当前位置:文档之家› 微电子技术及其发展论文

微电子技术及其发展论文

微电子技术及其发展论文
微电子技术及其发展论文

微电子学论文

前言:随着半导体新兴技术的发展,微电子成为越来越多人青睐的专业之一。微电子学是一门综合性很强的边缘学科,其中包括了半导体器件物理、集成电路工艺和集成电路及系统的设计、测试等多方面的内容;设计了固体物理学、量子力学、热力学与统计物理学、材料科学、电子线路、信号处理、计算机辅助设计、测试和加工、图论、化学等多个领域。下面我就从如下几个方面来谈谈微电子的一些基本情况。

微电子学(Microelectronics)是电子学的一门分支学科,主要是研究电子或离子在固体材料中的运动规律及其应用,并利用它实现信号处理功能的学科。它以实现电路和系统的集成为目的的微电子学又是信息领域的重要基础学科,在这一领域上,微电子学是研究并实现信息获取、传输、存储、处理和输出的科学,是研究信息获取的科学,构成了信息科学的基石,其发展书评直接影响着整个信息技术的发展。微电子科学技术的发展水平和产业规模是一个国家经济实力的重要标志。

微电子技术是在电子电路和系统的超小型化和微型化过程中逐渐形成和发展起来的,第二次大战中、后期,由于军事需要对电子设备提出了不少具有根本意义的设想,并研究出一些有用的技术。1947年晶体管的发明,后来又结合印刷电路组装使电子电路在小型化的方面前进了一大步。到1958年前后已研究成功以这种组件为基础的混合组件。集成电路的主要工艺技术,是在50年代后半期硅平面晶体管技术和更早的金属真空涂膜学技术基础上发展起来的。19614年出现了磁双极型集成电路产品。1962年生产出晶体管——晶体管理逻辑电路和发射极藉合逻辑电路。MOS集成电路出现。由于MOS电路在高度集成方面的优点和集成电路对电子技术的影响,集成电路发展越来越快。70年代,微电子技术进入了以大规模集成电路为中心的新阶段。随着集成密度日益提高,集成电路正向集成系统发展,电路的设计也日益复杂、费时和昂贵。实际上如果没有计算机的辅助,较复杂的大规模集成电路的设计是不可能的。70年代以来,集成电路利用计算机的设计有很大的进展。制版的计算机辅助设计、器件模拟、电路模拟、逻辑模拟、布局布线的计算辅助设计等程序,都先后研究成功,并发展成为包括校核、优化等算法在内的混合计算机辅助设计,乃至整套设备的计算机辅助设计系统。集成电路制造的计算机管理,也已开始实现。此外,与大规模集成和超大规模集成的高速发展相适应,有关的器件材料科学和技术、测试科学和计算机辅助测试、封装技术和超净室技术等都有重大的进展。电子技术发展很快,在工艺技术上,微细加工技术,如电子束、离子束、X射线等复印技术和干法刻蚀技术日益完善,使生产上在到亚微米以至更高的光刻水平,集成电路的集成弃将超大型越每片106—107个元件,以至达到全图片上集成一个复杂的微电子系统。高质量的超薄氧化层、新的离子注入退火技术、高电导高熔点金属以其硅化物金属化和浅欧姆结等一系列工艺技术正获得进一步的发展。在微电子技术的设计和测试技术方面,随着集成度和集成系统复杂性的提高,冗余技术、容错技术,将在设计技术中得到广泛应用。

微电子学中实现的电路和系统又成为集成电路和集成系统,是微小化的;在微电子学中的空间尺寸通常是以微米(μm,1μm=10 ? 6m)和纳米(nm,1nm=10 ? 9m)为单位的。是研究在固体(主要是半导体)材料上构成的微小型化电路、电路及系统的电子学分支。作

为电子学的分支学科,它主要研究电子或例子在固体材料中的运动规律及其应用,并利用它实现信号处理功能的科学,以实现电路的系统和集成为目的,实用性强。

下面介绍一下有关微电子学得一个重要分支——真空微电子学的基本情况。

集成电路设计的流程一般先要进行软硬件划分,将设计基本分为两部分:芯片硬件设计和软件协同设计。芯片硬件设计包括:

1.功能设计阶段。

设计人员产品的应用场合,设定一些诸如功能、操作速度、接口规格、环境温度及消耗功率等规格,以做为将来电路设计时的依据。更可进一步规划软件模块及硬件模块该如何划分,哪些功能该整合于SOC 内,哪些功能可以设计在电路板上。

2.设计描述和行为级验证

供能设计完成后,可以依据功能将SOC 划分为若干功能模块,并决定实现这些功能将要使用的IP 核。此阶段将接影响了SOC 内部的架构及各模块间互动的讯号,及未来产品的可靠性。决定模块之后,可以用VHDL 或Verilog 等硬件描述语言实现各模块的设

计。接着,利用VHDL 或Verilog 的电路仿真器,对设计进行功能验证(function simulation,或行为验证behavioral simulation)。

注意,这种功能仿真没有考虑电路实际的延迟,但无法获得精确的结果。

3.逻辑综合

确定设计描述正确后,可以使用逻辑综合工具(synthesizer)进行综合。综合过程中,需要选择适当的逻辑器件库(logic cell library),作为合成逻辑电路时的参考依据。硬件语言设计描述文件的编写风格是决定综合工具执行效率的一个重要因素。事实上,综合工具支持的HDL 语法均是有限的,一些过于抽象的语法只适于作为系统评估时的仿真模型,而不能被综合工具接受。逻辑综合得到门级网表。

4.门级验证(Gate-Level Netlist Verification)

门级功能验证是寄存器传输级验证。主要的工作是要确认经综合后的电路

是否符合功能需求,该工作一般利用门电路级验证工具完成。

注意,此阶段仿真需要考虑门电路的延迟。

5.布局和布线

布局指将设计好的功能模块合理地安排在芯片上,规划好它们的位置。布

线则指完成各模块之间互连的连线。注意,各模块之间的连线通常比较长,因此,产生的延迟会严重影响SOC的性能,尤其在0.25 微米制程以上,这种现象更为显著。目前,这一个行业仍然是中国的空缺,开设集成电路设计与集成系统专业的大学还比较少,其中师资较好的学校有上海交通大学,哈尔滨工业大学,东南大学,西安电子科技大学,电子科技大学,哈尔滨理工大学,复旦大学,华东师范大学等。这个领域已经逐渐饱和,越来越有趋势走上当年软件行业的道路。

微机电系统(Micro Electro-Me-chanical Systems,MEMS)是指可批量制作的,集微型机构、微型传感器、微型执行器以及信号处理和控制电路、直至接口、通信和电源等于一体的微型器件或系统。MEMS是随着半导体集成电路微细加工技术和超精密机械加工技术的发展而发展起来的。

