地层呈披覆隆起形态,形成圈闭。这种构造也有人称为披盖构造或差异压实背斜。 特点:形态一般为穹隆状,顶平翼稍陡,闭合度和幅度下大上小,两翼倾角下大上小。如渤海湾盆地的济阳坳陷的孤岛及孤东油田。主要分布在台区。 (四)底辟拱升背斜油气藏

气藏工程作业

气藏工程作业 气藏工程作业 参考教材:天然气工程(第二版)李士伦等编著石油工业出版社作业上交时间:该内容讲完的二周后那次课上交。 第一章绪论 1、综述国内外天然气资源现状与发展趋势。 2、气田开发和油田开发有何共同点和差异性。 4、你从我国天然气开采利用的发展历程中获得了哪些有益的经验教训。 5、气田开发有哪些特点? 第二章天然气的物理化学性质一、概念题 天然气密度天然气相对密度天然气比容偏差系数 天然气等温压缩系数天然气体积系数 天然气膨胀系数天然气粘度 天然气水露点和烃露点天然气热值视地层压力 二、论述题 1、论述天然气偏差系数的确定方法与计算方法,并阐明各种方法的适用范围。 2、论述天然气粘度的确定方法,并阐明粘度的变化规律。 三、计算题 1. 已知天然气的摩尔分数见下表,求天然气的相对分子质量和相对密度。 组分摩尔分数yi 2. 已知天然气的Ppr=4,Tpr=1.5,Ppc=4,应用D-A-K法求Z、Cg。 3. 已知天然气的相关数据见下表,试用D-P-R法、H-Y法、D-A-K法求天然气在 P=4.817MPa ,T=47oC时的偏差系数。 C1 0.95 C2 0.03 C3 0.02 合计1 组分摩尔分数Tci(K) Pci(MPa) C1 0.94 190.6 4.604 C2 0.03 305.4 4.88 C3 0.02 369.8 4.294 n-C4 0.01 425.2 第三章烃类流体相态一、概念题

相P_V相图组分P_T相图 自由度 地面标准状况 二、论述题 1、流体PVT取样要求是什么? 2、根据以下相图判断气藏类型,并说明判断依据。 ppppffppmaxsmaxsCCTTmaxsmaxspseppTsepfTfTT ①② 第四章气井产能分析及设计一、概念题 3.796 pppfmaxsCTmaxspsepTfT ③ 拟压力非达西流动气井试表皮系数无阻流量 气井生产工作制度气体产能拟稳态流动非达西流动系数 二、论述题 1、试阐述常规回压试井、等时试井、修正等时试井方法的特点及各方法适应性。 2、图示说明常规回压试井、等时试井、修正等时试井三种方法,并简述不同点。 3、阐述产能试井目的与方法步骤。 三、计算题 1、已知某气井产能试井资料如下表: 原始地层压力pe=68.8MPa利用二项式产能方程和气井产能经验公式确定气井的绝对无阻流量。 2、在评价气体产能方程时,有三种形式:压力形式、压力平方形式、拟压力形式(参考油 藏的产能方程)。对三种方程进行推导并利用三种方程和表1资料求的气井的绝对无阻流量。 3、推导稳定状态考虑视表皮系数的气井产能方程 4、根据表1的等时试井数据,试写出二项式产能方程与指数式产能方程,并计算无

油气藏分类

油气藏的分类 摘要: 目前,在世界上发现的油气藏的种类众多,形成方式也各有不同,地质学家很早就认识到将这些油气藏分类的必要性。国内外石油地质学家们提出的油气藏的分类很多。其中大部分支持的是根据圈闭的形态和成因进行分类,这样的分类在油气勘探中已经取得了非常重要的作用。但随着常规油气藏的数量慢慢减少以及非常规油气藏在油气藏勘探中的地位的上升,使我们逐渐重视起这些非圈闭类的油气藏,而以往的分类方法在这方面体现出了一定的局限性,所以,我们需要寻找一个更为有效的方法对油气藏进行分类,这样的分类不应该完全推翻根据圈闭分类的方法,而是应该继承圈闭分类的优点并对它的不足加以补充。本文就是在圈闭分类的基础上对油气藏在宏观上分成聚集类油气藏和非聚集类油气藏,并对两种分类分别进行了简单地划分,以此来更好地进行学术上的探讨。 关键词:油气藏分类常规油气藏非常规油气藏圈闭非圈闭 一、传统油气藏分类简要概述 传统对油气藏的分类一般遵循两条基本的原则: 1、分类的科学性,即分类应能充分反映圈闭的成因,反映各种不同类型油气藏之间的联系和区别;

