当前位置:文档之家› 压井方式介绍

压井方式介绍

压井方式介绍
压井方式介绍

常规压井方式

油井修井施工中,需要使用高于地层压力系数对应密度的压井液来进行压井作业。常规的压井方式有3种。(1)循环压井(正循环、反循环):把配好的压井液泵入井内进行循环,有循环通道的优先采用循环压井。(2)挤注压井:井口高压挤入压井液,把井内油、气、水压回地层,多用于砂堵、蜡堵或其它情况造成无法正常循环的井。(3)灌注压井:对于地层能量低的井,液面不在井口,通过补液的方式灌注压井液,保持井内液柱压力略高于井底,保障作业过程中油井的稳定性。定容性构造压井过程经常遇到注入的压井液越多,油井井涌越来越强的情况出现。在将压井液的密度调高以后再压井,表现出的不是油井得到控制,反而是井涌越压越强。这正是由于油田碳酸盐岩油藏定容性构造的特点所致。碳酸盐岩储集层的储渗空间主要是大型洞穴、溶蚀孔洞和各种裂隙。定容性构造是在奥陶系碳酸盐岩地层中,溶洞及裂缝发育具有一定的定容性,具体表现为溶洞或裂缝与周边连通性差,但内部的连通性好,地层压力下降快,地层能量供给不足,井漏、井涌频繁,使用常规压井方式压井无法奏效。1)在对定容体油藏井进行施工时要保证施工衔接,配合液面监测小液量补液,尽量控制工期在微漏阶段。

2)对于施工中激发定容特征的情况,结合油藏认识安排相应的对策,针对泄压难以短期泄完的情况,加大压井液密度及黏度,降低气体滑脱速度,储备足量的压井液一次性压井,能达到较好的压井效果。

压井液密度的确定应以钻井资料显示最高地层压力系数或实测地层压力为基准,再加一个附加值。附加值可选用下列两种方法之一确定:

1.油水井为0.05-0.1g/cm3;气井为0.07-0.15 g/cm3

2.油水井为1.5-3.5MPa;气井为3.0-5.0 MPa

具体选择附加值时应考虑:地层孔隙压力大小、油气水层的埋藏深度、钻井时的压井液密度、井控装置等。

注:压井液密度公式使用中应考虑的问题

1)静压或原始地层压力值来源的可靠性及其偏差

2)油气井能量的大小,产能大则多取,产能小则少取

3)生产状况,油气比高的井多取,低的井少取;注水开发见效的井多取,反之少取;

4)修井施工内容、难易程度与时间长短,作业难度大、时间长的井多取,反之少取;

5)大套管多取,小套管少取;

6)井深,井深多取,井浅少取;

7)密度在1.5g/cm3以下时,附加压力不超过0.5 MPa;密度在1.5g/cm3以上时,附加压力不超过1.5 MPa。

当井筒灌满ρ原液体时,(污水密度可以近似=1)

ρ压井液=ρ原+(P井口+P附加)/H

非常规压井方法

非常规压井方法是溢流、井喷井不具备常规压井方法的条件而采用的压井方法,如空井井喷、压井液喷空的压井等。

1 .平衡点法

平衡点法适用于井内压井液喷空后的天然气井压井,要求井口条件为防喷器完好并且关闭,钻柱在井底,天然气经过放喷管线放喷。这种压井方法是一次循环法在特殊情况下压井的具体应用。

此方法的基本原理是:设压井液喷空后的天然气井在压井过程中,环空存在一“平衡点”。所谓平衡点,即压井压井液返至该点时,井口控制的套压与平衡点以下压井压井液静液柱压力之和能够平衡地层压力。压井时,当压井压井液未返至平衡点前,为了尽快在环空建立起液柱压力,压井排量应以在用缸套下的最大泵压求算,保持套压等于最大允许套压;当压井压井液返至平衡点后,为了减小设备负荷,可采用压井排量循环,控制立管总压力等于终了循环压力,直至压井压井液返出井口,套压降至零。平衡点按下式求出:

H B=P aB /0 . 0098ρk

式中H B―平衡点深度,m ;

P aB―最大允许控制套压,MPa ;

根据上式,压井过程中控制的最大套压等于“平衡点”以上至井口压井压井液静液柱压力。当压井压井液返至“平衡点”以后,随着液柱压力的增加,控制套压减小直至零,压井压井液返至井口,井底压力始终维持一常数,且略大于地层压力。因此,压井压井液密度的确定尤其要慎重。

2 .置换法

当井内压井液已大部分喷空,同时井内无钻具或仅有少量钻具,不能进行循环压井,但井口装置可以将井关闭,压井压井液可以通过压井管汇注人井内,这种条件下可以采用置换法压井。通常情况下,由于起钻抽极,压井液不够或灌压井液不及时,电测时井内静止时间过长导致气侵严重引起的溢流,经常采用此方法压井。

操作方法:

①通过压井管线注人一定量的压井液,允许套压上升某一值(以最大允许值为限)。

②关井一段时间,使泵人的压井液下落,通过节流阀缓慢释放气体,套压降到某一值后关节流阀。套压降低值与泵人的压井液产生的液柱压力相等,即△P a=0 . 0098ρk (△V/V h)

式中△P―套压每次降低值,MPa ;

△V一每次泵人压井液量,m , ;

△V h―井眼单位内容积,m3 / m 。

重复上述过程就可以逐步降低套压。一旦泵人的压井液量等于井喷关井时压井液罐增量,溢流就全部排除了。置换法进行到一定程度后,置换的速度将因释放套压、泵人压井液的间隔时间变长而变慢,此时若条件具备下钻到井底,采用常规压井方法压并。下钻时,钻具应装有回压阀,灌满压井液。当钻具进人井筒压井液中时,还应排掉与进人钻具之体积相等的压井液量。置换法压井时,泵人的加重压井液的性能应有助于天然气滑脱。

3 .压回法

所谓压回法,就是从环空泵人压井液把进井筒的溢流压回地层。此法适用于空井溢流,天然气溢流滑脱上升不很高、套管下得较深、裸眼短,具有渗透性好的产层或一定渗透性的非产层。特别是含硫化氢的溢流。

具体施工方法是:以最大允许关井套压作为施工的最高工作压力,挤人压井压井液。挤人的压井液可以是钻进用压井液或稍重一点的压井液,挤人的量至少等于关井时压井液罐增量,直到井内压力平衡得到恢复。使用压回法要慎重,不具备上述条件的溢流最好不要采用。

4 .低节流压井方法

这种方法是指发生溢流后不能关井,关井套压超过最大允许关井套压,因此只能控制在接近最大允许关井套压的情况下节流放喷。

1 )不能关井的原因

①高压浅气层发生溢流;

②表层或技术套管下得太浅;

③发现溢流太晚。

2 )压井原理低节流压井就是在井不完全关闭的情况下,通过节流阀控制套压,使套压在不超过最大允许关井套压的条件下进行压井。当高密度压井液在环

空上返到一定高度后,可在最大允许关井套压范围内试行关井,关井后,求得关井立管压力和压井压井液密度,然后再用常规法压井。

3 )减少地层流体的措施低节流压井过程中,由于井底压力不能平衡地层压力,地层流体仍会继续侵人井内,从而增加了压井的复杂性,为减少地层流体的继续侵入。则可以:

①增大压井排量,可以使环空流动阻力增加,有助于增大井底压力。

②提高第一次循环的压井液密度,高密度压井液进入环空后,能较快地增加环空的液柱压力,抑制地层流体地侵人。

①如果地层破裂压力是最小极限压力时,当溢流被顶替到套管内以后,可

适当提高井口套压值

几种特殊情况的压井

1、空井压井

(1)处理方法:空井发生溢流,不能把管柱下入井内时,应迅速关井,记录关井立压,然后用“体积法”将井内气体排除。

(2)原理:见“体积法”排除气侵。

(3)操作方法:见“体积法”