MEMS的加工技术及MEMS的应用领域MEMS加工技术主要有从半导体加工工艺中发展起来的硅平面工艺和体硅工艺。八十年代中期以后利用X射线光刻、电铸、及注塑的LIGA(德文Lithograph Galvanformung und Abformug简写)技术诞生,形成了MEMS加工的另一个体系。MEMS的加工技术可包括硅表面加工和体加工的硅微细加工、LIGA加工和利用紫外光刻的准LIGA加工、微细电火花加工(EDM)、超声波加工、等离子体加工、激光加工、离子束加工、电子束加工、立体光刻成形等。MEMS的封装技术也很重要。传统的精密机械加工技术在制造微小型机械方面仍有很大潜力。MEMS在工业、信息和通信、国防、航空航天、航海、医疗和物生工程、农业、环境和家庭服务等领域有着潜在的巨大应用前景。目前,MEMS的应用领域中领先的有:汽车、医疗和环境;正在增长的有:通信、机构工程和过程自动化;还在萌芽的有:家用/安全、化学/配药和食品加工。MEMS作为

一个新兴的技术领域,有可能象当年的微电子技术一样,成为一门重大的产业。但瑞在它还处在初级阶段,因而我国在这一领域,机遇和挑战并存。从研究开发的情况来看,我国在该领域的技术水平与世界先进水平的差距并不太大,某些方面甚至已达到先进水平。但是,我国在MEMS技术的产业化方面,却远远落后于世界先进水平。

尽管微电子学技术给人类带来了前所未有的巨大进步,但它进一步发展的空间却已经受到了极大的限制。这些限制已经成为微电子学技术继续发展的重大瓶颈。能否突破这些瓶颈是微电子学技术发展所面临的极大挑战。

光刻技术限制

集成电路的加工设备中,光刻是核心。30年来,集成电路之所以能飞速发展,光刻技术的支持起到了极为关键的作用,因为它直接决定了单个晶体管器件的物理尺寸。每一代新的集成电路的出现,总是以光刻所获得的最小线宽为主要标志。为了实现更高的光刻精度,人们仍在不断探索更短波长的F2激光光源(波长为157纳米)光刻技术,它的使用有望使光刻的最小线宽达到90纳米以下。但是,这种更短波长的紫外光很容易被空气吸收,要想获得最终应用还需要探索新的光学及掩模衬底材料。总之,157纳米光源的光刻技术开发给当今微电子加工技术带来了新的希望,但还有很多技术难关需要取得突破,也是一个不争的事实。最近,英特尔公司和台积电公司宣布,它们将在2003年推出0.09微米的光刻生产线,这说明,在光刻精度上人类再次取得了重大突破。

材料和制造工艺的限制

随着集成电路集成度的提高,芯片中晶体管的尺寸会越来越小,这就对制作集成电路的半导体单晶硅材料的纯度要求也越来越高。哪怕是极其微小的缺陷或杂质,都有可能使集成电路中的某个或数个晶体管遭到破坏,最终导致整个集成电路的失败。同时,集成电路集成度的提高还会引发另一个十分棘手的问题。随着集成块上晶体管器件之间绝缘厚度的减小,当小到5个原子的厚度时(特别容易出现在绝缘层的缺陷处),量子隧道效应将会出现,即传输电荷的电子将会穿过绝缘层,使晶体管器件之间的绝缘失效。

在制造工艺方面,随着光刻精度的提高,也需要相应提高硅片(基板)和光刻掩模板的表面平整度,对于数十纳米的最小线宽制程,表面平整度几乎是原子尺度。除此之外,光刻精度的提高对基板和掩模板之间的平行度要求也越来越高。这些十分苛刻的制造工艺条件,无疑也将成为提高光刻精度的另一个重要瓶颈。

能耗和散热的限制

微电子学技术除了在光刻加工技术上和半导体材质上存在着急待突破的技术限制之外,它还受到了器件能耗过大和芯片散热困难的严重困扰。随着集成电路芯片中晶体管数量大幅度增多,芯片工作时产生的热量也同样在大幅度增加,芯片的散热问题已经成为当今超大规模集成电路进一步发展的严重障碍,降低器件的能耗和解决芯片的散热也已成为微电子学技术进一步发展的一个主要技术瓶颈。

当今的微电子器件(如场效应晶体管),由于本身的工作能耗太大,已经很难适应更大规模集成的需要。换句话说,即使通过芯片的新设计(如多层芯片设计技术)和光刻加工技术的改进(如极紫外光光刻技术)在一定程度上可以提高芯片的集成度,但由于目前微电子器件的工作电流和能耗都太大,大量的发热使集成电路很难保证其正常的工作状态。同时,芯片的过热还会造成其使用寿命缩短、可靠性降低等严重问题。

对此,英特尔公司微处理器研究实验室负责人齐勒(J. Ziller)指出“芯片的能耗是提高集成度的一堵难以逾越的障碍”。微处理器速度可望在10年后达到30~100吉赫,运算次数则达到10000亿次/ 秒,高速运行的微处理器芯片的发热量将和它们的速度一样也大得惊人,几乎与核反应产生的热量、或太阳表面的热量不相上下。所以,能够满足“更冷”要求的低能

耗芯片技术的开发是芯片得以进一步发展的当务之急。

微电子学技术期待再突破

芯片加工工艺

提高芯片集成度

英特尔公司在最新发展的0.09微米制造工艺中,首次采用了7层铜互连技术。基于硅片上单位电路密度和制造成本的考虑,目前的0.13微米制造工艺全部采用了6层铜互连技术。英特尔公司的0.09微米制造工艺采用7层铜互连技术后,其最直接的好处是每块微处理器芯片上可以集成数亿个晶体管,大幅度提高芯片的集成度,同时还可降低生产成本。

0.09微米制造工艺的成功让人们又一次看到了芯片工业的持续发展性。

器件特性提高和能耗降低

始于1990年代初的纳米技术,其最重要的一个分支领域是纳米电子学技术(nanoelectronics),它是微电子学技术向纵深发展的直接结果。数年来的发展表明,纳米电子学技术具有突破微电子学技术瓶颈的技术优势。纳米电子学技术的出现,将给未来计算机芯片的发展带来令人欣喜的曙光,满足人类对未来芯片“更小,更快,更冷”的要求。当然,纳米电子学技术全面应用的那天,也许还要等待20或30年。

