当前位置:文档之家› 合作博弈论 Cooperative Game Theory

合作博弈论 Cooperative Game Theory

合作博弈论 Cooperative Game Theory
合作博弈论 Cooperative Game Theory

Cooperative Game Theory

R.Chandrasekaran,

Most of this follows Owen and Shubik and Wooldridge et al.

When we extend two person game theory to consider n person games for n≥3,there is little di?erence from non-cooperative game theory point of view.Existence of Nash equilibrium follows from similar arguments and all the di?culties we had with two person nonzero sum games show up here as well.But there is a new phenomenon here that must be taken into account:—that of coalition formation.Subsets of players could form a"cartel"and act in unison to gain more than they could if they acted independently.This forms one essential aspect of the game here.And this requires having binding contracts,using correlated mixed strategies,and transferable utility(so that the gain could be shared between the colluders in some way that all agree to). The main study here is to model the coalition formation,and gain sharing process.So we abstract away details and concentrate on important parts of the game.

Game Representation:Characteristic Function Forms Let N= {1,2,...,n}be the set of players.Any nonempty subset S of N is called a coalition.

De?nition1By a characteristic function of an n-person game we mean a function v that assigns a value to each subset of players;i.e v:2N→R. We think of v(S)as the payo?to the subset S of N if it acts in unison;some times it is also assumed that this is maximin payo?in that we also think all of N?S act in unison(against S).v(S)is called the value of the coalition S.

When we go from games in extensive forms to normal forms,we abstract some details and only look at strategies to obtain a(mixed)equilibrium(for which we do not need the details that have been abstracted away).Similarly,

1

in n person cooperative games where the study focuses on stable coalition formations,we abstract away even further and look only at the characteristic function form.It is implicitly assumed that a coalition S can distribute its value v(S)to its members in any way they choose.Hence these are also called transferable utility games(TU games for short).How the distribution takes place is the main interest in these games.It is generally assume that v({φ})=0;v(S)≥0?S?N.

Outcomes/Solutions An outcome of a game in characteristic form con-sists of:

(i)A partition of N into coalitions,called a coalition structure,and

(ii)a payo?vector,whic distributes the value of each coalition to its members.

A coalition structure CS over N is a nonempty collection of nonempty subsets CS={S1,S2,...,S k}satisfying the relations:

∪k i=1S i=N;S i∩S j=φif i=j

The set of all coalition structures for a given set N of players is denoted by CS N.v(CS)denotes the sum k j=1v(S j).

A vector x=(x1,x2,...,x n)is payo?vector for a coalition structure CS={S1,S2,...,S k},over N={1,2,...,n}if

x i≥0?i∈N

x i≤v(S j)1≤j≤k

i∈S j

An outcome is a apir[CS,x].x(S)= i∈S x i is called the payo?for the coalition S under x.x is said to be e?cient in the outcome[CS,x]if

x i=v(S j)1≤j≤k

i∈S j

A payo?vector x for a coalition structure CS N is called an imputation if it is e?cent and individually rational.

x i≥v({i})?i∈N

x i=v(S j)1≤j≤k

i∈S j

2

The set of all imputations for a coalition structure CS∈CS N is denoted by E(CS).If CS={N},then this is denoted by E(N)or E(v).If a payo?vector is an imputation,then each player prefers this to being alone.Howver, a group of players may want to deviate since it might be better for them and this would result in unstable conditions.

Subclasses of games in characteristic form:

Monotone Games:A game[N,v]in characteristic form is monotone if

[S?T]?v(S)≤v(T)

Most games are montone;nonmonotonicuty may arise because some players intesely dislike each other or becuase of the overhead charges for communi-cation increase nonlinearly with size of the coaltion.

Superadditive Games:A game[N,v]in characteristic form is said to be superadditive if

[S∩T=φ]?v(S∪T)≥v(S)+v(T)

It comes from the fact that S can assure itself v(S)without help from any one and so also T can assure itself v(T),then S∪T can assure itself the sum.Since we have assumed that characteristic function is nonnengative,it follows that superadditivity implies monotonicity.Most games are superadditive;indeed older books did not consider any others.Non-superadditive games arise from anit-trust or anti-monopoly regualtions.

In superadditive games,there is no compelling reason for players to form any coalition structure except CS={N}called the"grand"coalition.Hence the outcome for such a game is of the form[N,x]where

x i=v(N)

A non-superaddtive game cna be transformed into a superadditive game by the following process:Let T?N be any coalition.Let CS T denote all coalition structures over T.Given a game[N,v]we de?ne a new game [N?,v?]by

v?(T)=max

v(CS)

CS∈CS T

3

G?is called the superadditive cover of the game G.v?(T)is the maximum that the players in set T cna achive by forming their own coalition structure in G.

Convex(Supermodualr)Games:A game is said to be convex or supermodular if

v(S∪T)+v(s∩T)≥v(S0+v(T)?S,T?N

Theorem2A game G=[N,v]is convex i?

[T?S;i/∈S]?[v(S∪{i})?v(S)≥v(T∪{i})?v(T)]

A convex game is superadditive.

De?nition3A game v in characteristic function form is called a constant sum game if

v(S)+v(N?S)=v(N)?S?N

It is clear from the super-additivity condition that the maximum the entire set of players can get is v(N).Now we look into the questions of how to divide this total—it what does each player get—in a stable situation.Let (x1,x2,...,x n)denote the payo?to the players.Clearly no player will accept less than what he can get for himself with no help from others.Hence one condition that this vector must satisfy(called individual rationality)is

x i≥v({i})?i

The second condition that is normally imposed(known as pareto-optimality) is to require

n

i=1

x i=v(N)

Any vector that satis?es these two conditions is called an imputation.The main question now is which of these in the set

E(v)={x:x i≥v({i});1≤i≤n;

n

i=1

x i=v(N)}

should the predicted outcome of this game be?The answer is easy in one case(this is the most uninteresting case!)

4

De?nition4A game is said to be inessential if v(N)= n i=1v({i}). By superadditivity,we have v(N)≥ n i=1v({i}).If equality holds,E(v) contains only one point—

x i=v({i})?i

Hence this the outcome of such games.From now on,we are interested only in essential games where v(N)> n i=1v({i}).

De?nition5Let x,y∈E(v).We say that x dominates y via the coalition S[denoted by x?S y]if

x i>y i?i∈S

x i≤v(S)

i∈S

Each player in S gets more under x than in y and the coalition S has enough to give its members the amount speci?ed in x.

De?nition6We say x dominates y if the above is true for some S.

If x dominates y then y is not stable.Games with same domination structure are in some sense equivalent and we make this precise by:

De?nition7Two n-person games u and v are said to be isomorphic if there is a function f:E(u)→E(v)such that

[x,y∈E(u);x?S y]?[f(x)?S f(y)]

We are preserving the domination structure.

De?nition8Two n?person games u and v are S?equivalent if there exists numbers(a1,a2,...,a n)andβ>0such that

v(S)=βu(S)+ i∈S a i?S?N

Theorem9If u and v are S-equivalent,then they are isomorphic.The converse is true for all constant sum games.

5

https://www.doczj.com/doc/d311719066.html,e the function f(x)=βx+a.