2、分类的实用性,即分类应能有效地指导油气藏的勘探及开发工作,并且比较简单实用。 根据上述两条分类原则将油气藏按照圈闭分为构造油气藏、地层油气藏、岩性油气藏以及符合油气藏,并根据具体特点细分为若干类型(表1)。 二、传统油气藏分类缺陷 可以说,传统油气藏的分类在过去的几十年中对油气藏的勘探已经取得了显著的成效,尤其在寻找圈闭类油气藏勘探中更是如鱼得水,曾经在石油勘探中形成这样的思维“找石油就找背斜”。可见,以圈闭对油气藏分类的重要性和实用性。但近些年来,随着非常规油气藏的发展,如致密砂岩气、页岩气、页岩油、煤层气油气藏在储量和开采量的提高,让我们不得不重视这些所谓的非常规油气藏,而这些油气藏之所以被称为非常规油气藏,如果从发现和利用的时间角度讲,先被利用的就是常规的,后被发现的就是非常规的,但如果当初先被发

长江大学油层物理习题解答

第一篇 储层流体的高压物性 第一章 天然气的高压物理性质 一、名词解释。 1.天然气视分子量(gas apparent molecular weight ): 2.天然气的相对密度g (gas relative density ) : 3.天然气的压缩因子Z(gas compressibility factor) : 4.对应状态原理(correlation state principle) : 5.天然气压缩系数Cg (gas compressive coefficient ): 6.天然气体积系数Bg (gas formation volume factor): 二.判断题。√×× ×√√×× 1.体系压力愈高,则天然气体积系数愈小。 (√ ) 2.烃类体系温度愈高,则天然气压缩因子愈小。 (× ) 3.体系压力越大,天然气等温压缩率越大。 (× ) 4.当二者组分相似,分子量相近时,天然气的粘度增加。 ( ) 5.压力不变时,随着温度的增加,天然气的粘度增加。 (× ) 6.天然气水合物形成的有利条件是低温低压。 (√ ) 7.温度不变时,压力增加,天然气体积系数减小。 (√ ) 8.温度不变时,压力增加,天然气分子量变大。 (× ) 9. 当压缩因子为1时,实际气体则成为理想气体。 (× ) 三.选择题。ACACBDB 1.理想气体的压缩系数与下列因素有关 1.理想气体的压缩系数与下列因素有关 A.压力 B.温度 C.体积 D.组成 ( A )

A.上升,上升 B.上升,下降 C.下降,上升 D.下降,下降 ( C ) 3.对于单组分烃,在相同温度下,若C原子数愈少,则其饱和蒸气压愈其 挥发性愈 A.大,强 B.小,弱 C.小,强 D.大,弱( A ) 4.地层中天然气的密度地面天然气的密度。 A.小于 B.等于 C.大于 D.视情况定( C ) 5.通常用来计算天然气体积系数的公式为 =Cg(273+t)/293P =V地下/ V地面 =Z(273+t)/293P = V地面/ V地下( B ) 6.天然气压缩因子Z>1说明天然气比理想气体压缩,Z<1说明天然气比理想气体。 A.易于,难于 B.易于,易于 C.难于,难于 D.难于,易于( D ) 7.两种天然气A和B,在相同的P-T条件下,A比B更易于压缩,则 C gA C gA, ,Z A Z B A.大于,大于 B.大于,小于 C.小于,大于 D.小于,小于( B ) 四.问答题。 1.天然气的分子量M、密度ρ和比重gγ是如何定义的 2.压缩因子Z的物理意义是什么请区别压缩系数g C,压缩因子Z和体积系数g B的概念。

气藏工程2347章总结

气藏工程 考试题目:阐述69分12 选10 推导题14分 3 选2 计算题17分 3 选2 第二章天然气物化性质 要求: 掌握天然气各参数的定义,理解各参数的计算方法 要点: 天然气的组成:天然气各组分气体所占总组成的比例。三种方法表示:摩尔分数、体积分数、质量分数。 相对分子质量: 密度:在一定温度压力下,单位体积天然气的质量 相对密度:在相同温度、压力下,天然气密度与空气密度之比。无因次。 比容:单位质量天然气所占体积。 偏差系数:Z,在相同P,T下,真实气体所占体积与相同量理想气体所占体积之比。 偏差系数的确定方法与计算方法: (1)天然气偏差系数的确定方法可分为三大类:A实验室直接测定法、B图版法(Standing-Katz偏差系数图版)和C计算法。 A实验室直接测定法由于周期长、成本高,不可能随时随地经常做;B图版法较简单,且能满足大多数工程要求,应用广泛;C计算法适于编程计算,所以也得到了广发应用。 C计算方法:H-Y方法、D-A-K方法、D-P-R方法和Sutton方法。 H-Y法:适用于1.2≤Tpr≤3.0,0.1≤Ppr≤24.0的情况。该方法由于其理论基础牢固,应用的对比压力范围比原始的Standing-Katz图版更宽,拟对比压力高达24时仍然有较高的精度。 D-A-K法:即11参数法,适用于1.0≤Tpr≤3.0,0.2≤Ppr≤30.0或0.7≤Tpr≤1.0, Ppr<1.0的情况。 D-P-R法:即8参数法,适用于1.05≤Tpr≤3.0,0.2≤Ppr≤30.0的情况。 Sutton法:对于凝析油气混合物,除C1-C6单独组分(或C1-C10)外,要求确定C7+组分(或C11+)拟临界参数。如果气体中含有H2S、CO2、N2和水蒸气,还要对临界参数校正。 天然气等温压缩系数:在等温条件下,天然气随压力变化的体积变化率。简称压缩系数或弹性系数。用Cg表示。天然气体积系数:天然气在地层条件下所占体积与其在地面条件下的体积之比。用Bg表示。 天然气膨胀系数:天然气体积系数的倒数。用Eg表示。 天然气粘度:天然气抵抗剪切作用力的一种量度; 天然气水露点和烃露点:天然气水露点是指在一定压力下与天然气的饱和水蒸气量对应的温度;天然气烃露点是指在一定压力下,气相中析出第一滴“微小”的烃类液体的平衡温度。 天然气的含水量:用绝对湿度和相对湿度表示。 绝对湿度:每一立方米的湿天然气所占水蒸气的含量。 饱和绝对湿度:指在莫伊温度下,天然气中能含有的最大的水蒸汽量。 相对湿度:在同样温度下,绝对湿度与饱和绝对湿度之比。 天然气的溶解度:在一定压力下,单位体积石油或水中所溶解的天然气量。

