当前位置:文档之家› 微积分第四章答案

微积分第四章答案

微积分第四章答案
微积分第四章答案

(4) ,)(存在二阶导数,且),函数,(若对一切0lim )(0=''∞+∈

+∞

→x f x f x x 则='-+'+∞

→)]()([lim x f a x f x (B )(其中a 为正的常数) 解①)]}()([lim 1

{lim ])()(lim [lim lim 000x f a x f a a

x f a x f x f x a a x x '-+'='-+'=''=+∞→→→+∞

→+∞→++

)( 此极限存在,只能是)0(?∞型,于是0)]()([lim ='-+'+∞

→x f a x f x 故选(B )。 ②()()()()()()f x a f x f x a x f a ???x x a ξξξ''''''+-=+-=<<+

,,lim ()0lim ()0x x f x f ξξξ→+∞

→+∞

''''→+∞→+∞==当时由有

lim [()()]00x f x a f x a →+∞

''∴+-=?=

2.已知)(x f 在区间),(b a 内存在二阶导数,

b x

x x a <<<<3

2

1

),()()(321x x x f f f ==试证明在),(b a 内至少存在一点0)(,=''ξξf 使

证明:由已知条件知)(x f 在],[],,[3221x x x x 上满足罗尔定理条件,

所以有1()0f ξ'=, 112()x x ξ<<, 2()0f ξ'=, 223()x x ξ<< 又因为)(x f 在),(b a 内二阶可导,所以)(x f '在],[21ξξ上满足罗尔定理条件, 故有 0)(=''ξf 12a b ξξξ<<<<

7. 若)(x f 在闭区间],[b a 上连续,在开区间),(b a 内存在二阶导数,且

,0)()(==b f a f 0)(>c f 其中b c a <<,证明在),(b a 内至少存在一点

0)(,<''ξξf 使.

证: 由已知有)(x f 在],[c a , ],[b c 上满足拉氏定理.

所以存在12(,),(,)a c c b ξξ∈∈使

12()()()()

().,()f c f a f b f c f f c a b c

ξξ--''=

=-- 又因为0)(,0)()(>==c f b f a f 所以12()0,()0f f ξξ''>< 由)(x f 在),(b a 内二阶可导,得()f x '在12[,]ξξ上满足拉氏定理

所以存在211221

()()

(,)()f f f ξξξξξξξξ''-''∈=

-使

而2121()0,()0,0f f ξξξξ''<>-> 得0)(<''ξf 12a b ξξξ<<<<

故结论成立。

8. 已知函数)(x f 在1)0(),()(),(=='+∞-∞f x f x f 且内满足关系式,证明

)(x f =x e

证: 令),(,)

()(+∞-∞∈=

x e x f x F x

x

x

x e

e x

f e x f x F 2)()()(-'=' 由0)()()(='='x F x f x f 有

所以C x F =)( (C 为常数)

于是)(x f =C x e 又因为1)0(=f ,得C=1 所以x e x f =)(

(3)1sin

0lim ()2arctan 0x x x π→+∞-=1

0lim ()2arctan 0x x x π→+∞-=2

2

1lim

21x x x →+∞--

+=lim x →+∞2212x x +=12

(6)lim (2tan )ln (0,)x arc x x π→+∞

-∞ =2tan 0

lim

()10

ln x arc x x

π→+∞

-=222ln lim ()1x x x x →+∞∞+∞=22ln 2ln lim ()2x x x x →+∞+∞

∞ =ln 12lim

()x x x →+∞

+∞∞

=1

2lim x x →+∞=0 (7)10ln 0lim (cot )()x

x x +

→∞=1

ln 01

lim

ln cot ln cot ln 0lim x

x x

x

x x e

e

+→+

?→=(0)∞

=0lncot lim

()ln x x x e

+

→∞

=201

(csc )cot lim

1x x x x

e

+

→-=01lim

sin cos x x

x

x

e

+→-?

=1e -=1e

(9))

0(4

tan ln 2tan lim 4

tan ln 2tan 1

2

tan 11lim )1()4

(tan lim ?∞→∞→→==x x x x x x

x x e

e

x π

ππ

ππ

π

而2

2csc 4

4tan

4

sec lim )0

0(2cot 4tan

ln lim 4

tan ln 2

tan lim

22

11

1πππ

πππ

π

π?

-?==→→→x x

x x x x x x x x =12

sin

lim 2

sin 1

2sin

1lim

2

sin 1214cos 1

4

sin

4

cos

lim

1

2

1

2

2

1

-=-=-=-

??→→→x x

x

x

x

x x x x x π

π

π

π

π

所以e

e x x x 1

)

4

(tan lim 12

tan 1

==-→π

π

11.设)(x f 存在二阶连续可导,求2

)

()(2)(lim

h h a f a f h a f h -+-+→

解:)00

(2)()(lim )00()()(2)(lim 020h h a f h a f h

h a f a f h a f h h -'-+'=-+-+→→ =)(2

)

()(lim

0a f h a f h a f h ''=-''++''→ 12.0,()(0)1,x f x f →→=解:因为ln ()~()1f x f x -

000(sin )(0)

(sin )1(sin )1lim lim lim ()(0)ln ()()1

x x x f x f f x f x x f x f f x f x x

→→→---==-- 0(sin )(0)

(0)sin lim 1()(0)(0)

x f x f f x f x f f x

→-'===-' 14.设()f x 在],[b a 上连续,且在),(b a 内有()f x ''0>,证明

()()

f x f a x a

--在

),(b a 内单调增加。

证:令()()