(4)用“置换法”压井

如果溢流量很小,可以考虑“压回法”。

2、起下钻中发生溢流后的压井

在起下钻过程中,常常由于抽汲或未及时灌压井液使井底压力小于地层压力而引起溢流发生。在起下钻过程中发生溢流后,因钻具不在井底,给压井带来很多困难,必须根据不同情况采用不同方法进行控制。在起下钻中,如发现溢流显示,则必须停止起下钻作业,抢装钻具止回阀,立即关井检查。根据具体情况采取以下方法压井。

l )暂时压井后下钻的方法发生溢流关井后,由于一般溢流在钻头以下,直接循环无法排除溢流,可采用在钻头以上井段替成压井液暂时把井压住后,开井抢下钻杆的方法压井。钻具下到井底后,用司钻法排除溢流即可恢复正常。

这种方法实际上就是工程师法的具体应用,只是将钻头处当成“井底”。根据关井立压确定暂时压井液密度和压井循环立管压力的方法同工程师法类似,但是要注意此时的低泵速泵压需要重新测定。压井循环时,在压井液进人环空前,保持压井排量不变,调节节流阀控制套压为关井套压并保持不变;压井液进人环空后,调节节流阀控制立压为终了循环压力并保持不变。直到压井液返至地面,至此替压井液结束。此时关井套压应为零。井口压力为零后,开井抢下钻杆,力

争下钻到底,下钻到底后,则用司钻法排除溢流,即可恢复正常。如下钻途中,再次发生井涌,则重复上述步骤,再次压井后下钻。

2 )等候循环排溢流法这种方法是:关井后,控制套压在安全允许压力范围内,等候天然气溢流滑脱上升到钻头以上,然后用司钻法排除溢流,即可恢复正常。通常,天然气在井内压井液中的滑脱上升速度大致为270 一360 m/h 。3、又喷又漏的压井

当井喷与漏失发生在同一裸眼井段时,这种情况需首先解决漏失问题,否则,压井时因压井液的漏失而无法维持井底压力略大于地层压力。根据又喷又漏产生的不同原因,其表现形式可分为上喷下漏,下喷上漏和同层又喷又漏。

l )上喷下漏的处理

上喷下漏俗称“上吐下泻”。这是因在高压层以下钻遇低压层(裂缝、孔隙十分发育)时,井漏将使在用压井液和储备压井液消耗殆尽,井内得不到压井液补充,因液柱压力降低而导致上部高压层井喷。其处理步骤是:

①在高压层以下发生井漏,应立即停止循环,定时定量间歇性反灌压井液,尽可能维持一定液面来保持井内液柱压力略大于高压层的地层压力。确定反灌压井液量和间隔时间有三种方法:第一种是通过对地区钻井资料的分析统计出的经验数据决定;第二种是测定漏速后决定;第三种是由建立的压井液漏速计算公式决定。最简单的漏速计算公式是:

Q =兀D2h / 4T

式中Q―漏速,m3 / h ;

h ―时间T 内井筒动液面下降高度,m ;

T一时间T , min ;

D ―井眼平均直径,m 。

②反灌压井液的密度应是产层压力当量压井液密度与安全附加当量压井液密度之和。

③也可通过钻具注人加人堵漏材料的加重压井液。

④当漏速减小,井内液柱压力与地层压力呈现暂时动平衡状态后,可着手堵漏并检测漏层的承压能力,堵漏成功后就可实施压井。

2 )下喷上漏的处理

当钻遇高压地层发生溢流后,提高压井液密度压井而将高压层上部某地层压漏后,就会出现所谓下喷上漏。处理方法是:立即停止循环,定时定量间歇性反

灌压井液。然后隔开喷层和漏层,再堵漏以提高漏层的承受能力,最后压井。在

处理过程中,必须保证高压层以上的液柱压力大于高压层的底层压力,避免再次发生井喷。隔离喷层和漏层及堵漏压井的方法主要是:

①通过环空灌人加有堵漏材料的加重压井液,同时从钻具中注入加有堵漏材料的加重压井液。加有堵漏材料的压井液,即能保持或增加液柱压力,也可减小低压层漏失和堵漏。

②在环空灌人加重压井液,在保持或增加液柱压力的同时,注入胶质水泥,封堵漏层进行堵漏。

③上述方法无效时,可采用重晶石塞一水泥一重晶石塞一胶质水泥或注人

水泥隔离高低压层,堵漏成功后继续实施压井。

3 )同层又喷又漏的处理

同层又喷又漏多发生在裂缝、孔洞发育的地层,或压井时井底压力与井眼周围产层压力恢复速度不同步的产层。这种地层对井底压力变化十分敏感,井底压力稍大则漏、稍小则喷。处理方法是:通过环空或钻具注人加重后的压井液,压井液中加入堵漏材料。此法若不成功,可在维持喷漏层以上必需的液柱压力的同时,采用胶质水泥或水泥堵漏,堵漏成功后压井。

四种常规压井方法

四种常规压井方法 四种常规压井方法 1、边加重钻井液边循环压井法。这种处置方法可以在最短的时间防喷制住溢流,使井控装置承受的压力最小、承压时间最短,可以减少钻具粘卡等井下事故,因此是最安全的,但这种处置方法计算较复杂,需要进行许多的计算。 2、继续关井,先加重钻井液,再循环压井(等待加重法或工程师法)法。该处置可以在一个循环周完成,所需时间最短,井口压力较小,也较安全,压井多采用这种方法,但是关井时间长,对循环不利,因此该方法效果的好坏关键取决于是

否能迅速加重钻井液。以不变的泵速循环注入加重钻井液;在加重钻井液到达钻头的过程中,调节节流阀使立压由初始循环值下降到终了循环值(加重钻井液低泵冲泵压),使套压值保持不变;当加重钻井液到达钻头后向环空上返过程中,立压值保持不变,套压值逐渐下降,当加重钻井液到达井口时,套压降为零,重建起地层——井眼压力平衡,压井结束。 3、先循环排出受侵污的钻井液,关井、加重钻井液,再循环压井(两步控制法或司钻法)法。这种处置相对来说是安全的,技术上也比较容易掌握,但需要最长的时间和最大程度的应用井口装置。钻井液在第一个循环周内未加重,因此立

压不变(或初始与终了循环压力相等),同时第一循环周结束,关闭节流阀时,套压应该等于立压。 4、先循环排出受侵污的 4、先循环排出受侵污的钻井液,然后边加重钻井液边循环压井法。这种处置方法既复杂又需要时间更长。

附件1-13 井压井施工单年月日 井号井队 填表 人井 深 H0 M 垂深 H1M 原浆密 度γMg/m3 钻进 排量Q L/S 低泵冲泵 压P Ci MPa 漏失压 力 梯度Gf MPa/M 压井 排量Q k L/S 套管鞋 深度h M 钻柱内 容 积系数 V A L/M 钻头位 置 斜深H M 压井附加 密度γ e g/cm3 环空容 积 系数V B L/M 钻头位 置 垂深H2

不压井作业应用和存在问题

浅谈不压井作业的应用和存在的问题[摘要] 不压井作业是利用一套带压作业装备,在保持井筒内带压状态下,实施不压井、不放喷修井施工的一项特种作业技术。有着很好的发展前景。但在使用中也存在油管投堵塞效果差、选井问题、工艺存在局限性、防喷器维修、检测与试压不方便等问题。下一步我们得加大不压井的井控管理,有效利用不压井装置,提高修井能力。 [关键词] 不压井作业存在问题修井能力 一、有关不压井作业 1.国内外不压井作业概述 国内对于油井而言,不压井作业可以保护和维持地层的原始产能,避免对油层的污染,为油气田的长期开发和稳定增产提供良好的条件。对注水井而言,无需放喷降压,可以节约压井费用,缩短施工周期,减少污染,保护环境。在美国、加拿大及南美洲等国家,由于其带压修井机技术起步较早,设备具有结构简便,安全可靠,综合效益较高,短冲程密封性能好等优势,所以在陆地和海洋平台上应用越来越广泛,并形成了较为完善的配套技术体系,且应用了计算机辅助带压修井作业,通过遥控操纵和自动起下作业。目前国外90%的高压油气井实施带压作业,每年作业15000井次。国内华北荣盛、通化石油机械厂等厂家均生产不压井作业装置,在吉林、大庆、辽河、华北油田应用较好。其作业井深大多在1000米左右。由于胜利油田井深大都在1500~3500米之间,个别超过4500米,

