当前位置:文档之家› 盾构机配置计划、选型方案及保证措施

盾构机配置计划、选型方案及保证措施

盾构机配置计划、选型方案及保证措施
盾构机配置计划、选型方案及保证措施

盾构机配置计划、选型方案及保证措施

1 盾构机配置及订货、到货计划

1)盾构机配置

根据招标文件要求和本投标文件对本项目的总体筹划及工期安排,计划配置盾构机20台,其中Φ6480土压平衡复合盾构机18台,Φ6480泥水平衡盾构机1台,Φ12200泥水平衡盾构机1台。根据计划安排,各台盾构机根据投入使用的时间至少提前1个月运送进场,确保盾构区间按计划掘进施工。

2)盾构机订货及到货计划

我公司将在中标后,国内外知名盾构机厂家进行设计联络,启动采购订货及到货计划,所有盾构机在投入使用前2个月完成厂内组装调试并通过验收,投入使用前至少1个月运抵施工现场。

盾构机订货及到货计划见表2。

表2 盾构机订货及到货计划表

2 盾构机选型

1)选型依据

盾构机选型主要依据招标文件、施工规范及相关标准,盾构隧道的外径、长度、埋深、地质条件、围土岩性、土体的颗粒级配、地层硬稠度系数、土层渗透率及弃土容重等特征以及线路的曲率半径、沿线地形、地面及地下构筑物等环境条件,以及周围环境对地面变形的控制要求,结合掘进和衬砌等诸因素,从安全性、可靠性、适用性、先进性、经济性等方面综合考虑,选择能尽量减少辅助施工并能保持开挖面稳定和适应围岩条件的机型,对盾构类型、驱动方式、功能要求、主要参数、辅设设备配置等进行选择。

地质复杂,岩层变化频繁,且不同岩层强度变化较大,在施工过程中,部分盾构区间在施

工过程中突然遇见高强度辉绿岩,造成施工进度推进缓慢,且对盾构刀盘磨损严重,造价提高较大。

2)盾构机形式选择

(1)区间地质条件复杂、地下水文较高,主要穿越了淤泥质粉质粘土层、卵石层、强风化石英岩层和中风化石英岩,饱和抗压强度标准值49.4MPa,最大值123MPa。区间沿线商业、住宅密集,且区间下穿房屋、老虎滩湾、污水暗渠等建构筑物,本区间最大风险点为盾构下穿老虎滩湾,盾构穿越面存在渗透系数50-150m/d的卵石层,且场地地下水与海水连通,结合1、2号线施工经验,和初勘成果,根据泥水平衡盾构机性能及特点,并借鉴跟本工程地质条件相似的其他在建地铁施工经验,本工程拟采用泥水平衡盾构机组织施工。

(2)海区间,隧道顶板土层主要为淤泥、卵石及粘土层、全强风化白云岩和全强风化板岩;洞身穿越穿越的岩层主要为中风化辉绿岩,中风化白云灰岩,中风化白云灰岩,中风化钙质板岩,中风化板岩和石英岩。场区内包含人工堆积填土、软土和风化岩等不良地层,溶洞、风化槽等不良地质体。局部存在较破碎强风化岩体,隧道所穿岩体均呈中强透水性,地下水与海水呈连通状态,强风化岩层地段具备土压掘进条件的地段仅占 6.1%,综合上述分析,该跨海区间岩土条件,盾构机应既能通过强透水性软岩地层,又能适应长距离较硬岩的掘进,根据泥水平衡盾构机性能及特点,并借鉴跟本区间工程地质条件相似的过海隧道工程的施工经验,本工程拟采用泥水平衡盾构机组织施工。

(3)结合1、2号线施工经验,和初勘成果,其他盾构区间主要穿越地层为:强、中风化辉绿岩、强、中风化石英岩、石英岩夹板岩、强、中风化板岩、全风化板岩、碎石、粉质粘土、素填土、中风化石灰岩、强风化页岩、较软岩中风化白云岩及较硬岩中风化石灰岩交错出现,岩层强度平均为30~40Mpa,部分中风化辉绿岩强度最大值达到135Mpa。复合型盾构可以通过改制、更换刀具、组装等技术,达到该地质条件下的掘进要求,为加快施工进度,降低施工风险,采用土压平衡复合式盾构。

3 盾构适应性设计

1)大直径泥水盾构适应性设计

(1)白云岩、板岩、辉绿岩和石英岩层中掘进

①盾构机采用较大的驱动功率,刀盘配置19寸滚刀,采用90mm的刀间距布置,最外边刀轨迹布置2把滚刀。使破碎角裂纹贯通的重叠度增大;主驱提供恒扭矩最大转速1.3 r/min,最高转速2.2r/min,在贯入度一定条件下可获得较大的掘进速度。刀盘开口率约33%,在整个盘面均匀分布。

②主驱动额定扭矩18802kNm,驱动功率2750kW,脱困扭矩达25947kNm。

③主轴承设内外密封,外密封4道,内密封2道,以应对海底施工可能出现的较高水压。

(2)跨海区间场地内主要的不良地质作用为岩溶,盾构机设计时配备超前钻机系统,适用于软、硬岩地层,超前钻机是多用途的,可以进行旋转模式或旋-冲击模式,可钻35~89mm 的孔径,最大钻进深度可达40m。当确定盾构机前方有溶洞时,超前钻往前钻探,通过钻入钻

杆的长度确定溶洞的大致尺寸和距盾构机刀盘的距离,以采取相应的措施,保证施工安全。

(3)盾构长距离在岩层中掘进

①确保刀具的高耐磨性所有刀具均采用碳化钨刀具,先行刀和切刀均采用双层碳化钨刀刃,并设计有耐磨齿。

②采用双层刀具的设计。在刀盘上除正常设计刀具外,在其下方设计另外一层备用短刀具,当一层刀具磨损后,第二层刀具自动补位,以延长盾构机的掘进长度。

③采用伸缩刀设计,把备用的刀具收缩至刀盘以内,当外侧刀盘磨损殆尽时,通过特定的机械装置,把隐藏的刀具激活伸出,继续工作。

2)其他适应性设计

(1)掘进施工耐磨设计

盾构长距离在岩层中掘进,且有辉绿岩、石英岩存在,施工过程中刀具和刀盘的磨损是需要重点考虑的问题。刀盘面板采用贴焊耐磨复合钢板配以耐磨网格保护,设置了磨损检测装置,检测刀盘刀具是否受到非正常磨损。泥水盾构体内的泥浆管采用耐磨钢管。

盾构机采用较大的液压驱动功率:刀盘配置安装18寸刀圈的17寸滚刀,采用90mm的刀间距布置,最外边刀轨迹布置2把滚刀。使破碎角裂纹贯通的重叠度增大;主驱最高转速4.5r/min,在贯入度一定条件下可获得较大的掘进速度。刀盘开口率约32%,在整个盘面均匀分布。

