当前位置:文档之家› 斐波那契数列与股市分析

斐波那契数列与股市分析

斐波那契数列与股市分析
斐波那契数列与股市分析

斐波那契数列与股市分析

斐波那契数列[鲁卡斯数列表]

意大利的数学家列奥纳多·斐波那契发现的斐波纳契数列也就是我们说的费氏数列.鲁卡斯数列又是怎么来的呢?除了斐波纳契数列以外,我们进行金融分析还要了解鲁卡斯数列.19世纪时法国一个数学家鲁卡斯(E.Lucas)在研究数论的素数分布问题时发现和斐波那契数有些关系,而他又发现一种新的数列:1,3,4,7,11,18,29,47,76,123,199,322,521等等.这数列和斐波那契数列有相同的性质,第二项以后的项是前面二项的和组成.数学家们称这数列为鲁卡斯数列.斐波纳契数列与解鲁卡斯数列都与黄金分割比有密切的关系.

鲁卡斯数列与费波纳茨数列的关系

波纳茨数列Fn:0、1、1、2、3、5、8、13、21、34、55、89、144、233……….

鲁卡斯数列…Ln:1、3、4、7、11、18、29、47、76、123、199、322……..鲁卡斯数列的构成为相邻两费波纳茨数之和的集合,即Ln=Fn-1+Fn+1.1876年鲁卡斯在研究一元二次方程POW (X,2)-X-1=0的两个根X1=(1+SQRT(5))/2,X2=(1-SQRT(5))/2时{1/X=X/(1-X)}得出了两个重要的推论结果:

Fn=(1/SQRT(5))*POW((1+SQRT(5))/2,n)-(1/SQRT(5))*POW((1-SQRT(5))/2,n)

Ln=POW((1+SQRT(5))/2,n)+POW((1-SQRT(5))/2,n)

方程1/X=X/(1-X)的正根,为无理数∮=(1+SQRT(5))/2≈1.618,即著名的黄金分割比. 由黄金分割比按0.38(∮平方分之一)的乘率递减求出的正方形,所作圆弧的连线,即黄金螺旋线.螺旋线是宇宙构成的基本形态,也是股市起伏时间序的基本形态,而其本质的参数即是黄金分割比∮.比较费波纳茨数列与鲁卡斯数列,对相邻两数的比值取n趋向无穷大的极限,比值趋向黄金分割比∮:Fn+1/Fn------->?∮ Ln+1/Ln------->?∮

因此,结论是两数列的本质是一致的,都与黄金分割比有着密切的关系. 嘉路兰螺旋历法的缺陷与鲁卡斯数列预测系统的产生.研究过嘉路兰螺旋历法的人知道,螺旋历法建立在嘉路兰的两点结论之上:

1、市场是人类买卖的场所,投资者的情绪与心理往往受到天体运行周期的影响,其中月球的影响最大;

2、当月球周期(即E=29.5306)的倍数是费波纳茨数的开方时,市场投资情绪可能出现逆转,而市场变盘.( 怎么将鲁卡斯数用于股市?我们向嘉路兰学习.遵循他的思路或许有所收获. 嘉路兰于87股灾后发现了著名的螺旋历法.他的灵感可能来源于波浪理论,艾略特将形态与费氏比率∮结合.嘉路兰于是想到了将∮用于时间.他遇到第一个问题——费氏数在第11项后变化越来越大,由于相邻两数差值太大,使许多关键点被忽略.嘉路兰用平方根把变化速度减缓.他遇到第二个问题——费氏方根变化又太小了.前10项几乎粘在一起,用于测算意义不大.嘉路兰想到在平方根前乘一个常数.他遇到第三个问题——用哪个数值作这个常数.在大量的比较、计算、总结后.嘉路兰幸运的发现了太阴月周期与股市的关系.这只能解释为幸运之神的眷顾,他成功了.这个神奇的公式Bn=E√Fn.即周期日数是月球从圆到缺一循环时与费氏方根的乘积.E是太阴月周期29.5306天.用这么多笔墨解释嘉路兰的思维,是为将鲁卡

斯数依样画葫芦,仿制另一个螺旋历法——鲁卡斯螺旋历.我们先将鲁卡斯数开方,再找那个常数.既然嘉路兰用太阴月周期,我们就可以用太阳月周期.遇到第一个问题——太阳月周期为30.4375,该数与鲁氏方根的乘积还是太大.不妨将太阳月周期一分两段,用其一,即15.21875.由于嘉路兰的螺旋历法采用的是阴历的朔望月周期,变化速度慢,时间跨度大.因此,所预测的变盘点尽管包含在诸变盘点的集合内,但还是有许多变盘点被遗漏.根据嘉路兰螺旋历法的缺陷,国人王居恭先生提出并论证了,用鲁卡斯数列预测股市变盘点的方法.即用阳历太阳月周期的一半(二十四节气“节”到“中”的距离)15.21875日,与鲁卡斯数的开方之积.(亦即:当太阳月周期的一半的倍数是鲁卡斯数的开方时,市场可能出现变盘.)Hn=SQRT(Ln)*15.21875.鲁卡斯数列预测变盘点系统的优点:1、方法较之嘉路兰的螺旋历法简单;2、网罗的变盘点即所有的变盘点.缺点:不能单独确认变盘点的正确性,须与螺旋历法系统进行交叉验证.上述两系统比较结果,可能存在的情况:两预测系统的螺旋线上,所预测的点相交;或不相交.有交点则此交点即可能是实际值;无交点,则取一系统的均值,与另一系统相比较,而选择其中之一.

时间窗1、螺旋历法系统的时间窗,嘉路兰螺旋历法的变盘时间窗为,某变盘日起,此日之后的5、8、13、21、34、55、89、144、233……日,也可能发生变盘,计算日为起点日向后推算.2、鲁卡斯自然律时间窗,鲁卡斯数决定的时间窗是固定日期,相似于阴历初一、十五、二十四节气之日,可能变盘.经计算的Hn时间窗的积日为:(5)(12)(17)(21)(73)(81)(110)(120)(145)(162)(184)(188)(203)(213)(255)(277)(292)(295)(316)(342)(353)如果将积日换算成2001的日期,上述积日为2001/1/5、2001/1/17、2001/1/21、2001/3/14、2001/3/22、2001/4/20、2001/4/30、2001/5/25、2001/6/11、2001/7/3、2001/7/7、2001/7/22、2001/8/1、2001/9/12、2001/10/4、2001/10/19、2001/10/22、2001/11/12、2001/12/7、2001/12/19.将上述日期与已经发生过的走势对照,我们可以发现,2001年许多重要的转折点出现在上述的日期集合里(螺旋历法转折点定义为当日收盘价):2001/1/5的2125.30点、2001/1/21的1909.33点、2001/4/20(实际数差三天,2001/4/17的2176.68点)、2001/6/11(实际数差两天、2001/6/13的2242.42点)、2001/10/22的1520.67点、2001/12/7(实际数差三天、2001/12/4的1769.68点)