Since S-equivalence is indeed an equivalence relations,it is su?cient to study one member of each of its equivalence classes.Such representatives are called normalized games.

De?nition10An essential(characteristic function)game is said to be(0,1)-normalized if

v({i)}=0?i

v(N)=1

Lemma11A game is S?equivalent to exactly one game in(0,1)normalized form.

Another normalization used in the literature is the(?1,0)normalization where

v({i})=?1?i

v(N)=0

We use the(0,1)normalization.Thus,the set of all(0,1)normalized games consist of v∈2N that satisfy

v(φ)=0

v({i})=0?i

v(N)=1

[S∩T=φ]?v(S∪T)≥v(S)+v(T)

If the game is also a constant sum game it satis?es the relation

v(S)+v(N?S)=v(N)

Any(n?1)?person game u in(0,1)normalization can be converted to an equivalent n-person constant sum game v in(0,1)normalization as follows:

v(S)=

u(S)

1?u(N?S)

if n/∈S

if n∈S

Here N={1,2,...,n}.

6

De?nition12A game v is symmetric if v(S)depends only on|S|.

De?nition13A game v in(0,1)normalization is called a simple game if

v(S)∈{0,1}?S

Coalitions S with v(S)=1are called winning coalitions and those with v(S)=0are called losing coalitions.

De?nition14Let(p1,p2,..,p n)be a nonnegative vector and let q satisfy the

relation

0

n i=1

p i

The weighted majority game(q;p1,p2,...,p n)is de?ned as a simple game v in(0,1)normalization where

v(S)=1

if i∈S p i≥q

else

De?nition15The set of undominated imputations C(v)of a game v is called the core of a game.

Theorem16C(v)is the set of n-vectors x satisfying the relations;

i∈S

x i≥v(S)?S?N

n

i=1

x i=v(N)

Proof.Clearly,the?rst condition implies the result that

x i≥v({i})?i

Hence any vector that satis?es both relations above is an imputation.Suppose x satis?es both relations.Let y be an n-vector satisfying the relation

y i>x i?i∈S

7

for some S?N.Then

i∈S

y i> i∈S x i≥v(S)

Hence there is no vector y that dominates x.Hence vectors that satisfy both relations are undominated.

Conversely,suppose we have an n-vector y that does not satisfy both re-lations.If

n

i=1

y i=v(N)

then y is not an imputation and hence not in the core.Suppose

n

i=1y i=v(N)

i∈S

y i=v(S)??

for some?>0and some nonempty set S?N.By superadditivity it follows that

α=v(N)?v(S)? i∈N?S v({i})≥0

Let|S|=s;[note that0

z i=

y i+?

v({i})+α

n?s

It is easy to verify that z is an imputation and that z?S y and hence y can not be in the core.

This result shows that the core is a closed convex polyhedral set. Example1Player1(seller)has a horse which is of no value to him.There are two buyers#2,#3who want to buy the horse.#2has a value of$90 and#3has value of100for the horse.The characteristic function form for this game is

v({i})=0?i

v({2,3})=0

v({1,2})=90

v({1,3})=v({1,2,3})=100

8

Hence the core consists of vectors x satisfying the relations:

x1+x2≥90

x1+x3≥100

x1+x2+x3=100

x i≥0?i

The core for this game is given by

C(v)={(t,0,100?t):90≤t≤100} Exercise17What is the non-cooperative solution to this game?

9

博弈论在工作生活中的应用

东北财经大学MBA学院博弈论在工作生活中的应用 姓名:毕哲 学号:2013121098 班级:2013级MBA3班 课程名称:策略思维与决策 任课教师:宗计川

博弈论在工作生活中的应用 博弈论,又称对策论,是指在存在利益竞争的活动中,一个人采取行动的结果。有仅与自己有关,而且与整个活动中其他人的行为有关,即一门研究博奔中局中人各自所选策略的科学。近半个世纪来,人类思想正经历着一场博弈论革命。不论是在经济学上,或是其他社会科学,甚至自然科学领域,博弈论都有着广泛的应用,它已遍及人类生活的方方面面。 一、博弈论概述 博弈论是分析人们在博弈中的理性行为的理论,是讨论人们在博弈的交互作用中如何决策的理论,是一种“游戏理论”。对其具体来说是:一些个人、团队或其他组织,面对一定的环境条件,在一定的规则约束下,依靠所掌握的信息,同时或先后,一次或多次,从各自允许选择的行为或策略中,进行选择,加以实施,并从中各自取得相应结果或收益的过程。它考虑游戏中的个体的预测行为和实际行为,并研究它们的优化策略。 随着博弈理论的发展和博弈研究的不断深入,人们意识到要用博弈论解决现实经济中的决策问题,对现实经济的发展变化趋势进行预测,就必须解决博弈模型的理论抽象和假设与经济问题实际情况的差距问题,具体包括博弈规则、信息结构等的来源和变化问题,相关各方利益关系的设定问题,博弈方的行为模式,能力和理性水平问题。对这些问题的考虑和分析引出了博弈基础理论研究的许多有价值的课题,其中包括理性种类和理性层次、博弈结构的不确定性和动态变化等有待进一步研究发展的领域。这充分保证了博弈论在未来相当长时间内的发展潜力。 二、博弈论的类型 根据不同的基准,博弈论的分类不同。 关于博弈论最基本的分类有两个:一是按照博弈各方是否同时决策,分为静态博弈和动态博弈,同时决策或者同时行动的博弈属于静态博弈,先后或序贯决策或者行动的博弈属于动态博弈。另一分类,是按照大家是否都清楚各种对局情况下每个局中人的得益,分为完全信息博弈和不完全信息博弈。最后,博弈还分为合作博弈与非合作博弈。如果一个博弈允许参与人之中出现有行动约束力的联

博弈论经典案例分析

博弈论经典案例分析 囚徒困境 案例:警察把甲乙分开关押,并在提审时分别告之,如果你坦白而他不坦白,那么你将只判0年,他将被判8年;如果你不坦白而他坦白,那么你判8年,他判0年;如果你们两人都坦白了,各判5年;如果你们两人都不坦白了,各判1年。 分析:每个博弈方选择自己的策略时,虽然无法知道另一方的实际选择,但他却不能忽视另一方的选择对他自己的得益的影响,因此他应该考虑到另一方有两种可能的选择,并分别考虑自己相应的最佳策略。对囚徒A 来说,囚徒B 有坦白和不坦白两种可能的选择,假设囚徒B 的选择是不坦白,则对囚徒A 来说,不坦白得益为-1,坦白得益为0,他应该选择坦白; 假设囚徒B 选择的是坦白,则囚徒A 不坦白得益为-8,坦白得益为-5,他还是该选择坦白。因此,在此博弈中,无论囚徒B 采取何种策略囚徒A 的选择只有一种,即坦白,因为在另一方两种可能的情况下,坦白给自己带来的得益都是较大的。同样的道理,囚徒B 的唯一的选择也是坦白。 所以最可能的结局:该博弈的最终结果是两博弈方同选择坦白策略。 其支付矩阵如下: 性格大战 案例:一对恋人准备在周末晚上一起出去,男的喜欢看足球,但女的喜欢看时装表演。当然两个人都不愿意分开活动。不同的选择给他们带给他们不同的满足。 分析:可以看出,分开将使他们两人得不到任何满足,只要在一起,不管是看时装表演还是看足球,两人都会得到一定的满足。但看足球将使男的得到更大的满足,看时装表演则使女的得到更大的满足。 在这样的一个对局中,男的和女的都没有占优战略。他们的最优侧率依赖于对方的选择,一旦对方选定了某一项活动,另一个人选择同样的活动就是最好的策略。因此,如果男的已经买好了足球的门票,女的当然就不再反对;反之,如果女的已经买好了时装表演票,男的也就会与她一起看时装表演。 1,1 8, 0 不坦白 0,8 5,5 坦白 嫌疑犯乙 不坦白 坦白 嫌疑犯甲 1,2 -1, -1 时装 0,0 2,1 足球 男 时装 足球 女