(2)沉降控制针对性设计

为减小软弱地层掘进时盾体周围地层的变形,盾构机设双液注浆系统,可根据施工需要调整同步注浆的凝结时间,减小隧道上部土体的沉降。

在盾体四周配置填料注入装置,及时填充盾构机开挖面与盾体之间的间隙。

(3)盾构机“脱困”针对性设计

盾构设计中采用增加主动推力与减少盾体与周围土体摩擦系数相结合的办法。标准土压平衡盾构机配置20个推进油缸,最大推力为3600t;标准直径泥水盾构机配置16个推进油缸,最大推力为4257t;大直径泥水盾构机配置22个推进油缸,最大推力为13982t。

设盾壳膨润土泥浆注入系统,在中盾与尾盾四周各有6个膨润土管路,向盾体外表面注入膨润土泥浆,减少砂层掘进过程中盾体的摩擦阻力。

(4)防止“喷涌”针对性设计

螺旋输送机的出料口采用两道闸门设计,掘进中可根据施工要求改变门开度,调整螺旋输送机内土塞密实度,从而起到防喷涌、喷水效果;另外在出渣口预留保压泵接口,发生喷涌时,及时关闭闸门,接保压泵调节土舱压力;必要时采用高分子聚合物填充土舱。

(5)富水透水性强地层及带压作业保障措施针对性设计

针对富水地层,主轴承设内外密封,外密封4道,内密封2道,以应对可能出现的较高水压。

当地层富含地下水且不能降水时,需带压进舱换刀作业。为防止地层气密性差,难以保压,

无法实现带压作业,配置了渣土改良膨润土系统,在带压换刀作业时能更好的利用膨润土泥浆进行开挖面的泥浆封堵,保证气密性。

4 盾构机参数表

1)泥水平衡盾构机主要性能参数设计

(1)Φ12200mm泥水盾构机主要参数设计见表3,主机设计见图1。

表3 Φ12200mm泥水盾构机主要参数表

图1 Φ12200mm泥水平衡盾构机主机设计图

(2)Φ6480mm泥水盾构机主要参数设计见表4,主机设计见图2。

表4 Φ6480mm泥水盾构机主要参数表

表2 Φ6480mm泥水平衡盾构主机设计图2)土压平衡盾构机性能参数设计

Φ6480mm土压盾构机主要参数详见表5。

表5 Φ6480mm土压盾构机主要参数表

盾构分体始发掘进专项施工方案

第一章编制依据 1、广州市轨道交通六号线盾构7标段【天平架~燕塘~天河客运站】盾构区间土建施工项目招标文件、招标图纸、地质勘查报告、补遗书及投标文件。 2、广州市轨道交通六号线盾构7标段【天平架~燕塘~天河客运站】盾构区间土建工程承包合同。 3、广州市轨道交通六号线盾构7标段补充地质勘测资料、管线调查及现场调查资料。 4、广州市轨道交通六号线盾构7标段施工设计图纸。 5、国家现行有关施工及验收规范、规则、质量技术标准,以及广州地区在安全文明施工、环境保护、交通组织等方面的规定。 6、我公司在广州地铁建设中的成功的施工经验和研究成果及现有的施工管理水平、技术水平、科研水平、机械设备能力。 第二章工程概况 一、始发端头工程地质、水文概况 ㈠工程地质 根据《广州市轨道交通线网岩土工程勘察总体技术要求》的地铁沿线岩土分层系统和沿线岩土层的成因类型和性质、风化状态等,本基坑内各岩土分层及其特征如下: <1>人工填土层(Q4ml) 主要为杂填土和素填土,颜色较杂,主要为褐黄色、灰色、灰褐色、褐红色等,素填土组成物主要为人工堆填的粉质粘土、中粗砂、碎石等,杂填土则含有砖块、砼块等建筑垃圾或生活垃圾,大部分稍压实~欠压实,稍湿~湿。本层标贯击数6~18击,平均击数11击。 <4-2>河湖相沉积土层(Q3+4al) 呈深灰色、灰黑色,主要为淤泥及淤泥质土组成,组成物主要为粘粒,含有机质、朽木,饱和,流塑状,局部夹薄层细砂。标贯实测击数1~2击,平均击数为1.5击。 <5H-2>硬塑~坚硬状花岗岩残积土层 黄褐色、红褐色、灰白色、灰褐色、黑褐色等色,组织结构已全部破坏,矿物成分除石英外大部分已风化成土状,较多细片状黑云母,以粉粘粒为主,含较多中粗砂、砾石。残积土遇水易软化崩解。主要为砾质粘性土、砂质粘性土、粘性土,呈硬塑~坚硬状。

盾构机下井吊装施工方案

盾构机下井吊装施工方案 1 盾构进场前的准备工作 1.1场地准备工作 盾构井周边清除吊装时的障碍,吊装场地平整。 1.2 风、水、电准备 (1)供风方案 压缩空气用于风动工具,用风采用移动式电动空压机v-0.6/7(3KW)。 (2)供水方案 根据盾构机的技术参数可知,水用于盾构机的冷却系统、注浆系统等,工地提供Ф80的水管。能够满足盾构调试。 (3)供电方案 根据盾构施工的生产、生活用电情况,在龙虎塘站东侧安装两台630+500kV A 的箱式变压器,满足除盾构机以外的其他用电需求;两台盾构机配备两台10KV、容量2000KV A的施工用电。 1.3加工件准备 始发架、反力架和门架的准备,根据施工方案完成上述设施的吊装下井作业。 连接桥支撑架的准备和加工:连接桥支撑点,放在专用的行走支撑架。 加工轨枕,用于车站内后配套台车轨道和运输车轨道的铺设。 1.4 其它工作 安装楼梯:在车站始发井出入口内安装扶梯和护栏,充电区域的修建。 2 始发托架的铺设 在盾构始发前须将盾构机基座事先铺设固定在始发井内,基座的中线与盾构隧道的中线须重合,基座吊装放置在始发井,微调基座位置,使之中线与隧道中线重合,待重合后将基座焊接固定在盾构始发井的预埋件上。 3 轨道铺设 根据技术交底对站台内的电瓶车轨道和台车轨道进行铺设,轨道铺设过程中应符合以下要求: (1)轨道的安装应符合设计要求,钢轨应不变形、无硬弯、无断裂现象。