我们期待微电子技术的更大突破。

1什么是微电子学?及其发展历史2微电子学的基本原理是什么有哪些重要分支

微电子集成电路设计

介绍微机电技术

微电子学发展前景

真空微电子器件

微电子技术的发展历史与前景展望

微电子技术的发展历史与前景展望 姓名:张海洋班级:12电本一学号:1250720044 摘要:微电子是影响一个国家发展的重要因素,在国家的经济发展中占有举 足轻重的地位,本文简要介绍微电子的发展史,并且从光刻技术、氧化和扩散技术、多层布线技术和电容器材料技术等技术对微电子技术做前景展望。 关键词:微电子晶体管集成电路半导体。 微电子学是研究在固体(主要是半导体)材料上构成的微小型化电路、电路及系统的电子学分支,它主要研究电子或粒子在固体材料中的运动规律及其应用,并利用它实现信号处理功能的科学,以实现电路的系统和集成为目的,实用性强。微电子产业是基础性产业,是信息产业的核心技术,它之所以发展得如此之快,除了技术本身对国民经济的巨大贡献之外,还与它极强的渗透性有关。 微电子学兴起在现代,在1883年,爱迪生把一根钢丝电极封入灯泡,靠近灯丝,发现碳丝加热后,铜丝上有微弱的电流通过,这就是所谓的“爱迪生效应”。电子的发现,证实“爱迪生效应”是热电子发射效应。 英国另一位科学家弗莱明首先看到了它的实用价值,1904年,他进一步发现,有热电极和冷电极两个电极的真空管,对于从空气中传来的交变无线电波具有“检波器”的作用,他把这种管子称为“热离子管”,并在英国取得了专利。这就是“二极真空电子管”。自此,晶体管就有了一个雏形。 在1947年,临近圣诞节的时候,在贝尔实验室内,一个半导体材料与一个弯支架被堆放在了一起,世界上第一个晶体管就诞生了,由于晶体管有着比电子管更好的性能,所以在此后的10年内,晶体管飞速发展。 1958年,德州仪器的工程师Jack Kilby将三种电子元件结合到一片小小的硅片上,制出了世界上第一个集成电路(IC)。到1959年,就有人尝试着使用硅来制造集成电路,这个时期,实用硅平面IC制造飞速发展.。 第二年,也是在贝尔实验室,D. Kahng和Martin Atalla发明了MOSFET,因为MOSFET制造成本低廉与使用面积较小、高整合度的特点,集成电路可以变得很小。至此,微电子学已经发展到了一定的高度。 然后就是在1965年,摩尔对集成电路做出了一个大胆的预测:集成电路的芯片集成度将以四年翻两番,而成本却成比例的递减。在当时,这种预测看起来是不可思议,但是现在事实证明,摩尔的预测诗完全正确的。 接下来,就是Intel制造出了一系列的CPU芯片,将我们完全的带入了信息时代。 由上面我们可以看出,微电子技术是当代发展最快的技术之一,是电子信息产业的基础和心脏。时至今日,微电子技术变得更加重要,无论是在航天航空技术、遥测传感技术、通讯技术、计算机技术、网络技术或家用电器产业,都离不开微电子技术的发展。甚至是在现代战争中,微电子技术也是随处可见。在我国,已经把电子信息产业列为国民经济的支拄性产业,微电子信息技术在我国也正受到越来越多的关注,其重要性也不言而喻,如今,微电子技术已成为衡量一个国家科学技术进步和综合国力的重要标志,微电子科学技术的发展水平和产业规模是一个国家经济实力的重要标志。

微电子技术论文范文

微电子技术论文范文 微电子技术是随着集成电路,尤其是大规模集成电路发展起来的一门新技术。下面是由 ___的微电子技术,谢谢你的阅读。 微电子技术与产业群研究 【摘要】微电子技术进步促进了微电子产业的发展,同时,以微电子产业为基础的许多领域也正在形成产业群发展浪潮。本文旨在探讨微电子技术与产业群的关系,研究微电子产业群,区分微电子相关性产业群和微电子产业集群,揭示其产业群的特殊性,深化我们对微电子产业群的认识,促进其、快速发展。 【关键词】微电子技术;集成电路;产业群;产业集群;相关性产业群 微电子技术的不断进步促进了微电子产业的快速发展,同时,也在以微电子产业为基础的许多领域产生了极富创造性的变革,从而引领了新一轮的产业群发展浪潮。本文旨在通过对微电子技术与产业群发展关系的研究,探讨微电子产业群的分类以及它们的特征,把握微电子产业群发展的基本要求,促进微电子产业群健康有序发展。

一、微电子技术的发展 微电子技术是随着集成电路,尤其是超大规模集成电路而发展起来的一门新的系列技术,它包括系统和电路设计、器件、工艺技术、材料制备、自动测试以及封装、组装等一系列专门的技术。微电子技术除集成电路外,还包括集成磁泡、集成超导器件和集成光电子器件等。为便于分析,我们设定:研究的微电子技术主要限于集成电路的器件、工艺技术等领域。 微电子技术始于1947年晶体管的发明,到1958年前后已研究以这种组件为基础的混合组件,1962年生产出晶体管―晶体管逻辑电路和发射极耦合逻辑电路。上个世纪70年代,由于单极型集成电路(MOS电路)在高度集成和功耗方面的优点,微电子技术进入了MOS 电路时代。从1958年TI研制出第一个集成电路触发器算起,到xx 年Intel推出的奔腾4处理器(包含5500万个晶体管)和512Mb DRAM(包含超过5亿个晶体管),集成电路年平均增长率达到45%。 目前,微电子技术正在快速发展,其发展表现在三点:一是缩小芯片中器件结构的尺寸,即缩小加工线条的宽度;二是增加芯片中所包含的元器件的数量,即扩大集成规模;三是开拓有针对性的设计应用。其中微电子前沿技术包括:微电子制造工艺(元器件的生产、测试和封装等);微电子材料的研究;超大规模集成电路/混合信号/射频

微电子的发展以及在医学上的应用

微电子技术发展趋势展望以及在医学中的应用 摘要: 电子技术是现代电子信息技术的直接基础。微电子技术的发展大大方便了人们的生活。它主要应用于生活中的各类电子产品,微电子技术的发展对电子产品的消费市场也产生了深远的影响。本文主要介绍了对微电子技术的认识、发展趋势以及微电子技术在医学中的应用。引言: 一、微电子技术的认识、发展历史以及在社会发展中所起的作用 1、微电子技术的认识 微电子技术,顾名思义就是微型的电子电路。它是随着集成电路,尤其是超大规模集成电路而发展起来的一门新的技术。 微电子技术是在电子电路和系统的超小型化和微型化过程中逐渐形成和发展起来的,其核心是集成电路,即通过一定的加工工艺,将晶体管、二极管等有源器件和电阻、电容等无源器件,按照一定的电路互联,采用微细加工工艺,集成在一块半导体单晶片(如硅和砷化镓) 上,并封装在一个外壳内,执行特定电路或系统功能。与传统电子技术相比,其主要特征是器件和电路的微小型化。它把电路系统设计和制造工艺精密结合起来,适合进行大规模的批量生产,因而成本低,可靠性高。它的特点是体积小、重量轻、可靠性高、工作速度快,微电子技术对信息时代具有巨大的影响。它包括系统电路设计、器件物理、工艺技术、材料制备、自动测试以及封装、组装等一系列专门的技术,是微电子学中的各项工艺技术的总和。 2、发展历史 微电子技术是十九世纪末,二十世纪初开始发展起来的新兴技术,它在二十世纪迅速发展,成为近代科技的一门重要学科。它的发展史其实就是集成电路的发展史。1904 年,英国科学家弗莱明发明了第一个电子管——二极管,不就美国科学家发明了三极管。电子管的发明,使得电子技术高速发展起来。它被广泛应用于各个领域。1947 年贝尔实验室制成了世界上第一个晶体管。体积微小的晶体管使集成电路的出现有了可能。之后,美国得克萨斯仪器公司的基比尔按其思路,于1958 年制成了第一个集成电路的模型,1959 年德州仪器公司宣布发明集成电路。至此集成电路便诞生了。集成电路发明后,其发展非常迅速,其制作工艺不断进步,规模不断扩大。至今集成电路的集成度已提高了500 万倍,特征尺寸缩小200 倍,单个器件成本下降100 万倍。 3、微电子技术的应用 微电子技术广泛应用于民用、军方、航空等多个方面。现在人类生产的电子产品几乎都应用到了微电子技术。可以这么说微电子技术改变了我们的生活方式。 微电子技术对电子产品的消费市场也产生了深远的影响。价廉、可靠、体积小、重量轻的微电子产品,使电子产品面貌一新;微电子技术产品和微处理器不再是专门用于科学仪器世界的贵族,而落户于各式各样的普及型产品之中,进人普通百姓家。例如电子玩具、游戏机、学习机及其他家用电器产品等。就连汽车这种传统的机械产品也渗透进了微电子技术,采用微电子技术的电子引擎监控系统。汽车安全防盗系统、出租车的计价器等已得到广泛应用,现代汽车上有时甚至要有十几个到几十个微处理器。现代的广播电视系统更是使微电子技术大有用武之地的领域,集成电路代替了彩色电视机中大部分分立元件组成的功能电路,使电视机电路简捷清楚,维修方便,价格低廉。由于采用微电子技术的数字调谐技术,使电视机可以对多达100个频道任选,而且大大提高了声音、图像的保真度。 总之,微电子技术已经渗透到诸如现代通信、计算机技术、医疗卫生、环境工程在源、交通、自动化生产等各个方面,成为一种既代表国家现代化水平又与人民生活息息相关的高新技术。 4、发展趋势