博弈论

博弈论 1 引言 博弈论包括局中人,策略和支付函数三个要素。有n个局中人参入的博弈称为n人博弈, n≥ 2。每个局中人有个支付函数,其收益或损失由所有局中人的策略按照该支付函数计算。每个局中人采用的策略可以是其多个策略中的某一个,或者是策略的某种概率分布。前者称为纯策略博弈,后者称为混合策略博弈。纯策略可以看作是混合策略的特殊情形。根据局中人之间的关系,博弈分为合作博弈和非合作博弈。每个局中人都希望使自己的利益最大化。但是在非合作博弈中,由于局中人的利益是互相冲突的,只能寻求一组策略使每个局中人较为满意。一组策略是指由每个局中人的一种策略构成的策略组合。如果存在一个策略组合,无论那个局中人单方面地改变其策略,不会使其收益增加,只可能使其收益减少,这个策略组合就叫做納什均衡(或納什均衡解、納什均衡点)。以下是关于納什均衡的正式定义及其存在性定理(见[1])。 Formal definition Let (S,f) be a game with n players, where S i is the strategy set for player i, S = S1?S2?…?S n is the set of strategy profiles and f = (f1(x), f2(x), … , f n(x)) is the payoff function for x∈S. Let x i be a strategy profile of player i and x-i be a strategy profile of all players except for player i. When each player i∈ {1, 2, … , n} chooses strategy x i resulting in strategy profile x = (x1, x2, … , x n) then player i obtains payoff f i(x). Note that the payoff depends on the strategy profile chosen, i.e., on the strategy chosen by play i as well as the strategies chosen by all the other players. A strategy profile x*∈S is a Nash Equilibrium (NE) if no unilateral deviation in strategy by any single player is profitable for the player, that is ?i, x i∈S i: f i(x i*, x-i*) ≥f i(x i, x-i*). Nash’s Existence Theorem If we allow mixed strategies, then every game with a finite many pure strategies has at least one Nash Equilibrium.(有限策略的非合作n人博弈至少有一个納什均衡) 2 二人博弈 2.1 纯策略博弈 局中人I有m个策略A1, A2, … , A m,局中人II有n个策略B1, B2, … ,B n,不同策略下双方的收益如表2.1所示([2]p72)。 表2.1 二人博弈的收益表 由每个单元格中前一个数字构成的矩阵A = (a ij)m?n是局中人I的收益矩阵,由后一个数

博弈论在管理中的应用

管理中的博弈论 在博弈中,你必须考虑对方的选择来确定你的最优选择,而对方也必须考虑你的选择来确定他的最优选择,你从博弈中得到的赢利——或者说是利益,不仅取决于你自己的行动,也取决于对方的行动,而对对方来说也是如此,你们当中的每一方都试图尽可能的使自己的利益最大化。总之,你们的行动既互相影响又相互依赖,这正是博弈最本质的特征。 在一场博弈中,每个人的目标都是其利益的最大化。在博弈理论中,有一个基本的假设,就是人们不会有道德,良心和情感上的考虑,所有的一切都只以是否符合自身利益作为选择标准。不过我们有时候也会从心理上、情感上对这一假设进行修正。不过,这种假设在绝大多数情况下是成立的。虽然我们研究的是对抗性行为,但是我们不要寄希望于博弈论可以使你所向无敌,不过博弈论确实可以增强你对某些局势的洞察力,因为它有自己独特而又保持逻辑内在一致性的思考方法。 我们来看一个现实的例子。 一个经理,为了提高工作效率而让手下有两个主管进行比赛,获胜者将得到一笔奖金。如果这两个员工都拼命工作,那么每人都有1/2的概率得到奖金,但是每个人也都会承受艰苦工作而带来的负效用,而经理自然可以得到好处。但是这两个员工实际上也可以合谋而皆不努力,这时他们两个得到奖金的概率仍然是1/2,但是谁也不需要承担艰苦劳动所带来的负效用,这使得每个员工都从合谋中得到了好处。不过,经理遭殃了,因为预期的工作效率下降了。假如你是这个经理,你会怎么做? 有什么办法来防范合谋呢?大家可能会想到监督。监督的确可以防范合谋,但是进行有效的监督是很困难的,一是监督者也有可能与被监督者合谋,二是对于隐性的默契合谋,监督对此无能为力。那么有什么办法来防范合谋呢?一个办法就是对员工进行歧视。比如,两名员工是一男一女,那么这个歧视的方案是男员工在比赛中胜出将获得100元,而女员工则只能获得50元。这个方案会导致女员工不努力,而男员工为了胜出将努力而不与女员工合谋。实际上,组织正是通过打击某些员工而拉拢另一些员工来瓦解员工之间的合谋行为的。 不过,这个方案有个问题,她会使被歧视员工不再努力,另外由于法律的相关因素,这样的显性歧视方案不会被广泛采用。我们可以借鉴的是隐形歧视理论。比如在组织中两个员工为了争夺一个更高的职位而竞争。显然,两个员工也可以合谋而不努力,让老天来决定谁来得到这个岗位,并且约定,不管是谁得到这个岗位都需要对对方进行补偿。这个问题仍然