通过上述论述,我们得出三点结论:1、螺旋历法的时间窗作用,经市场长期论证已经得到证实.2、鲁卡斯自然律时间窗网罗的变盘点,涵盖了所有重要的变盘点.3、与螺旋历法一样,鲁卡斯预测法测算的变盘点亦会产生漂移.因此,在使用两系统预测变盘点时,两者必须兼顾并相互论证筛选.计算所得出的日期的前后三天,应该列为重点观察的日期,提前作好心理准备总是好的.值得关注的点:“嘉路兰螺旋历法的变盘时间窗为,某变盘日起,此日之后的5、8、13、21、34、55、89、144、233……日,也可能发生变盘,计算日为起点日向后推算.”起点加后续费波纳茨数产生的日期,可能产生变盘点.起点加后续费波纳茨数产生的日期与鲁卡斯自然律相近的日期,可能产生变盘点;起点加后续费波纳茨数交集日期(及鲁卡斯自然律),其共同的作用力,可能产生大级别的变盘点.鲁卡斯自然律Hn的数列(15、26、30、40、50、65、82……..),填补了按费波纳茨数增加的变盘日(交易日),没有覆盖的时间段;鲁卡斯数为“二十四节气”变盘点的假设,提供了理论依据.鲁卡斯自然律论证了,“二十四节气”附近产生变盘点的可能性;两预测系统测算的变盘点时间与实际时间有时会略有偏差,预测出的

变盘点时间值得关注,但还需以实际盘面状况加以判别取舍;由于鲁卡斯自然律是固定的时间窗,这为直接在分析软件上产生变盘参考点提供了方便;螺旋历法时间窗,实际上可通过求解不同变盘点的矩阵方程解决次交集点.金融市场的时间和价格均服从斐波纳契数列和鲁卡斯数列,有时的准确率达到十分惊人的地步.斐波纳契数列和鲁卡斯数列在金融市场中几乎无处不在.有了费氏数列、鲁氏数列两组“神奇数列”的相互验证,使一些分析可以去“孤”从“众”,预测的成功率提高,误差点将大幅减少.

黄金分割的应用

黄金分割在两个方面用来预测价格:一,价格回调时.二,未来的空间.

两点的确定:一定要终点开始,到起点结束.即价格上升时,从高点到底点画线,价格下降时,从底点开始到高点画线.同时还要注意,1.价格并不总是从最高点、最低点开始的,一般去掉钉子价,由次高点、次底点开始计算、2.从波浪的起始点开始计算.2浪是对1浪的回调,4浪是对3浪的回调,b浪是对a浪的回调.并不是任意高低点的连线.

最重要的比例:回调时:第一0.382、0.618,第二0.5,第三0.236、0.274

预测新的价格时:0.618、1.618、2.618(1.618×1.618)、4.236(1.618×1.618×1.618)准确性的确认:1.在一段时间内,某个比例常被用到,那么这个数字准确性将被提高;2.在一个波段中,某个比例被价格验证,那么这个数字准确性也将被提高;3.不同时间框、不同波段的黄金分割位聚与一点,或一个狭小的区域,那么这一区域的支撑和阻力作用将被增强;4.黄金分割位恰好和前期的支撑阻力位、MA重合,那么这个数字准确性将被提高;5.黄金分割位与不同预测方法的交汇点.总之,在使用黄金分割时共振点越多越好.1.618减去基数1,得0.618,1再减去0.618得0.382,黄金分割在个股当中的应用方式有一派观点认为是:直接从波段的低点加上0.382倍、0.618倍、1.382倍、1.618倍……作为其涨升压力.或者直接从波段的高点减去0.382倍及0.618倍,作为其下跌支撑.

另一派观点认为不应以波段的高低点作为其计算基期.而应该以前一波段的涨跌幅度作为计算基期,黄金分割的支撑点可分别用下述公式计算:

1、某段行情回档高点支撑=某段行情终点-(某段行情终点-某段行情最低点) 0.382

2、某段行情低点支撑=某段行情终点-(某段行情终点-某段行情最低点) 0.618

如果要计算目标位:则可用下列公式计算

3、前段行情最低点(或最高点)=(前段行情最高点-本段行情起涨点) 1.382(或1.618)

上述公式有四种计算方法,根据个股不同情况分别应用.用黄金分割律对“顶”的判断:当空头市场结束,多头市场展开时,投资人最关心的问题是“顶”在那里?事实上,影响股价变动的因素极多,要想准确地掌握上升行情的最高价是绝对不可能的,因此,投资人所能做的,就是依照黄金分割律计算可能出现的股价反转点,以供操作时的参考.当股价上涨,脱离低档,从上升的速度与持久性,依照黄金分割律,它的涨势会在上涨幅度接近或达到0.382与0.618时发生变化.也就是说,当上升接近或超越38.2%或61.8%时,就会出现反压,有反转下跌而结束一段上升行情的可能.黄金分割律除了固定的0.382与0.618是上涨幅度的反压点外,其间也有一半的反压点,即0.382的一半0.191也是重要的依据.因此,当上升行情展开时,要预测股价上升的能力与可能反转的价位时,可将前股价行情下跌的最低点乘以0.191、0.382、0.809与1,作为可能上升的幅度的预测.当股价上涨幅度越过1倍时,其反压点则以1.191、1.382、1.809和2倍进行计算得出.依此类推.用黄金分割律对“底”的判断:当多头市场结束,空头市场展开时,投资人最关切的问题莫过于“底”在哪里?但影响因素极多,无法完全掌握.从黄金分割律中可计算跌势进行中的支撑价位,增加投资人逢低买进的信心.当股价下跌,脱离高档,从下跌的速度和持久性,依照黄金分割律,它的跌势也会在下跌幅度接近或达到0.382与0.618时发生变化.也就是说,与上升行情相似,当下跌幅度接近或超越38.2%或61.8%时发生变化.就容易出现支撑,有反转上升而结束下跌行情的可能.与上升行情的黄金分割律公式相同,下跌行情展开时,除了0.382和0.618有支撑外,在0.191、0.809处均可能发挥支撑的效力.例如,上升行情结束前,某股最高价为3元,那么,股价反转下跌时,投资人可以计算出各种不同的支撑价位,也就是3×(1-0.191)=2.427元;3×(1-0.382)=1.854元;3×(1-0.618)=1.46元;3×(1-0.809)=0.573元.在许多情况下,将黄金分割律运用于股票市场,投资人会发现,将其使用在大势研判上,有效性高于使用在个股上.这是因为个股的投机性较强,在部分做手介入下,

某些股票极易出现暴涨暴跌的走势,这样,如用刻板的计算公式寻找“顶”与“底”的准确性就会降低.而股指则相对好一些,人为因素虽然也存在,但较之个股来说要缓和得多,因此,掌握“顶”与“底”的机会也会大一些..黄金分割线是利用黄金分割比率的原理对行情进行分析,并依此给出各相应的切线位置.对于黄金分割线而言,最重要的两条线为0.382和0.618.在反弹行情中0.382位置为弱势的反弹目标位,0.618位置为强势反弹的目标位.而在回调过程中,若是强势回调,则0.382线处应有较强的支撑.若是弱势回调,0.618线处才是强支撑位.