集成电路论文

我国集成电路发展状况 摘要 集成电路产业是知识密集、技术密集和资金密集型产业,世界集成电路产业发展异常迅速,技术进步门新月异。虽然目前中国集成电路产业无论从质还是从量来说都不算发达,但伴随着全球产业东移的大潮,中国的经济稳定增长,巨大的内需市场,以及充裕的各类人才和丰富的自然资源,可以说中国集成电路产业的发展尽得天时、地利、人和之势,将会崛起成为新的世界集成电路制造中心。 首先,本文介绍了集成电路产业的相关概念,并对集成电路产业的重要特点进行了分析。其次,在介绍世界集成电路产业发展趋势的基础上本文对我国集成电路产业发展的现状进行了分析和论述, 并给出了发展我国集成电路的策略。 集成电路产业是信息产业和现代制造业的核心战略产业,其已成为一些国家信息产业发展中的重中之重。相比于其它地区,中国是集成电路产业的后来者,但新世纪集成电路产业的变迁为中国集成电路产业的蚓起带来了机遇,如果我们能抓住这一有利时机,中国不仅能成为集成电路产业的新兴地区,更能成为世界集成电路产业强国。 关键词:集成电路产业;发展现状;发展趋势 ABSTRACT

Integrated circuit(IC) industry is of a knowledge,technology and capital concentrated nature. IC industry in the world develops extremely fast and the technology improves everyday.Although currently China’s IC industry is not fully developed,taking into consideration of either quality or quantity of the products.with the shifting of the global industry centre to the east and with the stable economic growth,enormous market demands and abundant human and nature resources available in China,the development of China’s IC industry has favourable conditions in all aspects.and it is expected that in the near future China will become tire new IC manufacturing centre in the world. Firstly, this paper introduce the concept of IC , and analysis the important points of it. Secondly, this paper introduces the developments of IC in the word especially in China. In the end, this paper gives some advices of the developments of IC in our country. The IC is the core of information industry and modern manufacturing strategic industries. IT has become some national top priority in the development of information industry. Compared with other regions, the latter of the China's integrated circuit industry, but the changes of the IC industry in the new century for China's integrated circuit industry vermis creates opportunity, if we can seize the favorable opportunity, China can not only a new region of the integrated circuit industry, more can become the integrated circuit industry in the world powers. Key words: IC current situations tendency 前言

微电子技术的发展

什么是集成电路和微电子学 集成电路(Integrated Circuit,简称IC):一半导体单晶片作为基片,采用平面工艺,将晶体管、电阻、电容等元器件及其连线所构成的电路制作在基片上所构成的一个微型化的电路或系统。 微电子技术 微电子是研究电子在半导体和集成电路中的物理现象、物理规律,病致力于这些物理现象、物理规律的应用,包括器件物理、器件结构、材料制备、集成工艺、电路与系统设计、自动测试以及封装、组装等一系列的理论和技术问题。微电子学研究的对象除了集成电路以外,还包括集成电子器件、集成超导器件等。 集成电路的优点:体积小、重量轻;功耗小、成本低;速度快、可靠性高; 微电子学是一门发展极为迅速的学科,高集成度、低功耗、高性能、高可靠性是微电子学发展的方向; 衡量微电子技术进步的标志要在三个方面:一是缩小芯片器件结构的尺寸,即缩小加工线条的宽度;而是增加芯片中所包含的元器件的数量,即扩大集成规模;三是开拓有针对性的设计应用。 微电子技术的发展历史 1947年晶体管的发明;到1958年前后已研究成功一这种组件为基础的混合组件; 1958年美国的杰克基尔比发明了第一个锗集成电路。1960年3月基尔比所在的德州仪器公司宣布了第一个集成电路产品,即多谐振荡器的诞生,它可用作二进制计数器、移位寄存器。它包括2个晶体管、4个二极管、6个电阻和4个电容,封装在0.25英寸*0.12英寸的管壳内,厚度为0.03英寸。这一发明具有划时代的意义,它掀开了半导体科学与技术史上全新的篇章。 1960年宣布发明了能实际应用的金属氧化物—半导体场效应晶体管(metal-oxide-semiconductor field effect transistor ,MOSFET)。 1962年生产出晶体管——晶体管逻辑电路和发射极耦合逻辑电路; 由于MOS电路在高度集成和功耗方面的优点,70年代,微电子技术进入了MOS电路时代;随着集成密度日益提高,集成电路正向集成系统发展,电路的设计也日益复杂、费事和昂贵。实际上如果没有计算机的辅助,较复杂的大规模集成电路的设计是不可能的。 微电子发展状态与趋势 微电子也就是集成电路,它是电子信息科学与技术的一门前沿学科。中国科学院王阳元院士曾经这样评价:微电子是最能体现知识经济特征的典型产品之一。在世界上,美国把微电子视为他们的战略性产业,日本则把它摆到了“电子立国”的高度。可以毫不夸张地说,微电子技术是当今信息社会和时代的核心竞争力。 在我国,电子信息产业已成为国民经济的支柱性产业,作为支撑信息产业的微电子技术,近年来在我国出现、崛起并以突飞猛进的速度发展起来。微电子技术已成为衡量一个国家科学技术进步和综合国力的重要标志。 1.微电子发展状态 1956年五校在北大联合创建半导体专业:北京大学、南京大学、复旦大学、