博弈论分析

中美军备竞赛的博弈分析 1.理论介绍 1.1博弈论的概念 博弈论(Game Theory),亦名“对策论”、“赛局理论”,属应用数学的一个分支,博弈论已经成为经济学的标准分析工具之一。目前在生物学、经济学、国际关系、计算机科学、政治学、军事战略和其他很多学科都有广泛的应用。博弈论主要研究公式化了的激励结构间的相互作用。是研究具有斗争或竞争性质现象的数学理论和方法。也是运筹学的一个重要学科。博弈论考虑游戏中的个体的预测行为和实际行为,并研究它们的优化策略。 1.2博弈论的主要特点 博弈论考虑游戏中的个体的预测行为和实际行为,并研究它们的优化策略。表面上不同的相互作用可能表现出相似的激励结构(incentive structure),所以他们是同一个游戏的特例。其中一个有名有趣的应用例子是囚徒困境悖论(Prisoner's dilemma)。 具有竞争或对抗性质的行为成为博弈行为。在这类行为中,参加斗争或竞争的各方各自具有不同的目标或利益。为了达到各自的目标和利益,各方必须考虑对手的各种可能的行动方案,并力图选取对自己最为有利或最为合理的方案。比如日常生活中的下棋,打牌等。博弈论就是研究博弈行为中斗争各方是否存在着最合理的行为方案,以及如何找到这个合理的行为方案的数学理论和方法。 1.3博弈的分类 博弈的分类根据不同的基准也有不同的分类。一般认为,博弈主要可以分为合作博弈和非合作博弈。合作博弈和非合作博弈的区别在于相互发生作用的当事人之间有没有一个具有约束力的协议,如果有,就是合作博弈,如果没有,就是非合作博弈。 从行为的时间序列性,博弈论进一步分为静态博弈、动态博弈两类:静态博弈是指在博弈中,参与人同时选择或虽非同时选择但后行动者并不知道先行动者采取了什么具体行动;动态博弈是指在博弈中,参与人的行动有先后顺序,且后行动者能够观察到先行动者所选择的行动。通俗的理解:"囚徒困境"就是同时决策的,属于静态博弈;而棋牌类游戏等决策或行动有先后次序的,属于动态博弈。 按照参与人对其他参与人的了解程度分为完全信息博弈和不完全信息博弈。完全博弈是指在博弈过程中,每一位参与人对其他参与人的特征、策略空间及收益函数有准确的信息。不完全信息博弈是指如果参与人对其他参与人的特征、策略空间及收益函数信息了解的不够准确、或者不是对所有参与人的特征、策略空间及收益函数都有准确的信息,在这种情况下进行的博弈就是不完全信息博弈。 目前经济学家们现在所谈的博弈论一般是指非合作博弈,由于合作博弈论比非合作博弈论复杂,在理论上的成熟度远远不如非合作博弈论。非合作博弈又分为:完全信息静态博弈,完全信息动态博弈,不完全信息静态博弈,不完全信息动态博弈。与上述四种博弈相对应的均衡概念为:纳什均衡(Nash equilibrium),子博弈精炼纳什均衡(sub game perfect Nash equilibrium),贝叶斯纳什均衡(Bayesian Nash equilibrium),精炼贝叶斯纳什均衡(perfect Bayesian Nash equilibrium)。 博弈论还有很多分类,比如:以博弈进行的次数或者持续长短可以分为有限博弈和无限博弈;以表现形式也可以分为一般型(战略型)或者展开型等等。 1.4纳什均衡 纳什均衡的定义:在博弈G=﹛S1,…,Sn:u1,…,un﹜中,如果由各个博弈方的各一个策略组成的某个策论组合(s1*,…,sn*)中,任一博弈方i的策论si*,都是对其余博

博弈论论文--非合作博弈论

非合作博弈论 博弈论也叫对策论,是现代微观经济学的基础领域之一,主要研究在彼此互动的情形下个人是如何做决策的。近年来它已经被广泛地应用于商业、政治、社会学等其他社会科学的分析中。博弈的分类根据不同的基准也有不同的分类。一般认为,博弈主要可以分为合作博弈和非合作博弈。合作博弈和非合作博弈的区别在于相互发生作用的当事人之间有没有一个具有约束力的协议,如果有,就是合作博弈,如果没有,就是非合作博弈。 1950年和1951年纳什的两篇关于非合作博弈论的重要论文,彻底改变了人们对竞争和市场的看法。他证明了非合作博弈及其均衡解,并证明了均衡解的存在性,即著名的纳什均衡。从而揭示了博弈均衡与经济均衡的内在联系。纳什的研究奠定了现代非合作博弈论的基石,后来的博弈论研究基本上都沿着这条主线展开的。 1944年冯·诺依曼与奥斯卡·摩根斯特恩合著的巨作《博弈论与经济行为》出版,标志着现代系统博弈理论的的初步形成。尽管对具有博弈性质的问题的研究可以追溯到19世纪甚至更早。例如,1838年古诺(Cournot)简单双寡头垄断博弈;1883年伯特兰和1925年艾奇沃奇思研究了两个寡头的产量与价格垄断;2000多年前中国著名军事家孙武的后代孙膑利用博弈论方法帮助田忌赛马取胜等等都属于早期博弈论的萌芽,其特点是零星的,片断的研究,带有很大的偶然性,很不系统。冯·诺依曼和摩根斯特恩的《博弈论与经济行为》一书中提出的标准型、扩展型和合作型博弈模型解的概念和分析方法,奠定了这门学科的理论基础。合作型博弈在20世纪50年代达到了巅峰期。然而,诺依曼的博弈论的局限性也日益暴露出来,由于它过于抽象,使应用范围受到很大限制,在很长时间里,人们对博弈论的研究知之甚少,只是少数数学家的专利,所以,影响力很有限。正是在这个时候,非合作博弈—“纳什均衡”应运而生了,它标志着博弈论的新时代的开始!纳什不是一个按部就班的学生,他经常旷课。据他的同学们回忆,他们根本想不起来曾经什么时候和纳什一起完完整整地上过一门必修课,但纳什争辩说,至少上过斯蒂恩罗德的代数拓扑学。斯蒂恩罗德恰恰是这门学科的创立者,可是,没上几次课,纳什就认定这门课不符合他的口味。于是,又走人了。然而,纳什毕竟是一位英才天纵的非凡人物,他广泛涉猎数学王国的每一个分支,如拓扑学、代数几何学、逻辑学、博弈论等等,深深地为之着迷。纳什经常显示出他与众不同的自信和自负,充满咄咄逼人的学术野心。1950年整个夏天纳什都忙于应付紧张的考试,他的博弈论研究工作被迫中断,他感到这是莫大的浪费。殊不知这种暂时的“放弃”,使原来模糊、杂乱和无绪的若干念头,在潜意识的持续思考下,逐步形成一条清晰的脉络,突然来了灵感!这一年的10月,他骤感才思潮涌,妙笔生花。其中一个最耀眼的亮点就是日后被称之为“纳什均衡”的非合作博弈均衡的概念。纳什的主要学术贡献体现在1950年和1951年的两篇论文之中(包括一篇博士论文)。1950年他才把自己的研究成果写成题为“非合作博弈”的长篇博士论文,1950年11月刊登在美国全国科学院每月公报上,立即引起轰动。说起来这全靠师兄戴维·盖尔之功,就在遭到冯·诺依曼贬低几天之后,他遇到盖尔,告诉他自己已经将冯·诺依曼的“最小最大原理”推到非合作博弈领域,找到了普遍化的方法和均衡点。盖尔听得很认真,他终于意识到纳什的思路比冯·诺伊曼的合作博弈的理论更能反映现实的情况,而对其严密优美的数学证明极为赞叹。盖尔建议他马上整理出来发表,以免被别人捷足先登。纳什这个初出茅庐的小子,根本不知道竞争的险恶,从未想过要这么做。结果还是盖尔充当了他的“经纪人”,代为起草致科学院的短信,系主任列夫谢茨则亲自将文稿递交给科学院。纳什写的文章不多,就那么几篇,但已经足够了,因为都是精品中的精品。这一点也是值得我们深思的。国内提一个教授,要求在“核心的刊物”上发表多少篇文章。按照这个标准可能纳什还不一定够资格。 1996年诺贝尔经济学奖得主莫尔里斯当牛津大学艾奇沃思经济学讲座教授时也没有发