水井结垢严重,因此施工难度较大,目前,应用的不压井作业装备主要有自主研发的带压能力14mpa和7 mpa两种。 2.开展不压井作业的目的意义 目前胜利油田已进入中、后期开发阶段,受自然递减规律的影响,产量逐年下降,油水井检修越来越频繁,油气生产成本呈上升趋势。油气井作业时,压井液固相颗粒污染油气层,造成油井减产,据国外资料统计,每次压井可造成20%的产量损失;一些品相较差的井则出现不压则喷,一压就死的困境。而高压低渗透油藏更是因压不住井而停产停注,直接影响区块开发效果。为充分利用目前已有不压井作装备和掌握的不压井作业技术,解决油田开发过程中的技术难题,各采油厂均配备了slbyjjk60-35/14-185-0型不压井作业井口装置和slbyjjk50-21/07-186-0型不压井作业装置两种装置实施不压井作业特种修井施工任务。 3. slbyjjk60-35/14-185-0型不压井作业井口装置修井能力 (1)slbyjjk60-35/14-185-0型不压井作业井口装置结构:(自下而上) 下固定卡管器+3〞半封闸板+闸板防喷器(2 1/2〞油管半封闸板、剪切闸板、全封闸板)+环形防喷器+防喷管(带放压阀)+环形防喷器+自封封井器+游动卡管器 防喷器承压级别为35mpa,组合总高度为5.3m,液缸行程2.5m。 举井系统举升力大于600kn, 最大下压力不小于300kn。起下工具最大长度1200mm

不压井作业技术规范

1 ICS Q/××× 不压井作业操作规程 (本稿完成日期:2008-10-30) 中原石油勘探局 发布

前言 本标准由中原油田石油勘探局采油采气专业标准化委员会提出并归口。本标准主要起草单位:中原油田分公司采油二厂。 本标准主要起草人:胡斌、王子海、金智涛、张玉芳、唐献伟。

不压井作业技术规范 1 范围 本标准规定了油气水井不压井作业的选井条件、施工准备、不压井作业程序、技术要求、资料录取、安全与环保控制。 本标准适用于油气水井不压井作业施工。 2 规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 GB/T3766 液控系统通用技术条件。 SY/T5443 地面防喷器控制装置专用液压气动件。 JB4730 压力容器,无损检测。 SY/T5053.2 地面防喷器及控制装置。 SY5170 石油天然气工业用--钢丝绳规范 SY6.23 石油井下作业队安全生产检查规定 SY/T 5791 液压修井机立放作业规程 SY/T5587.5-2004常规修井作业规程井筒准备。 SY/T5587.6 常规修井作业规程起下油管作业规程 SY/T6610 含硫化氢油气井,井下作业推荐作法。 3 术语和定义 下列术语和定义适用于本标准 3.1 不压井作业 利用油水气井井下的密封工具和专用井控装置、作业平台,实现不放喷、不压井起下管柱的过程,称为不压井作业。

第二章钻井液体系

第二章钻井液体系 目前,国内常用的钻井液体系分为水基、油基和含气钻井液三大系列。水基钻井液因使用方便、配制简单、价格低廉、对环境污染较小而应用广泛;油基钻井液由于其良好的抗泥页岩水化膨胀缩径性能而主要应用于泥页岩水化缩径严重的区块和对油气层保护要求较高的井;含气钻井液主要用于钻易漏的低压底层。 上世纪90年代又成功发展出合成基钻井液、超低渗透钻井液和不渗透钻井液并在大量井现场应用中取得良好的效果。合成基钻井液对环境污染更小,并具有部分油基钻井液的特性,能很好的保持井壁稳定;超低渗透钻井液和不渗透钻井液在防止地层损害和提高油气井产量上有较突出的效果而得到较广泛的应用; 各种钻井液体系是人们在钻井液技术发展过程中不断实践创造和完善的,不要死记硬背,生搬硬套,而应该对其熟练掌握、灵活应用,并在解决所遇到的各种钻井液问题中不断总结,积累并不断的加以完善。 一、膨润土浆(坂土浆) 1、膨润土浆是常用的水基钻井液的基础结构,用于代替清水开钻,形成泥饼以加固上部地层井壁防止冲坏基础和防止井漏;也用于储备钻井液,在钻井过程中各种事故复杂处理后钻井液量不足时用于做配制钻井液的基浆。 2、常规膨润土浆配方: (1)钠膨润土:水+ 0.1-0.2%烧碱+ 0.2-0.3纯碱+ 6-10%钠膨润土 (2)钙膨润土:水+ 0.3-0.5%烧碱+ 8-12%钙膨润土+纯碱(钙膨润土的6%)配置好水化24小时以后可加入0.1-0.3%的CMC-LV护胶降失水。 土是膨润土浆的基础结构,烧碱用于除去水中镁离子和调节膨润土浆PH值并促进膨润土水化,纯碱用于除去水中钙离子和促进膨润土水化;实际应用中,烧碱和纯碱的加量可根据配浆水中的钙镁离子含量来适当增减调节。 3、配置步骤 (1)清淘干净一个配浆罐,用清水清洗干净后装入配浆水(配浆水要求总矿化度小于1000mg/L )。 (2)软化配浆水:检测配浆水中钙镁离子含量,根据钙镁离子含量加入纯碱、烧碱除去配浆水中钙镁离子,软化水质,以提高膨润土的造浆率,使配制出的膨润土浆有较 理想的粘度。 (3)室内小型实验,配制小样,检测小样性能。 (4)通过加重泵按实验合格的小样配浆,配浆前应用配浆水排替管线,配好后连续搅拌并用泵循环2-4小时,然后预水化24小时备用。 (5)如有必要,加入一定数量的护胶剂护胶,通常是加入0.1-0.3%CMC-LV或中小分子

压井方法优选与存在的问题

压井方法优选与存在的问题 压井是利用井控设备和压井方法向井内注入一定比重和性能的压井液,重新建立井下压力平衡的过程。选取合适、有效的压井方法关系到压井是否成功的关键,一旦发生井喷失控,将会造成重大损失,甚至巨大社会影响,因此,发生溢流或井涌后编制压井方案,选择最优的压井方法是压井成功的前提。 一、压井方法及优缺点 压井方法包括常规压井法和非常规压井法,常规压井法含司钻法、工程师法、边循环边加重法;非常规压井法含平推压井法、置换压井法、低节流压井法、体积控制压井法。 1.常规压井法 ⑴司钻法压井。司钻法又称二次循环法,是指当溢流发生时并且完成关井工作后,考虑先利用钻井液循环将溢流排除,然后再结合钻井液压井的方法。这种方法的优点在于比较容易掌握,并且最关键的是操作时间短。缺点是设备承压高,风险相对较大。 ⑵工程师法压井。工程师法又称一次循环法,是指当发生溢流时,要实现迅速的关井行为并记录重要的溢流数据,通过计算填写压井施工单,然后利用加重钻井液,保证全部工作的实现在一个循环内完成。工程师法压井的最大优势是装置所承受的压力小,相对风险小,经济效益高。缺点是:①精确控制井底压力难,影响因素多,一旦控制不好,容易引起油气侵,造成反复压井。比如:井眼轨迹、井身质量、泥浆密度与循环压降的精确计算困难,高密度泥浆差距大,另外,地面装置在压井过程中,地