背斜油气藏的主要类型

背斜油气藏的主要类型 背斜油气藏的形态是多种多样的,但就圈闭的成因来看,主要有以下几种类型。 1、与褶皱作用有关的背斜油气藏 是指在侧压应力挤压作 用下形成的背斜圈闭中的油 气藏。这类油气藏多见于褶 皱区。 其背斜圈闭的特点是: 两翼地层倾角较大,不对称, 靠近褶皱山区一侧较另一侧 平缓;闭合高度较大,闭合 面积较小,且常伴有断层发 育;背斜轴向一般与区域构 造线平行。从区域上看,这 类背斜油气藏分布在褶皱区 的山前和山间坳陷内,常成 排成带出现。我国酒泉盆地 南部山前褶皱带中的油气藏 可作为其中的代表(图)。 在国外的褶皱区内,也分布有很多著名的这类背斜油气藏。例如在波斯湾盆地的扎格洛斯山前坳陷内分布有拉里、阿贾加里、加奇萨兰等世界著名的大油田。在美国的阿巴拉契亚山前坳陷以及前苏联的高加索山前坳陷内,也都分布有很多这种类型背斜油气藏。 2、与基底活动有关的背斜油气藏 在地台区,广泛分 布着一种与基底活动有 关的背斜油气藏。这类背 斜油气藏主要是由于基 底断块上升,使上覆地层 隆起,形成背斜圈闭而产 生的。 其背斜圈闭的主要 特点是:外形一般与其 下基底隆起相符,两翼地 层倾角平缓,闭合高度较 小,闭合面积较大。直接 覆于基底之上的地层弯

曲较明显,向上地层弯曲渐趋平缓,而后逐渐消失。当这种背斜圈闭成组成带分布时,则称为背斜带或长垣。由于这类背斜圈闭一般形成时间早,面积大,若与油气生成及运移配合良好时,常可成为极为有利的油气聚集场所。例如我国的大庆油田(图),世界上最大的加瓦尔油田(图)等,它们的油气藏都属于这种与基底活动有关的背斜油气藏。 沙特阿拉伯加瓦尔油田综合图 图中1ft = 0.3.48m (据У.Груяенд等,1968引自潘钟祥,1986) 3、与同生断层有关的背斜油气藏 在60年代后期的油气勘探工作中,国内外不少地区(特别是三角洲沉积发育地区)都发现了许多与同生断层有关的逆牵引背斜圈闭及其油气藏。所谓逆牵引背斜是指同生断层上盘的沉积岩层在向下滑移过程中,因逆牵引作用而形成的滚卷背斜。这类背斜的形成主要是沉积过程中同生断层作用的结果,而与构造运动无关。