()f x f a F x x a -=

- (,)x a b ∈ 则2

()()()()()()

f x x a f x f a F x x a '--+'=- 由()f x 在],[b a 上连续,在),(b a 内可导,有()f u 在],[x a ((,)x a b ∈)

上满足拉氏定理,因此存在(,)a x ξ∈使得

()()

()f x f a f x a

ξ-'=- ()a x ξ<<

因为在(,)a b 内有()0f x ''>,所以()f x '在(,)a b 内单调递增。 于是()()f f x ξ''<

()()

()f x f a f x x a

-'<- ()()f x f a -()()f x x a

'<-

即()()()()f x x a f x f a '--+0> 得()0F x '> (,)x a b ∈ 所以

()()

f x f a x a

--在(,)a b 内单调递增。

28.讨论方程x e x λ=在λ取何值时(1)有唯一实根(2)有两个不等实根(3)无实根。

解:令()x f x e x λ=- (,)x ∈-∞+∞且()f x 在(,)-∞+∞内连续

()x f x e λ'=- ()x f x e ''=

(1) 当0λ<时,(,)x ∈-∞+∞, ()0f x '>,()f x 在(,)-∞+∞内单增且

lim ()x x e x λ→-∞

-=-∞ lim ()x x e x λ→+∞

-=+∞ 因此()f x 与x 轴只有一个

交点,所以当0λ<时,()0f x =有唯一实根 (2) 当0λ=时,显然()x f x e =0≠ (,)x ∈-∞+∞

所以()0f x =无实根

(3) 当0e λ<<时,()0x f x e λ'=-= 驻点:x In λ=(1In λ-∞<<)

()0In f In e λλλ''==> x In λ=是极小值点也就是最小值点

最小值()(1)0In f In e In In λλλλλλ=-=->

即点(In λ,()f In λ)在x 轴上方,()f x 与x 轴无交点

所以 ()f x =0无实根

(4) 当e λ=时,()0x f x e e '=-= 驻点: 1x =

(1)0f e ''=>, 1x =是极小值点也就是最小值点

最小值(1)0f =,点(1,0)在x 轴上,

即()f x 与x 轴只有一个交点,所以()f x =0有唯一实根 (5) 当e λ>时,唯一驻点x In λ= (1In λ>)

()0In f In e λλλ''==> x In λ=是极小值点也就是最小值点

最小值()(1)0In f In e In In λλλλλλ=-=-< 即点(In λ,()f In λ)在x 轴下方

而(,)x In λ∈-∞ 时, ln x e e λλ<=,()0x f x e λ'=-< ,

()f x 在(,)In λ-∞内单减;

(,)x I n λ∈+∞时,ln x e e λλ>=,()0x f x e λ'=-> , ()f x 在(,)In λ+∞内单增;

所以()f x 与x 轴有两个交点分别在(,)In λ-∞和(,)In λ+∞内 因此()f x =0有两个不等实根 综上所述:e λ>时,方程有两个实根 0e λ≤<时 方程无实根 0λ< 或e λ=时,方程有唯一实根

高等数学测试及答案(第三章)

高等数学测试(第三章) 一. 选择题(每小题3分,共30分) 1.下列函数在[1,1]-上满足罗尔定理条件的是( ) A .x y e = B .ln y x = C .21y x =- D .2 1 1y x = - 2.曲线3(y x = 3.已知函数f A .一个 4.设函数(f x ) A 5.如果0()f x 'A .0()f x C .0()f x 6A . C . 7.若在[]1,1-A 8.曲线1=y 9.设()x f '在点0x 的某个邻域内存在,且()0x f 为()x f 的极大值,则()() =-+→h x f h x f h 000 2lim ( ) A .0 B .1 C .2 D .-2 10.设()x f 在点3=x 的某个邻域内有定义,若()() () 133lim 2 3 -=--→x f x f x ,则在3=x 处( )

A . ()x f 的导数存在且()03≠'f B . ()x f 的导数不存在 C . ()x f 取得极小值 D . ()x f 取得极大值 二. 填空题(每小题3分,共15分) 11.函数ln(1)y x =+在[0,1]上满足拉格朗日定理的ξ=________. 12.函数4 y x = 13.函数()f x 14.曲线()f x 15.函数()f x 三. 计算题(16.(5 18.(5,讨论其

四. 应用题(每题10分,共20分) 20.(10分)某车间靠墙壁要盖一间长方形小屋,现有存砖只够砌20米长的墙壁,问应围成咋样的长方形才能使这间小屋的面积最大? 21.(10 是多少? 五. 证明题( 22.(10

大学高等数学第四章 不定积分答案

第四章 不定积分 习 题 4-1 1.求下列不定积分: (1)解:C x x x x x x x x x +-=-= -??- 25 232 122d )5(d )51( (2)解:?+x x x d )32(2 C x x x ++ ?+ =3 ln 29 6 ln 6 22 ln 24 (3)略. (4) 解:? ??-+ -= +-x x x x x x x d )1(csc d 1 1d )cot 1 1( 2 2 2 2 =C x x x +--cot arcsin (5) 解:?x x x d 2103 C x x x x x x += ==??80 ln 80 d 80 d 810 (6) 解:x x d 2 sin 2 ?=C x x x x ++= -= ?sin 2 12 1d )cos 1(2 1 (7)? +x x x x d sin cos 2cos C x x x x x x x x x x +--=-= +-= ?? cos sin d )sin (cos d sin cos sin cos 2 2 (8) 解:? x x x x d sin cos 2cos 2 2 ?? - = -= x x x x x x x x d )cos 1sin 1( d sin cos sin cos 2 2 2 2 2 2 C x x +--=tan cot (9) 解: ???-=-x x x x x x x x x d tan sec d sec d )tan (sec sec 2 =C x x +-sec tan (10) 解:},,1max{)(x x f =设?? ? ??>≤≤--<-=1,11,11,)(x x x x x x f 则. 上连续在),()(+∞-∞x f , )(x F 则必存在原函数,???? ???>+≤≤-+-<+-=1,2 1 11, 1,21)(32212 x C x x C x x C x x F 须处处连续,有又)(x F )2 1(lim )(lim 12 1 21 C x C x x x +- =+-+-→-→ ,,2 1112C C +- =+-即