斐波那契数列教案(六年级数学下册)

《斐波那契数列》教学设计 教学内容:第65页阅读资料“斐波那契数列”。 教学目标:1、使学生认识“斐波那契数列”及其部分特性。 2、在经历感知、分析、归纳和应用的过程中培养学生的思维能力。 3、培养积极的数学阅读习惯,形成积极的数学情感。 教学过程: 一、故事引入,提出问题 很久很久以前,有个意大利人发现了一对神奇的小兔子,和兔子相处一年之后,他便成为一个举世闻名的数学家。这一年到底发生了什么呢?他用一道数学题清楚的告诉了我们,请看大屏幕: 假设一对刚出生的小兔,一个月后就能长成大兔,再过一个月便能生下一对小兔,并且此后每个月都生一对小兔。一年内没有发生死亡。那么,由一对刚出生的兔子开始,12个月后会有多少对兔子呢? 1、请学生读题,分析、理解题意。 你觉得题目中哪句话的意思很重要,需要提醒大家注意呢? 重点理解:①一对大兔生过一对小兔后,下个月会接着生,无死亡; ②小兔一个月后长成大兔,以后一直是大兔。 2、模拟兔子生长过程 ⑴请同学们讨论,你想了解哪些问题?如何解决?(这一年当中,兔子的数量到底是怎样增长的?)我们来模拟一下,好不好? ⑵师生共同参与模拟过程,记录数据。 1月—4月,由教师带领学生体会兔子变化过程。 ⑶引导发现规律,小组合作完成剩下月份的推导 ⑷汇报交流,解决问题。 二、合作探究,解决问题 1、刚才大家表现得很踊跃。下面我们就来研究这个著名的数学问题, 它就是这个数列:1,1,2,3,5,8,13,21,…… 2、观察前后数的关系,从这个数列中你发现了什么规律? ①学生举手汇报,说出规律:前两个数之和等于第三个数。 ②若一个数列,首两项等于 1,而从第三项起,每一项是前两项之和,则称该数列 为斐波那契数列。 三、应用新知,练习巩固 根据你发现的规律填空

特征方程特征根法求解数列通项公式

特征方程特征根法求解数列通项公式 一:A(n+1)=pAn+q, p,q为常数. (1)通常设:A(n+1)-λ=p(An-λ), 则λ=q/(1-p). (2)此处如果用特征根法: 特征方程为:x=px+q,其根为x=q/(1-p) 注意:若用特征根法,λ的系数要是-1 例一:A(n+1)=2An+1 , 其中q=2,p=1,则 λ=1/(1-2)= -1那么 A(n+1)+1=2(An+1) 二:再来个有点意思的,三项之间的关系: A(n+2)=pA(n+1)+qAn,p,q为常数 (1)通常设:A(n+2)-mA(n+1)=k[pA(n+1)-mAn], 则m+k=p, mk=q (2)此处如果用特征根法: 特征方程是y×y=py+q(※) 注意: ①m n为(※)两根。 ②m n可以交换位置,但其结果或出现两种截然不同的数列形式,但同样都可以计算An,而且还会有意想不到的惊喜, ③m n交换位置后可以分别构造出两组An和A(n+1)的递推公式,这个时侯你会发现,这是一个关于An和A(n+1)的二元一次方程组,那么不就可以消去A(n+1),留下An,得了,An求出来了。 例二:A1=1,A2=1,A(n+2)= - 5A(n+1)+6An, 特征方程为:y×y= - 5y+6 那么,m=3,n=2,或者m=2,n=3 于是,A(n+2)-3A(n+1)=2[A(n+1)-3A] (1) A(n+2)-2A(n+1)=3[A(n+1)-2A] (2) 所以,A(n+1)-3A(n)= - 2 ^ n (3) A(n+1)-2A(n)= - 3 ^ (n-1) (4) you see 消元消去A(n+1),就是An勒 例三: 【斐波那挈数列通项公式的推导】斐波那契数列:0,1,1,2,3,5,8,13,21…… 如果设F(n)为该数列的第n项(n∈N+)。那么这句话可以写成如下形式: F(0) = 0,F(1)=F(2)=1,F(n)=F(n-1)+F(n-2) (n≥3) 显然这是一个线性递推数列。 通项公式的推导方法一:利用特征方程 线性递推数列的特征方程为: X^2=X+1 解得 X1=(1+√5)/2, X2=(1-√5)/2. 则F(n)=C1*X1^n + C2*X2^n ∵F(1)=F(2)=1 ∴C1*X1 + C2*X2 C1*X1^2 + C2*X2^2

不动点(特征方程)法求数列通项

特征方程法求解递推关系中的数列通项 考虑一个简单的线性递推问题. 设已知数列}{n a 的项满足 其中,1,0≠≠c c 求这个数列的通项公式. 采用数学归纳法可以求解这一问题,然而这样做太过繁琐,而且在猜想通项公式中容易出错,本文提出一种易于被学生掌握的解法——特征方程法:针对问题中的递推关系式作出一个方程,d cx x +=称之为特征方程;借助这个特征方程的根快速求解通项公式.下面以定理形式进行阐述. 定理1.设上述递推关系式的特征方程的根为0x ,则当10a x =时,n a 为常数列,即0101,;x b a a x a a n n n +===时当, 其中}{n b 是以c 为公比的等比数列,即01111,x a b c b b n n -==-. 证明:因为,1,0≠c 由特征方程得.10c d x -=作换元,0x a b n n -= 则.)(110011 n n n n n n cb x a c c cd ca c d d ca x a b =-=--=--+=-=-- 当10a x ≠时,01≠b ,数列}{n b 是以c 为公比的等比数列,故;11-=n n c b b 当10a x =时,01=b ,}{n b 为0数列,故.N ,1∈=n a a n (证毕) 下面列举两例,说明定理1的应用. 例1.已知数列}{n a 满足:,4,N ,23 111=∈--=+a n a a n n 求.n a 解:作方程.2 3,23 10-=--=x x x 则 当41=a 时,.2112 3 ,1101= +=≠a b x a 数列}{n b 是以3 1 -为公比的等比数列.于是.N ,)3 1 (2112323,)31(211)3 1 (111 1∈-+-=+-=-=-=---n b a b b n n n n n n 例2.已知数列}{n a 满足递推关系:,N ,)32(1∈+=+n i a a n n 其中i 为虚数单位. 当1a 取何值时,数列}{n a 是常数数列? 解:作方程,)32(i x x +=则.5 360i x +-= a 1= b a n+1=ca n +d

特征方程

特征方程法求解递推关系中的数列通项 当()f x x =时,x 的取值称为不动点,不动点是我们 在竞赛中解决递推式的基本方法。 典型例子:1n n n aa b a ca d ++=+ 令 ax b x cx d +=+,即2()0cx d a x b +--= , 令此方程的两个根为12,x x , (1)若12x x =,则有111 1 1n n p a x a x +=+-- (其中2c p a d =+) (2)若12x x ≠,则有11 1 122 n n n n a x a x q a x a x ++- -=-- (其中1 2 a cx q a cx -=-)