泥页岩储层特征及油气藏描述讲解

泥页岩储层特征及油气藏描述 1、页岩气地质理论 页岩气藏因其自身的有效基质孔隙度很低,主要由大范围发育的区域性裂缝或热裂解生气阶段异常高压在沿应力集中面、岩性接触过渡面、脆性薄弱面产生的裂缝提供成藏所需的储集孔隙度和渗透率,孔隙度最高仅为4%-5%,渗透率小于1x10-3μm2。 页岩在地层组成上多为暗色泥岩与浅色粉砂岩的薄互层。在页岩中,天然气的赋存状态多种多样,除极少量的溶解状态天然气以外,大部分以吸附状态赋存于岩石颗粒和有机质表面,或以游离状态赋存于孔隙、裂缝中。吸附状态天然气的赋存与有机质含量关系密切,其中吸附状态天然气的含量为20%-85%,其成藏体现出非常复杂的多机理递变特点,表现为成藏过程中的无运移或极短距离的有限运移,因此页岩气藏具有典型煤层气、典型常规圈闭气成藏的多重机理。 页岩气藏的形成是天然气在烃源岩中大规模滞留的结果,是“自生自储”式气藏,运移距离极短,现今保存状态基本上可以反映烃类运移时的状态,即天然气主要以游离相、吸附相和溶解相存在。在生物化学生气阶段,天然气首先吸附在有机质和岩石颗粒表面,饱和后则富余的天然气以游离相或溶解相进行运移,当达到热裂解生气阶段,由于压力升高,若页岩内部产生裂缝,则天然气以游离相为主向其中运移聚集,受周围致密页岩烃源岩层遮挡、圈闭,易形成工业性页岩气藏。由于扩散作用对气态烃的运移起到相当大的作用,天然气继续大量生成,将因生烃膨胀作用使富余的天然气向外扩散运移,此时无论是页岩地层本身还是薄互层分布的砂岩储层,均表现为普遍的饱含气性。 在陆相盆地中,湖沼相和三角洲相沉积产物一般是页岩气成藏的最好条件,但通常位于或接近盆地的沉降-沉积中心,导致页岩气的有利分布区集中于盆地中心处。从天然气的生成角度分析,生物气的产生需要厌氧环境,而热成因气的产生也需要较高的温度条件,因此靠近盆地中心方向是页岩气成藏的有利区域。 2、页岩气的主要特征 2.1页岩气的成因特征 页岩气的成因类型有生物成因型、热解成因型和热裂解成因3类型及其混合类型。对生物成因气而言,其源岩的热演化程度低,R o一般不到0.7%,所生成

《天然气工程》教学大纲

《天然气工程》教学大纲 一、课程差不多信息 1、课程英文名称:NATURAL GAS ENGINEERING 2、课程类不:专业课程 3、课程学时:总学时40,上机学时4 4、学分:2.5 5、先修课程:工程流体力学、油层物理、渗流力学等 6、适用专业:石油工程 7、大纲执笔:石油工程教研室刘建仪 8、大纲审批:石油工程学院学术委员会 9、制定(修订)时刻:2006.11 二、课程的目的与任务 《天然气工程》课程属于国家一级重点学科“石油工程”学科教学改革中“油气田开发工程”专业方向中“天然气工程”模块课程体系的应用技术课程。本课程以石油工程专业培养目标和差不多要求为宗旨,培养能适应我国社会主义现代化建设需要,德、智、体、美全面进展,获得工程师差不多训练的石油工程高级技术人才。学生通过学习应获得以下几方面的知识和能力:①能够顺利阅读与本课程有关的外文书刊;②把握本课程所必需的工程科学基础理论和专业知识,具有分析和解决天然气工程实际咨询题、进行技术改造、科技开发和应用研究的初步能力;③具有较强运算和表达能力;④具有较强的自学能力、工作适应能力、较熟练的运算机操作应用能力和创新意识。 三、课程的差不多要求 《天然气工程》是《石油工程》专业和《油气田开发工程》学科的一门重要而又新的课程,做到地面与地下结合,地质与工程结合,开发与工艺结合,技术与经济结合,理论与实践结合,把气藏和气井作为一个完整的生产系统,对天然气开发和开采方面的工程咨询题进行了较详细的分析。课程分不讲述天然气的差不多性质、烃类流体相态、气藏物质

平稳和储量运算及采收率、气井产能分析及设计、气藏动态分析、气井管流和嘴流、气井生产系统分析,气井井场工艺,气井排水采气、天然气预处理及轻烃回收等内容。课程在讲述气田气井开采理论和方法的基础上,紧密结合现场实际,讲述现场有用的天然气开采运算分析方法,使学生能熟练地把握有关天然气开发和开采方面的知识与技能,学会应用这些知识解决实际生产咨询题。 四、教学内容、要求及学时分配 (一)理论教学: (一)能源咨询题事关重大,超前思维查找以后能源 第二节我国石油天然气进展战略 (一)我国油气勘探成果和面临的挑战 (二)我国经济进展与能源供需矛盾 (三)我国石油天然气进展战略 第三节我国天然气工业现状 (一)我国天然气资源现状 (二)天然气进展现状 第五节世界天然气工业新形势 (一)世界天然气资源 (二)世界天然气市场 (三)天然气的输送 (四)天然气应用 重点:我国天然气工业的现状及进展,天然气工程的研究对象、内容和方法,有关学习天然气工程的目的和方法。 第二章天然气的要紧物性参数(总学时:1) (一)天然气的组成和分类 (二)天然气的分子量和相对密度 (三)天然气偏差系数的确定 (四)天然气的等温压缩系数