微积分试题及答案(5)

微积分试题及答案 一、填空题(每小题2分,共20分) 1. =∞→2 arctan lim x x x . 2. 设函数??? ??=<<-=0 , 10 )21()(1 x k x ,x x f x 在0=x 处连续,则=k 。 3. 若x x f 2e )(-=,则=')(ln x f 。 4. 设2sin x y =,则=)0() 7(y 。 5. 函数2 x y =在点0x 处的函数改变量与微分之差=-?y y d 。 6. 若)(x f 在[]b a ,上连续, 则=?x a x x f x d )(d d ; =? b x x x f x 2d )(d d . 7. 设函数)3)(2)(1()(---=x x x x f ,则方程0)(='x f 有 个实根。 8. 曲线x x y -=e 的拐点是 。 9. 曲线)1ln(+=x y 的铅垂渐近线是 。 10. 若 C x x x f x ++=? 2d )(,则=)(x f 。 二、单项选择(每小题2分,共10分) 1. 设x x f ln )(=,2)(+=x x g 则)]([x g f 的定义域是( ) (A )()+∞-,2 (B )[)+∞-,2 (C )()2,-∞- (D )(]2,-∞- 2. 当0→x 时,下列变量中与x 相比为高阶无穷小的是( ) (A )x sin (B )2 x x + (C )3x (D )x cos 1- 3. 函数)(x f 在],[b a 上连续是)(x f 在],[b a 上取得最大值和最小值的( ) (A )必要条件 (B )充分条件 (C )充分必要条件 (D )无关条件 4. 设函数)(x f 在]0[a , 上二次可微,且0)()(>'-''x f x f x ,则x x f ) ('在区间)0(a ,内是( ) (A )不增的 (B )不减的 (C )单调增加的 (D )单调减少的 5. 若 C x x x f +=?2d )(,则=-?x x xf d )1(2 。 (A )C x +-2 2)1(2 (B )C x +--2 2)1(2

大一高等数学期末考试试卷及答案详解

大一高等数学期末考试试卷 一、选择题(共12分) 1. (3分)若2,0, (),0x e x f x a x x ?<=?+>?为连续函数,则a 的值为( ). (A)1 (B)2 (C)3 (D)-1 2. (3分)已知(3)2,f '=则0 (3)(3) lim 2h f h f h →--的值为( ). (A)1 (B)3 (C)-1 (D) 12 3. (3分)定积分22 π π-?的值为( ). (A)0 (B)-2 (C)1 (D)2 4. (3分)若()f x 在0x x =处不连续,则()f x 在该点处( ). (A)必不可导 (B)一定可导(C)可能可导 (D)必无极限 二、填空题(共12分) 1.(3分) 平面上过点(0,1),且在任意一点(,)x y 处的切线斜率为23x 的曲线方程为 . 2. (3分) 1 241 (sin )x x x dx -+=? . 3. (3分) 20 1 lim sin x x x →= . 4. (3分) 3223y x x =-的极大值为 . 三、计算题(共42分) 1. (6分)求2 ln(15) lim .sin 3x x x x →+ 2. (6分)设2 ,1 y x =+求.y ' 3. (6分)求不定积分2ln(1).x x dx +?

4. (6分)求3 (1),f x dx -? 其中,1,()1cos 1, 1.x x x f x x e x ?≤? =+??+>? 5. (6分)设函数()y f x =由方程0 cos 0y x t e dt tdt +=??所确定,求.dy 6. (6分)设2()sin ,f x dx x C =+?求(23).f x dx +? 7. (6分)求极限3lim 1.2n n n →∞ ? ?+ ??? 四、解答题(共28分) 1. (7分)设(ln )1,f x x '=+且(0)1,f =求().f x 2. (7分)求由曲线cos 22y x x π π??=-≤≤ ???与x 轴所围成图形绕着x 轴 旋转一周所得旋转体的体积. 3. (7分)求曲线3232419y x x x =-+-在拐点处的切线方程. 4. (7 分)求函数y x =+[5,1]-上的最小值和最大值. 五、证明题(6分) 设()f x ''在区间[,]a b 上连续,证明 1()[()()]()()().22b b a a b a f x dx f a f b x a x b f x dx -''=++--? ? 标准答案 一、 1 B; 2 C; 3 D; 4 A. 二、 1 31;y x =+ 2 2 ;3 3 0; 4 0. 三、 1 解 原式205lim 3x x x x →?= 5分 5 3 = 1分 2 解 22ln ln ln(1),12 x y x x ==-++ 2分