微电子技术论文

浅谈集成电路之光刻技术 摘要 众所周知,二十一世纪是科技信息时代,集成电路作为上一世纪的产物,发展至今的40多年里,取得了飞速的发展——集成电路的集成度不断提高,器件的特征尺寸不断减小,集成电路图形的线宽缩小了约四个数量级,电路集成度提高了六个数量级以上等。如今,集成电路已广泛应用于生活的方方面面,在成为现代信息社会的基石。 光刻技术是集成电路工艺的关键性技术,集成电路的飞速的发展成果主要应归功于光刻技术的进步。光刻技术的构想源于印刷技术中的照相制版技术,它是一种在集成电路制造中利用光学—化学反应原理和化学、物理刻蚀方法,将电路图形传递到单晶表面或介质层上,形成有效图形窗口或功能图形的工艺技术,有三大要素,分别是掩膜版、光刻胶和光刻机,其主要工艺流程有:涂胶—前烘—曝光—显影—坚膜—刻蚀—去胶。 目前,大批的科学家和工程师正在从光学、物理学、化学、精密机械、自动化以及电子技术等不同的方面对光刻技术进行广泛的研究和探索。 关键词:集成电路光刻技术工艺流程光刻胶 正文 光刻技术概述 光刻技术是集成电路工艺的关键性技术: 表1 集成电路制造的各个发展阶段对光刻技术的要求

由此可进一步说明,光刻技术是集成电路工艺的核心技术。 一般来说,在ULSI制备工艺中对光刻技术的基本要求包括如下几点。 (1)高分辨率在集成电路工艺中,通常把线宽作为光刻水平的标志,用加工图形线宽的能力代表集成电路的工艺水平。 (2)高灵敏度的光刻胶光刻胶的灵敏度与光刻胶的成分以及光刻工艺条件都有关系。在确保光刻胶各性能优异的前提下,提高光刻胶的灵敏度成为十分重要的研究课题。 (3)低缺陷在集成电路工艺过程中,器件上出现一个缺陷就可能使整个芯片失效,因此,必须严格控制缺陷。 (4)极小的套刻对准偏差在ULSI工艺中,图形线宽在1um以下,对套刻的要求非常高。一般器件结构允许的套刻误差为线宽的+10%左右。 (5)大尺寸硅片的加工为提高经济效益和硅片的利用率,采用大尺寸硅片加工,但是其技术难度更大。 光刻的工艺流程 简单来说,光刻技术能实现掩膜版上的图形转移到晶体表面上的过程。其工艺流程通常包括:涂胶、前烘、曝光、显影、坚膜、刻蚀、去胶等工艺步骤。 (1)涂胶在硅片表面形成厚度均匀、附着性强、并且没有缺陷的光刻胶薄膜 (2)前烘通过高温烘烤,使溶剂从光刻胶中挥发出来,使其性质达到加工工艺的要求,通常采用干燥循环热风、红外线辐射以及热平板传导等热处理方式。 (3)曝光实现掩膜图形的转移。但是,在曝光过程中,曝光区和非曝光区的边界会出现驻波效应,影响形成的图片尺寸和分辨率,为降低驻波效应的影响,因此,还需要进行曝光区烘培。 (4)显影把刻入的图形显现出来,影响显影效果的主要因素有曝光时间、前烘的温度和时间、光刻胶的膜厚、显影液的浓度、显影液的温度及显影液的搅动情况等。 (5)坚膜把晶片进行高温处理,除去光刻胶中剩余的溶剂,增强光刻胶对衬底表面的附着力,同时提高光刻胶在刻蚀和离子注入过程中的抗蚀性和保护能力。 (6)刻蚀 (7)去胶将光刻胶从晶体表面除去,去胶方法包括湿法去胶和干法去胶

浅谈我对微电子的认识

[键入公司名称] 浅谈我对微电子的认识 [键入文档副标题] X [选取日期] [在此处键入文档摘要。摘要通常为文档内容的简短概括。在此处键入文档摘要。摘要通常为文档内容的简短概括。]

我是电子信息科学与技术专业的学生,考虑到微电子对我们专业知识学习的重要性,我怀着极大的热情报了《微电子入门》这门选修课。希望通过这门课的学习,使我对微电子有更深入的认识,以便为以后的专业课学习打下基础。 微电子是一门新兴产业,它的发展关系着国计民生。它不仅应用于科学领域,也被广泛应用于国防、航天、民生等领域。它的广泛应用,使人们的生活更见方便。现代人的生活越来越离不开电子。因此,对电子的了解显得十分重要。微电子作为电子科学的一个分支,也发挥着日益重要的作用。通过几周的学习,我对微电子有了初步的认识。 首先,我了解了微电子的发展史,1947年晶体管的发明,后来又结合印刷电路组装使电子电路在小型化的方面前进了一大步。到1958年前后已研究成功以这种组件为基础的混合组件。集成电路的主要工艺技术,是在50年代后半期硅平面晶体管技术和更早的金属真空涂膜学技术基础上发展起来的。1964年出现了磁双极型集成电路产品。 1962年生产出晶体管——晶体管理逻辑电路和发射极藉合逻辑电路。MOS集成电路出现。由于MOS电路在高度集成方面的优点和集成电路对电子技术的影响,集成电路发展越来越快。 70年代,微电子技术进入了以大规模集成电路为中心的新阶段。随着集成密度日益提高,集成电路正向集成系统发展,电路的设计也日益复杂、费时和昂贵。实际上如果没有计算机的辅助,较复杂的大规模集成电路的设计是不可能的。70年代以来,集成电路利用计算机的设计有很大的进展。制版的计算机辅助设计、器件模拟、电路模拟、逻辑模拟、布局布线的计算辅助设计等程序,都先后研究成功,并发展成为包括校核、优化等算法在内的混合计算机辅助设计,乃至整套设备的计算机辅助设计系统。 微电子技术是随着集成电路,尤其是超大型规模集成电路而发展起来的一门新的技术。微电子技术包括系统电路设计、器件物理、工艺技术、材料制备、自动测试以及封装、组装等一系列专门的技术,微电子技术是微电子学中的各项工艺

微电子结课论文

《微电子学概论》感想 对于电子科学与技术这个专业,《微电子学概论》是我们的一门专业课程。通过这一整个学期的学习,我了解了一些集成电路基础,集成电路的制造工艺,集成电路设计和半导体知识。特别是最后几个礼拜,老师还播放一些苹果公司和因特尔公司的芯片制作过程的视频,让我们更加深入的了解一些MOS集成电路工艺流程。并且对微电子学也有一些自己的看法和简介 微电子学是电子学的一门分支,主要研究电子或离子的固体材料中的运动规律及其应用。微电子学是以实现电路和系统的集成为目的:研究如何利用半导体的围观特性以及一些特殊工艺,在一块半导体芯片上制作大量的器件,从而在一个微小的面积中制造出复杂的电子系统。 微电子作为一个非常有活力的领域,依然在不断快速发展。一些技术已经投入应用,在社会各个方面为人类提供便利;而另一些技术还处于试验阶段,有待科学家们的继续研究。目前,微电子领域的前沿技术包括微电子制造工艺、微电子材料的研究、超大规模集成电路的设计以及MEMS 技术等。微加工工艺是制造MEMS 的主要手段,IC 制造技术含(如光刻、薄膜淀积、注入扩散、刻蚀等)、微机械加工技术(如牺牲层技术、各向异性刻蚀、双面光刻以及软光刻技术等)和特殊微加工技术。目前微电子的制造工艺采用光刻和刻蚀等微加工方法,将大的材料制造为小的结构和器件,并与电路集成,实现系统微型化。 只有微电子技术取得突破,才能制造出更高性能的集成电路,从而导致相关的一系列电子产品的更新。微电子技术在军事国防方面同样有重要的应用。微电子技术的发展和应用,不仅提升了军事装备和作战平台的性能,而且导致了新式武器以及新兵种的产生。微电子技术的产生改变了传统战争的模式,将面对面的战斗演变为超视距作战。微电子技术在小型机械制造领域的应用,导致了微机电系统(MEMS)的出现,引起了一场新的革命。 由于MEMS 系统和器件具有体积小、重量轻、功耗低、成本低、可靠性高、性能优异、功能强大、可批量生产等众多优点,在各个领域都有着广阔的应用前景。目前已经制造出了微型加速度计、微型陀螺、各种传感器等多种类型的MEMS 产品,对人们的日常生活产生了巨大影响。更为重要的是,随着人类社会迈入“硅器时代”微电子在人类生活中占据着,越来越重要的地位,微电子技术的发展水平和微电子产业的规模已经成为衡量一个国家综合实力的重要标志。 对半导体材料的研究也是微电子领域的热门。由最原始的元素半导体(锗、硅、硒、硼、锑、碲),到化合物半导体(砷化镓、磷化锢、锑化锢、碳化硅、硫化镉及镓砷硅等),乃至热门的有机半导体和无定型半导体。半导体材料的