层砂子反出堵塞通道,需要反复开大、关小节流阀。因此,立管压力的控制难度大。②在压井过程中井底漏失量不好掌握,若漏失严重,压井泥浆不够用,也会造成压井失败。 ⑶边循环边加重法压井。边循环边加重法又称同步法或循环加重法。是指当溢流关井求得地层压力之后,采用边循环边加重的办法压井。它的优点是在重浆储备不足,边远地区能够很快的开展压井作业。但是,这种方法的最大缺点是压力的计算比较复杂,因此在实践中很少采用。 2.非常规法压井 ⑴平推法压井。平推法又称压回地层法、挤压法或顶回法,是指从地面管汇向井内注入钻井液将进入井内的地层流体压回地层的压井方法。其优点是适用于地层流体中含硫化氢等有害物质、钻杆堵塞或断裂、压井液不能到达井底等情况下的溢流处理;缺点是:①高压的小溶洞、裂缝性油气层(定容体)不宜采用平推法压井,由于地层储藏空间有限,平推法压井容易越推压力越高,反而不能建立井内压力平衡。②井口段钻具内外压差大,容易刺坏钻具,造成钻具断裂不能压井。③操作不得当可能进一步损坏井眼,挤入的流体将进入最薄弱的地层段,出现“又喷又漏”复杂情况,特别高含H2S的井,将造成重大井控风险。 ⑵置换法压井。井喷关井后,若天然气已上升至井口或者整个井眼被喷空充满天然气,在不能用平推法压井时就需要用置换法压井。其原理是,在关井情况下和确定的套管上限与下限压力范围内,分次注入一定数量的压井液、分次放出井内气体,直至井内充满压井液,完成压井作业。该方法的关键是,注入和放出气体时应始终保持井底压力略大于地层压力。

常规压井方法

常规压井方法 常规方法包括关井立管压力为零的压井和关井立管压力不为零的压井。关井立管压力为零的压井,是钻井液的静液压力可以平衡地层压力,发生溢流是因为抽汲、井壁扩散气、钻屑气等进人井内的气体膨胀所致,其处理方法如下:关井立管压力为零 ①当关井套压也为零时,保持钻进时的排量和泵压,敞开井口循环就可恢复井的压力控制。 ②当关井套压不为零时,通过节流阀节流循环,在循环过程中,控制循环立压不变,当观察到套压为零时,停止循环。 上述两种情况经循环排除溢流后,应再用短程起下钻检验,判断是否需要调整钻井液密度,然后恢复正常作业。 关井立管压力和套管压力都不为零时 常规压井方法主要有以下几种: 1 .司钻法压井(二次循环法) 司钻法是发生溢流关井求压后,第一循环周用原密度钻井液循环,排除环空中已被地层流体污染的钻井液,第二循环周再将压井液泵人井内,用两个循环周完成压井,压井过程中保持井底压力不变。 1 )司钻法压井步骤 ①录取关井资料,计算压井所需数据,填写压井施工单,绘出压力控制进度表,作为压井施工的依据。 ②第一步用原钻井液循环排除溢流。 a .缓慢开泵,逐渐打开节流阀,调节节流阀使套压等于关井套压并维持不变,直到排量达到选定的压井排量。 b .保持压井排量不变,调节节流阀使立管压力等于初始循环压力几,,在整个循环周保持不变。调节节流阀时,注意压力传递的迟滞现象。液柱压力传递速度大约为 300 m/s , 3000m 深的井,需 20s 左右才能把节流变化的压力传递到立管压力表上。 c .排除溢流,停泵关井,则关井立压等于关井套压。在排除溢流的过程中,应配制加重钻井液,准备压井。 ③第二步泵人压井液压井,重建井内压力平衡。 a .缓慢开泵,迅速开节流阀平板阀,调节节流阀、保持关井套压不变。

钻井液体系

国内外钻井液技术发展概述 (2012-05-2711:05:36)摘要:本文主要论述了国内外钻井液的发展状况及发展趋势,介绍了近年来国内外发展起来的16种新型钻井液技术,国内外钻井液技术仍以抗高温、高压、深井复杂地层的钻井液技术为主攻目标,指出了钻井液处理剂的发展方向是高效廉价、一剂多效、保护油气层、尽可能减轻环境污染,并寻求技术更先进、性能更优异、综合效益更佳的钻井液体系及钻井液处理剂。对钻井液技术发展进行了展望,由于深井、复杂井、特殊工艺井以及特殊储藏的开发、环境保护的重视,对钻井液完井液的要求越来越高,所以抗高温、高压、深井复杂地层、油气层保护仍是钻井液完井液技术发展的重要方向。 关键词:钻井液技术发展 一、国内外钻井液技术新发展概述 钻井液作为服务钻井工程的重要手段之一。从90年代后期钻井液的主要功能已从维护井壁稳定,保证安全钻进,发展到如何利用钻井液这一手段来达到保护油气层、多产油的目的。一口井的成功完井及其成本在某种程度上取决于钻井液的类型及性能。因此,适当地选择钻井液及钻井液处理剂以维护钻井液具有适当的性能是非常必要的。钻井液及钻井液处理剂经过80年代的发展高潮以后,逐渐进入稳定期,亦即技术成熟期。可以认为,由于钻井液及钻井液处理剂都有众多的类型及产品可供选择,因此现代钻井液技术已不再研究和开发一般钻井液及钻井液处理剂产品,而是在高效廉价、一剂多效、保护油气层、尽可能减轻环境污染等方面进行深入研究,以寻求技术更先进、性能更优异、综合效益更佳的钻井液及钻井液处理剂。 1.抗高温聚合物水基钻井液 所使用的聚合物在其C-C主链上的侧链上引入具有特殊功能的基团如:酰胺基、羧基、磺酸根(S03H)、季胺基等,以提高其抗高温的能力。不论是其较新的产品,如磺化聚合物P OLYDRILL,或早己生产的产品如S.S.M.A.(磺化苯乙烯与马来酸酐共聚物)均是如此,并采取下列措施:

压井计算公式

井控公式 1.静液压力:P=0.00981ρ H MPa ρ-密度g/cm3;H-井深 m。 例:井深3000米,钻井液密度1.3 g/cm3,求:井底静液压力。 解:P=0.00981*1.3*3000=38.26 MPa 2,压力梯度: G=P/H=9.81ρ kPa/m =0.0098ρMPa; 例:井深3600米处,密度1.5 g/cm3,计算井静液压力梯度。 解:G=0.0098*1.5=0.0147MPa=14.7kPa/m 3.最大允许关井套压 Pamax =(ρ破密度-ρm)0.0098H MPa H—地层破裂压力试验层(套管鞋)垂深,m。 Ρm—井密度 g/cm3 例;已知密度1.27 g/cm3,套管鞋深度1067米,压力当量密度1.71 g/cm3,求:最大允许关井套压 解; Pamax =(1.71-1.27)0.0098*1067=4.6 MPa 4.压井时(极限)关井套压 Pamax =(ρ破密度-ρ压)0.0098H MPa Ρ压—压井密度 g/cm3 (例题略) 5.溢流在环空中占据的高度 hw=ΔV/Va m ΔV—钻井液增量(溢流),m3; Va—溢流所在位置井眼环空容积,m3/m。 6.计算溢流物种类的密度ρw=ρm- (Pa-Pd)/0.0098 hw g/cm3; ρm—当前井泥浆密度,g/cm3; Pa —关井套压,MPa; Pd —关井立压,MPa。