微积分曹定华版课后题答案习题详解

第二章 习题2-1 1. 试利用本节定义5后面的注(3)证明:若lim n →∞ x n =a ,则对任何自然数k ,有lim n →∞ x n +k =a . 证:由lim n n x a →∞ =,知0ε?>,1N ?,当1n N >时,有 取1N N k =-,有0ε?>,N ?,设n N >时(此时1n k N +>)有 由数列极限的定义得 lim n k x x a +→∞ =. 2. 试利用不等式A B A B -≤-说明:若lim n →∞ x n =a ,则lim n →∞ ∣x n ∣=|a|.考察数列 x n =(-1)n ,说明上述结论反之不成立. 证: 而 n n x a x a -≤- 于是0ε?>,,使当时,有N n N ?> n n x a x a ε-≤-< 即 n x a ε-< 由数列极限的定义得 lim n n x a →∞ = 考察数列 (1)n n x =-,知lim n n x →∞不存在,而1n x =,lim 1n n x →∞ =, 所以前面所证结论反之不成立。 3. 利用夹逼定理证明: (1) lim n →∞ 2221 11(1) (2)n n n ??+++ ?+??=0; (2) lim n →∞2! n n =0. 证:(1)因为 22222 2111 112 (1) (2)n n n n n n n n n n ++≤+++ ≤≤=+ 而且 21lim 0n n →∞=, 2lim 0n n →∞=, 所以由夹逼定理,得 22211 1lim 0(1)(2)n n n n →∞?? +++ = ?+? ? . (2)因为22222240!123 1n n n n n < =<-,而且4 lim 0n n →∞=, 所以,由夹逼定理得

微积分第4章习题解答(上)

第四章 习题参考解答 习题4-1 1、下列各方程中,哪些是微分方程,哪些不是微分方程?若是微分方程,请指出其阶数 (1)是一阶微分方程; (2)不是微分方程; (3)是一阶微分方程; (4)是二阶微分方程; (5)是一阶微分方程; (6)是一阶微分方程。 2、在下列各题所给的函数中,检验其中哪个函数是方程的解?是通解还是特解? (1)(B )是特解 (C )是通解; (2)(A)是特解 (B )是通解; (3)(A )是通解(B )是特解 3、求下列各微分方程在指定条件下的特解 (1)解:x x x y xe dx xe e dx ==-?? (1)x y e x C ∴=-+ 将(0)1y =代入上式,得2C = 故满足初始条件的特解为:2)1(+-=x e y x (2)解:C x x dx y +==? ln 将(1)1y =代入上式,得1C = 故满足初始条件的特解为:1ln +=x y 4、写出由下列条件确定的曲线所满足的微分方程 (1)解:设曲线为)(x y y = 由条件得2x y =' (2) 解:设曲线为)(x y y =,则曲线上点),(y x P 处的法线斜率为y k '- =1 由条件知PQ 中点的横坐标为0,所以Q 点的坐标为)0,(x -,从而有 01 ()y x x y -=-' --

即:20yy x '+= 注:DQ PD k = 习题4-2 1、求下列微分方程的通解 (1)sec (1)0x ydx x dy ++= 解:原方程变形为:cos 1x ydy dx x =- + 积分:11 cos 1 x ydy dx x +-=-+?? 得:sin ln 1y x x C =-+++ 所求的通解为:C y x x =++-sin 1ln (2) 10x y dy dx += 解:原方程变形为: 1010 x y dy dx = 积分:1010x y dy dx =? ? 得:1111010ln10ln10 y x C -=+ 所求的通解为:1010x y C --= (3)ln y y y '= 解:原方程变形为: ln dy dx y y = 积分:1ln dy dx y y =? ? 得:ln ln y x C =+,2ln x y C e = 所求的通解为:x Ce y e = 注:21,2C C e C e C ==; (4)tan cot ydx xdy = 解:原方程变形为:cot tan ydy xdx =

定积分及微积分基本定理练习题及答案

1.4定积分与微积分基本定理练习题及答案 1.(2011·一中月考)求曲线y =x2与y =x 所围成图形的面积,其中正确的是( ) A .S =??01(x2-x)dx B .S =??01(x -x2)dx C .S =??01(y2-y)dy D .S =??01(y -y)dy [答案] B [分析] 根据定积分的几何意义,确定积分上、下限和被积函数. [解读] 两函数图象的交点坐标是(0,0),(1,1),故积分上限是1,下限是0,由于在[0,1]上,x ≥x2,故函数y =x2与y =x 所围成图形的面积S =??0 1(x -x2)dx. 2.(2010·日照模考)a =??02xdx ,b =??02exdx ,c =??02sinxdx ,则a 、b 、c 的大小关系是 ( ) A .a2,c =??02sinxdx =- cosx|02=1-cos2∈(1,2), ∴c

大一微积分期末试卷及答案

微积分期末试卷 选择题(6×2) cos sin 1.()2 ,()()22 ()()B ()()D x x f x g x f x g x f x g x C π ==1设在区间(0,)内( )。 A是增函数,是减函数是减函数,是增函数二者都是增函数二者都是减函数 2x 1 n n n n 20cos sin 1n A X (1) B X sin 21C X (1) x n e x x n a D a π→-=--== >、x 时,与相比是( ) A高阶无穷小 B低阶无穷小 C等价无穷小 D同阶但不等价无价小 3、x=0是函数y=(1-sinx)的( ) A连续点 B可去间断点 C跳跃间断点 D无穷型间断点4、下列数列有极限并且极限为1的选项为( )n 1 X cos n = 2 00000001() 5"()() ()()0''( )<0 D ''()'()0 6x f x X X o B X o C X X X X y xe =<===、若在处取得最大值,则必有( )Af 'f 'f '且f f 不存在或f 、曲线( ) A仅有水平渐近线 B仅有铅直渐近线 C既有铅直又有水平渐近线 D既有铅直渐近线 1~6 DDBDBD 一、填空题 1d 12lim 2,,x d x ax b a b →++=x x2 21 1、( )= x+1 、求过点(2,0)的一条直线,使它与曲线y= 相切。这条直线方程为: x 2 3、函数y=的反函数及其定义域与值域分别是: 2+14、y拐点为:x5、若则的值分别为: x+2x-3