微电子技术在医学中的应用

微电子技术在医学中的应用 随着科技的迅速发展,和医疗水平息息相关的电子技术应用也越来越广泛。微电子技术的发展大大方便了人们的生活,随着微电子技术的发展,生物医学也在快速的发展,微电子技术过去在医学中的主要是应用于各类医疗器械的集成电路,在未来主要是生物芯片。生物芯片技术在医学、生命科学、药业、农业、环境科学等凡与生命活动有关的领域中均具有重大的应用前景。微电子技术与生物医学之间有着非常紧密的联系。 生物医学电子学是由微电子学、生物和医学等多学科交叉的边缘科学,为使得生物医学领域的研究方式更加精确和科学,所以将电子学用于生物医学领域。在生物医学与电子学交叉作用部分中最活跃、最前沿、作用力最大的一项关键技术就是微电子技术。特别是随着集成电路集成度的提高和超大规模集成电路的发展,元件尺寸达到分子级,进入了分子电子学时代,用有机化合物低分子、高分子和生物分子作芯片,它们具有识别、采集、记忆、放大、开关、传导等功能,更大大促进了医学电子学的发展。 以下将主要从生物医学传感器、植入式电子系统、生物芯片这三个方面结合当前国际上最新进展来介绍两者之间的关系与发展。 一、生物医学传感器 生物医学传感器是连接生物医学和电子学的桥梁。它的作用是把人体中和生物体包含的生命现象、性质、状态、成分和变量等生理信息转化为与之有确定函数关系的电子信息。生物医学传感器技术是生物医学电子学中一项关键的技术,是发展生物技术必不可少的一种先进的检测方法与监控方法,也是物质分子水平的快速、微量分析方法。因为生物传感器专一、灵敏、响应快等特点,为基础医学研究及临床诊断提供了一种快速简便的新型方法,在临床医学中发挥着越来越大的作用,意义极为重大。 常见的生物医学传感器主要可分为以下几种:电阻式传感器,电感式传感器,电容式传感器,压电式传感器,热电式传感器,光电传感器以及生物传感器等。 医学领域的生物传感器发挥着越来越大的作用。在临床医学中,酶电极是最早研制且应用最多的一种传感器。利用具有不同生物特性的微生物代替酶,可制成微生物传感器,广泛应用于:药物分析、肿瘤监测、血糖分析等。 生物医学传感器相较于传统医疗方式具有以下特点: 1、生物传感器采用固定化生物活性物质作催化剂,价值昂贵的试剂可以重复多次使用,克服了过去酶法分析试剂费用高和化学分析繁琐复杂的缺点。因此,这一技成本低,在连续使用时,每例测定仅需要几分钱人民币,术在很大程度上减轻病患医疗费用上的负担。

(完整版)微电子技术发展现状与趋势

本文由jschen63贡献 ppt文档可能在WAP端浏览体验不佳。建议您优先选择TXT,或下载源文件到本机查看。 微电子技术的发展 主要内容 微电子技术概述;微电子发展历史及特点;微电子前沿技术;微电子技术在军事中的应用。 2010-11-26 北京理工大学微电子所 2 2010-11-26 北京理工大学微电子所 3 工艺流程图 厚膜、深刻蚀、次数少多次重复 去除 刻刻蚀 牺牲层,释放结构 多 工艺 工工艺 2010-11-26 工 5 微电子技术概述 微电子技术是随着集成电路,尤其是超大规模集成电路而发展起来的一门新的技术。微电子技术包括系统电路设计、器件物理、工艺技术、材料制备、自动测试以及封装、组装等一系列专门的技术,微电子技术是微电子学中的各项工艺技术的总和;微电子学是一门发展极为迅速的学科,高集成度、低功耗、高性能、高可靠性是微电子学发展的方向;衡量微电子技术进步的标志要在三个方面:一是缩小芯片中器件结构的尺寸,即缩小加工线条的宽度;二是增加芯片中所包含的元器件的数量,即扩大集成规模;三是开拓有针对性的设计应用。 2010-11-26 北京理工大学微电子所 6 微电子技术的发展历史 1947年晶体管的发明;到1958年前后已研究成功以这种组件为基础的混合组件; 1962年生产出晶体管——晶体管逻辑电路和发射极耦合逻辑电路;由于MOS电路在高度集成和功耗方面的优点,70 年代,微电子技术进入了MOS电路时代;随着集成密度日益提高,集成电路正向集成系统发展,电路的设计也日益复杂、费时和昂贵。实际上如果没有计算机的辅助,较复杂的大规模集成电路的设计是不可能的。 2010-11-26 北京理工大学微电子所 7 微电子技术的发展特点 超高速:从1958年TI研制出第一个集成电路触发器算起,到2003年Intel推出的奔腾4处理器(包含5500 万个晶体管)和512Mb DRAM(包含超过5亿个晶体管),集成电路年平均增长率达到45%;辐射面广:集成电路的快速发展,极大的影响了社会的方方面面,因此微电子产业被列为支柱产业。