生活中的博弈论感悟

生活中的博弈论感悟集团标准化工作小组 #Q8QGGQT-GX8G08Q8-GNQGJ8-MHHGN#

《生活中的博弈论》学习感悟 第一讲初试博弈论 生活中的资源是有限和稀缺的,于是就产生了竞争,这种竞争就需要一种形式把大家聚在一起,这种形式就是博弈。博弈论是在力图在最简单的假设下得到最大范围的推广和应用,其伟大在于对后世的引导和激发作用。博弈论不仅从古代就散发着智慧,还体现在我们生活中的种种小事中,如双方互拨打电话,放弃球赛陪女友逛街等。博弈论是建立在博弈双方或者多方都属于理性人的基础上,通过对自己以及博弈对手状况的了解、博弈环境的要求及变化等诸多因素,博弈者做出对自己最有利最保险的决策和行动,从而使得自己能达到获利或者获胜的目的。每个人都可以成为博弈高手,但人的决策又具有有限理性,因此博弈论也不是万能的。 第二讲纳什均衡 在某一策略组合中,所有的参与者面临这样一种情况,当其他人不改变策略时,他此时的策略是最好的。也就是说,此时如果他改变策略他的支付将会降低。在纳什均衡点上,每一个理性的参与者都不会有单独改变策略的冲动。从“纳什均衡”中我们还可以悟出一条真理:合作是有利的“利己策略”。但它必须符合以下黄金律:按照你愿意别人对你的方式来对别人,但只有他们也按同样方式行事才行。也就是中国人说的“己所不欲勿施于人”。但前提是人所不欲,勿施于我。 第三讲囚徒困境 囚徒困境博弈反映个人最佳选择并非团体最佳选择。用囚徒困境博弈对两个势均力敌的竞争对手进行分析,可以发现合作是可以实现双赢的。如:两个公司互相竞争,二公司的广告互相影响,即一公司的广告较被顾客接受则会夺取对方的部分收入。但若二者同时期发出质量类似的广告,收入增加很少但成本增加。但若不提高广告质量,生意又会被对方夺走。此二公司可以有二选择:互相达成协议,减少广告的开支。(合作)增加

博弈论经典案例与分析

博弈论的经典案例与分析 囚徒困境 案例:警察把甲乙分开关押,并在提审时分别告之,如果你坦白而他不坦白,那么你将只判0年,他将被判8年;如果你不坦白而他坦白,那么你判8年,他判0年;如果你们两人都坦白了,各判5年;如果你们两人都不坦白了,各判1年。 分析:每个博弈方选择自己的策略时,虽然无法知道另一方的实际选择,但他却不能忽视另一方的选择对他自己的得益的影响,因此他应该考虑到另一方有两种可能的选择,并分别考虑自己相应的最佳策略。对囚徒A来说,囚徒B有坦白和不坦白两种可能的选择,假设囚徒B的选择是不坦白,则对囚徒A来说,不坦白得益为-1,坦白得益为0,他应该选择坦白; 假设囚徒B选择的是坦白,则囚徒A不坦白得益为-8,坦白得益为-5,他还是该选择坦白。因此,在此博弈中,无论囚徒B采取何种策略囚徒A的选择只有一种,即坦白,因为在另一方两种可能的情况下,坦白给自己带来的得益都是较大的。同样的道理,囚徒B 的唯一的选择也是坦白。 所以最可能的结局:该博弈的最终结果是两博弈方同选择坦白策略。 其支付矩阵如下: 性格大战 嫌疑犯乙

案例:一对恋人准备在周末晚上一起出去,男的喜欢看足球,但女的喜欢看时装表演。当然两个人都不愿意分开活动。不同的选择给他们带给他们不同的满足。 分析:可以看出,分开将使他们两人得不到任何满足,只要在一起,不管是看时装表演还是看足球,两人都会得到一定的满足。但看足球将使男的得到更大的满足,看时装表演则使女的得到更大的满足。 在这样的一个对局中,男的和女的都没有占优战略。他们的最优侧率依赖于对方的选择,一旦对方选定了某一项活动,另一个人选择同样的活动就是最好的策略。因此,如果男的已经买好了足球的门票,女的当然就不再反对;反之,如果女的已经买好了时装表演票,男的也就会与她一起看时装表演。 价格战 案例:假设市场中仅有A 、B 两家企业,每家企业可采取的定价策略都是10元或15元,我们可以得出得益矩阵如下: 分析:无论对企业A 还是企业B 来说,低价都是他们的占优战略。从表可见,企业A 的占优战略是10元,因为无论B 采取什么战略,企业A 都能获取比定价15元更多的利润。 如果企业B 定价10元,企业A 定价10元能够获利80万元,而定价15元只能获得30万元;如果企业B 定价15元,企业A 定价10元可获利170万元,而定价15元却只能获利120万元。同样地,企业B 的占优战略也是定价10元的策略。 企业B 男

(作业)博弈论在工作生活中的应用

博弈论在工作生活中的应用 一、博弈论概述: 博弈论(game theory),又称对策论,是指在存在利益竞争的活动中,一个人采取行动的结果。有仅与自己有关,而且与整个活动中其他人的行为有关,即一门研究博奔中局中人各自所选策略的科学。近十年来博弈论在西方已成为最热门的学科,用博弈论去研究经济生活中的问题,已成为现代经济学最前沿的课题。 研究对象:冲突、竞争现象的定量分析理论。参加竞争的各方为了获胜而需研究出一组对付对方的策略。 博弈论研究的意义 对于博弈论发展的贡献也许更大的是,博弈论正是在这个时期开始受到经济学真正广泛的重视,并被看作重要的经济理论和经济学的核心分析方法,开始贯穿几乎整个微观经济学、产业组织理论,在环境、劳动、福利、国际经济学科中也开始占越来越重要的地位,大有“吞噬”整个现代西方经济理论的气势。也正是在这个阶段开始,博弈论开始成为西方国家经济学专业和许多相关专业学生的一门必读课,有志于攻读经济学博士学位者,更是必须熟练掌握和运用博弈论的原理和方法。博弈论的思想、词汇也开始在经济学专业杂志上大量出现,不懂博弈论的学者开始在阅读经济学文献方面遇到越来越大的困难和限制,几乎到了不懂博弈论就意味着不懂现代经济学的地步。 上述趋势由于90年代中期的两次诺贝尔奖而进一步得到加强。首先是1994年三位致力于博弈论的基础理论研究,对非合作博弈理论的产生和发展作出了巨大贡献的学者,纳什、海萨尼(J.Harsanyi)、塞尔顿(R.Selten),共同获得经济学诺贝尔奖,使得博弈论作为重要的经济学分支学科的地位和作用得到了最具权威性的肯定:此后是1996年,诺贝尔经济学奖又由博弈论和信息经济学家莫里斯(James A. Mirrless)和维克瑞(William Vickrey),因为在不对称信息条件下激励机制问题(这种激励问题实际上就是一种不完全信息的博弈问题)方面的基础性研究而获得,更进一步强化了博弈论的发展趋势。 将80、90年代看作博弈论的成熟期,并不意味着此后博弈论将进入衰退阶段。事实上,至少到目前为止,博弈论的发展还远远没有达到顶峰。首先,由于博弈理论本身优美深刻的本质魅力,新的博弈分析工具和应用领域的不断发现,以及博弈分析的价值得到越来越充分的认识,不断吸引新的理论和实践工作者学习、应用博弈论,吸引大量学者加入研究队伍。这是博弈论继续向前发展的根本基础和保证。 其次,随着博弈理论的发展和博弈研究的不断深入,人们意识到这种理论还存在不少问题,特别是它的理论基础方面还存在一些没有很好解决的根本性问题。要用博弈论解决现实经济中的决策问题,对现实经济的发展变化趋势进行预测,就必须解决博弈模型的理论抽象和假设与经济问题实际情况的差距问题,具体包括博弈规则、信息结构等的来源和变化问题,相关各方利益关系的设定问题,博弈方的行为模式,能力和理性水平问题。对这些问题的考虑和分析引出了博弈基础理论研究的许多有价值的课题,其中包括理性种类和理性层次、博弈结构的不确定性和动态变化等有待进一步研究发展的领域。这充分保证了博弈论在未来相当长时间内的发展潜力。 第三,金融、贸易、法律、政治等众多领域,不断提出新的博弈论应用课题,也不断有新的应用博弈模型产生,这些应用问题和成果与博弈理论的发展之间形成了一种相互促进的良性循杯。这也是今后博弈论进一步发展的巨大动力。 第四,在合作博弈和非合作博弈两大类博弈中,目前非合作博弈理论的成熟程度大大高于合作博弈理论,非合作博弈是博弈论的主流。但事实上合作博弈理论同样是非常重要的博