1 In 1x + ; 2 322y x x =-; 3 2 log ,(0,1),1x y R x =-; 4(0,0) 5解:原式=11 (1)() 1m lim lim 2 (1)(3) 3 4 77,6 x x x x m x m x x x m b a →→-+++== =-++∴=∴=-= 二、判断题 1、 无穷多个无穷小的和是无穷小( ) 2、 0 sin lim x x x →-∞+∞在区间(,)是连续函数() 3、 0f"(x )=0一定为f(x)的拐点() 4、 若f(X)在0x 处取得极值,则必有f(x)在0x 处连续不可导( ) 5、 设 函数f(x)在 [] 0,1上二阶可导且 ' ()0A ' B ' (f x f f C f f <===-令(),则必有 1~5 FFFFT 三、计算题 1用洛必达法则求极限2 1 2 lim x x x e → 解:原式=2 2 2 1 1 1 3 3 2 (2)lim lim lim 12x x x x x x e e x e x x --→→→-===+∞- 2 若3 4 ()(10),''(0)f x x f =+求 解:3 3 2 2 3 3 3 3 2 3 2 2 3 3 4 3 2 '()4(10)312(10) ''()24(10)123(10)324(10)108(10)''()0 f x x x x x f x x x x x x x x x x f x =+?=+=?++??+?=?+++∴= 3 2 4 lim (cos )x x x →求极限

微积分第三章答案

习题 3-1 1. 验证函数()f x =在区间[0,4]上满足罗尔定理的条件,并求出使得结 论成立的点ξ。 解:显然函数()f x =[0,4]上连续,在(0,4)上可导,且有(0)(4)0f f == 所以函数在区间[0,4]上满足罗尔定理,则有()0 f ξ'= =,83 ξ= 。 2. 验证函数3 ()1f x x =-在区间[1,2]上满足拉格朗日中值定理的条件,并求出使 得结论成立的ξ。 解:函数3 ()1f x x =-在区间[1,2]上连续,在(1,2)上可导,则满足拉格朗日中值定理,则 有2(2)(1) 321 f f ξ-=-,即ξ= 3. 函数4 ()1f x x =-与2 ()g x x =在区间[1,2]上是否满足柯西中值定理的所有条 件,如满足,求出满足定理的数值ξ。 解:函数4 ()1f x x =-与2 ()g x x =在区间上连续,在区间(1,2)上可导,则满足柯西中值 定理,则有3 (2)(1)4(2)(1)2f f g g ξξ -=-,即ξ= 4. 若4次方程432 012340a x a x a x a x a ++++=有4个不同的实根,证明 3201234320a x a x a x a +++= 的所有根皆为实根。 证明:设432 01234()f x a x a x a x a x a =++++,()0f x =的四个实根分别为1234,,,x x x x , 且1234x x x x <<<,则函数()f x 在1[,](1,2,3)i i x x i +=上满足罗尔定理的条件,则在 1(,)i i x x +内至少存在一点i ξ,使得()0i f ξ'=。 这说明方程32 01234320a x a x a x a +++=至少有3个实根,而方程为3次方,则最多也只

微积分试题及答案

微积分试题及答案

5、ln 2111x y y x +-=求曲线 ,在点(, )的法线方程是__________ 三、判断题(每题2分) 1、2 21x y x =+函数是有界函数 ( ) 2、 有界函数是收敛数列的充分不必要条件 ( ) 3、lim ββαα=∞若,就说是比低阶的无穷小( )4可导函数的极值点未必是它的驻点 ( ) 5、曲线上凹弧与凸弧的分界点称为拐点 ( ) 四、计算题(每题6分)1、1sin x y x =求函数 的导数 2、 21()arctan ln(12f x x x x dy =-+已知),求 3、2326x xy y y x y -+="已知,确定是的函数,求 4、20tan sin lim sin x x x x x →-求 5、31)x x +计算( 6、21 0lim(cos )x x x + →计算 五、应用题 1、设某企业在生产一种商品x 件时的总收益为2 )100R x x x =-(,总成本函数为2 ()20050C x x x =++,问政府对每件商品征收货物税为多少时,在企业获得利润最大的情况下,总税额最大?(8分) 2、描绘函数21 y x x =+的图形(12分) 六、证明题(每题6分) 1、用极限的定义证明:设01lim (),lim ()x x f x A f A x + →+∞→==则 2、证明方程10,1x xe =在区间()内有且仅有一个实数 一、 选择题

1、C 2、C 3、A 4、B 5、D 6、B 二、填空题 1、0x = 2、6,7a b ==- 3、18 4、3 5、20x y +-= 三、判断题 1、√ 2、× 3、√ 4、× 5、× 四、计算题 1、 1sin 1sin 1sin ln 1sin ln 22))1111cos ()ln sin 1111(cos ln sin )x x x x x x y x e e x x x x x x x x x x x '='='??=-+??? ?=-+(( 2、 22()112(arctan )121arctan dy f x dx x x x dx x x xdx ='=+-++= 3、 解: 2222)2)22230 2323(23)(23(22)(26) (23x y xy y y x y y x y y x y x y yy y x y --'+'=-∴'=--'----'∴''=-