油气藏的分类

三、油气藏类型 1、按照相态分类 见表3-2-。 表3-2- 中国油气藏相态类型划分表 2、按照圈闭要素分类 (1)背斜油气藏 见图3-2-。 图3-2- 背斜油气藏类型图 (2)断层油气藏 见图3-2-。 图3-2- 断层油气藏类型图 (3)地层油气藏 见图3-2-。 图3-2- 地层油气藏类型图 (4)岩性油气藏 见图3-2-。 图3-2- 岩性油气藏类型图 (5)混合油气藏及水动力油气藏 见图3-2-。 图3-2- 混合油气藏及水动力油气藏类型图 (6)潜山油藏类型 见图3-2-。 图3-2- 潜山油藏分类 (7)盐丘圈闭油气藏 见图3-2-。 图3-2- 盐丘圈闭理想示意剖面图 (8)深盆气藏 见图3-2-。 图3-2- 美国阿帕拉契亚地区百英尺砂岩深盆气藏剖面图3、按天然气组分因素分类 (1)含酸性气体气藏的划分 1)含硫化氢(H2S)的气藏划分 见表3-2-。

表3-2- 含硫化氢气藏分类 2)含二氧化碳(CO2)的气藏划分 见表3-2-。 表3-2- 含二氧化碳气藏分类 (2) 含氮气(N2)的气藏划分 见表3-2-。 表3-2- 含氮气藏分类 (3) 含氦气(He)的气藏划分 在当前工业技术条件及国民经济实际需要条件下,将天然气组分中含氮量达到0.1%及以上者,称为含氮气藏。 4、按气藏原始地层压力分类 (1)按照地层压力系数(PK)划分 见表3-2-。 (2) 四、油气藏组合模式 1、长垣油气藏聚集带 见图3-2-。 图3-2- 长垣油气藏聚集带实例图 2、古河道砂岩体油气藏聚集带 见图3-2-。 图3-2- 古河道砂岩体油气藏聚集带实例图

非常规油气藏与常规油气藏特征的比较

非常规油气藏与常规油气藏特征的比较 油页岩、页岩油、页岩气和煤层气都是在烃源岩内部形成的油气藏,是没有经过运移形成的油气藏类型,烃源岩即是储集层,因此其源储组合特征都是“源储一体”,其保存条件和烃源岩自身的有机质含量及其热演化程度是油气藏丰度的主要控制因素。 致密油气则是在烃源岩以外的致密储集层中形成的油气藏,是经过初次运移和短距离二次运移后形成的油气藏(相对油页岩’页岩油’页岩气和煤层气而言,致密油气源储组合比较复杂,主要存在2 种类型: 一种是源储叠置的’以纵向大面积运移为主的致密油气藏。另一种是以横向推进式运移为主的致密油气藏,由于致密储集层孔渗性差,浮力作用不明显,故形成上水下气的“气水倒置”格局。 油气分布特征 由于非常规油气的成因类型主要受烃源岩和储集层特征控制,因此不同类型的非常规油气藏与常规油气藏在地下空间有序分布(通常,在陆相盆地,从斜坡向盆地内,往往由以砂岩为主的沉积相向以泥岩为主的沉积相演变; 纵向上,随着埋深增大,源岩演化程度增大,由生油期向生气期演化,同时储集层也从常规储集层演化为致密储集层(因此,在同一烃源岩体系中,页岩气’致密气’页岩油’致密油’油页岩在空间上往往自深而浅分布。 勘探方法

非常规油气主要分布于前陆盆地坳陷—斜坡、坳陷盆地中心及克拉通向斜部位等负向构造单元中,油气分布多数游离于二级构造单元高部位以外,主体位于盆地中心及斜坡,呈大面积连续型或准连续型分布。非常规油气勘探,关键是寻找大面积层状储集体,核心工作是突破“甜点区”,确定甜点区的富有机质烃源岩、有利储集体、高含油气饱和度、易于流动的流体、异常超压、发育裂缝、适中的埋藏深度等主要控制因素,确立连续型油气区边界与空间展布。第一步,按照核心区评价标准,评价优选出核心区,结合储层、局部构造、断裂与微裂缝发育状况,筛选出“甜点区”;第二步,在“甜点区”进行开采试验,力争取得工业生产突破,同时探索适合该区的技术路线;第三步,外甩扩大评价范围,探索连续型含油气边界,确定油气资源潜力。 常规油气主要发育在断陷盆地大型构造带、前陆冲断带大型构造、被动大陆边缘以及克拉通大型隆起等正向构造单元,二级构造单元控制油气分布。油气聚集于构造高点,平面上呈孤立的单体式分布;或聚集于岩性圈闭、地层圈闭中,平面上呈较大规模的集群式分布。常规油气勘探,关键是寻找有效聚油圈闭,核心工作是预探获取发现,评价确定圈闭边界。 第一步,进行圈闭识别、圈闭优选和圈闭精细描述,落实有利钻探目标;第二步,选择最有利目标、最佳钻探位置进行预探,力求获得油气发现; 第三步,开展评价钻探,落实油气水界面,确定含油气范围与储