(2)道轨、轨枕及附件的型号、规格及材质,应符合相关要求,数量齐备。(3)台车轨道对中距离为2180mm,电瓶车轨道对中距离为980mm。 粒度大小应均匀一致,材质是坚硬的碎石或卵石,不应混有软岩、泥土或杂物。(4)轨道铺设应牢固稳定可靠。 4盾构机吊装工序 针对基坑尺寸及现场实际情况,现场盾构机组装一次进行,先下放组装6、5、4、3、2、1号台车、主机等部件,待盾构连接成型后,满足盾构机整体施工。盾构机吊组装工序如下图所示: 图5-1盾构机吊装工序图 5 台车和设备桥下井 台车依次下井时,用4根钢丝绳与台车的四个吊耳连接,起吊台车时应该试吊,保证绝对安全才可以起吊。起吊后保持台车平稳,指挥司索工指挥履带吊司机进行转臂、趴臂动作,将台车移动到井口上方,履带吊缓慢落钩,将台车吊装就位,安装皮带架和风管后用电瓶车拉到井内相应位置,当台车与钢轨接触后用电瓶车把它后移到适当的位置,用防滑楔楔住。先把第6号台车吊下井,接着把第5号台车吊下井并用电瓶车后移到6号台车的位置,依次将4、3、2、1号台吊装下井拉到合适位置,并用销子联接好,台车到位后安装台车连接板和管线。其中设备桥长度较长,须用履带吊车副钩进行抬吊倾斜一定角度才能下井,下放到轨道上焊接前部支撑后拉至站台内。台车在下井过程中用揽风绳控制方向,防止台车与车站结构发生碰撞。下井过程如图5-2所示。

盾构主要参数的计算和确定

盾构主要参数的计算和确定 1、盾构外径: 盾构外径D=管片外径D S+2(盾尾间隙δ+盾尾壳体厚度t) 盾尾间隙δ--为保证管片安装和修复蛇行,以及其他因素的最小富余量,一般取25—40mm; 结合五标地质取多少? 2、刀盘开挖直径: 软土地层,一般大于前盾0—10mm,砂卵石地层或硬岩地层,一般大于前顿外径30mm,五标刀盘开挖直径如何确定的? 3、盾壳长度 盾壳长度L=盾构灵敏度ξx盾构外径D 小型盾构D≤3.5M,ξ=1.2—1.5;中型3.5M<D≤9M,ξ=0.8—1.2; 大型盾构D>9M;ξ=0.7—0.8; 4、盾构重量 泥水盾构重量=(45---65)D2,由于本线路存在线下溶土洞的可能,再掘进中能否通过此核算,盾构主机是否沉陷? 5、盾构推力 盾构总推力F e=安全储备系数AX盾构推进总阻力F d 安全储备系数A---一般取1.5---2.0。 盾构推进总阻力F d=盾壳与周边地层间阻力F1+刀盘面板推进阻力F2+管片与盾尾间摩擦力F3+ 切口环贯入地层阻力F4+转向阻力F5+牵引后配套拖车阻力F6 盾壳与周边地层间阻力F1计算中,静止土压力系数或土的粘聚力取盾体范围内的何点的? 刀盘面板推进阻力F2,对于泥水盾构或土压盾构土仓压力如何确定的? 管片与盾尾间摩擦力F3中,盾尾刷与管片的摩擦系数取偏大好吗?盾尾刷内的油脂压力如何定? 计算中土压力计算是按郎肯土压公式或库仑土压计算? 6、刀盘扭矩 刀盘设计扭矩T=刀盘切削扭矩T1+刀盘自重形成的轴承旋转反力矩T2+刀盘轴向推力形成的旋 转反力矩T3+主轴承密封装置摩擦力矩T4+刀盘前面摩擦扭矩T5+刀盘圆周摩擦反力矩T6+刀盘 背面摩擦力矩T7+刀盘开口槽的剪切力矩T8 刀盘切削扭矩T1中的切削土的抗压强度q u如何确定? 刀盘轴向推力形成的旋转反力矩T3 计算中土压力计算是按郎肯土压公式或库仑土压计算? , 刀盘圆周摩擦反力矩T6计算中,土压力计算是按郎肯土压公式或库仑土压计算? 刀盘背面摩擦力矩T7中土仓压力P W如何确定? 7、主驱动功率 主驱动工率储备系数一般为1.2---1.5,主驱动系统的效率η如何确定? 8、推进系统功率 推进系统功率W f=功率储备系数A W X最大推力FX最大推进速度VX推进系统功率ηW 功率储备系数A W一般取1.2---1.5, 最大推力F、最大推进速度V如何定? 推进系统功率ηW=推进泵的机械效率X推进泵的容积率X连轴器的效率 9、同步注浆能力 每环管片理论注浆量Q=0.25X(刀盘开挖直径D2—管片外径D S2)X管片长度L 推进一环的最短时间t=管片长度L/最大推进速度v 理论注浆能力q=每环管片理论注浆量Q/推进一环的最短时间t 额定注浆能力q p=地层的注浆系数λX理论注浆能力q/注浆泵效率η 地层的注浆系数λ因地层而变一般取1.5---1.8。

盾构机吊装方案

中国中铁一局集团有限公司 沈阳地铁二号线第九合同段项目部盾构机吊装、组装方案 目录 目录 0 1、编制依据及原则 (1) 1.1编制依据 (1) 1.2编制原则 (1) 2、工程概况 (1) 2.1区间工程简介和工程设计概况 (1) 2.2工程地质条件 (2) 2.3工程目标 (2) 3、盾构机的吊装 (2) 3.1盾构各组成部件主要技术参数 (3) 3.2吊装顺序 (6) 3.3吊装过程 (7) 3.4盾构吊装下井 (7) 3.5盾构机吊装技术保证措施 (7) 3.6盾构机吊装安全保证措施 (8) 4、突发事件应急预案 (9) 4.1应急指挥机构 (9) 4.2装备和通讯联系方式 (11) 4.3救援队伍的组成和配置 (11) 4.4突发事件处置 (12)

1、编制依据及原则 1.1编制依据 1.1.1沈阳地铁二号线一期工程9标盾构区间(青年公园站~工业展览 馆站)招标文件; 1.1.2沈阳地铁二号线一期工程9标盾构区间(青年公园站~工业展览 馆站)投标文件; 1.1.3沈阳地铁二号线一期工程9标盾构隧道(青年公园站~工业展览 馆站)施工图及工程量清单; 1.1.4沈阳市地铁2号线青年公园站设计图纸及设计说明; 1.2编制原则 1.2.1严格执行基本建设程序,认真贯彻国家和沈阳市关于地铁建设方面的有关方针、政策和规定; 1.2.2严格遵守合同规定的关键竣工日期及整项工程的竣工交付日期; 1.2.3按照轻重缓急,合理安排施工部署,考虑到吊装各阶段、各工特点、重点和难点,有效地做到各阶段吊装的有机衔接,既要突出重点,又要兼顾一般; 2、工程概况 2.1区间工程简介和工程设计概况 本区间设计起点里程为K11+130.4,设计终点里程为K12+246.917,区间长度为右线1116.517m,左线1122.399m,其中左K12+242.58,右K12+236.656,长链5.882m。区间隧道为单洞单线圆形断面,盾构法施工,