如果ρw在0.12~0.36g/cm3之间,则为天然气溢流。 如果ρw在0.36~1.07g/cm3之间,则为油溢流或混合流体溢流。 如果ρw在1.07~1.20g/cm3之间,则为盐水溢流。 7.地层压力 Pp =Pd+ρm gH Pd —关井立压,MPa。 ρm—钻具钻井液密度,g/cm3 8.压井密度ρ压=ρm+Pd/gH 9、(1)初始循环压力 =低泵速泵压+关井立压 注:在知道关井套压,不清楚低泵速泵压和关井立压情况下,求初始循环压力方法:(1)缓慢开节流阀开泵,控制套压=关井套压(2)排量达到压井排量时,保持套压=关井套压,此时立管压力=初始循环压力。 (2)求低泵速泵压:(Q/Q L)2=P/P L 例:已知正常排量=60冲/分,正常泵压=16.548MPa,求:30冲/分时小泵压为多少? 解:低泵速泵压P L=16.548/(60/30)2=4.137 MPa 10.终了循环压力= (压井密度/原密度)X低泵速泵压 (一)注:不知低泵速泵压,求终了循环压力方法:(1)用压井排量计算出重浆到达钻头的时间,此时立管压力=终了循环压力。边循环边加重压井法

不压井带压作业技术应用与发展

不压井带压作业技术应用与发展 一、不压井带压作业的概念 不压井带压作业是利用特殊的修井设备,在井口有压力的情况下实现管柱的安全、无污染起下作业。它能够解决两方面的工艺难题: 一是在施工作业过程中,实现了油、套管环形空间动态密封及油管的内部堵塞。 二是在起下油管过程中,能够克服井内压力对油管的上顶力,实现安全无污染带压起出或下放油管。 二、不压井带压作业的作用 1. 节约能源:低渗油田注水井的注水压力都比较高,常规修井作业需泄压1-6个月甚至更长时间,采用不压井带压作业不需泄压,避免了注入能量的浪费。 2. 防止套管损坏:常规水井作业时泄压产生的压差,使大部分水井的套管受到不同程度损坏,采用不压井带压作业可以避免此类问题的发生。 3. 减少油气层的伤害,延长油气层的寿命:采用不压井带压作业技术,避免修井液造成的油气层颗粒堵塞、水化膨胀等伤害,延长了油气层的相对寿命。 4. 保证油气层评价的真实性:不压井带压作业最大限度保持油气层原始状态,为准确录取数据,正确评价油气藏提供了基本支持。 5. 降低油水井维护费用:不压井带压作业避免套管损坏,减少了大修费用及洗压井、排放液的费用。 6. 避免井喷事故的发生:油井常规作业使用的洗、压井液在作业过程中易受气侵、油侵作用,降低了液体密度,或因井漏经常使井内压力失衡,不压井带压作业避免了由此而带来的井喷、窜管的危险。 7. 减少地面污染:不压井带压作业不排放井内液体,避免了地面污染。 三、不压井带压作业的意义 随着开采工艺技术的发展,修井的概念和内涵在不断更新,不压井带压作业技术为油气水井维修提供了一种新思路。 采用不压井带压作业技术,使原始地层得到了很好的保护,增加油气层的产出能力,提高油田开发采出程度。 采用不压井带压作业技术,最大限度的降低作业风险和减少压井或多次重复压井等复杂工序的作业成本。 采用不压井带压作业技术,解决了常规修井作业中用压井液压井,一压就漏,不压就喷,低渗油气井很容易压死及作业后排液周期长的工艺难题。 采用不压井带压作业技术,可在不压井、不放喷的情况下起下管柱,达到了

非常规压井方法

非常规压井方法 非常规压井方法是溢流、井喷井不具备常规压井方法的条件而采用的压井方法,如空井井喷、钻井液喷空的压井等。 1 .平衡点法 平衡点法适用于井内钻井液喷空后的天然气井压井,要求井口条件为防喷器完好并且关闭,钻柱在井底,天然气经过放喷管线放喷。这种压井方法是一次循环法在特殊情况下压井的具体应用。 此方法的基本原理是:设钻井液喷空后的天然气井在压井过程中,环空存在一“平衡点”。所谓平衡点,即压井钻井液返至该点时,井口控制的套压与平衡点以下压井钻井液静液柱压力之和能够平衡地层压力。压井时,当压井钻井液未返至平衡点前,为了尽快在环空建立起液柱压力,压井排量应以在用缸套下的最大泵压求算,保持套压等于最大允许套压;当压井钻井液返至平衡点后,为了减小设备负荷,可采用压井排量循环,控制立管总压力等于终了循环压力,直至压井钻井液返出井口,套压降至零。平衡点按下式求出: H B=P aB /0 . 0098ρk 式中H B―平衡点深度,m ; P aB―最大允许控制套压,MPa ; 根据上式,压井过程中控制的最大套压等于“平衡点”以上至井口压井钻井液静液柱压力。当压井钻井液返至“平衡点”以后,随着液柱压力的增加,控制套压减小直至零,压井钻井液返至井口,井底压力始终维持一常数,且略大于地层压力。因此,压井钻井液密度的确定尤其要慎重。 2 .置换法 当井内钻井液已大部分喷空,同时井内无钻具或仅有少量钻具,不能进行循环压井,但井口装置可以将井关闭,压井钻井液可以通过压井管汇注人井内,这种条件下可以采用置换法压井。通常情况下,由于起钻抽极,钻井液不够或灌钻井液不及时,电测时井内静止时间过长导致气侵严重引起的溢流,经常采用此方法压井。 操作方法: ①通过压井管线注人一定量的钻井液,允许套压上升某一值(以最大允许值为限)。 ②关井一段时间,使泵人的钻井液下落,通过节流阀缓慢释放气体,套压

常规压井方法

常规压井方法常规方法包括关井立管压力为零的压井和关井立管压力不为零的压井。关井立管压力为零的压井,是钻井液的静液压力可以平衡地层压力,发生溢 流是因为抽汲、井壁扩散气、钻屑气等进人井内的气体膨胀所致,其处理方法如下:关井立管压力为零 ①当关井套压也为零时,保持钻进时的排量和泵压,敞开井口循环就可恢复井 的压力控制。 ②当关井套压不为零时,通过节流阀节流循环,在循环过程中,控制循环立压 不变,当观察到套压为零时,停止循环。 上述两种情况经循环排除溢流后,应再用短程起下钻检验,判断是否需要调整钻井液密度,然后恢复正常作业。 关井立管压力和套管压力都不为零时常规压井方法主要有以下几种: 1 .司钻法压井(二次循环法) 司钻法是发生溢流关井求压后,第一循环周用原密度钻井液循环,排除环空中已被地层流体污染的钻井液,第二循环周再将压井液泵人井内,用两个循环周完成压井,压井过程中保持井底压力不变。 1 )司钻法压井步骤 ①录取关井资料,计算压井所需数据,填写压井施工单,绘出压力控制进度表,作为压井施工的依据。 ②第一步用原钻井液循环排除溢流。 a .缓慢开泵,逐渐打开节流阀,调节节流阀使套压等于关井套压并维持不 变,直到排量达到选定的压井排量。 b .保持压井排量不变,调节节流阀使立管压力等于初始循环压力几,,在整 个循环周保持不变。调节节流阀时,注意压力传递的迟滞现象。液柱压力传递速 度大约为300 m/s , 3000m 深的井,需20s 左右才能把节流变化的压力传递到立管 压力表上。 c .排除溢流,停泵关井,则关井立压等于关井套压。在排除溢流的过程中, 应配制加重钻井液,准备压井。 ③第二步泵人压井液压井,重建井内压力平衡。 a .缓慢开泵,迅速开节流阀平板阀,调节节流阀、保持关井套压不变。 b .排量逐渐达到压井排量并保持不变。在压井液从井口到钻头这段时间内,