微电子论文

微电子学与医学的结合造福社会 刘畅自动化专业093班学号:090919 摘要: 微电子技术是现代电子信息技术的直接基础。现代微电子技术就是建立在以集成电路为核心的各种半导体器件基础上的高新电子技术。微电子技术的发展大大方便了人们的生活。它主要应用于生活中的各类电子产品,微电子技术的发展对电子产品的消费市场也产生了深远的影响。微电子技术过去在医学中的主要是应用于各类医疗器械的集成电路,在未来主要是生物芯片。生物芯片技术在医学、生命科学、药业、农业、环境科学等凡与生命活动有关的领域中均具有重大的应用前景。 一、引言:我所了解的微电子技术 1.定义微电子技术,顾名思义就是微型的电子电路。它是随着集成电路,尤其是超大规模集成电路而发展起来的一门新的技术。微电子技术是在电子电路和系统的超小型化和微型化过程中逐渐形成和发展起来的,其核心是集成电路,即通过一定的加工工艺,将晶体管、二极管等有源器件和电阻、电容等无源器件,按照一定的电路互联,采用微细加工工艺,集成在一块半导体单晶片上,并封装在一个外壳内,执行特定电路或系统功能。与传统电子技术相比,其主要特征是器件和电路的微小型化。它把电路系统设计和制造工艺精密结合起来,适合进行大规模的批量生产,因而成本低,可靠性高。它的特点是体积小、重量轻、 可靠性高、工作速度快,微电子技术对信息时代具有巨大的影响。它包括系统电路设计、器件物理、工艺技术、材料制备、自动测试以及封装、组装等一系列专门的技术,是微电子学中的各项工艺技术的总和。 2.发展历史:微电子技术是十九世纪末,二十世纪初开始发展起来的新兴技术,它在二十世纪迅速发展,成为近代科技的一门重要学科。它的发展史其实就是集成电路的发展史。1904 年,英国科学家弗莱明发明了第一个电子管——二极管,不就美国科学家发明了三极管。电子管的发明,使得电子技术高速发展起来。它被广泛应用于各个领域。1947 年贝尔实验室制成了世界上第一个晶体管。体积微小的晶体管使集成电路的出现有了可能。之后,美国得克萨斯仪器公司的基比尔按其思路,于1958 年制成了第一个集成电路的模型,1959 年德州仪器公司宣布发明集成电路。至此集成电路便诞生了。集成电路发明后,其发展非常迅速,其制作工艺不断进步,规模不断扩大。至今集成电路的集成度已提高了500 万倍,特征尺寸缩小200 倍,单个器件成本下降100 万倍。 3.微电子技术的应用:微电子技术广泛应用于民用、军方、航空等多个方面。现在人类生产的电子产品几乎都应用到了微电子技术。可以这么说微电子技术改变了我们的生活方式。微电子技术对电子产品的消费市场也产生了深远的影响。价廉、可靠、 体积小、重量轻的微电子产品,使电子产品面貌一新;微电子技术产品和微处理器不再是专门用于科学仪器世界的贵族,而落户于各式各样的普及型产品之中,进人普通百姓家。例如电子玩具、游戏机、学习机及其他家用电器产品等。就连汽车这种传统的机械产品也渗透进了微电子技术,采用微电子技术的电子引擎监控系统。汽车安全防盗系统、出租车的计价器等已得到广泛应用,现代汽车上有时甚至要有十几个到几十个微处理器。现代的广播电视系统更是使微电子技术大有用武之地的领域,集成电路代替了彩色电视机中大部分分立元件组成的功能电路,使电视机电路简捷清楚,维修方便,价格低廉。由于采用微电子技术的数字调谐技术,使电视机可以对多达100 个频道任选,而且大大提高了声音、图像的保真度。总之,微电子技术已经渗透到诸如现代通信、计算机技术、医疗卫生、

微电子技术发展趋势及未来发展展望

微电子技术发展趋势及未来发展展望 论文概要: 本文介绍了穆尔定律及其相关内容,并阐述对微电子技术发展趋势的展望。针对日前世界局势紧张,战争不断的状况,本文在最后浅析了微电子技术在未来轻兵器上的应用。由于这是我第一次写正式论文,恳请老师及时指出文中的错误,以便我及时改正。 一.微电子技术发展趋势 微电子技术是当代发展最快的技术之一,是电子信息产业的基础和心脏。微电子技术的发展,大大推动了航天航空技术、遥测传感技术、通讯技术、计算机技术、网络技术及家用电器产业的迅猛发展。微电子技术的发展和应用,几乎使现代战争成为信息战、电子战。在我国,已经把电子信息产业列为国民经济的支拄性产业。如今,微电子技术已成为衡量一个国家科学技术进步和综合国力的重要标志。 集成电路(IC)是微电子技术的核心,是电子工业的“粮食”。集成电路已发展到超大规模和甚大规模、深亚微米(0.25μm)精度和可集成数百万晶体管的水平,现在已把整个电子系统集成在一个芯片上。人们认为:微电子技术的发展和应用使全球发生了第三次工业革命。 1965年,Intel公司创始人之一的董事长Gorden Moore在研究存贮器芯片上晶体管增长数的时间关系时发现,每过18~24个月,芯片集成度提高一倍。这一关系被称为穆尔定律(Moores Law),一直沿用至今。 穆尔定律受两个因素制约,首先是事业的限制(business Limitations)。随着芯片集成度的提高,生产成本几乎呈指数增长。其次是物理限制(Physical Limitations)。当芯片设计及工艺进入到原子级时就会出现问题。 DRAM的生产设备每更新一代,投资费用将增加1.7倍,被称为V3法则。目前建设一条月产5000万块16MDRAM的生产线,至少需要10亿美元。据此,64M位的生产线就要17亿美元,256M位的生产线需要29亿美元,1G位生产线需要将近50亿美元。 至于物理限制,人们普遍认为,电路线宽达到0.05μm时,制作器件就会碰到严重问题。 从集成电路的发展看,每前进一步,线宽将乘上一个0.7的常数。即:如果把0.25μm看作下一代技术,那么几年后又一代新产品将达到 0.18μm(0.25μm×0.7),再过几年则会达到0.13μm。依次类推,这样再经过两三代,集成电路即将到达0.05μm。每一代大约需要经过3年左右。 二.微电子技术的发展趋势 几十年来集成电路(IC)技术一直以极高的速度发展。如前文中提到的,著名的穆尔(Moore)定则指出,IC的集成度(每个微电子芯片上集成的器件数),每3年左右为一代,每代翻两番。对应于IC制作工艺中的特征线宽则每代缩小30%。根据按比例缩小原理(Scaling Down Principle),特征线条越窄,IC的工作速度越快,单元功能消耗的功率越低。所以,IC的每一代发展不仅使集成度提高,同时也使其性能(速度、功耗、可靠性等)大大改善。与IC加工精度提高的同时,加工的硅圆片的尺寸却在不断增大,生产硅片的批量也不断提高。以上这些导致