油气藏类型及油气田分类

油气藏类型及油气田分类 圈闭 油、气运移到储集层中以后,还不一定形成油气藏。只有在运移的道路上遇到遮挡,阻止它继续前进时,才能集中起来,形成油、气藏。这种由于遮挡而造成的适于油、气聚集的场所,通常称为圈闭。 圈闭的形成必须具备以下三个条件:一是储集层,是具有储集油、气空间的岩层;二是盖层,它是紧邻储集层的不渗透岩层,起阻止油气向上逸散的作用;三是遮挡物,它是指从各方面阻止油、气逸散的封闭条件。上述三方面在一定地质条件下结合起来,就组成了圈闭。在不同的地质环境里,可以形成各式各样的圈闭条件,根据圈闭成因,一般可将圈闭分为构造圈闭、地层圈闭和岩性圈闭三种类型。 油、气藏类型 根据圈闭类型的不同,可以将油、气藏分为构造油气藏、地层油气藏和岩性油气藏三大类。 构造油气藏的基本特点是聚集油、气的圈闭是由于构造运动使岩层发生变形或变位而形成的,主要有背斜油、气藏和断层油、气藏。 地层油气藏是指地层圈闭中的油气聚集。 岩性油气藏是由于沉积环境变迁,导致沉积物岩性变化,形成岩性尖灭体和透镜体圈闭,在这类圈闭中形成的油气聚集。 常见的潜山油气藏是以地层圈闭为主,也有构造、岩性作用的复合成因的油气藏 根据油气藏油层中有无固定隔层,可以将油气藏分为层状油气藏和块状 油气藏。层状油气藏是指油层呈层状分布,油气聚集受固定层位限制,上下都被不渗透层分隔的油气藏,各层具有不同的油(气)水系统。块状油气藏是指油层顶部被不渗透岩层覆盖,而内部没有被不渗透岩层间隔,整个油层呈块状,具有统一油(气)水界面的油气藏。 根据地层中的原油性质,可以将油气藏分为稠油(重油)油藏、普通黑油油藏、挥发性油藏、凝析气藏和天然气藏。稠油(重油)油藏是指地下原油粘度大于50毫帕秒(原油比重大于0.9,API重度小于25度)的油藏,液体颜色一般为粘稠黑色。普通黑油油藏是指地下原油粘度低于50毫帕秒(原油比重在0.82~0.9之间,API重度在25~41度)的油藏,液体颜色一般为黑色。挥发性油藏和凝析气藏都是油品性质比较特殊的油气藏。挥发性油藏是指在原始地层条件下原油与普通黑油相似,呈单一的液态,随着油藏流体的不断产出,地层压力不断降低,单一液体中开始有气体分离出来,从而形成气、液两相共存的这类油气藏。凝析气藏是指在原始地层条件下地层流体呈单一的气态,随着油藏流体的不断产出,地层压力不断降低,气藏中开始有液体反凝析出来,形成气液两相共存状态的一类油气藏。表1中给出了不同类型油气藏油品性质分布。

2014年中国石油大学北京油气田开发工程考研大纲和真题

2014年中国石油大学北京油气田开发工程考研大纲和真题

油气田开发综合(Ⅱ) 《采油工程》研究生考试大纲(75分) 一、参考书目 张琪《采油工程原理与设计》,石油大学出版社,2002年 王鸿勋张琪等编《采油工艺原理》修订本,石油工业出版社,1990年二、考试范围 第一章自喷与气举 第一节油井流入动态 第二节气液多相垂直管流规律 第三节自喷井协调及系统分析 第四节气举 第二章抽油 第一节抽油装置和泵的工作原理 第二节抽油机悬点运动规律 第三节抽油机悬点载荷计算 第四节影响泵效因素及提高泵效措施 第五节抽油井生产分析 第六节抽油设备选择 第三章注水 第一节水源及水处理 第二节分层吸水能力研究 第三节注水指示曲线及分析 第四节防止吸水能力降低及改善吸水剖面的方法

第四章水力压裂 第一节造缝机理 第二节压裂液 第三节支撑剂及裂缝导流能力 第四节压裂设计 第五章酸化 第一节碳酸盐岩地层的盐酸处理 第二节酸液及添加剂 第三节酸处理工艺 第四节砂岩地层土酸处理 要求掌握基本概念、基本计算(公式)和基本方程的推导,同时能应用书本理论知识对工程实际问题进行综合分析。 《油层物理》考试大纲(75分) (2007年9月) 课程名称:《油层物理》 适用专业:石油工程 参考书:1)《油层物理学》,杨胜来魏俊之,石油工业出版社,2004 考试内容 第一章油气藏流体的化学组成与性质 §1 石油的化学组成 §2 石油的物理性质 §3 天然气的化学组成 §4 地层水的化学组成 §5 油气藏按烃类流体物性分类 第二章天然气的高压物理性质 §1 天然气的视分子量和密度 §2 天然气的状态方程和对比状态原理