低节流法压井施工工艺压力窗口低的井

低节流法压井施工工艺压力窗口低的井 Company number【1089WT-1898YT-1W8CB-9UUT-92108】

低节流法压井施工工艺 低节流法压井是一种非常规的压井方法,使用于泥浆密度窗口比较窄,也就是一些压力较敏感的地层,如塔里木油田的轮古地区。在发生溢流后用常规的压井方法会压漏地层,用而反推法)压井,对于有的地层--特别是裂缝不发育、储层连通性不好及稠油地层等,反复压井会造成井底压力越蹩越高。 低节流法压井是第一循环周用和井浆密度相同的泥浆把进入井筒的地层流体循环出来,在这期间,可以允许少量的地层流体进入井筒,在第二循环周再调整泥浆密度到一定的值,目的是不压漏地层,实现井底的压力近平衡,压井过程中控制好节流阀是关键,以控制立压为主,尽量避免压漏地层。在起钻时,一般打一个重泥浆帽。 低节流法压井使用于对地层压力已经完全掌握的井,对山前的高压气井不实用。 一.轮古情况简介 轮南低凸起位于塔里木盆地塔北隆起中段,是一个在古生界残余古隆起上发育起来的呈北东-南西走向的大背斜。钻探的主要目的层为奥陶系潜山面以下碳酸盐岩岩溶裂缝储层,具有裂缝和溶洞随机发育并控制油气藏分布;地层压力系数低(左右),钻井液平衡窗口小甚至没有,易井漏、易污染等特征。 奥陶系潜山随位置不同其表层缝洞多少、规模大小有很大差异。 1.轮南奥陶系碳酸盐岩地层压力系数低,地层对钻井液液柱压力相 当敏感,钻井液安全密度窗口非常小,甚至一些井找不到这个窗口。当钻遇

到裂缝、溶洞时,即使钻井液密度与裂缝、溶洞内充填的地层流体当量压力系数相当甚至还低,由于裂缝、溶洞通道大,在循环压耗、下钻激动压力等的作用下,也会发生钻井液与地层流体的置换,在实钻过程中就会表现出既喷又漏的现象,严重时有进无出,而这种井一般是裂缝尤其是溶洞非常发育的井。 2.特别是地层流体为气体时,表现得尤为突出。这时,往往关井后 井内气体越积越多,同时造成套压升高和井漏加剧。通过常规计算求得的地层压力常常不准确。同样,常规压井方法也不适用。如果只因为 g/cm3的密度压井后,仍然有套压,就认为是钻井液密度不够,从而再提密度,就会走入恶性循环,即越压越漏,越漏越压。 3.正是由于碳酸盐岩地层一般裂缝和溶洞非常发育,一旦有油气发 现,钻井液与油气间的置换是快速的,往往是不可避免的,这就是碳酸盐岩地层容易井漏的主要原因。 二.轮古地区压井实例 实例1 轮古405溢流 1、基础资料 5742—5749米,取心7米,当时泥浆密度,粘度48s, 层位:O,岩性:灰岩。 2、事故发生经过: 钻进至井深,7:50地质循环,发现液面上涨,8:00关井观察(立压,套压),8:00–10:50关井观察,立压–,套压–。

钻井液体系和配方

钻井液体系和配方-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

钻井液体系和配方 一.不分散聚合物体系 不分散聚合物钻井液体系指的是经过具有絮凝及包被作用的有机高分子集合物处理的水基钻井液。常用的不分散集合物钻井液类型大体有三种:及多元素聚合物体系、复合粒子性聚合物体系、阳离子聚合物体系。 1.不分散聚合物体系特点 (1)具有很强的抑制性。通过使用足量额高分子聚合物作为絮凝包被剂,实现强包被“被包”钻屑,在钻屑表面形成一层光滑的保护膜,抑制钻屑分散,使钻出的钻屑基本保持原状而不分散,以立于地面机械清除,从而实现低密度、低固相,提高钻速。 (2)具有较强的悬砂、携砂功能。通过控制适当的般土,使聚合物钻井液形成较强的网架结构,确保其悬砂、携砂功能,满足井眼净化需求。 (3)通过使用磺化沥青、超细碳酸钙等降低泥饼渗透率,能偶获得良好的泥饼质量。 (4)该体系以其良好的稀释特性是的钻头水眼粘度小,环空粘度打,有利于喷射钻井、优化钻井钻头水马力的充分发挥,从而提高机械钻速。 (5)低密度、低固相、有利于实现近平衡压力钻井 (6)抑制性强,且粘土微粒含量较低,滤液对底层所含粘土矿物有抑制膨胀作用,故可减轻对油气层的损害。

2.配方 3.技术关键 1.加大包被剂用量(171/2″井眼平均约千克/米,121/4″井眼约千克/ 米),并采用2种以上包被剂复配以达互补增效功能,突然强包被,抑

制钻屑钻分散,防止钻屑粘聚包被剂以胶液形式钻进时细水长流式补充 到井浆中。 2.控制适当的般土含量以获得良好的流变性集携砂、悬砂功能(MBT最佳 范围为30~45克/升)。般土含量的控制以淡水预化般土浆形式需要时 直接均匀补充道井浆中。 3.使用磺化沥青(2%)和超细碳酸钙(2%)改善和提供聚合物钻井液的泥 饼质量。 4.使用足量的润滑剂RH-3%~%)及防泥包剂RH-4(%~%),降低磨阻, 防止钻头泥包。 5.使用适量的HPAN、双聚铵盐等中小分子聚合物与高分子聚合物匹配 (大/小分子聚合物的最佳比例~3:1),降低滤失,有利于形成优质泥 饼。 6.不使用稀释剂。 4.推荐性能 5.使用环境 主要用于解决遇巨厚地址年代较晚的第三系强胶性泥岩地层(粘土矿物以伊利石为主,其次为绿泥石和高岭石及少量伊利石、蒙脱石混层2000以上的地层)时所遇到的井眼缩小导致起下钻阻卡严重等复杂问题。 二.分散型聚合物体系——聚合物磺化体系 聚合物磺化钻井液指的是以磺化处理剂及少量聚合物作为主要处理剂配制成而成的水基钻井液。

压井液密度及材料计算

计算公式 压井液密度计算: 102p yl ρy= ρm + + ρe H ρy=压井液密度 ρm=原浆密度p yl=立管压力H=压井深度ρe =附加值0.05-0.1 压井液计算: 加重材料计算: ΡS V 1 (Ρ 1 -Ρ0) G= Ρ S - Ρ1 G=加重材料重量T Ρ S =材料密度重晶石=4.25 吨/方 KCL=1.984吨/方(最重可配液到1.16) Ρ 1 =压井液需要达到的密度吨/方 Ρ =原浆密度吨/方 V 1 =新浆体积

循环方式选择

目前用于井控的司钻法和工程师法都是用正循环,即从钻杆泵人,从环空将溢流循环出并。反循环压井方法简介 但用常规的司钻法和工程师法压并必须具备以下两个条件:(1)能安全关井;(2)在不超过套管与井口设备许用压力和地层破裂压力条件下能循环溢流出并。在实际钻井工作中往往遇到不具备上述两个条件的情况:一是浅层气,关并时地层强度不够;二是钻中深并进入井内的天然气 溢流量很大,这时无法使用常规司钻法和工程师法进行压并,而只能换用

能够降低最大套压及井内地层受力的其它压井方法,如超重泥浆压井法及反循环压井法等。本文对后者的工艺与计算要点给予说明。 1工艺要点 反循环压井方法是从环空泵人泥浆将井内溢流替入钻杆.由钻杆内上升到井口,在阻流器控制钻杆出口回压下排除油气溢流并进行压并。这种方法在修并中早巳广泛使用。因为修并时井内往往是没有固相的原油或盐水,且管柱下端多是开口的,不易被堵塞。修井或采油井口装置也容易转换成反循环方式。在钻井或完井作业中当并内泥浆含有岩屑进行反循环压并钻头水眼有被堵塞可能时,可只用反循环把溢流经钻扦内替出,以后再转用正循环压并。由于钻杆内总容积小,用反循环的时间短?可以减少堵塞钻头水眼的危险。国外文献中把这种用反循环排除溢流.再用正循环的方法也称为反循环压井法。由于它比修并中用的反循环法更为复杂,故本文主要对它给予说明。这种压井方法的主要步骤是: (1)在井内建立从环空泵人,沿钻拄上升通过阻流器排出的反循环通路;(2)从环空泵入原密度泥浆将溢流从环空替入钻柱。在这一过程中,套