博弈论经典模型全解析

博弈论经典模型全解析(入门级) 1. 囚徒困境这是博弈论中最最经典的案例了——囚徒困境,非常耐人寻味。“囚徒困境”说的是两个囚犯的故事。这两个囚徒一起做坏事,结果被警察发现抓了起来,分别关在两个独立的不能互通信息的牢房里进行审讯。在这种情形下,两个囚犯都可以做出自己的选择:或者供出他的同伙(即与警察合作,从而背叛他的同伙),或者保持沉默(也就是与他的同伙合作,而不是与警察合作)。这两个囚犯都知道,如果他俩都能保持沉默的话,就都会被释放,因为只要他们拒不承认,警方无法给他们定罪。但警方也明白这一点,所以他们就给了这两个囚犯一点儿刺激:如果他们中的一个人背叛,即告发他的同伙,那么他就可以被无罪释放,同时还可以得到一笔奖金。而他的同伙就会被按照最重的罪来判决,并且为了加重惩罚,还要对他施以罚款,作为对告发者的奖赏。当然,如果这两个囚犯互相背叛的话,两个人都会被按照最重的罪来判决,谁也不会得到奖赏。那么,这两个囚犯该怎么办呢?是选择互相合作还是互相背叛?从表面上看,他们应该互相合作,保持沉默,因为这样他们俩都能得到最好的结果:自由。但他们不得不仔细考虑对方可能采取什么选择。A犯不是个傻子,他马上意识到,他根本无法相信他的同伙不

会向警方提供对他不利的证据,然后带着一笔丰厚的奖赏出狱而去,让他独自坐牢。这种想法的诱惑力实在太大了。但他也意识到,他的同伙也不是傻子,也会这样来设想他。所以A犯的结论是,唯一理性的选择就是背叛同伙,把一切都告诉警方,因为如果他的同伙笨得只会保持沉默,那么他就会是那个带奖出狱的幸运者了。而如果他的同伙也根据这个逻辑向警方交代了,那么,A犯反正也得服刑,起码他不必在这之上再被罚款。所以其结果就是,这两个囚犯按照不顾一切的逻辑得到了最糟糕的报应:坐牢。企业在信息化过程中需要与咨询企业、软件供应商打交道的。在与这些企业打交道的过程中,我们不可避免地也会遇到类似的两难境地,这个时候需要相互之间有足够的了解与信任,没有起码的信任做基础,切不可贸然合作。在对对方有了足够的信任之后,诚意也是必不可少的,如果没有诚意或者太过贪婪,就可能闹到双方都没有好处的糟糕情况,造成企业之间的双输。 2. 智猪博弈在博弈论(Game Theory)经济学中,“智猪博弈”是一个着名的纳什均衡的例子。假设猪圈里有一头大猪、一头小猪。猪圈的一头有猪食槽,另一头安装着控制猪食供应的按钮,按一下按钮会有10个单位的猪食进槽,但是谁按按钮就会首先付出2个单位的成本,若大猪先到槽边,大小猪吃到食物的收益比是9∶1;同时到槽边,收益比是

博弈论中的几个经典问题

几个博弈论中的经典问题 博弈论(Game Theory),亦名“对策论”、“赛局理论”,属应用数学的一个分支,博弈论已经成为经济学的标准分析工具之一。目前在生物学、经济学、国际关系、计算机科学、政治学、军事战略和其他很多学科都有广泛的应用。博弈论主要研究公式化了的激励结构间的相互作用。是研究具有斗争或竞争性质现象的数学理论和方法。也是运筹学的一个重要学科。博弈论考虑游戏中的个体的预测行为和实际行为,并研究它们的优化策略。生物学家使用博弈理论来理解和预测进化论的某些结果。 几个重要的概念 1、策略(strategies):一局博弈中,每个局中人都有选择实际可行的完整的行动方案, 即方案不是某阶段的行动方案,而是指导整个行动的一个方案,一个局中人的一个可行的自始至终全局筹划的一个行动方案,称为这个局中人的一个策略。如果在一个博弈中局中人都总共有有限个策略,则称为“有限博弈”,否则称为“无限博弈”。 2、得失(payoffs):一局博弈结局时的结果称为得失。每个局中人在一局博弈结束时 的得失,不仅与该局中人自身所选择的策略有关,而且与全局中人所取定的一组策略有关。所以,一局博弈结束时每个局中人的“得失”是全体局中人所取定的一组策略的函数,通常称为支付(payoff)函数。 3、次序(orders):各博弈方的决策有先后之分,且一个博弈方要作不止一次的决策 选择,就出现了次序问题;其他要素相同次序不同,博弈就不同。 4、博弈涉及到均衡:均衡是平衡的意思,在经济学中,均衡意即相关量处于稳定值。 在供求关系中,某一商品市场如果在某一价格下,想以此价格买此商品的人均能买到,而想卖的人均能卖出,此时我们就说,该商品的供求达到了均衡。 5、纳什均衡(Nash Equilibrium):在一策略组合中,所有的参与者面临这样一种情况, 当其他人不改变策略时,他此时的策略是最好的。也就是说,此时如果他改变策略他的支付将会降低。在纳什均衡点上,每一个理性的参与者都不会有单独改变策略的冲动。纳什均衡点存在性证明的前提是“博弈均衡偶”概念的提出。所谓“均衡偶”是在二人零和博弈中,当局中人A采取其最优策略a*,局中人B也采取其最优策略b*,如果局中人B仍采取b*,而局中人A却采取另一种策略a,那么局中人A 的支付不会超过他采取原来的策略a*的支付。这一结果对局中人B亦是如此。 经典的博弈问题 1、“囚徒困境” “囚徒困境”是博弈论里最经典的例子之一。讲的是两个嫌疑犯(A和B)作案后被警察抓住,隔离审讯;警方的政策是"坦白从宽,抗拒从严",如果两人都坦白则各判8年;如果一人坦白另一人不坦白,坦白的放出去,不坦白的判10年;如果都不坦白则因证据不足各判1年。 在这个例子里,博弈的参加者就是两个嫌疑犯A和B,他们每个人都有两个策略即坦白和不坦白,判刑的年数就是他们的支付。可能出现的四种情况:A和B均坦白或均不坦白、A坦白B不坦白或者B坦白A不坦白,是博弈的结果。A和B均坦白是这个博弈的纳什均衡。这是因为,假定A选择坦白的话,B最好是选择坦白,因为B坦白判8年而抵赖却要判十年;假定A选择抵赖的话,B最好还是选择坦白,因为B坦白判不被判刑而抵赖确要被判刑1年。即是说,不管A坦白或抵赖,B的最佳选择都是坦白。反过来,同样地,不管B是坦白还是抵赖,A的最佳选择也是坦白。结果,两个人都选择了坦白,各判刑8年。在(坦白、坦白)这个组合中,A和B都不能通过单方面的改变行动增加自己的收益,于是谁也没有动力游离这个组合,因此这个组合是纳什均衡。