例题1:设23()27 x f x x -+=-, (1)求函数()y f x =的不动点; (2)对(1)中的二个不动点,()a b a b <, 求使()()f x a x a k f x b x b --=--恒成立的常数k 的值; (3)对由111,()n n a a f a -==(2)n ≥定义的数列{}n a ,求其通项公式n a 。23()27 x f x x -+=- 解析:(1)设函数()f x 的不动点为0x ,则0002327 x x x -+= - 解得012x =-或03x = (2)由231111()1272222238248(3)83 327 x x x x x x x x x x -++---++-===?-++----- 可知使()()f x a x a k f x b x b --=--恒成立的常数18k =。 (3)由(2)可知1111122383n n n n a a a a --+ +=?--,所以数列 123n n a a ??+????-????是以34-为首项,18为公比的等比数列。 则11312()348n n n a a -+ =-?-,则11 911()482311()48n n n a ---=+

《算法分析与设计》期末复习题[1]

一、选择题 1.一个.java文件中可以有()个public类。 A.一个B.两个C.多个D.零个 2.一个算法应该是() A.程序B.问题求解步骤的描述 C.要满足五个基本特性D.A和C 3.用计算机无法解决“打印所有素数”的问题,其原因是解决该问题的算法违背了算法特征中的()A.唯一性B.有穷性C.有0个或多个输入D.有输出 4.某校有6位学生参加学生会主席竞选,得票数依次为130,20,98,15,67,3。若采用冒泡排序算法对其进行排序,则完成第二遍时的结果是() A.3,15,130,20,98,67B.3,15,20,130,98,67 C.3,15,20,67,130,98 D.3,15,20,67,98,130 5.下列关于算法的描述,正确的是() A.一个算法的执行步骤可以是无限的B.一个完整的算法必须有输出 C.算法只能用流程图表示D.一个完整的算法至少有一个输入 6.Java Application源程序的主类是指包含有()方法的类。 A、main方法 B、toString方法 C、init方法 D、actionPerfromed方法 7.找出满足各位数字之和等于5的所有三位数可采用的算法思路是() A.分治法B.减治法C.蛮力法D.变治法 8.在编写Java Application程序时,若需要使用到标准输入输出语句,必须在程序的开头写上( )语句。 A、import java.awt.* ; B、import java.applet.Applet ; C、import java.io.* ; D、import java.awt.Graphics ; 9.计算某球队平均年龄的部分算法流程图如图所示,其中:c用来记录已输入球员的人数,sum用来计算有效数据之和,d用来存储从键盘输入的球员年龄值,输入0时表示输入结束。

数学-斐波那契数列01

内蒙古自治区中小学教师教育技术水平(初级)试卷(试卷科目:中学数学)01 第一部分:基本知识题(本部分共8个题,每题2.5分,满分20分) 第1题 (单选题)根据您对教育技术及相关基础知识的理解,下例选项不正确的一项是( C)。 (2.5分) A.教育技术就是为了促进学习,对有关的学习过程和资源进行设计、开发、利用、管理和评价的理论与实践 B.教学设计是运用系统方法分析教学问题和确定教学目标,建立解决教学问题的策略方案、试行解决方案、评价试行结果和对方案进行修改的过程C.教育技术与信息技术的涵义是一样的,只是用不同的名词来表述而已D.教育信息化是指在教育教学的各个领域中,积极开发充分应用信息技术和信息资源,以促进教育现代化,培养满足社会需求人才的过程 第2题 (单选题)在美国,教育技术作为一个新兴的实践和研究领域而出现始于下列选项内容的是( A)。 (2.5分) A.视听运动 B.计算机辅助教育 C.程序教学法 D.网络技术应用 第3题 (单选题)"教师不应一味以传统集体传授教学的方式进行教学,而应使用能够让学生进行操作或进行社会活动的方式来学习",这反映的是( A )的学习观。 (2.5分) A.建构主义 B.人本主义 C.行为主义 D.认知主义 第4题 (单选题)在视听教学运动背景下,对教育技术基本内涵表述不恰当的是( C)。 (2.5分) A.在教学过程中所应用的媒体技术手段和技术方法 B.在教学过程中所应用的媒体技术和系统技术 C.在教学过程中所应用的媒体技术 D.在教学过程中所应用的媒体开发和教学设计 第5题 (单选题)关于教学方法的选择,下列选项中说法正确的是( C )。 (2.5分) A.教学方法的选择不涉及学习者特征方面因素

特征方程推导数列

递推数列特征方程的来源与应用 递推是中学数学中一个非常重要的概念和方法,递推数列问题能力要求高,内在联系密切,蕴含着不少精妙的数学思想和数学方法。新教材将数列放在高一讲授,并明确给出“递推公式”的概念:如果已知数列{}n a 的第1项(或前几项),且任一项n a 与它的前一项1-n a (或前几项)间的关系可以用一个公式来表示,那么这个公式叫做数列的递推公式。有通项公式的数列只是少数,研究递推数列公式给出数列的方法可使我们研究数列的范围大大扩展。新大纲关于递推数列规定的教学目标是“了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项”,但从近几年来高考试题中常以递推数列或与其相关的问题作为能力型试题来看,这一目标是否恰当似乎值得探讨,笔者以为“根据递推公式写出数列的前几项”无论从思想方法还是从培养能力上来看,都不那么重要,重要的是学会如何去发现数列的递推关系,学会如何将递推关系转化为数列的通项公式的方法。本文以线性递推数列通项求法为例,谈谈这方面的认识。 关于一阶线性递推数列:),1(,11≠+==+c d ca a b a n n 其通项公式的求法一般采用如下的参数法[1],将递推数列转化为等比数列: 设t c ca a t a c t a n n n n )1(),(11-+=+=+++则 , 令d t c =-)1(,即1 -=c d t ,当1≠c 时可得 )1 (11-+=-++c d a c c d a n n 知数列??????-+ 1c d a n 是以c 为公比的等比数列, 11)1 (1--+=-+∴n n c c d a c d a 将b a =1代入并整理,得 ()1 1---+=-c d c b d bc a n n n 对于二阶线性递推数列,许多文章都采用特征方程法[2]: 设递推公式为,11-++=n n n qa pa a 其特征方程为02 2=--+=q px x q px x 即, 1、 若方程有两相异根A 、B ,则n n n B c A c a 21+= 2、 若方程有两等根,B A =则n n A nc c a )(21+= 其中1c 、2c 可由初始条件确定。 很明显,如果将以上结论作为此类问题的统一解法直接呈现出来,学生是难以接受