钻井液体系总汇分类

钻井液的种类 (1)稳定泡沫钻井液技术 稳定泡沫钻井液是一种低密度钻井液体系,是在钻井液中加入表面活性剂,降低气、液、固三相表面张力,使空气均匀、稳定地存在于体系中,从而降低钻井液密度。其特点是能够产生低于水的表观密度,在低压地层中产生微泡膨胀桥堵孔隙,保护油气层,提高勘探开发的综合效益。通过对稳定泡沫钻井液系统研究,开发出适合大港油田低压油气藏特点的稳定泡沫钻井液体系。 我公司进行了稳定泡沫钻井液技术研究,形成了研究成果。在现场应用中实现钻井液密度可调、泡沫稳定时间较长、抗污染能力强等优点。在官新10-16井进行了现场试验,现场钻井液密度达到0.7g/cm3,收到了预期的效果。2003年我公司在长庆油田气探井的服务中成功应用该钻井液技术,解决了低压气藏储层保护的难题。(2)无固相欠平衡钻井液技术 无固相欠平衡钻井液主要是为了解决低压、低渗油气藏而研究的钻井液体系,控制合理的钻井液密度实现欠平衡条件,减少钻井液滤液对储层的损害是该技术的核心,它适用于灰岩地层、稳定的砂泥岩地层。 1999年完成了第一口井深为5191.96m板深7井,所用的钻井液体系为具有防H2S 损害、CO2腐蚀及防水锁损害的无土相钻井液,体系的特点主要表现在:体系采用无土相有利于保护油气层;体系的抑制性较强;体系具有防腐能力;体系便于维护;有利于清洗井眼,由于采用欠平衡有利于提高机械钻速;成本低。到2002年使用该钻井液体系,相继完成了板深8、板深4、千18-18、西G2等16口井的现场应用,使用最高密度为1.42g/cm3,最低密度为0.84g/cm3。 该体系在现场应用中取得了明显的效果,尤其在保护油气层方面成果显著,该体系在大港油田首次欠平衡探井施工作业中一举成功,在所实施井中平均恢复值达到88%,实施井均获得良好的油气显示,为发现和保护油气层展现了光明的前景,尤其板深7井最为突出,经过5~11mm油嘴多次测试,平均产气量为1×105m3/d,其中轻质油31.75 m3/d,完钻后测试表皮系数为-1.35,投产后井口压力和油气产量相对稳定。 (3)广谱型屏蔽暂堵保护油层技术 广谱型屏蔽暂堵保护油气层技术是基于非均质砂岩油藏储层的孔隙结构特点和流体流动机理,提出了依据对渗透率贡献率的大小来区别对待不同的孔喉,尤其适用于渗透性严重不均质的砂岩油藏。该项技术在冀东油田柳赞的现场应用成功后,2003年开始在大港油田港东、段六拨、枣81X1等区块上进行了7口井的先导性试验,试验井产油量与邻井相比提高了57.64%,该项保护油气层技术得到甲方的一致认可。2004年陆续在扣50断块、羊1断块、官107×1断块等十三个断块的18口开发井进行了推广应用,取得了良好的效果,产量比邻井提高了37.18%。通过该项技术的推广,较好地解决非均质砂岩油气层保护问题,目前该项技术还在继续推广。 (4)有机盐钻井液技术 有机盐钻井液是国际公认的高效、低毒钻井液体系,国外已经广泛应用,取得了非常好的效果,该体系特点:性能稳定,抗污染能力强,有利于发现和保护油气层、抑制防塌能力强、有利于提高机械钻速、有利于提高固井质量,解决了井壁稳定和保护油气层之间的矛盾。2000年至2001年对有机盐钻井液体系进行了研究,完成了7口井的现场试验,取得了较好的成果。

钻井液体系和配方

钻井液体系和配方 一. 不分散聚合物体系 不分散聚合物钻井液体系指的是经过具有絮凝及包被作用的有机高分子集合物处理的水基钻井液。常用的不分散集合物钻井液类型大体有三种:及多元素聚合物体系、复合粒子性聚合物体系、阳离子聚合物体系。 1.不分散聚合物体系特点 (1)具有很强的抑制性。通过使用足量额高分子聚合物作为絮凝包被剂,实现强包被“被包”钻屑,在钻屑表面形成一层光滑的保护膜,抑制钻屑分散,使钻出的钻屑基本保持原状而不分散,以立于地面机械清除,从而实现低密度、低固相,提高钻速。 (2)具有较强的悬砂、携砂功能。通过控制适当的般土,使聚合物钻井液形成较强的网架结构,确保其悬砂、携砂功能,满足井眼净化需求。 (3)通过使用磺化沥青、超细碳酸钙等降低泥饼渗透率,能偶获得良好的泥饼质量。 (4)该体系以其良好的稀释特性是的钻头水眼粘度小,环空粘度打,有利于喷射钻井、优化钻井钻头水马力的充分发挥,从而提高机械钻速。 (5)低密度、低固相、有利于实现近平衡压力钻井 (6)抑制性强,且粘土微粒含量较低,滤液对底层所含粘土矿物有抑制膨胀作用,故可减轻对油气层的损害。 2.配方 1. 多元素聚合物体系 材料名称中文名称加量般土天然钠土4% KPAM、PMNK、80A51任意两种聚丙烯酸钾、丙烯酰胺0.6%~10.% HPAN 水解聚丙烯腈0.15% MAN-101 中分子聚合物0.1% SAS 磺化沥青 5.0% QS-2 超细碳酸钙 2.0% RH-3 润滑剂0.4%~0.6% RH-4 清洁剂 0.3%~0.5% 2.复合粒子性聚合物体系 材料名称中文名称加量般土天然钠土4% FA-367 复合离子大分子聚合物0.4%~0.6% XY-27 复合聚合物稀释剂0.15% JT-888 聚合物降失水剂0.2% ~0.3% SAS 磺化沥青 5.0% QS-2 超细碳酸钙 2.0% RH-3 润滑剂0.4% ~0.6% RH-4 清洁剂0.3%~0.5%

压井计算公式

1. 压井基本数据计算 1) 溢流种类的判别 根据关井钻杆压力和关井套管压力、钻柱内钻井液流体密度等参数,先计算出溢流流体的压力梯度,再按此压力梯度的数据范围判断出溢流种类。 溢流压力梯度计算公式: …………………………………………(8-6) 式中:Gw――溢流流体压力梯度,MPa/m Gh――钻柱内钻井液柱压力梯度,MPa/m Gw=0.01w W――钻柱内钻井液密度,g/cm3 P a――关井套压,MPa Pd――关井钻杆压力,MPa hw――溢流在井底的高度,m ………………………………………(8-7) 式中:Vb――溢流后循环池钻井液增量,升(L) Va――环空单位容积,升/米(L/m) θ――井斜角 表8-1 流体压力梯度与流体种类对照表 序号流体压力梯度MPa/m 流体种类 l 0.00118~0.00353 气体 2 0.0068~0.0089 油 3 0.0098 淡水 4 0.0101 海水 5 0 .0105~0.0118 地层水(盐水) 注:如流体压力梯度数据在上表的两者之间,则为这两者的混合物。 2) 关井钻杆压力的确定(即关井立压) 压井作业中,关井钻杆压力和套管压力是两个十分重要的参数。关井钻杆压力用于确定溢流种类,计算地层压力和压井液密度。关井套管压力用于提供回压和确定溢流种类参数。 发生溢流关井后,井内钻柱、环空和地层压力系统之间存在以下关系(见图8-5):Pp=Pd+Pmd………………………………………(8-8) Pp=Pa+Pmd +Pw…………………………………(8-9) 式中:Pp――地层压力,MPa Pd――关井钻杆压力,Mpa Pa――关井套管压力,MPa Pmd――钻柱内钻井液柱压力,Mpa Pma――环空钻井液柱压力,MPa Pw――溢流柱静水压力,MPa 如果井底压力是稳定的,则可以根据关井钻杆压力和钻柱内钻井液柱压力求得地层压力。确定正确的关井钻杆压力有两种情况: (1) 钻柱中未装回压阀时的关井钻杆压力 关井10~15分钟后的立管压力为关井钻杆压力。因为一般情况下,关井后10~15分钟井眼周围的地层压力才能恢复到原始地层压力。恢复时间的长短与地层流体种类、地层渗透率和欠平衡压差等因素有关。 (2) 钻柱中装有回压阀时测定关井钻杆压力的方法:

国外不压井作业机

!国外石油机械# 国外不压井作业机 陈蔚茜1 穆延旭2 付元强3 (11河南中原总机厂石油设备有限公司 21中原油田分公司 31中原石油勘探局) 摘要 不压井作业机可在井筒内有压力、有油气的情况下不压井进行起下管柱作业,实施增产措施和欠平衡钻井,能有效避免作业过程中压井对油层产生的污染,保护油气层,简化作业施工工序,提高生产效率,降低生产成本。介绍了目前国外应用较成熟的独立运作型不压井作业机、与井架(或钻机)配合使用的不压井作业机、与液压修井机配合使用的不压井作业机的功能、组成、作业过程及优点。给出了国外不压井作业机现场应用的2个实例。 关键词 不压井作业机 组成 功能 应用实例 不压井作业机是指用于在井筒内有压力、有油气的情况下不压井进行起下管柱作业、实施增产措施或进行欠平衡钻井的一种先进的作业设备。成套的不压井作业机作业效率高、工作安全可靠。在美国、加拿大及南美洲,每台不压井作业机每年可作业1000井次以上,均在不关/压井情况下作业,大大缩短停产时间,提高生产效益。 不压井作业机的应用领域 不压井作业机主要用于注水井、自喷井及天然气井进行常规起下作业和不动管柱分层压裂、酸化作业及完井作业。它能有效解决作业过程中压井对油层产生的污染问题,从而简化施工工序,提高生产效率,降低生产成本,既保护油层,又提高油气井产量。对于注水井,不压井作业机可以在不放液流、不泄压的情况下带压作业,既维持地层压力稳定又保证注水连续不间断。不压井作业机主要的应用领域有以下几方面。 (1)用于油气田的高产井、重点井。这些井的特点是产量高,地层压力也高,层间矛盾大,这些井应用不压井作业机进行修井作业可不用高密度压井液压井,从而减轻对地层伤害,减小层间矛盾,缩短产量恢复期,提高原油产量。 (2)用于注水井。不压井作业机在不放喷、不放溢流情况下带压起下油管,可解决污水排放问题,降低排污及污水处理成本,减少作业占井时间,提高注水井生产时效,防止局部地层压力损失。 (3)用于欠平衡钻井。可安全地实现地层压力高于钻井液柱压力,有利于保护低压油层,对于探井有利于油气层的发现。 (4)实现不压井状态下的分层压裂。利用配套管柱不压井作业机在承压情况下逐层上提分层压裂管柱实现分层压裂,避免使用压井液,不仅避免油层污染,也加快了施工进度。 (5)实现副压射孔完井。可以达到诱喷增产目的,特别是针对重点探井试油完井,可以更真实地反应地层情况。 (6)用于带压完成落物打捞、磨铣等修井作业。由于不压井作业机自身配有转盘设施,可带压完成落物打捞、磨铣等修井作业。 国外几种不压井作业机 根据不同的使用工况及装备投入,国外有多种不压井作业机,均具有独特的技术优势。 11独立运作型不压井作业机 不用修井机辅助作业的独立不压井作业系统是一种高效率且安全、经济的作业机。可在承压条件下通过弹性密封装置自主起下油管(图1)不需要井架或作业机配合,可独立完成作业服务。 这种不压井作业机一般由不压井作业井口装置、专用运载卡车、泵车、吊车、带拖车的采集车和配有交流发电机的值班房车等组成。 — 3 6 — 2005年 第33卷 第1期 石 油 机 械 CHINA PETROL EUM MACHIN ER Y

石油钻井作业现场压井液密度确定方法

石油钻井作业现场压井液密度确定方法 论文关键词:压井液 密度 附加值 计算 论文摘要:本文对目前压井液密度计算的各种方法进行了分析研究,指出了这些方法存在的的问题和不足之处,并进行了对比分析,使大家对压井液密度计算有一个明确的认识。 一、前言 钻井过程中,做好井控工作的目的是防止地层液体侵入井内,为此需保持井底压力略大于地层压力,即实现近平衡钻井,这时的关键问题就是研究怎样最合理地确定压井液密度。 井眼的裸眼井段存在着地层孔隙压力(地层压力)Pp 、压井液柱压力Pm 和地层破裂压力Pf 。三个压力体系必须满足以下条件: p m f P P P ≥≥即md my ef ρρρ≥≥ 式中:ρef —井眼的裸眼井段地层破裂压力当量密度,g/cm 3; ρmy —井眼内压井液密度,g/cm 3; ρmd —井眼的裸眼井段地层液体密度,g/cm 3。 压井液密度的确定应以钻井资料显示最高地层压力系数或实测地层压力为基准,再加一个附加值。作业现场一般推荐附加当量压井液密度、附加压力井底值规定如下。 当量密度附加:油水井为0.05-0.1g/cm 3;气井为0.07-0.15g/cm 3 井底压力附加:油水井为1.5-3.5MPa ;气井为3.0-5.0MPa 具体选择附加值时应考虑地层孔隙压力大小、油气水层的埋藏深度、钻井时的钻井液密度、井控装置等。 所确定的压井液密度还要考虑保护油气层、防止粘卡、满足井眼稳定等要求。为确保钻

井过程中的施工安全,在各种作业中,均应使井底压力略大于地层压力,这样可达到近平衡钻井和保护油气层的目的。 但是,怎样最合理地确定压井液密度,各种材料上介绍了多种方法,这些方法如何使用,往往使大家无从下手,各种方法计算结果差异又较大,本文试图通过此类问题分析对比对大家有所帮助。 二、压井液密度确定的各种方法 1、常规压井液密度确定方法 ⑴附加当量密度计算法 根据《钻井井控技术规程》的规定可知e p my ρρρ+= 又因为H P p p 102=ρ、H P md p ρ0098.0=所以e md my ρρρ+=: (1-1) 式中:H —油层中部深度,m ; P p —地层压力,MPa ; ρmd —地层液体密度,g/cm 3,一般为1.00-1.07 g/cm 3; ρp —地层压力当量压井液密度,g/cm 3; ρe ——附加当量密度,g/cm 3,油水井为0.05-0.1g/cm 3、气井为0.07-0.15 g/cm 3。 ⑵压力倍数计算法 H KP p p 102=ρ又因为H P md p ρ0098.0=所以md my K ρρ9996.0= (1-2) 式中:K —附加系数,对于一般作业,K=1.00-1.15;对于修井作业K=1.15-1.30。 ⑶附加压力计算法 () H P P e p my -=102ρ (1-3) 式中:P e -附加压力,油水井为1.5-3.5MPa ;气井为3.0-5.0MPa 。

相关主题
文本预览
相关文档 最新文档