博弈论的经典案例与分析

博弈论的经典案例与分析 囚徒困境 案例:警察把甲乙分开关押,并在提审时分别告之,如果你坦白而他不坦白,那么你将只判0年,他将被判8年;如果你不坦白而他坦白,那么你判8年,他判0年;如果你们两人都坦白了,各判5年;如果你们两人都不坦白了,各判1年。 分析:每个博弈方选择自己的策略时,虽然无法知道另一方的实际选择,但他却不能忽视另一方的选择对他自己的得益的影响,因此他应该考虑到另一方有两种可能的选择,并分别考虑自己相应的最佳策略。对囚徒A 来说,囚徒B 有坦白和不坦白两种可能的选择,假设囚徒B 的选择是不坦白,则对囚徒A 来说,不坦白得益为-1,坦白得益为0,他应该选择坦白; 假设囚徒B 选择的是坦白,则囚徒A 不坦白得益为-8,坦白得益为-5,他还是该选择坦白。因此,在此博弈中,无论囚徒B 采取何种策略囚徒A 的选择只有一种,即坦白,因为在另一方两种可能的情况下,坦白给自己带来的得益都是较大的。同样的道理,囚徒B 的唯一的选择也是坦白。 所以最可能的结局:该博弈的最终结果是两博弈方同选择坦白策略。 其支付矩阵如下: 性格大战 案例:一对恋人准备在周末晚上一起出去,男的喜欢看足球,但女的喜欢看时装表演。当然两个人都不愿意分开活动。不同的选择给他们带给他们不同的满足。 分析:可以看出,分开将使他们两人得不到任何满足,只要在一起,不管是看时装表演还是看足球,两人都会得到一定的满足。但看足球将使男的得到更大的满足,看时装表演则使女的得到更大的满足。 在这样的一个对局中,男的和女的都没有占优战略。他们的最优侧率依赖于对方的选择,一旦对方选定了某一项活动,另一个人选择同样的活动就是最好的策略。因此,如果男的已经买好了足球的门票,女的当然就不再反对;反之,如果女的已经买好了时装表演票,男的也就会与她一起看时装表演。 1,1 8, 0 不坦白 0,8 5,5 坦白 嫌疑犯乙 不坦白 坦白 嫌疑犯甲 1,2 -1, -1 时装 0,0 2,1 足球 男 时装 足球 女

博弈论知识点总结完整版

博弈论 (一):基本知识 1.1定义:博弈论,又称对策论,是使用严谨的数学模型研究冲突对抗条件下最优决策问题的理论,是研究竞争的逻辑和规律的数学分支。即,博弈论是研究决策主体在给定信息结构下如何决策以最大化自己的效用,以及不同决策主体之间的均衡。 1.2基本要素:参与人、各参与人的策略集、各参与人的收益函数,是博弈最重要的基本要素。 1.3博弈的分类:博弈论根据其所采用的假设不同而分为合作博弈理论和非合作博弈理论。两者的区别在于参与人在博弈过程中是否能够达成一个具有约束力的协议(binding agreement)。倘若不能,则称非合作博弈(Non-cooperative game)。 合作博弈强调的是集体主义,团体理性,是效率、公平、公正;而非合作博弈则主要研究人们在利益相互影响的局势中如何选择策略使得自己的收益最大,强调个人理性、个人最优决策,其结果有时有效率,有时则不然。目前经济学家谈到博弈论主要指的是非合作博弈,也就是各方在给定的约束条件下如何追求各自利益的最大化,最后达到力量均衡。 博弈的划分可以从参与人行动的次序和参与人对其他参与人的特征、战略空间和支付的知识、信息,是否了解两个角度进行。把两个角度结合就得到了4种博弈: a、完全信息静态博弈,纳什均衡,Nash(1950) b、完全信息动态博弈,子博弈精炼纳什均衡,泽尔腾(1965) c、不完全信息静态博弈,贝叶斯纳什均衡,海萨尼(1967-1968) d、不完全信息动态博弈,精炼贝叶斯纳什均衡,泽尔腾(1975)Kreps, Wilson(1982) Fudenberg, Tirole(1991) 1.4课程主要内容:完全信息静态博弈完全信息动态博弈不完全信息静态博弈机制设计合作博弈 1.5博弈模型的两种表示形式:策略式表述(Strategic form), 扩展式表述(Extensive form) 1.6占优均衡: a、占优策略:在博弈中如果不管其他参与人选择什么策略,一个参与人的某个策略给他带来的支付值始终高于其他策略,或至少不劣于其他策略,则称该策略为该参与人的严格占优策略或占优策略。 对于所有的s-i,si*称为参与人 i的严格占优战略,如果满足: ui(si*,s-i)>ui(si',s-i) ?s-i, ?si' ?si* b、占优均衡:一个博弈的某个策略组合中,如果对应的所有策略都是各参与人的占优策略,则称该策略组合为该博弈的一个占优均衡。 1.7重复剔除严劣策略均衡: a、“严劣”和“弱劣”的含义: 设s i’和s i’’是参与人i可选择的两个策略,若对其他参与人的任意策略组合s-i, 均成立 u i(s i’, s-i) < u i(s i’’, s-i), 则说策略s i’严劣于策略s i’’。 上面式子中,若将“<”改为“≤”,则说策略s i’弱劣于策略s i’’。 b、定义:重复剔除严格策略就是 各参与人在其各自策略集中, 不断剔除严劣策略…如果最终 各参与人仅剩下一个策略,则 该策略组合就被称为重复剔除 严劣策略均衡。 (二):纳什均衡(Nash Equilibrium) 2.1纳什均衡定义:对于一个策略式表述的博弈G={N,S i, u i,i∈N},称策略组合s*=(s1, …s i, …, s n)是一个纳什均衡,如果对于每一个i ∈N, s i*是给定其他参与人选择s-i*={s1*, … ,s i-1*, s i+1*, … ,s n*} 情况下参与人i 的最优策略(经济理性策略),即:u i(s i*, s-i*)