大一微积分期末试题附答案

微积分期末试卷 一、选择题(6×2) cos sin 1.()2,()()22 ()()B ()()D x x f x g x f x g x f x g x C π ==1设在区间(0,)内( )。 A是增函数,是减函数是减函数,是增函数二者都是增函数二者都是减函数 2x 1 n n n n 20cos sin 1n A X (1) B X sin 21C X (1) x n e x x n a D a π →-=--==>、x 时,与相比是( ) A高阶无穷小 B低阶无穷小 C等价无穷小 D同阶但不等价无价小3、x=0是函数y=(1-sinx)的( ) A连续点 B可去间断点 C跳跃间断点 D无穷型间断点4、下列数列有极限并且极限为1的选项为( )n 1 X cos n = 2 00000001 () 5"()() ()()0''( )<0 D ''()'()06x f x X X o B X o C X X X X y xe =<===、若在处取得最大值,则必有( )Af 'f 'f '且f f 不存在或f 、曲线( ) A仅有水平渐近线 B仅有铅直渐近线C既有铅直又有水平渐近线 D既有铅直渐近线 二、填空题 1 d 1 2lim 2,,x d x ax b a b →++=xx2 211、( )=x+1 、求过点(2,0)的一条直线,使它与曲线y=相切。这条直线方程为: x 2 3、函数y=的反函数及其定义域与值域分别是: 2+1 x5、若则的值分别为: x+2x-3

三、判断题 1、 无穷多个无穷小的和是无穷小( ) 2、 0sin lim x x x →-∞+∞在区间(,)是连续函数() 3、 0f"(x )=0一定为f(x)的拐点() 4、 若f(X)在0x 处取得极值,则必有f(x)在0x 处连续不可导( ) 5、 设 函 数 f (x) 在 [] 0,1上二阶可导且 '()0A '0B '(1),(1)(0),A>B>C( )f x f f C f f <===-令(),则必有 四、计算题 1用洛必达法则求极限2 1 2 lim x x x e → 2 若34()(10),''(0)f x x f =+求 3 2 4 lim(cos )x x x →求极限 4 (3y x =-求 5 3tan xdx ? 五、证明题。 1、 证明方程3 10x x +-=有且仅有一正实根。 2、arcsin arccos 1x 12 x x π +=-≤≤证明() 六、应用题 1、 描绘下列函数的图形 21y x x =+

高等数学课后习题答案第三章

第三章习题 3-1 1、对函数x y sin ln =在区间]6 5,6[ π π上验证罗尔定理 解答:(1、区间]6 5,6[ π π上连续 ; (2)函数x y sin ln =在区间)6 5,6(π π上可导; (3)、2ln 6sin ln )6(-==π πf ,2ln 6 5sin ln )65( -==π πf 所以满足Rolle 定理的条件。且由0sin cos == 'x x y 解得)6 5,6(4π ππξ∈= 2、证明:函数02=++=r qx px y 在任意区间上应用lagrange 中值定理求得的点ξ总是该区间的中点 证明:(1)02=++=r qx px y 在任意],[b a 上连续 ;02=++=r qx px y 在),(b a 上可导;所以满足lagrange 定理的条件。且由02=+='q px y 解得),(2 b a b a ∈+=ξ 所以求得的点ξ总是该区间的中点 3、证明:方程033 =+-c x x 在区间]1,0[内不可能有两个不同的实数根 证明:用反证法,设方程033 =+-c x x 在区间]1,0[内有两个不同的实数根21,x x (1)、函数c x x x f +-=3)(3在],[2x x x 连续 ;(2)、函数c x x x f +-=3)(3 在),(2x x x 可导;(3)、0)()(21==x f x f , 所以满足Rolle 定理的条件,于是存在]1,0[),(21?=∈x x ξ。使0)(='ξf 但是由033)(2 =-='x x f 解得根为),(121x x x ?±=。矛盾 所以方程033 =+-c x x 在区间]1,0[内不可能有两个不同的实数根 4、若函数)(x f 在),(b a 内具有二阶导数,且)()()(321x f x f x f ==,其中 b x x x a <<<<21,证明:在),(31x x 内至少存在一点ξ,使得0)(=''ξf :证明:由于函数)(x f 在),(b a 内具有二阶导数,且)()()(321x f x f x f ==,其中 b x x x a <<<<21,所以函数)(x f 分别在区间],[21x x 与],[32x x 上满足Rolle 定理的条 件,于是存在),(21x x ∈λ。使0)(='λf ,也存在),(32x x ∈?。使0)(='?f

高等数学(同济大学版)第四章练习(含答案)

第四章 不定积分 一、学习要求 1、理解原函数与不定积分的概念及性质。 2、掌握不定积分的第一类换元法、第二类换元法及分部积分法。 二、练习 1.在下列等式中,正确的结果是( C ). A. '()()f x dx f x =? B.()()df x f x =? C. ()()d f x dx f x dx =? D.[()]()d f x dx f x =? 2.若ln x 是函数()f x 的一个原函数,则()f x 的另一个原函数是( A ); A. ln ax B.1ln ax a C.ln x a + D.21(ln )2 x 3.设()f x 的一个原函数是2x e -,则()f x =( B ); A. 2x e - B. 22x e -- C. 24x e -- D. 24x e - 4.'' ()xf x dx =? ( C ). A.'()xf x C + B. '()()f x f x C -+ C. '()()xf x f x C -+ D. '()()xf x f x C ++. 5 .将 化为有理函数的积分,应作变换x =( D ). A. 3t B. 4 t C. 7 t D. 12 t 6.dx = 1/7 ()73d x -, 2cos 2dx x = 1/2 ()tan 2d x ,2 19dx x =+1/3 ()arctan3d x ; 7. 已知(31)x f x e '-=,则()f x =1 3 3x e c ++. 8.设()f x 是可导函数,则'()d f x x ?为()f x C +. 9.过点(1,2)且切线斜率为34x 的曲线方程为41y x =+ 10.已知()cos xf x dx x C =+?,则()f x =sin x x - 11.求下列不定积分 解: (1) 22 32tan 1tan tan tan 1sin 3 x dx xd x x c x ==+-?? (2) 22arctan 11 x x x x x x x dx e dx de e c e e e e -===++++??? 5 34 2 (3)t a n s e c t a n s e c s e c x x d x x x d x ? =??? 22 2(s e c 1)s e c s e c x x d x =-?? ()642sec 2sec sec sec x x x d x =-+?753121 sec sec sec 753 x x x c = -++