1.3油藏分类

第三章油气藏分类 第一节油气藏分类原则和因素 一、油气藏分类一般遵循的原则 1、油藏的地质特征,包括油藏的圈闭、储集岩、储集空间、压力等特征; 2、油藏的流体性质及分布特征; 3、油藏的渗流物理特性,包括岩石的表面润湿性,油水、油气相对渗透率,毛管压力,水驱油效率等; 4、油藏的天然驱动能量及驱动类型。 二、油藏的分类因素 (一)、原油性质 1、低粘度 油层条件下原油粘度 <5 mPa .s为低粘度原油。 2、中粘度 油层条件下原油粘度在5~20 mPa .s为中粘度原油。 3、高粘度 油层条件下原油粘度在20~50 mPa .s为高粘度原油。 4、稠油 油层条件下原油粘度 > 50 mPa .s,相对密度 > 0.920为稠油。稠油又可细分为3大 类4级(表1.3.1)。 表1.3.1 稠油分类标准 注:1)指油层条件下粘度,其它指油层温度下脱气油粘度 5、凝析油 指在地层条件下介于临界温度和临界凝析温度之间的气相烃类,一般相对密度< 0.800。 6、挥发油 流体系统位于油气之间的过渡区内,而其特性在油藏内属泡点系统,呈液体状态,相态上接近临界点,在开发过程中挥发性强。 7、高凝油

为凝点 > 40℃的轻质高含蜡原油。 (二)、圈闭 构造圈闭,地层圈闭、水动力圈闭、复合圈闭。 (三)、储集层岩性 砂岩、砾岩、碳酸盐岩、泥岩、火山碎屑岩、侵入岩、变质岩。 (四)、渗透性 1、高渗透 储集岩空气渗透率 > 500×10-3μm2。 2、中渗透 储集岩空气渗透率50—500×10-3μm2。 3、低渗透 储集岩空气渗透率10—50 ×10-3μm2。 4、特低渗透 储集岩空气渗透率 < 10×10-3μm2。 (五)、油、气、水产状 边水、底水、气顶。 (六)、储集层形态 层状(单层、分层、低倾角、高倾角)、块状。 (七)、储集空间类型 孔隙型、裂缝型、双重介质型。 (八)、地层压力 常压(压力系数0.9~1.2)、异常高压(压力系数 > 1.2)、异常低压(压力系数 < 0.9)。 (九)、原油中气饱和度 未饱和、饱和、过饱和。 (十)、埋藏深度 浅层(< 1500m)、中深(1500~2800 m)、深层(2800~4000 m)、超深层(> 4000 m)。 (十一)、润湿性 1、亲水 岩石表面优先被水润湿,自发吸入法测定时,吸水量明显大于吸油量。 2、中性 岩石表面被水与被油润湿能力相近,自发吸入法测定时,吸水量基本等于吸油量。 3、亲油 岩石表面优先被油润湿,自发吸入法测定时,吸油量明显大于吸水量。 (十二)、天然驱动类型 天然水驱、气顶驱、溶解气驱、弹性驱、重力驱动、综合驱动。 三、命名原则 油藏命名采用多因素主、次命名法,次要因素在前,主要因素在后。

石油油藏分类

油藏分类方法概述 摘要:对油藏进行分类是为了更好的对油藏进行管理,提高对油气田的开发。目前对油藏的分类有很多标准,如粘度、密度、孔渗性等根据原有物性的分类,也有断块、背斜、不整合等根据圈闭构造的分类,也有很多学者进行了系统的聚类分析,实现了油藏的聚类分类方法,各种分类方式有各自的优缺点,适应不同的需求,本文将会就现有的研究成果,对油藏分类问题进行综合的归纳。 关键字:粘度、密度、聚类分析、岩性、构造分类、圈闭、储集层 正文: 油藏的分类至今也没有统一的答案,根据不同的标准,可以分成不同的等级、类别。但是油藏分类一般应遵循以下三个原则[3]: 1)油藏的地质特征,包括油藏的圈闭、储集岩、储集空间、压力等特征。 2 )油藏的流体及其分布特征。 3 )油藏的渗流物理特性,包括岩石表面的润湿性,油水、油气相对渗流效率等。 4 )油藏的天然驱动能量和驱动类型。 在遵循了这些原则的前提下,油藏的分类仍然受很多因素的影响,也就是分类的标准,包括粘度、挥发性、以及储集层物性等。按原油的性质分为:低粘油,油层条件下原油粘度<5mPa.s;中粘油,油层条件下原油粘度>5—20mPa .s;高粘油,油层条件下原油粘度>20—50 mPa .s;稠油,油层条件下原油粘度>50 mPa .s,相对密度>0.920.稠油又可细分 [3] 在天然气藏中,温度介于临界温度和临街凝析温度时,由于开采时地层的压力降低,形成的凝析油,属于轻质油,密度小于0.8.当地层流体位于气液过渡区时,由于温度压力条件的变化,在开发过程中具有极强的挥发性,称为挥发油藏。