盾构机反力架计算书

盾构机反力架计算书 太平桥站盾构始发反力架支撑计算书一、工程情况说明 哈尔滨地铁一号8标工业大学—太平桥区间投入一台德国海瑞克盾构机进行施工,编号S-285,从太平桥站西端头下井。我们对反力架采取水平撑加斜支撑的形式加固,将反作用力传递至车站底板、中板及侧墙。 二、反力架及支撑示意图 12 中板 侧反反 力力 墙 架架 底板底板 12 1-12-2 计算说明: 1、根据以往施工情况,始发盾构机推力按照800T进行计算,其中底部千斤顶油压按照200bar,两侧按照140bar,顶部千斤顶不施加推力; 2、通过管片和基准钢环调节,每组千斤顶所在区域按照均布荷载进行计算; 3、水平支撑采用200mm及250mm宽翼缘H型钢,分别支撑与车站底板及侧墙上,斜撑采用200mm宽翼缘H型钢,45度角撑于车站底板上; 4、反力架经几次始发使用,梁自身抗弯和抗剪无问题,本次不予计算。三、力学模型图

A 44.7t/m44.7t/mBD C 89.4t/m 盾构机在顶推过程中反力架提供盾构向前掘进的反力,通过焊接在反力架上的型钢支撑, 将力传递到车站结构上。为保证反力架能够提供足够的反力,以确保前方地层不会发生较大 沉降。要求型钢支撑强度足够。 四、计算步骤 1、模型简化 假设千斤顶推力平均分配到四个支撑边,即每边承受200t的压力。 2、轴力验算 1)底边 σ,F/A,F/(8,A,2,A),2000000/(8,6428,2,9218),28.6MPa 112 2 200mm H型钢截面面积A=6428mm1 2 250mm H型钢截面面积A=9128mm2 σ,σ,210MPa 1max 2)右侧边 σ,F/A,F/(10,A),2000000/(10,6428),31.1MPa 21 σ,σ,210MPa 2max 3)顶边 σ,F/A,F/(4,A),2000000/(4,6428),77.8MPa 31 σ,σ,210MPa 3max

(完整版)地铁盾构的选型和使用

地铁盾构的选型及现场管理和使用 一、概述 1、概念 盾构是一种用于隧道暗挖施工,具有金属外壳,壳内装有主机和辅助设备,既能支承地层的压力,又能在地层中整体掘进,进行土体开挖,碴土排运和管片安装等作业,使隧道一次成形的机械。 盾构是相对复杂的集机、电、液、传感、信息技术于一体的隧道施工专用工程机械,主要用于地铁、铁路、公路、市政、水电等工程。 盾构的工作原理就是一个钢结构组件依靠外壳支承,沿隧道轴线一边对土壤进行切削一边向前推进,在盾壳的保护下完成掘进、排碴、衬砌工作,最终贯通隧道。 盾构施工主要由稳定开挖面、掘进及排土、管片衬砌和壁后注浆三大要素组成。 盾构是根据工程地质、水文地质、地貌、地面建筑物及地下管线和构筑物等具体特征来“量身定做”的一种非标设备。盾构不同于常规设备,其核心技术不仅仅是设备本身的机电工业设计,还在于设备通过不同的设计如何满足工程地质施工的需求。因此,盾构的选型正确与否决定着盾构施工的成败。

2、盾构的类型 盾构的类型是指与特定的施工环境、基础地质、工程地质和水文地质特征相匹配的盾构种类。 一般掘进机的类型分为软土盾构、硬岩掘进机(TBM)、复合盾构三种。软土盾构的特点是仅安装切削软土用的切刀和括刀,无需开岩的滚刀。TBM主要用于山岭隧道。复合盾构是指既适用于软土,又适应于硬岩的一类盾构,主要用于复杂地层的施工。地铁盾构就是一种复合盾构。主要特点是刀盘既安装用于软土切削的切刀和括刀,又安装破碎岩石的滚刀,或安装破碎砂卵石和漂石的撕裂刀。 复合盾构分为土压平衡盾构和泥水加压平衡盾构。 3、盾构的组成 地铁施工可供选择的复合盾构机机型只有两种,即土压平衡盾构机或泥水平衡盾构机。 一台盾构按外观结构形式分为刀盘部分、前盾、中盾、尾盾、后配套部分和辅助设备(管片和砂浆运输设备、泥水站等)。 土压平衡盾构由以下十一部分组成:⑴、刀盘(分为面板式、辐条式、复合式三种),⑵刀盘驱动(分为电机和液压两种),⑶刀盘支承(主轴承),⑷膨润土添加系统和泡沫系统,⑸螺旋输送机,⑹皮带输送机,⑺同步注浆系统,⑻盾尾密封系统,⑼管片安装机,⑽数据采集系统,⑾导向系

装配式建筑施工对起重机选型原则(篇1)

装配式建筑施工对起重机选型原则 【摘要】随着人们对居住环境越来越高的追求、国家对《建筑结构可靠度设计统一标准》的修订,我们对建筑工程建设的要求只会越来越高。从提高质量、合理加快工期等方位出发,工业化模式下的装配式建筑有着得天独厚的优势。环球网校为你带来装配式建筑知识。 首先我们要了解的是PC工程施工的特点,PC工程中起重机除了常规的建筑材料运输外,主要承担PC构件的安装。PC工程的特点是起重量较大,动辄达到5-6吨,为加快PC构件安装进度,安装定位精度高。接下来我们进行选型: 01、PC工程施工起重机常用类型 我们在选择起重设备时必须要根据整体工程实际情况进行选型和布置的,重点考虑起重量、起重精度和工作幅度,国内现在一般有以下几种可供选择。 固定式塔式起重机 高层与多层建筑选择塔式起重机,必须要考虑安拆方便。附着式塔式起重机,PC工程施工现场运用时需要提前在PC构件制作时预留附着杆孔,不得在现场打孔。 汽车式起重机(履带起重机) 汽车式起重机、履带式起重机通常运用于20m以下厂房、住宅结构,当在高层建筑中,塔式起重机没法覆盖裙楼范围时,吊装可选用履带起重机或汽车式起重机。 02、PC工程起重机的选择及布置原则

为了达到安全、高效、拆装便利、施工通用等要求,起重机选用和布置必须满足以下要求。 1、起吊重量 起吊重量=(构件重量+吊具重量+吊索重量)×1.5系数。起吊重量需要进一步进行核算,可以参考施工现场实际选用的起重机型号参数进行验算,并绘制《塔吊起重能力验算图》。 2、起重机幅度 起重机幅度是指吊点与起重机回转中心点的距离。在现场施工中起重机应满足最大幅度构件的起吊重量,同时必须满足最大幅度范围内各种构件的起吊重量。 03、起重高度 塔式起重机应计算塔式起重机独立高度与附着高度时吊起的构件能平行通过建筑外架最高点(或构件安装最高点)以上2m处;计算高度时必须将索具、构件的高度总和加上安全距离合并考虑。 04、塔式起重机的附着 因为目前国内装配式建筑还在探索发展中,部分结构仍然会选用现浇浇筑,所以当塔式起重机附着在现浇部分的结构上时,我们按照常规施工进行支设附着架。当塔式起重机附着在PC构件上时,应通过模拟计算,在PC构件设计阶段就需要确定附着点的位置。预埋件须在工厂制作构件时一并完成,通常采用预埋螺母方式,既能减少挂碰,同时后期拆卸方便,不得采用在预制构件上用后锚固的方式进行附着安装,因此这也强调了建设方、设计方、预制场、施工方的协调。 05、控制精度