大学高等数学上考试题库及答案

《高数》试卷1(上) 一.选择题(将答案代号填入括号内,每题3分,共30分). 1.下列各组函数中,是相同的函数的是( B ). (A )()()2ln 2ln f x x g x x == 和 (B )()||f x x = 和 ()2g x x = (C )()f x x = 和 ()()2 g x x = (D )()|| x f x x = 和 ()g x =1 2.函数()()sin 42 0ln 10x x f x x a x ?+-≠? =+?? =? 在0x =处连续,则a =( B ). (A )0 (B )1 4 (C )1 (D )2 3.曲线ln y x x =的平行于直线10x y -+=的切线方程为( A ). (A )1y x =- (B )(1)y x =-+ (C )()()ln 11y x x =-- (D )y x = 4.设函数()||f x x =,则函数在点0x =处( C ). (A )连续且可导 (B )连续且可微 (C )连续不可导 (D )不连续不可微 5.点0x =是函数4 y x =的( D ). (A )驻点但非极值点 (B )拐点 (C )驻点且是拐点 (D )驻点且是极值点 6.曲线1 || y x = 的渐近线情况是( C ). (A )只有水平渐近线 (B )只有垂直渐近线 (C )既有水平渐近线又有垂直渐近线 (D )既无水平渐近线又无垂直渐近线 7. 211 f dx x x ??' ???? 的结果是( C ). (A )1f C x ?? -+ ??? (B )1f C x ?? --+ ??? (C )1f C x ?? + ??? (D )1f C x ?? -+ ??? 8. x x dx e e -+?的结果是( A ). (A )arctan x e C + (B )arctan x e C -+ (C )x x e e C --+ ( D )ln()x x e e C -++ 9.下列定积分为零的是( A ).

微积分刘迎东编第四章习题4.6答案

微积分刘迎东编第四章习题4.6答案

4.6 有理函数的积分 习题4.6 求下列不定积分: (1)3 3 x dx x +? 解: ()()()33223227939272727ln 33239327327ln 3.32 x t t dxx t t t dt t t C x t x x x x C ??+=-+-=-+-+ ?+?? ++=-++-++?? (2)223310 x dx x x ++-? 解:()2222231310ln 310.310310 x dx d x x x x C x x x x +=+-=+-++-+-?? (3)2125x dx x x +-+? 解: ()()()()22222222511122412252252251211ln 25arctan .22 d x x d x x x dx dx x x x x x x x x x x C -+-+-+==+-+-+-+-+-=-+++???? (4)() 21dx x x +? 解:()()()()22 222222211111ln .2212111d x dx x d x C x x x x x x x ??==-=+ ?++++????? (5)331 dx x +? 解:

( )( )322222223121213ln 1111211131ln 1212121ln 1ln 1.2x x dx dx x dx x x x x x x d x x x dx x x x x x x C ---??=+=+- ?++-+-+?? -+=+-+-+??-+ ?? ???=+--+++????? (6)()() 221 11x dx x x ++-? 解:()()()222211111122ln 1.1121111x dx dx x C x x x x x x ?? ?+=+-=-++ ?-+++-+ ??? ?? (7)()()() 123xdx x x x +++? 解: ()()()13222123123132ln 2ln 1ln 3.22 xdx dx x x x x x x x x x C ??-- ?=++ ?++++++ ??? =+-+-++?? (8)5438x x dx x x +--? 解: ()()542233232 8811184332118ln 4ln 13ln 1.32x x x x dx x x dx x x x x x x x x dx x x x x x x x x x C ??+-+-=+++ ? ?-+-?? ??=+++-- ?+-?? =+++-+--+??? (9)()() 221dx x x x ++?

定积分及微积分基本定理练习题及答案

定积分与微积分基本定理练习题及答案 1.(2011·宁夏银川一中月考)求曲线y =x2与y =x 所围成图形的面积,其中正确的是( ) A .S =??01(x2-x)dx B .S =??01(x -x2)dx C .S =??01(y2-y)dy D .S =??01(y -y)dy [答案] B [分析] 根据定积分的几何意义,确定积分上、下限和被积函数. [解读] 两函数图象的交点坐标是(0,0),(1,1),故积分上限是1,下限是0,由于在[0,1]上,x≥x2,故函数y =x2与y =x 所围成图形的面积S =??0 1(x -x2)dx. 2.(2010·山东日照模考)a =??02xdx ,b =??02exdx ,c =??02sinxdx ,则a 、b 、c 的大小关系 是( ) A .a2,c =??0 2sinxdx =-cosx|02 =1-cos2∈(1,2), ∴c

大学高等数学上习题(附答案)