斐波那契数列的通项公式推导解析

斐波那契数列的通项公式推导 山西省原平市原平一中任所怀 做了这些年的数学题,我时常有这样的感受。一个新的数学题初次接触时,会觉得这个题的解题技巧很妙,甚至有点非夷所思,但如果把同类型问题多做几个,你就会发现原来所谓的技巧,其实是一种再正常不过的想法,是一种由已知到未知的必然之路。这样我们就由解题的技巧而转化到了通解通法,进一步就会形成解题的思想,所以我对于数学爱好者建议,做题时要把同类型题多种总结和分析,这样你的数学才会有长足的进步。 下面我们就由递推推导通项的问题,进行对比分析。 例1在数列中,,求数列的通项。(普通高中课程标准实验教科书人教A版必修5第69页6题) 分析:此题可分两步来进行,首先由构造一个等比数列,其中 ,并写出的通项;然后利用,两边同除以得 ,由累加法,就可求出数列的通项。 解:( 设,则()所以数列为等比数列,且首项为 ,公比为3。所以。 于是有,两边都除以得 设,则有 由累加法可得

因为所以() 于是有。 总结:上面的求解过程实质,求是一个把已知条件逐步化简的过程,由相邻三项的递推关系化为相邻两项的递推关系,进一步求出通项公式。 下面我们来研究一下著名的斐波那契数列的通项。 已知数列,其中,,求数列的通项。 解:首先我们要构造一个等比数列,于是设 则有。(1) 则由已知得(2) 对照(1)(2)两式得解得或。 我们取前一解,就会有。 设,则有 所以数列为等比数列,首项为,公比为

所以。即(3) 再次构造等比数列,设 则有 对照(3)式,可得所以 x=. 于是有 设,则有数列为等比数列,首项为,公比为,于是= 所以有。

浅谈斐波那契数列的真善美

浅谈斐波那契数列的真善美 小七怪小组 摘要自斐波那契数列产生至今,人们对其研究的热情经久不衰。本文探究斐波那契数列的真、善、美,简单介绍斐波那契数列到底真在何处、善在何处、美在何处,并且得出斐波那契数列真、善、美三者之间的联系。 关键词斐波那契数列真善美 一、斐波那契数列的由来 13 世纪意大利数学家斐波那契在他的《算盘书》的修订版中增加了一道著名的兔子繁殖问题。问题是这样的:如果每对兔子(一雄一雌) 每月能生殖一对小兔子( 也是一雄一雌,下同)每对兔子第一个月没有生殖能力,但从第二个月以后便能每月生一对小兔子假定这些兔子都没有死亡现象,那么从第一对刚出生的兔子开始,12个月以后会有多少对兔子呢? 这个问题的解释如下:第一个月只有一对兔子;第二个月仍然只有一对兔子;第三个月这对兔子生了一对小兔子,共有1+l =2 对兔子;第四个月最初的一对兔子又生一对兔子,共有2+l =3对兔子;则由第一个月到第十二个月兔子的对数分别是: l , l , 2 , 3 , 5 , 8 ,13 , 21 , 34 , 55 ,89,144 , …… , 后人为了纪念提出兔子繁殖问题的斐波那契,将这个兔子数列称为斐波那契数列,学术界又称为黄金分割数列。 二、斐波那契数列与真 何为真?“真有两个含义, 一是指客观世界存在的客观物质, 二是指客观世界的本质规律。”[1]在自然界中,许多事物本身蕴含的规律都跟斐波那契数列有关。例如树木的生长,由于新生的枝条,往往需要一段“休息”时间,供自身生长,之后才萌发新枝。因此,一株树苗在一 段时间间隔后,例如一年,会长出一条新枝; 第二年新枝“休息”,老枝依旧萌发;此后, 老枝与“休息”过一年的枝同时萌发,当年生 的新枝则次年“休息”。这样,一株树木各个 年份的枝桠数,便构成斐波那契数列。这就是 图1 树木生长与斐波那契数列

斐波那契数列中的数学美

最美丽的数列------斐波那挈数列 数学科学院宋博文1100500163 在原理课上,我们了解了斐波那挈数列,在课余生活中,我再读小说<达芬奇密码>时,提到了斐波那挈数列,它是被一个艺术家当作线索留给他人的,当时不知道他为什么被艺术家这么看重,以至于可以上升到生命的高度,因此我对斐波那挈数列产生了浓厚的兴趣,所以我结合了老师上课讲的东西,以及自己课下的了解,对斐波那挈数列有了一些认识,现在总结在这里,展示自己学到了什么. 在课上老师讲了斐波那挈数列是由意大利数学家,斐波那挈发明的.当时他是用一个形象的故事为例子而引入的斐波那挈数列. 兔子在出生两个月后,就有繁殖能力,一对兔子每个月能生出一对小兔子来。如果所有兔都不死,那么一年以后可以繁殖多少对兔子? 我们不妨拿新出生的一对小兔子分析一下: 第一个月小兔子没有繁殖能力,所以还是一对; 两个月后,生下一对小兔民数共有两对; 三个月以后,老兔子又生下一对,因为小兔子还没有繁殖能力,所以一共是三对; ------ 依次类推可以列出下表: 经过月数:---1---2---3---4---5---6---7---8---9---10---11---12 兔子对数:---1---1---2---3---5---8--13--21--34--55--89--144 表中数字1,1,2,3,5,8---构成了一个数列。这个数列有关十分明显的特点,那是:前面相邻两项之和,构成了后一项。 这个特点的证明:每月的大兔子数为上月的兔子数,每月的小兔子数为上月的大兔子数,即上上月的兔子数,相加。 斐波那契在<算盘全书>中提出的,这个级数的通项公式,除了具有a(n+2)=an+a(n+1)的性质外,还可以证明通项公式为:an=(1/√5)*[(1+√5/2)^n-(1-√5/2)^n](n=1,2,3.....) 因此斐波那挈数列又叫做兔子数列,我想这个例子真的让我感到数学源于生活,生活的需要是我们不段地通过现象发现数学问题,而不是为了学习而学习,我想斐波那挈不可能真的是通过兔子来发现的这个问题,但他是伟大的数学家,他想告诉我们这种数学问题的本质. 回到正体,提到了斐波那挈的伟大,现在我们在了解一下斐波那挈,我再课下了解到他竟叫做列昂纳多斐波那挈,与列昂纳多达芬奇,并被誉为比萨的列昂纳多.我想数学家有艺术家的称号,并不是一件简单的事. 直观的讲斐波那挈数列1、1、2、3、5、8、13、21、……从第三项开始,每一项都等于前两项之和,有趣的是这样的完全是自然数的数列,竟然可以用无理数来表达的,我记得老师当时好像讲过这一点但是当时好像并不太在意这一点,因为觉得这没什么,但是当我了解到,随着数列项的增加,前一项与后一项之比愈来愈逼近黄金分割的数值0.618时我却是被震惊到了,因为数学可以表达美,我想这是我们不得不赞叹的地方,当数学创造了好多的奇迹时,我想可能会很少人注意到我们数学本质是可以回归到自然的,这样的事例还有很多, 在植物的叶、枝、茎等排列中发现。例如,在树木的枝干上选一片叶子,记其为数0,然后依序点数叶子(假定没有折损),直到到达与那息叶子正对的位置,则其间的叶子数多半是斐波那契数。叶子从一个位置到达下一个正对的