起重机杆长计算

起重机得选择 起重机得选择包括起重机类型得选择、起重机型号得选择与起重机数量得确定。?1,起重机类型得选择 起重机类型应综合考虑下列诸点进行选择:?(1)结构得跨度、高度、构件重量与吊装工程量等; (2)施工现场条件;?(3)本企业与本地区现有起重设备状况; (4)工期要求; (5)施工成本要求。?一般情况下,吊装工程量较大得普通单层装配式结构宜选用履带式起重机,因履带式起重机对路面要求不太高,变幅、行驶方便,可以负荷行驶。汽车式起重机对路面得破坏性小,开赴吊装地点迅速、方便,适宜选用于吊装位于市区或工程量较小得装配式结构。位于偏僻地区得吊装工程,或路途遥远,或道路状况不佳,则选用独脚拔杆或人字拔杆、桅杆式起重机等简易起重机械,往往可提早开工,能满足进度要求,且成本低。?对于多层装配式结构由于上层构件安装高度高,常选用大起重量履带起重机或普通塔式起重机(轨道式或固定式)。对于高层或超高层装配式结构,则需选用附着式塔式起重机或内爬升式塔式起重机。内爬升式塔式起重机得优点就是自重轻,不随建筑物高度得增加而接高塔身,机械多安装在结构中央,需吊装得构件距塔身近,因而可选用较小规格得起重机;其缺点就是施工荷载(含塔机自重、风荷载、起吊构件重等)需建造中得结构负担,工程结束后,需另设机械设备进行拆除,立塔部位得构件须在塔机爬升或拆除后补装。附着式塔式起重机安装在建筑物外侧,可避免内爬升式塔式起重机得上述缺点,但起吊作业中需安装许多距塔身较远得构件,工作幅度大,要求选用较大规格得起重机,同时占用场地多,需随建筑物得升高安装附着杆,且起重机得塔身接高也较复杂。 2.起重机型号得选择?选择起重机得原则就是:所选起重机得三个工作参数,即起重量Q、起重高度H与工作幅度(回转半径)R均必须满足结构吊装要求。 当前,塔式起重机多采用水平臂小车变幅装置,故根据上述须满足结构吊装要求得三个工作参数与各种塔式起重机得起重性能很容易确定其型号。 下面,以履带起重机为例(汽车起重机、轮胎起重机类似)叙述起重机型号得选择方法: (1)起重量计算?1)单机吊装起重量按下列公式计算: Q≥Q1+Q2 (14-45) 式中 Q——起重机得起重量(T);Q1——构件重量(T);Q2——索具重量(T)。?2) 双机抬吊起重量按公式(14-46)计算:?K(Q 主+Q 副 )≥Q1+ Q2(14-46)?式中 Q主——主机起重量;Q副——副机起重量;K——起重量降低系数,一般取0、8;?Q 1 、Q2——含义与公式(14-45)相同。 (2)起重高度计算(图14-125)?起重机得起重高度按公式(14-47)计算:? H≥H1+H2+H3+H4 (14-47)?式中 H——起重机得起重高度(M),停机面至吊钩得距离; H1——安装支座表面高度(M),停机面至安装支座表面得距离; H2——安装间隙,视具体情况而定,一般取0、3~0.5M;?H3——绑扎点至构件起吊后底面得距离(M); H4——索具高度(M),绑扎点至吊钩得距离,视具体情况而定。 ?起重高度计算图?(3)起重臂(吊杆)长度计算 1)起重臂不跨越其她构件得长度计算 起重机吊装单层厂房得柱子与屋架时,起重臂一般不跨越其她构件,此时,起重臂长度按公式(14-48)计算(图14-12

盾构机的设计选型依据

盾构机的选型 盾构法以其具有较高的可靠性及对周边环境适应性强的特点而在国内外地铁建设中得到了广泛应用,盾构法涉及多门学科,专业性强,尤其是其施工过程完全是工厂化的流水作业,机械化、自动化程度高,其施工效率较其他方法非常明显的优势。在国内地铁工程中,我国上海市六十年代开始盾构法的试验研究工作,并随着城市建设的发展,特别是近几年来科学技术的进步,新技术、新工艺、新材料、新设备的发展广泛应用,盾构法施工技术也取得较大的发展,至今已使用过近五十余台盾构。配套施工技术也相应在逐步完善,工程规模和应用范围也相应扩大。 地铁施工条件复杂,涉及城市建筑、管线水网、交通环境、污染控制严格,盾构施工在城市地铁施工中越来越显出其无可比拟的优越性,但是城市施工的首先要保证的前提条件是,由施工造成的地面隆起和沉降不能超出限制标准,否则将破坏地面和其它建筑物,造成巨大的经济损失,甚至人员伤亡的严重后果。这是城市施工和山岭隧道施工的根本区别,同时也是盾构施工首先需要解决的技术和组织问题。在围岩状况不佳的地质条件下,采用土压平衡和泥水式盾构开挖能起到保证安全的作用。 盾构施工,首先需要决定盾构机的类型,盾构的形式取决于地质条件。按结构模式盾构机分为泥水式盾构、敞开式、土压平衡式盾构、硬岩盾构四类。 敞开式盾构用于整个地层稳定,透水率低,涌水能够不采取其它辅助措施则能被控制的区段。 硬岩盾构用于硬度较大,且能够自稳、涌水不大的岩石地层开挖。 土压平衡盾构和泥水式盾构都是利用控制推进的速度和出料的速度来使推进所产生的压力同掌子面的压力相平衡,从而达到维持掌子面稳定,继而维持地面沉降和隆起在控制范围内的作用。这两类盾构的最大区别是泥水式盾构需要有昂贵的泥浆制备和分离设备,将泥浆通过管路注入到盾构机混合仓内,与开挖下来的碴土进行混合,通过泥浆泵将混合后的碴土抽出到地面以后进行分离处理,泥浆再循环利用。而土压平衡盾构则不需要进行分离处理,只是在涌水较大,但透水率不超过一定数值,掌子面不稳的地段才需要使用土压平衡开挖模式,也不需要专门的分离设备进行碴土分离。 盾构设计选型的主要依据取决于如下几个因素:碴土的粘合系数,渗透系数。 盾构选型设计的一个重要依据,是碴土的渗透系数,按照盾构设计的理论,碴土的渗透