《高数》习题1(上) 一.选择题 1.下列各组函数中,是相同的函数的是( ). (A )()()2ln 2ln f x x g x x == 和 (B )()||f x x = 和 ( )g x =(C )()f x x = 和 ( )2 g x = (D )()|| x f x x = 和 ()g x =1 4.设函数()||f x x =,则函数在点0x =处( ). (A )连续且可导 (B )连续且可微 (C )连续不可导 (D )不连续不可微 7. 211 f dx x x ??' ???? 的结果是( ). (A )1f C x ?? - + ??? (B )1f C x ?? --+ ??? (C )1f C x ?? + ??? (D )1f C x ?? -+ ??? 10.设()f x 为连续函数,则()10 2f x dx '?等于( ). (A )()()20f f - (B )()()11102f f -????(C )()()1 202f f -??? ?(D )()()10f f - 二.填空题 1.设函数()21 00x e x f x x a x -?-≠? =??=? 在0x =处连续,则a = . 2.已知曲线()y f x =在2x =处的切线的倾斜角为5 6 π,则()2f '=. 3. ()21ln dx x x = +?. 三.计算 1.求极限 ①21lim x x x x →∞+?? ??? ②() 20sin 1 lim x x x x x e →-- 2.求曲线()ln y x y =+所确定的隐函数的导数x y '. 3.求不定积分x xe dx -?

第三章 导数与微分 习题及答案

第三章 导数与微分 同步练习 一、填空 1、若[]1cos 1)0()(lim =--→x f x f x x ,则)0(f '= 。 2、设)100()3)(2)(1()(----=x x x x x x f ,则)0(f '= 。 3、若)(x e f y -=,且x x x f ln )(=',则 1 =x dx dy = 。 4、若)()(x f x f =-,且3)1(=-'f ,则)1(f '= 。 5、设某商品的需求函数是Q=10-0.2p ,则当价格p=10时,降价10%,需求量将 。 6、设某商品的需求函数为:Q=100-2p ,则当Q=50时,其边际收益为 。 7、已知x x y ln =,则)10(y = 。 8、已知2arcsin )(),232 3( x x f x x f y ='+-=,则:0 =x dx dy = 。 9、设1 111ln 2 2++-+=x x y ,则y '= 。 10、设方程y y x =确定y 是x 的函数,则dy = 。 11、已知()x ke x f =',其中k 为常数,求()x f 的反函数的二阶导数=22dy x d 。 二、选择 1、设f 可微,则=---→1 ) 1()2(lim 1 x f x f x ( ) A 、)1(-'-x f B 、)1(-'f C 、)1(f '- D 、)2(f ' 2、若2)(0-='x f ,则=--→) ()2(lim 000 x f x x f x x ( ) A 、 41 B 、4 1 - C 、1 D 、-1 3、设?? ???=≠=0001arctan )(x x x x x f ,则)(x f 在0=x 处( ) A 、不连续 B 、极限不存在 C、连续且可导 D、连续但不可导 4、下列函数在[]1,1-上可微的有( ) A、x x y sin 3 2+= B、x x y sin =

高等数学 第四章不定积分课后习题详解

第4章不定积分 习题4-1 1.求下列不定积分: 知识点:直接积分法的练习——求不定积分的基本方法。 思路分析:利用不定积分的运算性质和基本积分公式,直接求出不定积分!

★(1) 思路: 被积函数52 x - =,由积分表中的公式(2)可解。 解: 53 2 2 23x dx x C --==-+? ★(2) dx ? 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解:1 14111 33322 23 ()2 4dx x x dx x dx x dx x x C - - =-=-=-+???? ★(3)22 x x dx +? () 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解:2 2 3 2122ln 23 x x x x dx dx x dx x C +=+=++? ??() ★(4) 3)x dx - 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解: 3153 22 222 3)325 x dx x dx x dx x x C -=-=-+?? ★★(5)4223311x x dx x +++? 思路:观察到422 22 3311311 x x x x x ++=+++后,根据不定积分的线性性质,将被积函数分项,分别积分。 解:422 32233113arctan 11x x dx x dx dx x x C x x ++=+=++++??? ★★(6)2 21x dx x +? 思路:注意到 22222 111 1111x x x x x +-==-+++,根据不定积分的线性性质,将被积函数分项,分别积分。

微积分期末测试题及答案

微积分期末测试题及答 案 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

一 单项选择题(每小题3分,共15分) 1.设lim ()x a f x k →=,那么点x =a 是f (x )的( ). ①连续点 ②可去间断点 ③跳跃间断点 ④以上结论都不对 2.设f (x )在点x =a 处可导,那么0()(2)lim h f a h f a h h →+--=( ). ①3()f a ' ②2()f a ' ③()f a ' ④1()3f a ' 3.设函数f (x )的定义域为[-1,1],则复合函数f (sinx )的定义域为( ). ①(-1,1) ②,22ππ??-???? ③(0,+∞) ④(-∞,+∞) 4.设2 ()()lim 1()x a f x f a x a →-=-,那么f (x )在a 处( ). ①导数存在,但()0f a '≠ ②取得极大值 ③取得极小值 ④导数不存在 5.已知0lim ()0x x f x →=及( ),则0 lim ()()0x x f x g x →=. ①g (x )为任意函数时 ②当g (x )为有界函数时 ③仅当0lim ()0x x g x →=时 ④仅当0 lim ()x x g x →存在时 二 填空题(每小题5分,共15分) sin lim sin x x x x x →∞-=+. 31lim(1)x x x +→∞+=. 3.()f x =那么左导数(0)f -'=____________,右导数(0)f +'=____________. 三 计算题(1-4题各5分,5-6题各10分,共40分) 1.111lim()ln 1 x x x →-- 2.t t x e y te ?=?=? ,求22d y dx 3.ln(y x =,求dy 和22d y dx . 4.由方程0x y e xy +-=确定隐函数y =f (x ) ,求 dy dx . 5.设111 1,11n n n x x x x --==+ +,求lim n x x →∞.

相关主题
文本预览
相关文档 最新文档