用特征方程求数列的通项

用特征方程求数列的通项 一、递推数列特征方程的研究与探索 递推(迭代)是中学数学中一个非常重要的概念和方法,递推数列问题能力要求高,内在联系密切,蕴含着不少精妙的数学思想和方法。递推数列的特征方程是怎样来的? (一)、 若数列{}n a 满足),0(,11≠+==+c d ca a b a n n 其通项公式的求法一般采用如下的参数法,将递推数列转化为等比数列: 设t c ca a t a c t a n n n n )1(),(11-+=+=+++则 ,令d t c =-)1(,即1 -= c d t ,当1≠c 时可得 )1 (11-+=-+ +c d a c c d a n n ,知数列? ????? -+1c d a n 是以c 为公比的等比数列, 11)1 (1--+=-+ ∴n n c c d a c d a 将 b a =1代入并整理,得()1 1---+=-c d c b d bc a n n n . 故数列d ca a n n +=+1对应的特征 方程是:x=cx+d (二)、二阶线性递推数列,11-++=n n n qa pa a 仿上,用上述参数法我们来探求数列{}n n ta a ++1的特征:不妨设 )(11-++=+n n n n ta a s ta a ,则11 )(-++-=n n n sta a t s a , 令 ? ??==-q st p t s ( ※) (1)若方程组( ※)有两组不同的实数解),(),,(2211t s t s , 则)(11111-++=+n n n n a t a s a t a , )(12221-++=+n n n n a t a s a t a , 即{}n n a t a 11++、 {}n n a t a 21++分别是公比为1s 、2s 的等比数列,由等比数列通项公式可得 1 1 11211)(-++=+n n n s a t a a t a ①, 1 2 12221)(1-++=+n n n s a t a a t a ②, ∵,21t t ≠由上两式①+②消去1+n a 可得 ()()() n n n s t t s a t a s t t s a t a a 22121221211112..-+--+= . (2)若方程组( ※)有两组相等的解???==21 2 1t t s s ,易证此时11s t -=,则 ())(2112 111111---++=+=+n n n n n n a t a s a t a s a t a

线性递推数列的特征方程

具有形如21n n n x ax bx ++=+ ①的递推公式的数列{}n x 叫做 线性递推数列 将①式两边同时加上1 n yx +-,即: 2111n n n n n x yx ax bx yx ++++-=+- 整理得: 211()()n n n n b x yx a y x x y a +++-=--- 令1n n n F x yx +=-为等比数列,则其公比q a y =-且满足b y y a =- 即满足:2y ay b =+ ② 设②式具有两个不相等的实数根r ,s ,则: 1n n n Y x rx +=- ③ 1n n n Z x sx +=- ④ 分别是公比为a r -,a s -的等比数列,并得: 121()()n n Y x rx a r -=-- 1 21()()n n Z x sx a s -=-- 且由③、④可得: ()n n n Y Z s r x -=- 又由韦达定理可得: r s a += rs b =- 于是有:

1121211121211121221 2122121()()()() () () n n n n n n n n n n n n n Y Z x rx a r x sx a s x s r s r x rx x x rx x sx s r s b r b C sx a r a s s r s r x rx x sx s r s b s b r r r C s ------------= =----= -------= -+---++++-== ⑤ 由以上推导可知,线性递推数列的通项公式⑤只与数列的第一、二项和方程 2y ay b =+的两根有关。也就是说,只需知道1x ,2x 和方程2y ay b =+的两根r ,s ,即可得出线性递推数列的通项公式。可见方程2y ay b =+包含了线性递推数列的重要信息,故将之称为线性递推数列的特征方程。 例:(斐波拉契数列)已知数列{}n x 满足: 121x x ==且21 (1,)n n n x x x n n N +++=+≥∈.求数列{}n x 的通项公式。 解:该数列属于线性递推数列,其特征方程为:21x x =+ 解之得:152r + =,152s - = 故可设数列的通项公式为 12151522n n n x C C ????+-=+ ? ? ? ????? 又1121515122x C C ????+-=+= ? ? ? ?????,222121515122x C C ????+-=+= ? ? ? ????? 解得:155C =,255C =-.故所求通项公式为: 51515522n n n x ?? ????+-??=- ? ? ? ????????? .

数学与几个生活实例的联系

数学与几个生活实例的联系 一摘要 (1)概率论与日常生活 20世纪30年代科尔莫格罗夫提出概率公理化以来,概率论在生活的各个方面得到了广泛应用。 拉普拉斯名言———“生活中最重要的问题,绝大部分其实只是概率问题。” (2)数学与艺术 爱因斯坦说过:“这个世界可以由音乐和音符组成,也可以由数学的公式组成。” 古希腊数学家对音乐的认识开创了数学研究音乐的历史; 著名的黄金分割在音乐与数学上的应用。 (3)中国数学教育的缺陷 中国教育对于数学的不正确引导使得青年甚至儿童对于数学有了畏惧心理与抗拒心理。功利化的考查制度也让真正对于数学感兴趣的人部分或者完全丧失了学习数学的动力与兴趣。 43A13418 张弘毅

二正文 第一章概率论与日常生活 “要成为现代社会中有文化的人,必须对博弈论有大致的了解”——著名经济学家萨缪尔森 中世纪欧洲盛行掷骰子赌博,帕斯卡,费马与旅居巴黎的荷兰数学家惠更斯用组合数学研究了许多于掷骰子有关的概率问题。20世纪30年代科尔莫格罗夫提出概率公理化以来,概率论在生活的各个方面得到了广泛应用。 由于本人水平有限,对于概率论无研究,只能简单举例并粗略计算 (1)纽约乐透一人中两次头奖 就单次来说,中头奖概率是1/22500000,那么按照常识,一人中两次概率为1/506250000000000 但是单纯的平方计算没有考虑到开奖次数的问题。每年开奖104次,15年大约1500次开奖。所谓的赌徒心理会让中过奖的人继续买彩票,每次总注数超过3000注。15年内再次中奖概率则大于五分之一,所以连中头奖才是真正的小概率事件。十几年内如果中两次头奖,从概率角度则不算太稀奇。 (2)概率学分析华南虎造假事件 2007年陕西省林业厅声称发现华南虎并提供照片。照片与年画极其相似,经过鉴定,相似率高达99% 概率学上来说,由于华南虎所处环境,动作神态每时每刻都会发生变化,与年画如此相似的概率无限趋近0 (3)综述 由以上两个例子可以看出,生活中从与普通民众相关的彩票博弈到鉴别照片真伪等问题都有概率学的影子。如今的初中,高中考试等等都会有类似问题提出。本人是江苏毕业生,清楚的记得江苏高考中附加题的最后一题常常是概率问题,在各种附加条件之下求出事件发生概率。其中要多次用到排列组合,对于逻辑思维能力有很高的要求。但是概况论面向普通民众推广时则极为便利。从彩票股票,赌博跑马(当然还有学生蒙答案也会用到概率)到天气预报,灾害预警等等与生活息息相关的方面都用到概率学原理。但是对于真正的概率学研究来说又是没有很大的促进作用,但是能调动群众的积极性这点还是有着重要意义。总结一下,概率学,上手容易,精通难;推广容易研究难。