泥水盾构出渣量及出浆比重计算

长沙市南湖路湘江隧道泥水盾构泥水处理 对于泥水平衡盾构掘进来说,最重要的一点就是保持进出浆动态平衡,以及掘进速度与进出浆比重匹配。 一 泥水动态平衡 进(出)浆流量为Q,进浆比重ρ1,出浆比重ρ2,掘进速度ν,盾构直径为D ,围岩比重ρ3,不同岩层原状土比重分别ρa3,ρb3,ρc3.....,下面为正常掘进动态平衡式: ()2 3122D Q Q ∏=-υρρρ (1) Q-进(出)浆流量,单位m3/h ρ1-进浆比重,单位,KG/m3 ρ2-出浆比重单位,KG/m3 ν-掘进速度,m/h 盾构机的掘进速度一般情况都是mm/min,而不是m/h ρ3-围岩比重,KG/m3 D-盾构外壳直径,m 此计算式表示单位时间匀速掘进一定进尺,实际出渣量、理论出渣量与进出浆比重的匹配关系。 二 盾构掘进状态 1 按掘进状态是否连续可分为正常掘进状态和非正常掘进状态。 1)正常掘进状态 正常掘进状态为在掘进施工中建立科学合理的泥水压力,并保证进浆泥浆具有良好的携渣性能,各项指标均符合要求,掘进当中不出现压力非正常

波动情况,按照方案设定速度保持相对均匀速度连续掘进,掘进中盾构机相关设备运转正常,不出现停机情况。 2)非正常掘进状态 非正常掘进状态是因为某些因素如泥浆站泥浆池满浆、设备故障导致掘进不连续,此种不连续掘进状态增加了非正常的工序如泥水管循环?掘进速度的变化不利于出渣判断。 三掘进出渣量计算及相关参数 泥水盾构掘进中出渣的多少关系到地表沉降、隧道成型及隧道稳定。所以在掘进中如何科学合理的控制出渣尤为重要,下面根据掘进参数对出渣量的相关问题的进行分析。 1 出浆比重计算 根据以上计算式(1)可得出浆比重: ρ2= () Q Q D 1 2 32 ρ υ ρ+ ∏ (2) = () 1 2 32ρ υ ρ + ∏ Q D (3) 进(出)浆流量为800m3,ρ1=m3,中风化圆砾岩ρ3=m3,盾构外壳直径为,掘进速度取ν=10 mm/min,即ν= m/min,得: ρ2= () 800 30 .1 800 2 65 . 11 14 .3 6.0 43 .22? + ? ? =m3 此处的掘进的速度的单位应当为mm/min 或者为m/h,应当保持单位的统一性;还有盾构机在正常掘进的时候的流量绝对不会是800m3 根据以上计算与实际掘进中实测进出浆泥浆比重相符合。

盾构机吊装方案

目录 目录 0 1、编制依据及原则 (1) 1.1编制依据 (1) 1.2编制原则 (1) 2、工程概况 (1) 2.1区间工程简介和工程设计概况 (1) 2.2工程地质条件 (2) 2.3工程目标 (2) 3、盾构机的吊装 (2) 3.1盾构各组成部件主要技术参数 (3) 3.2吊装顺序 (6) 3.3吊装过程 (7) 3.4盾构吊装下井 (7) 3.5盾构机吊装技术保证措施 (7) 3.6盾构机吊装安全保证措施 (8) 4、突发事件应急预案 (9) 4.1应急指挥机构 (9)

4.2装备和通讯联系方式 (11) 4.3救援队伍的组成和配置 (11) 4.4突发事件处置 (12)

1、编制依据及原则 1.1编制依据 1.1.1沈阳地铁二号线一期工程9标盾构区间(青年公园站~工业展览 馆站)招标文件; 1.1.2沈阳地铁二号线一期工程9标盾构区间(青年公园站~工业展览 馆站)投标文件; 1.1.3沈阳地铁二号线一期工程9标盾构隧道(青年公园站~工业展览 馆站)施工图及工程量清单; 1.1.4沈阳市地铁2号线青年公园站设计图纸及设计说明; 1.2编制原则 1.2.1严格执行基本建设程序,认真贯彻国家和沈阳市关于地铁建设方面的有关方针、政策和规定; 1.2.2严格遵守合同规定的关键竣工日期及整项工程的竣工交付日期; 1.2.3按照轻重缓急,合理安排施工部署,考虑到吊装各阶段、各工特点、重点和难点,有效地做到各阶段吊装的有机衔接,既要突出重点,又要兼顾一般; 2、工程概况 2.1区间工程简介和工程设计概况 本区间设计起点里程为K11+130.4,设计终点里程为K12+246.917,区间长度为右线1116.517m,左线1122.399m,其中左K12+242.58,右K12+236.656,长链5.882m。区间隧道为单洞单线圆形断面,盾构法施工,

盾构机选型

第1章. 第34章. 第35章. 第36章. 第37章. 第38章. 第39章. 第40章. 第41章.

第42章. 盾构、配套设备与管模 42.1. 盾构机选型 42.1.1. 选型原则盾构机的性能及其对地质条件的适应性是盾构隧道施工成败的关键。本合同段盾构区间工程的盾构机选型按照性能可靠、技术先进、经济适用相统一的原则,依据招标文件、颐和园站-圆明园站和圆明园站-成府路站区间岩土工程勘察报告等资料,并参考国内外已有盾构工程实例及相关的技术规范进行。 42.1.2. 选型依据 盾构机选型具体依据如下: (1)本合同段盾构工程施工条件 隧道长度:3032+2044.286 单线延米; 线路间距:8?19m; 隧道覆土厚度最小:6m,最大:15.4m; 平面最小曲线半径:350m; 最大坡度:20.801%。; 隧道衬砌管片内径:5400mm 外径:6000mm (2)工程施工环境特点本工程施工环境具有如下特点对盾构机施工有一定的影响:本合同段区间隧道沿线地下管线、建(构)筑物密集。颐和园-圆明园区间线路下穿颐和园、圆明园,与万泉河高架桥相交;圆明园?成府路站区间线路通过成府小学、化工研究 院,下穿万泉河。区间线路与万泉河高架桥相交时,隧道外轮廓与桩基距离最小为5m,下穿 圆明园一座池塘时覆土厚度仅6m,万泉河底部区域隧道覆土厚度为9m。 本合同段区间线路主要沿颐和园路、清华西路布置,与中关村北大街相交,所经道路尤其是中关村

北大街交通繁忙、车流量大。 (3)区间地质特点 本合同段区间隧道穿越地层主要有粉质粘土、粉土层,局部夹有砂层、卵石圆砾等。具 体的地质统计表见表10-1-1和图10-1-1。 表10-1-1 盾构区间洞身地质统计表 ■③□⑥□⑥2 口⑦□⑦2■③□⑥□⑥]□⑥2 颐和园一圆明园站区间圆明园一成府路站区间 图10-1-1盾构区间隧道洞身主要地质比例图 42.1.3. 本工程地质特点对盾构机功能的要求 针对以上工程地质条件及特点,盾构应具备以下功能: (1)盾构机对地层条件的适应性要求本合同段隧道地层主要由粉质粘土、粉土层、卵石圆砾层组成,局部夹有砂层,所以盾构对软土地层的适应性应是重点考虑的问题。盾构在软土地段的施工时应重点考虑以下功能:

盾构机受力计算及始发结构设计

盾构机受力计算及始发结构设计 【内容提要】本文重点从分析盾构机在始发阶段的受力入手,设计盾构机的始发设施(始发托架、反力架)及其固定,提出对盾 构机掘进参数的控制要求。 【关键词】隧道、盾构、始发、始发托架、反力架 前言 随着技术进步、综合国力的增强,盾构法越来越多地被国内地铁界所接受,上海、广州、南京、北京、深圳、天津、西安、成都、沈阳、杭州、青岛等城市都使用这种方法。上海地铁是国内最早采用盾构施工的,且大部分工程都是利用盾构完成的。虽然盾构有许多成功的工程实例,但是使用这种方法也有较大的风险。而且使用盾构,在对洞口进行加固处理的始发阶段出问题的概率很高,即使是非常有经验的承包商也常会发生类似事故。 本文从盾构机在始发阶段的受力入手,设计盾构机的始发设施(始发托架、反力架)及其固定,提出对盾构机掘进参数的控制要求。 1工程地质情况简介 成都地铁1号线一期工程盾构施工2标,人民北路站至天府广场站盾构区间,第一台盾构机从始发井(右线)南端向南始发掘进,到达天

府广场站调头至左线,再从左线向北始发,到达骡马市站后盾构机过站,到达文武路站后盾构机转场,到人民北路站吊出完成左线盾构掘进;第二台盾构机从始发井(右线)北端始发到达骡马市站过站,到文武路站转场,到人民北路站吊出完成右线盾构掘进,见图1线路平面示意图。整个盾构区间左、右线盾构吊装与拆除4次、调头1次、过站2次、转场2次。成都地铁人-天区间两台盾构机在右线始发井各有一次盾构始发起点,总共7次始发,根据每次各100m的始发掘进地段的地质条件和线路平、纵断面设计,分析盾构机的掘进受力,对于正确设计、固定盾构机的始发设施,合理提出始发阶段盾构机掘进参数的控制是十分必要的。 图1线路平面示意图 2盾构机始发阶段的受力 盾构机始发前的受力 始发前盾构机处于+%变坡点附近,整个盾体支承在始发托架上,盾构主机仅有重力G约3200kN作用在始发托架上,重心距刀盘面约2.7m,刀盘悬臂置于托架前端,托架前端离始发掘进面(围护结构外侧面)约

盾构机吊装方案(0921)

盾构机吊装方案 编制: 复核: 审核: 审批:

目录 1工程概述1 1.1施工部署 2 1.2编制依据 2 1.3盾构机示意图及重量表 3 2组织机构及人员分工4 3吊装工作环境概况5 4吊装方案概述6 5吊装准备7 5.1地基要求 7 栎社站东端头 (7) 栎社站西端头 (7) 鄞州大道站南端头 (8) 5.2施工机具准备 8 5.3监测监控 12 6吊装方案详述13 6.1吊装翻身方法 13 6.2吊装盾尾上半部分 13 6.3吊装螺旋输送机 14 6.4吊装盾尾下半部分 14 6.5吊装刀盘 15 6.6吊装中盾 15 6.7吊装前盾 16 6.8吊双轨梁 17

6.9吊装台车 18 6.10吊接收托架 18 7安全质量保证措施19 7.1机具验算 19 7.2质量措施 20 7.3安全措施 21 8盾构吊装应急预案22 8.1编制目的 22 8.2事故应急救援基本任务 22 8.3方针与原则 22 8.4吊装危险特性 22 8.5应急准备 22 8.6预防事故措施 23 8.7事故处置 25 8.8预案管理与评审改进 26 盾构机转场吊出方案 1工程概述 中铁一局集团有限公司宁波市轨道交通2号线一期工程TJ2101标包含机场

站、机场站-栎社新村站区间、栎社新村站、栎社新村站~鄞州大道站区间“两站两区间”,其中栎社新村站-鄞州大道站区间设计起点里程为SK2+693.500,终点里程为SK4+154.774,全长1461.274双线米。最小平曲线半径600m,线间距13~15m。竖曲线半径为3000m和5000m;区间隧道最小埋深6.2m,最大埋深19.6m,线路最大纵坡为22‰。。 区间隧道均采用盾构法施工,选用小松TM634PMX-17和小松TM634PMX-50盾构机。小松TM634PMX-17盾构机先从栎社新村站东端头下行线下井组装始发,掘进栎社新村站~鄞州大道站区间,盾构机到达鄞州大道站后解体吊出,运输回栎社新村站重新组装下井从栎社新村站西端头二次始发,掘进到机场站后解体调出;小松TM634PMX-50盾构机先从栎社新村站上行线下井组装始发掘进栎社新村站~鄞州大道站区间,盾构机到达后解体吊出,运输回栎社新村站重新组装下井从栎社新村站二次始发,掘进栎社新村站~机场站盾构区间,盾构机到达机场站后解体调出。我项目部需要吊装设备包括两台小松盾构机的四次吊装下井和四次吊装进洞。 为了做好盾构机吊装工作,必须制定经济合理、切实可行的吊装方案。 1.1施工部署 设备单件重量重,吊装工作量大。因此,盾构吊装工艺、步骤的确定,施工场地布置,现场道路的处理,吊具的加工制作,大型吊机进场、拼装时外伸支腿基础的处理,大件设备的运输等必须进行部署协调,确保吊装工作顺利进行,应在安全、质量、进度等各方面都能达到理想状态,为此做如下部署: 1、编制盾构机吊装方案。 2、在吊装过程中必须严格按照方案内容执行。 3、吊装前必须确定吊耳的焊接质量。 4、吊装前准备好吊装索具,并确认符合方案规定的要求。 1.2编制依据 1、《AC350 350吨汽车吊吊车性能表》、《AC250-1 250吨汽车吊吊车性能表》《STC1000C 160吨汽车吊吊车性能表》; 2、《建筑安装工程安全技术规程》、《建筑安装工人安全技术操作规程》、

盾构机吊装方案样本

盾构机吊装方案 编制 : 复核 : 审核: 审批:

目录 1 工程概述................................................................. 错误!未定义书签。 1.1 施工部署........................................................ 错误!未定义书签。 1.2 编制依据........................................................ 错误!未定义书签。 1.3 盾构机示意图及重量表................................ 错误!未定义书签。 2 组织机构及人员分工............................................. 错误!未定义书签。 3 吊装工作环境概况................................................. 错误!未定义书签。 4 吊装方案概述......................................................... 错误!未定义书签。 5 吊装准备................................................................. 错误!未定义书签。 5.1 地基要求........................................................ 错误!未定义书签。 5.2 施工机具准备................................................ 错误!未定义书签。 5.3 监测监控........................................................ 错误!未定义书签。 6 吊装方案详述......................................................... 错误!未定义书签。 6.1 吊装翻身方法................................................ 错误!未定义书签。 6.2 吊装盾尾上半部分........................................ 错误!未定义书签。 6.3 吊装螺旋输送机............................................ 错误!未定义书签。 6.4 吊装盾尾下半部分........................................ 错误!未定义书签。 6.5 吊装刀盘........................................................ 错误!未定义书签。 6.6 吊装中盾........................................................ 错误!未定义书签。 6.7 吊装前盾........................................................ 错误!未定义书签。 6.8 吊双轨梁........................................................ 错误!未定义书签。 6.9 吊装台车........................................................ 错误!未定义书签。