除了原有本身的性质以外,另一个影响因素就是圈闭的类型,不同的圈闭的封闭机理是不一样的,也就形成了不同成因的油藏,一般的圈闭主要有背斜、断层、不整合、刺穿和岩性尖灭等。背斜油藏,油气运移到背斜圈闭中保存下来形成的油藏;断层油藏,油气运移到由断层和岩性上倾尖灭、断层和背斜一翼构成的圈闭时形成的油藏;不整合油藏,油气运移到由不整合圈闭中形成的油藏,不整合分为削截和上超(必须配有盖层);刺穿油藏,由于岩体刺穿,形成了地层上倾和封堵,形成的油藏;岩性油藏,由于岩性的上倾尖灭形成圈闭,一起聚集其中形成的油藏。当然除了岩性的尖灭以外,岩性的不同又可以分为砂岩油藏、砾岩油藏、变质岩油藏、粘土岩油藏和碳酸盐岩油藏等。 根据储层物性(主要是渗透性)不同,又可以分为4种类型:高渗油藏,储集岩空气渗透率>500X10-3μm2;中渗油藏,储集岩空气渗透率>(50—500)X10-3μm2;低渗油藏,储集岩空气渗透率>(10—50)X10-3μm2;特低渗油藏,储集岩空气渗透率<10X10-3μm2。 根据油藏的埋藏深度的不同,而已将油藏分为4类:浅层油藏,埋深小于1500m;中深油藏,埋深介于1500—2800m之间;深层油藏,埋深介于2800—4000m之间;超深油藏,埋深大于4000m。 根据油藏动力的不同,分为6类:天然水驱油藏,驱油的动力主要来自于边水、底水的压力;气顶驱动油藏,驱油的动力主要靠不同规模的原生气顶的膨胀作用产生的挤压力;重力驱动油藏,驱油的能量主要靠原油的重力作用,只有在地层倾角较大,无其他驱动力来源的情况下,才能单独反映出来;溶解气驱油藏,驱油的能量主要靠在地层压力低于饱和压力条件下溶解气的膨胀作用;弹性驱动油藏,驱油的能量主要靠油层岩石和流体的弹性膨胀作用;综合驱动油藏,综合驱动油藏内有两种或两种以上主要驱油能量。 综合考虑各种因素,以及各种因素的组合方式,制成了油藏的综合分类表,见表2[3]。

气藏工程作业

气藏工程作业 参考教材:天然气工程(第二版)士伦等编著石油工业 作业上交时间:该容讲完的二周后那次课上交。 第一章绪论 1、综述国外天然气资源现状与发展趋势。 2、气田开发和油田开发有何共同点和差异性。 4、你从我国天然气开采利用的发展历程中获得了哪些有益的经验教训。 5、气田开发有哪些特点? 第二章天然气的物理化学性质 一、概念题 天然气密度 天然气相对密度 天然气比容 偏差系数 天然气等温压缩系数天然气体积系数天然气膨胀系数 天然气粘度 天然气水露点和烃露点天然气热值 视地层压力 二、论述题 1、论述天然气偏差系数的确定方法与计算方法,并阐明各种方法的适用围。 2、论述天然气粘度的确定方法,并阐明粘度的变化规律。 三、计算题 1.已知天然气的摩尔分数见下表,求天然气的相对分子质量和相对密度。 2.已知天然气的Ppr=4,Tpr=1.5,Ppc=4,应用D-A-K法求Z、Cg。 3.已知天然气的相关数据见下表,试用D-P-R法、H-Y法、D-A-K法求天然气在 P=4.817MPa ,T=47oC时的偏差系数。

第三章 烃类流体相态 一、概念题 相 组分 自由度 P_V 相图 P_T 相图 地面标准状况 二、论述题 1、 流体PVT 取样要什么? 2、 根据以下相图判断气藏类型,并说明判断依据。 p p f T T ① ② ③ 第四章 气井产能分析及设计 一、概念题

拟压力 非达西流动 气井试表皮系数无阻流量气井生产工作制度气体产能 拟稳态流动 非达西流动系数 二、论述题 1、试阐述常规回压试井、等时试井、修正等时试井方法的特点及各方法适应性。 2、图示说明常规回压试井、等时试井、修正等时试井三种方法,并简述不同点。 3、阐述产能试井目的与方法步骤。 三、计算题 1、已知某气井产能试井资料如下表: 原始地层压力 pe=68.8MPa利用二项式产能方程和气井产能经验公式确定气井的绝对无阻流量。 2、在评价气体产能方程时,有三种形式:压力形式、压力平方形式、拟压力形式(参考油 藏的产能方程)。对三种方程进行推导并利用三种方程和表1资料求的气井的绝对无阻流量。 3、推导稳定状态考虑视表皮系数的气井产能方程 4、根据表1的等时试井数据,试写出二项式产能方程与指数式产能方程,并计算无阻流量。 表1 等时试井数据表

相关主题
文本预览
相关文档 最新文档