详解由递推公式求斐波那契数列的通项公式

详解由递推公式求斐波那契数列的通项公式 武汉市黄陂区第四中学 蔡从江 斐波那契数列的递推公式是121==a a ,11-++=n n n a a a (2≥n 且N n ∈),那么它的通项公式是怎样的呢?不少同学经常问到这个问题。 下面详细解答用待定系数法构造过渡数列求其通项公式。 由递推公式11-++=n n n a a a ,可设)(11-++=+n n n n a a a a λμλ,比较得1=-λμ且1=μλ,即012=-+λλ,解得251±-= λ。若251+-=λ,则251+=μ;若251--=λ,则2 51-=μ。 先以2 51+-=λ,251+=μ求解, 此时)2)(2 15(21521511≥-++=-+-+n a a a a n n n n , 所以)2()215()215()215(2151211≥+=-++=-+ -+n a a a a n n n n , 即)2()2 15(2511≥++-=+n a a n n n , 再另)2]()215([251)215( 11≥+--=+-++n x a x a n n n n 即n n n x x )2 15()215(215)215(1+=+-+++, 所以12 15215=-++x x 即55=x , 所以 ])215(55[251)215(5511n n n n a a +--=+-++, )2]()2 15(551[)251()215(552111≥+--=+--++n a n n n ,

所以)2]()2 15(551[)251()215(552111≥+--=+--++n a n n n , )2]()251()251[(5 1])215(551[)251()215(55112111≥--+=+--++=++-++n a n n n n n 所以)3]()251()251[(5 1≥--+=n a n n n , 又121==a a 适合上式,故 *)]()251()251[(51N n a n n n ∈--+=, 同理可得251--=λ,2 51-=μ时,*)]()251()251[(51N n a n n n ∈--+=, 因此斐波那契数列的通项公式是 *)]()251()251[(51N n a n n n ∈--+=

数列的特征方程

递推数列特征方程的来源与应用 递推是中学数学中一个非常重要的概念和方法,递推数列问题能力要求高,内在联系密切,蕴含着不少精妙的数学思想和数学方法。新教材将数列放在高一讲授,并明确给出“递推公式”的概念:如果已知数列{}n a 的第1项(或前几项),且任一项n a 与它的前一项1-n a (或前几项)间的关系可以用一个公式来表示,那么这个公式叫做数列的递推公式。有通项公式的数列只是少数,研究递推数列公式给出数列的方法可使我们研究数列的范围大大扩展。新大纲关于递推数列规定的教学目标是“了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项”,但从近几年来高考试题中常以递推数列或与其相关的问题作为能力型试题来看,这一目标是否恰当似乎值得探讨,笔者以为“根据递推公式写出数列的前几项”无论从思想方法还是从培养能力上来看,都不那么重要,重要的是学会如何去发现数列的递推关系,学会如何将递推关系转化为数列的通项公式的方法。本文以线性递推数列通项求法为例,谈谈这方面的认识。 关于一阶线性递推数列:),1(,11≠+==+c d ca a b a n n 其通项公式的求法一般采用如下的参数法[1],将递推数列转化为等比数列: 设t c ca a t a c t a n n n n )1(),(11-+=+=+++则 ,令d t c =-)1(,即1 -= c d t , 当1≠c 时可得 )1 (11-+=-++c d a c c d a n n 知数列???? ??-+1c d a n 是以c 为公比的等比数列, 11)1 (1--+=-+∴n n c c d a c d a 将b a =1代入并整理,得()1 1---+=-c d c b d bc a n n n 对于二阶线性递推数列,许多文章都采用特征方程法[2]: 设递推公式为,11-++=n n n qa pa a 其特征方程为02 2=--+=q px x q px x 即, 1、 若方程有两相异根A 、B ,则n n n B c A c a 21+= 2、 若方程有两等根,B A =则n n A nc c a )(21+=

斐波那契数列趣闻

斐波那契数列趣闻 目录 摘要 (1) 第一章斐波那契数列的提出 (2) 第二章斐波那契数列的应用 (2) 2.1 斐波那契数列与花朵的花瓣数 (2) 2.2 斐波那契数列与仙人掌的结构 (2) 2.3 斐波那契数列与向日葵种子排列方式 (3) 2.4 斐波那契数列与台阶问题 (3) 2.5 斐波那契数列与蜜蜂的家谱 (3) 2.6 斐波那契数列的其他应用 (3) 第三章黄金分割 (4) 第四章黄金分割的应用 (4) 4.1 黄金分割的美学应用 (4) 4.2 黄金分割在灾害科学中的应用 (5) 第五章总结 (5) 参考文献 (5) 摘要 自从斐波那契数列被提出以后,众多科学研究者对其产生了极大的兴趣,并由此导出了一些有趣的性质和结论,本文主要介绍与斐波那契数列的一些变式及其与自然、生活科学等方面的一些奇妙的联系,并谈及黄金分割率在生活中的应用。 关键字:斐波那契数列,黄金分割,应用 斐波那契数列是一个非常美丽、和谐的数列,它的形状可以用排成螺旋状的一系列正方形来说明,起始的正方形的边长为1,在它左边的那个正方形的边长也是1,在这两个正方形的上方再放一个正方形,其边长为2,以后顺次加上边长为3、5、8、13、2l……等等的正方形。这些数字每一个都等于前面两个数之和,它们正好构成了斐波那契数列。

第一章斐波那契数列的提出 意大利数学家斐波那契在《算盘全集》中提出了一个有趣的兔子繁殖问题:如果每队兔子(一雄一雌)每月能生殖一对小兔子(也是一雄一雌,下同)每队兔子第一个月没有生殖能力,但从第二个月以后便能每月生一对小兔子。假定这些兔子都不死亡现象,那么从一对刚出生的兔子开始,一年只有会有多少对兔子呢?解释说明为:一个月:只有一对兔子;第二个月:仍然只有一对兔子;第三个月:这对兔子生了一对小兔子,共有1+1=2对兔子。第四个月:最初的一对兔子又生一堆兔子,共成为2+1=3对兔子。后人为了纪念兔子繁殖问题的斐波纳契将这个兔子数列成为斐波那契数列。也就是把1,1,2,3,5,8,13,21,34…这样的数列称为斐波那契数列。 第二章斐波那契数列的应用 人类很早就从自然界中看到了数学特征:蜜蜂的繁殖规律,树的分枝,钢琴音阶的排列以及花瓣对称排列在花托边缘、整个花朵几乎完美无缺地呈现出辐射对称状……,所有这一切向我们展示了许多美丽的数学模式。而对这些自然、社会以及生活中的许多现象的解释,最后往往都能归结到Fibonacci数列上来。 斐波那契数列在数学理论上有许多有趣的性质,不可思议的是在自然界中也存在着这个性质,似乎完全没有秩序的植物的纸条彼此相隔的距离或叶子的生长凡是,都被斐波那契数列支持着。 2.1 斐波那契数列与花朵的花瓣数 花瓣数是极有特征的。多数情况下,花瓣的数目都是3,5,8,13,21,34,55,…这些数恰好是斐波那契数列的某些项,例如,百合花有3瓣花瓣,至良属的植物有5瓣花瓣;许多翠雀属植物有8瓣花瓣;万寿菊的花瓣有13瓣,更有趣的是,有一位学者细心地数过一朵花的花瓣,发现这朵花的花瓣刚好有157瓣。且他又发现其中有13瓣与其他144瓣有显著的不同,是特别长并卷曲向内,这表明这朵花的花瓣树木是由F1=13和F2=144合成的。 2.2 斐波那契数列与仙人掌的结构 在仙人掌的结构中有这一数列的特征。研究人员分析了仙人掌的形状、叶片厚度和一系列控制仙人掌情况的各种因素,并将所得数据输入电脑,结果发现仙人掌的Fibonacci数列结构特征能让仙人掌最大限度地减少能量消耗,适应其在