盾构机选型标准

1、盾构机选型依据 地铁区间,线路总长:隧道埋深9~13米。 隧道洞身大部分处于残积层中,局部地段穿越花岗岩、辉绿岩全、强风化带或断层破碎带,结构松散,易软化、变形,产生坍塌。花岗岩层面起伏大,存在差异风化现象。 地下水按赋存条件分为第四系孔隙潜水和基岩裂隙水,砂层中具承压性。主要补给来源为大气降水。地下水埋深5.2~8.4米。 盾构隧道内径:5400mm,管片厚度:300mm,隧道外径:6000mm。标准管片宽度:1200mm,分块数:6块。 本盾构隧道区间采用两台盾构机。盾构机由站西端下井始发,推进至站东站起吊出井。 隧道地质情况、工程要求、环境保护要求、经济比较、地面施工场地大小等因素是盾构选型的基本依据。根据国内外盾构施工经验与实例,我们认为,盾构机的选型必须满足以下几个要求: 必须确保开挖空间的安全和稳定支护; 保证隧道土体开挖顺利; 保证永久隧道衬砌的安装质量; 保证隧道开挖碴土的清除; 确保盾构机械的作业可靠性和作业效率; 保证地面沉降量在要求范围内; 满足施工场地及环保要求。 2、不同开挖模式的工作原理 2.1 盾构机的型式与工作特点 目前世界上流行的盾构机按开挖模式主要可以分为两大类:敞开式与密闭式。 敞开式指盾构机的开挖面与机内的工作室间无隔板或隔板的某处设置可调节开口面积的出土口。开挖面基本依靠开挖土体的自立保持稳定。敞开式适用于

地层条件简单、自立性好且无地下水的地层。 密闭式盾构机是在盾构机的开挖面与机内的工作室间设置隔板,刀盘旋转将开挖下来的碴土送入开挖面和隔板间的刀盘腔内,由泥水压力或土压或气压提供足以使开挖面保持稳定的压力。密闭式盾构机适用于地层变化复杂、自立条件较差、地下水较丰富的地层,因为采用密闭式掘进可以有效地保证开挖面的自立与稳定,保证施工安全。 密闭式盾构机主要分为泥水平衡式、土压平衡式两类,代表了不同的出土方式和不同工作面土体平衡方式的特点,但适用地质与范围有一定的区别。 泥水平衡式盾构机是在盾构机的前部设置隔板,装备刀盘面板、输送泥浆的送排泥管和推进盾构机的盾构千斤顶。在地面上还配有分离排出泥浆的泥浆处理设备。开挖面的稳定是将泥浆送入泥浆室内,在开挖面上用泥浆形成不透水的泥膜,通过该泥膜保持水压力,以对抗作用于开挖面的土压力和水压力。开挖的碴土以泥浆形式输送到地面,通过处理设备离析为土粒和泥水,分离后的泥水进行质量调整,再输送到开挖面。泥浆处理设备设在地面,需占用较大的施工场地。另外泥水式盾构机及其配套系统价格较高。 土压平衡式盾构机是在盾构机的前部设置隔板,隔板与刀盘之间形成一个用于土压平衡、碴土搅拌、碴土排出的碴土仓。装配有各种刀具的刀盘不断旋转切削土体,切削下来的碴土通过刀盘进料槽进入碴土仓。碴土仓内和排土用的螺旋输送机内充满开挖碴土,依靠盾构机千斤顶的推力给土仓内的开挖土砂加压,使碴土仓的土压作用于刀盘开挖面以使其稳定。土压式盾构机占用场地较小,价格较低。 土压平衡式盾构机又可分为纯土压平衡式与加泥型土压平衡式。 纯土压平衡式盾构机单纯依靠开挖下来的碴土压力稳定开挖面。这种盾构机较适用于开挖含砂量小的塑性流动性软粘土。 加泥型土压平衡盾构机装备有注入添加材料促进开挖砂土塑性流动的机构。对于含砂量、含水量较大的土层,盾构机的加泥装置可以根据土质,选用泡沫、膨润土、高吸水树脂等添加材料,将其注入开挖面和泥土仓。通过搅拌机构将添加材料与开挖下来的碴土强力搅拌,将开挖碴土变成具有可塑性、流动性、防渗性的泥土,这种泥土充满土仓和螺旋输送机内。当土仓内压力小于开挖面压力时,

广州地铁盾构机选型参考

广州地区地铁隧道施工用盾构机选型 1.1选型依据 本标段的盾构选型主要依据广州地铁三号线【AA站—BB站盾构区间】(以下简称【A-B】区间)盾构工程招标文件和岩土工程勘察报告,参考国内外已有盾构工程实例及相关的盾构技术规范,按照适用性、可靠性、先进性、经济性相统一的原则进行盾构机的选型。 1.1.1工程条件 AA站~BB站区间隧道左右线总长6002.210m,其中盾构隧道左线长3000.010m,右线长3002.200m,最小转弯半径800m,最大坡度29.2‰;隧道内径φ5400mm,管片外径φ6000mm、管片环宽1500mm。本标段隧道采用两台盾构机施工,先后由AA站始发,向BB站掘进,施工隧道右、左线,掘进到达BB站后拆除。右、左线隧道盾构始发时间相差一个月。 1.1.2地质概况 (1)岩性特点 )厚根据岩土工程勘测报告,本区地层由第四系、白垩系下统组成,中间缺失第三系,第四系(Q 4 8~18米。上部为第四系人工填土,厚0~4米,全新统海陆交互相沉积的淤泥或淤泥质土、淤泥质砂,厚0~7.9米;下部为上更新统陆相冲洪积形成的砂土层,厚0~8.2米;底部基岩残积形成的粘性土层, b2)厚400~450米,由紫红色钙质粉砂岩,泥质粉砂岩、厚0~17.3米。白垩系下统白鹤洞组广岗段(K 1 粉砂质泥岩夹浅灰色泥灰岩、泥岩组成,微层理发育,含方解石,常见钙质斑块及少量斑点状石膏。 洞身穿过的围岩有<3-2>、<4-1>、<4-2>、<5-1>、<5-2>、<6>、<7>、<8>、<9>各岩土层,洞身范围内主要为<7>、<8>、<9>岩土层,稳定性较好。 在隧道靠车站两端的YK13+824.2~YK15+950及YK12+250~YK14+344.7段隧道直接穿越淤泥层和砂层,隧道在该段埋深最浅(约为6.4m),且YK13+870~YK13+950段地表有淋砂涌通过,隧道在该段埋深最浅,与涌河内地表水存在较强的水力联系,在掘进过程中极易坍塌,还可能发生喷砂、喷涌,是盾

相关主题
文本预览
相关文档 最新文档