工作中的博弈论与思考

工作中的博弈论与思考 这是一篇看最后面才有意思和意义的文章 今天在职场中遇到一件事,上面发下一个任务,需要几个人同时完成,一位同事做事效率很高,先于其它几位同事倍许的速度先完成其负责的部分工作,而其它人的工作还只进行了一半,新加入的同事则刚刚开始工作,尚在熟悉中。为了加快工作进度,我决定给效率高的同事再一分配其他人的一部分任务,以便以最快的时间完成工作。但是,这位同事先前已完成了其它人任务量的140%左右,再加量从感情上是难以接受的,并出现了抵触情绪,我个人也很难忍心再给其加工作量,不作休息,由此,我想到了很多。 在现实中,我们经常会发现在工作中许多同事都有自己善长和效率较高的工作能力,在从事同样工作时,会比他人有更高的效率(我们要感谢这些伟大的人带领我们,提供给我们贵的经验和学习的榜样),但一个人又不能单独完成全部工作(因为一个人单位效率再高,也不如人多一起干,而且会加长完成工作总时间),而在工作中我们又不能对每项工作中的效率高个体作出奖励(虽然绩效工资很常见,我个也比较倾向这种工作方式,但工作中不是每一件都绩效的),这就出现一个问题,当效率高的人先完成工作,而其它人未完成时,如果为了尽快完成总工作量,他会被分配更多的工作量,其个工作量会加大,在报酬相同情况

下,显然对其是不公平的,是一种对个体单位劳动力报酬的损失,降低自己的报酬。对于个人最好的选择就是停下来等他人完成工作,再一起进入下一项工作,其它人同样如此,在完成工作后会等待其它人的工作完成,以使自己不会比其他人做的更多,使自己的利益得到最大化。但我们也可看出,这样的等待加长了总工作时间,使任务完成总是以团队中效率最低的成员的效率为标准,这对所有团队成员也都是不利的,因为这会减少成员总的完成任务休息时间。 听到这里,我想大家已经想到了这是一个博弈论问题,当然,也有人不知道这个问题的,下面,我就摘录一些百度上的囚徒困境问题回顾和讨论一下。 警方逮捕甲、乙两名嫌疑犯,但没有足够证据指控二人入罪。于是警方分开囚禁嫌疑犯,分别和二人见面,并向双方提供以下相同的选择: 若一人认罪并作证检控对方(相关术语称“背叛”对方),而对方保持沉默,此人将 即时获释,沉默者将判监10年。 若二人都保持沉默(相关术语称互相“合作”),则二人同样判监1年。 若二人都互相检举(相关术语称互相“背叛”),则二人同样判监8年。 如同博弈论的其他例证,囚徒困境假定每个参与者(即“囚徒”)都是利己的,即都 寻求最大自身利益,而不关心另一参与者的利益。参与者某一策略所得利益,如果在任何 情况下都比其他策略要低的话,此策略称为“严格劣势”,理性的参与者绝不会选择。另外,没有任何其他力量干预个人决策,参与者可完全按照自己意愿选择策略。 囚徒到底应该选择哪一项策略,才能将自己个人的刑期缩至最短?两名囚徒由于隔绝 监禁,并不知道对方选择;而即使他们能交谈,还是未必能够尽信对方不会反口。就个人 的理性选择而言,检举背叛对方所得刑期,总比沉默要来得低。试设想困境中两名理性囚 徒会如何作出选择: 若对方沉默、背叛会让我获释,所以会选择背叛。 若对方背叛指控我,我也要指控对方才能得到较低的刑期,所以也是会选择背叛。 二人面对的情况一样,所以二人的理性思考都会得出相同的结论——选择背叛。背叛 是两种策略之中的支配性策略。因此,这场博弈中唯一可能达到的纳什均衡,就是双方参 与者都背叛对方,结果二人同样服刑8年。 这场博弈的纳什均衡,显然不是顾及团体利益的帕累托最优解决方案。以全体利 益而言,如果两个参与者都合作保持沉默,两人都只会被判刑1年,总体利益更高,结果 也比两人背叛对方、判刑8年的情况较佳。但根据以上假设,二人均为理性的个人,且只

博弈论经典案例《智猪博弈》

在经济学中,在经济学中,智猪博弈”(PigS ' PayoffS(BoXed PigS) 是一个著名博弈论例子。 这个例子讲的是:猪圈里有两头猪,一头大猪,一头小猪。猪圈的一边有个踏板,每踩一下踏板,在远离踏板的猪圈的另一边的投食口就会落下少量的食物。如果有一只猪去踩踏板,另一只猪就有机会抢先吃到另一边落下的食物。当小猪踩动踏板时,大猪会在小猪跑到食槽之前刚好吃光所有的食物;若是大猪踩动了踏板,则还有机会在小猪吃完落下的食物之前跑到食槽,争吃到另一半残羹。 那么,两只猪各会采取什么策略?答案是:小猪将选择搭 便车”策略,也就是舒舒服服地等在食槽边;而大猪则为一点残羹不知疲倦地奔忙于踏板和食槽之间。 原因何在?因为,小猪踩踏板将一无所获,不踩踏板反而能吃上食物。对小猪而言,无论大猪是否踩动踏板,不踩踏板总是好的选择。反观大猪,已明知小猪是不会去踩动踏板的,自己亲自去踩踏板总比不踩强吧,所以只好亲力亲为了。 小猪躺着大猪跑”的现象是由于故事中的游戏规则所导致的。规则的核心指标是:每次落下的事物数量和踏板与投食口之 间的距离。 如果改变一下核心指标,猪圈里还会出现同样的小猪躺着 大猪跑”的景象吗?试试看。 改变方案一:减量方案。投食仅原来的一半分量。结果是小 猪大猪都不去踩踏板了。小猪去踩,大猪将会把食物吃完;大猪去踩,小猪将也会把食物吃完。谁去踩踏板,就意味着为对方贡

献食物,所以谁也不会有踩踏板的动力了。 如果目的是想让猪们去多踩踏板,这个游戏规则的设计显然 是失败的。 改变方案二:增量方案。投食为原来的一倍分量。结果是小 猪、大猪都会去踩踏板。谁想吃,谁就会去踩踏板。反正对方不会一次把食物吃完。小猪和大猪相当于生活在物质相对丰富的 共产主义”社会,所以竞争意识却不会很强。 对于游戏规则的设计者来说,这个规则的成本相当高(每次提供双份的食物);而且因为竞争不强烈,想让猪们去多踩踏板的效 果并不好。 改变方案三:减量加移位方案。投食仅原来的一半分量,但同时将投食口移到踏板附近。结果呢,小猪和大猪都在拼命地抢着踩踏板。等待者不得食,而多劳者多得。每次的收获刚好消费 宀 完。 对于游戏设计者,这是一个最好的方案。成本不高,但收获最 大。 原版的智猪博弈”故事给了竞争中的弱者(小猪)以等待为最佳策略的启发。但是对于社会而言,因为小猪未能参与竞争,小猪搭便车时的社会资源配置的并不是最佳状态。为使资源最有效配置,规 则的设计者是不愿看见有人搭便车的,政府如此,公 司的老板也是如此。而能否完全杜绝搭便车”现象,就要看游戏 规则的核心指标设置是否合适了。

相关主题
文本预览
相关文档 最新文档