特征方程法求数列的通项公式

特征方程法求数列的通项公式 求数列通项公式的方法很多,利用特征方程的特征根的方法是求一类数列通 项公式的一种有效途径? 1.已知数列a n 满足a n 1 a -an ---------------------------- …… ① 其中c O,ad bc,n N c a n d 定义1 :方程x ax _b 为①的特征方程,该方程的根称为数列 a n 的特征根,记为 cx d (a c )a n [ c (a c c )] (a c )a n (a c ) (a c )a n [ c (a c c )] (a c )a n (a c ) a c a ” 上/ a c 证毕 a n 定理2 :若 a 1 且 a d c rnri 1 2c 1 0,则 a n 1 a d a n 证明: * d 2 a 2 c, b c 1 1 ca n d ca n d a n 1 aa n b (aa n b) (ca n d) (a c)a n b d ca n d ca n a 2 c ca n a 2 c ca n a 2 c (a c)a n ( 2 c a 2 2 c) (a c)(a n ) a d / 2 (a n ) 2ca n 2a 4 c 2ca n (a 2 c) d 2c(a n ) (a d) (a d)(a n ) (a d)(a n ) (a d)(a n ) 定理 1: 若 , 印且 证明: x ax b --- 1 2 cx cx d d a ( )c,b aa n b a n 1 ca n d a n 1 aa n b ca n d ,则 a n 1 a n 1 a c a n a c a n (d a)x b c (aa n b) (ca n d) (aa n b) (ca n d) a d b W c (a c 冋(b d ) (a c )a n (b d )

高三数学 教案 斐波那契数列通项公式推导过程

斐波那契数列 斐波那契数列,又称黄金分割数列、因数学家列昂纳多·斐波那契以兔子繁殖为例子而引入,故又称为“兔子数列”,指的是这样一个数列:1、1、2、3、5、8、13、21、34、……在数学上,斐波纳契数列以如下被以递推的方法定义:F(1)=1,F(2)=1, F(n)=F(n-1)+F(n-2)(n>=3,n∈N*)在现代物理、准晶体结构、化学等领域,斐波纳契数列都有直接的应用,为此,美国数学会从1963年起出版了以《斐波纳契数列季刊》为名的一份数学杂志,用于专门刊载这方面的研究成果。 定义 斐波那契数列指的是这样一个数列1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233,377,610,987,1597,2584,4181,6765,10946,17711,28657,46368........ 自然中的斐波那契数列 这个数列从第3项开始,每一项都等于前两项之和。 斐波那契数列的定义者,是意大利数学家列昂纳多·斐波那契,生于公元1170年,卒于1250年,籍贯是比萨。他被人称作“比萨的列昂纳多”。1202年,他撰写了《算盘全书》(Liber Abacci)一书。他是第一个研究了印度和阿拉伯数学理论的欧洲人。他的父亲被比萨的一家商业团体聘任为外交领事,派驻地点于阿尔及利亚地区,列昂纳多因此得以在一个阿拉伯老师的指导下研究数学。他还曾在埃及、叙利亚、希腊、西西里和普罗旺斯等地研究数学。 通项公式 递推公式 斐波那契数列:1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, ... 如果设F(n)为该数列的第n项(n∈N*),那么这句话可以写成如下形式::F(n)=F(n-1)+F(n-2) 显然这是一个线性递推数列。 通项公式

2.1神奇的斐波那契数列说课材料素材(人教A版必修5)

斐波那契数列说课稿 【教材的地位、作用分析】 本节课的内容选自人教社《必修5》第二章“数列”中的章头图和阅读思考材料,是在学习了数列的基本概念的基础上,对数列问题的进一步研究和拓展。设计说明: 大家请看,这是数列单元的章头图,以向日葵的花冠、树木的分杈、花瓣的数量等自然现象遵循斐波那契数列来让学生感受大自然的丰富多彩,体会“大自然是懂数学的”。 阅读材料中则详细介绍了斐波那契数列的由来和定义,进一步阐述了章头图中提出的斐波那契数列在植物界中的应用,鼓励有兴趣的同学搜集资料,深入了解和研究斐波那契数列。 课本中安排的章头图和阅读思考材料贴近学生的生活实际,具有趣味性、科学性、实用性等功能,是教材不可分割的一部分,也是教师对教材进行二次开发的有效素材,因而不能被淡化或忽视,应该充分发挥它的教育功能。

【教学模式、课型分析】 本节课的课型定位为数学项目活动课。 由教师结合课本引入斐波那契数列这一数学知识,指导学生利用课余时间自主探究斐波那契数列在各领域中的应用,最后以小组汇报的形式将研究成果向同学和老师们展示。 真正做到以教师为主导,学生为主体,将课堂和数学学习的主动权交给学生。设计说明:我国新课程改革的目标特别强调有效的数学学习应该重视开展独立而积极的数学活动,让学生通过动手实践、自主探索与合作交流来学习数学,获得广泛的数学活动经验。 数学项目活动学习这一类型的数学课是帮助活动参与者达到上述目的的有效手段。在国外已有广泛的普及,在国内尚处于起步阶段。本人在高一年级选取了斐波那契数列这一古老的数学问题,开展数学项目活动学习,是对新课程改革的一种尝试。 【学情分析】 从学生已有的认知基础来看,学生刚刚接触数列这一新知识,初步掌握了数列的基本概念。 在进一步学习数列知识之前引入斐波那契数列的研究性课题,可以使学生在接下来的数列学习中带着问题去学,更具针对性和发展性。 特别是在学习完数列整个章节后,再用数列知识解释现实生活中的问题,有助于深化学生对数列知识的认识,从而进一步提升数学素养和水平。 从能力基础看,学生具有较强的信息技术能力和广博的见识,完

相关主题
文本预览
相关文档 最新文档