微电子行业前景与就业形势

微电子行业前景与就业形势 当前,我们正在经历新的技术革命时期,虽然它包含了新材料、新能源、生物工程、海洋工程、航空航天技术和电子信息技术等等,但是影响最大,渗透性最强,最具有新技术革命代表性的乃是以微电子技术为核心的电子信息技术。 自然界和人类社会的一切活动都在产生信息,信息是客观事物状态和运动特征的一种普通形式,它是为了维持人类的社会、经济活动所需的第三种资源(材料、能源和信息)。社会信息化的基础结构,是使社会的各个部分通过计算机网络系统,连结成为一个整体。在这个信息系统中由通讯卫星和高速大容量光纤通讯将各个信息交换站联结,快速、多路地传输各种信息。在各信息交换站中,有多个信息处理中心,例如图形图像处理中心、文字处理中心等等;有若干信息系统,例如企事业单位信息系统,工厂和办公室自动化系统,军队连队信息系统等等;在处理中心或信息系统中还包含有许多终端,这些终端直接与办公室、车间、连队的班排、家庭和个人相连系。像人的神经系统运行于人体一样,信息网络系统把社会各个部分连结在信息网中,从而使社会信息化。海湾战争中,以美国为首的多国部队的通讯和指挥系统基本上也是这样一个网络结构,它的终端是直接武装到班的膝上(legtop)计算机,今后将发展到个人携带的PDA(Person-al Date Assistant)。 实现社会信息化的关键部件是各种计算机和通讯机,但是它的基础都是微电子。当1946年2月在美国莫尔学院研制成功第一台名为电子数值积分器和计算器(Electronic Numlerical Inte-grator and Computer)即ENIAC问世的时候,是一个庞然大物,由18000个电子管组成,占地150平方米,重30吨,耗电140KW,足以发动一辆机车,然而不仅运行速度只有每秒5000次,存储容量只有千位,而且平均稳定运行时间才7分钟。试设想一下,这样的计算机能够进入办公室、企业车间和连队吗所以当时曾有人认为,全世界只要有4台ENIAC就够了。可是现在全世界计算机不包括微机在内就有几百万台。造成这个巨大变革的技术基础是微电子技术,只有在1948年Bell实验室的科学家们发明了晶体管(这可以认为是微电子技术发展史上的第一个里程碑),特别是1959年硅平面工艺的发展和集成电路的发明(这可以认为是微电子技术第二个里程碑),才出现了今天这样的以集成电路技术为基础的电子信息技术和产业。而1971年微机的问世(这可以认为是微电子技术第三个里程碑),使全世界微机现在的拥有率达到%,在美国每年由计算机完成的工作量超过4000亿人年的手工工作量。美国欧特泰克公司总裁认为:微处理器、宽频道连接和智能软件将是下世纪改变人类社会和经济的三大技术创新。 当前,微电子技术发展已进入“System on Chip”的时代,不仅可以将一个电子子系统或整个电子系统“集成”在一个硅芯片上,完成信息加工与处理的功能,而且随着微电子技术的成熟与延拓,可以将各种物理的、化学的敏感器(执行信息获取的功能)和执行器与信息处理系统“集成”在一起,从而完成信息获取、处理与执行的系统功能,一般称这种系统为微机电系统(MEMS:Micro Electronics Machinery System),可以认为这是微电子技术又一次革命性变革。集成化芯片不仅具有“系统”功能,并且可以以低成本、高效率的大批量生产,可靠性好,耗能少,从而使电子信息技术广泛地应用于国民经济、国防建设乃至家庭生活的各个方面。在日本每个家庭平均约有100个芯片,它已如同细胞组成人体一样,成为现代工农业、国防装备和家庭耐用消费品的细胞。集成电路产业产值以年增长率≥13%,在技术上,集成度年增长率46%的速率持续发展,世界上还没有一个产业能以这样高的速度持续地增长。1990年日本以微电子为基础的电子工业产值已超过号称为第一产业的汽车工业而成为第一大产业。2000年电子信息产业,将成为世界第一产业。集成电路的原料主

微电子技术的发展

微 电子技术的发展 摘要:微电子技术是科技发展到一定阶段的时代产物,是对当今社会经济最具影响力的高新技术之一。本文主要对微电子技术的概念、发展及其在社会各大产业中的应用进行了浅析的探讨。 【关键词】微电子技术发展应用 微电子技术的核心技术是半导体集成电路,微电子技术的发展及应用影响我们生产生活的方方面面。对促使经济发展,人类的进步有着巨大的影响力。随着社会经济的发展,为了达到社会经济的发展对微电子技术的需求,实现社会经济在技术支持下快捷稳定发展,我们必须要不断地对微电子技术进行优化和改进,积极地探索更深层次的微电子技术知识,使微电子技术更好地服务于社会经济发展。相信微电子技术不仅是在当今,乃至未来社会发展中微电子技术必将是促使社会发展进步的主导产业。 1微电子技术的概念 微电子技术是信息化时代最具代表性的高新技术之一,它的核心技术半导体集成电路技,术由电路设计、工艺技术、检测技术、材料配置以及物理组装等购置技术体系。微电子技术基于自身集成化程度高,反应敏捷、占用空间较小等优势特点目前在有关涉及电子产业中得以广泛的应用。 2 微电子技术的发展现状 国外微电子的发展 自1965年发明第一块集成电路以来,特别是过去的十年中,全球微电子产业一直处于高速发展的时期,推动着信息产业的高速发展。集成电路产业及其产品是带动整个经济增长的重要因素。集成电路已发展到超大规模和甚大规模、深亚微米μ

m)精度和可集成数百万晶体管的水平,现在已把整个电子系统集成在一个芯片上。人们认为:微电子技术的发展和应用使全球发生了第三次工业革命。1965年,Intel 公司创始人之一的董事长Gorden Moore在研究存贮器芯片上晶体管增长数的时间关系时发现,每过18~24个月,芯片集成度提高一倍。这一关系被称为穆尔定律(Moores Law),一直沿用至今。自从20 世纪50 年代后期集成电路问世以来, 就一直追求在芯片上有更多的晶体管, 能够完成更多的功能, 从一代到下一代芯片的基本价格变化却很小, 这是由于较高的集成度导致完成每项功能的价格降低。这是驱动芯片发展的最基本动力。现在还在向更小的工艺发展。技术飞速的进步, 促使人们不断探究现代半导体器件最终的物理极限。 国内微电子发展 早在1965年,我国的集成电路就开始起步,而此时世界上最著名的芯片制造商英特尔还没有成立。由于体制等众多的原因,我国在这一领域与国外差距越来越大。目前,我国集成电路产业已具备了一定的发展规模,形成了从电路设计、芯片制造和电路封装三业并举,与集成电路有关的主要材料、测试设备、仪器等支持业也相继配套发展,在地域上呈现相对集中的格局,京津、苏浙沪、粤闽地区成为集成电路产业较为发达的区域。。我国集成电路设计业在过去的几年中有了长足的进步,高等院校、科研院所、企业从事集成电路设计的单位越来越多。然而国内集成电路设计企业规模,设计人员的平均数量还未达到国际同类公司的水平。随着信息时代的到来,微电子技术得以快速发展,在信息时代中扮演中重要角色,是影响时代发展的关键技术之一。从微电子技术的发展历程来看,上世纪五十年代贝尔实验室发明了晶体管,晶体管的面世标志着微电子技术的诞生。在随后的几年内经过科学家的不断努力,又发明了集成电路。集成电路的发明为后来的微型计算机的发明奠定了坚实的技术基础。直至上世纪七十年代,集成电路在微型计算机中的成功应用,标志着微电子技术的发展达到了空前的高度。随着微电子技术的进一步发展,以集成电路为核心的微电子技术经过科学家的优化和改进,较上世界刚诞生的微电子技术集成化程度足足提高了近500 万倍,另外在微电子技术产品体积方面也大大地缩小。一个微小的单独的集成片就能集成几千万个集体管。自改革开发以来,国家对微电

微电子技术课程论文

浅谈对微电子学的认识 关键词:微电子学说微电子技术集成电路晶体管芯片 引言:通过课堂上对微电子的学习和课下查找相关资料及在网上了解到的一些知识,下面谈谈我对微电子学的一些认识。 从上个世纪五十年代末开始,曾经历了半个多世纪发展历史的无线电电子学正在酝酿着一场新的革命。这场革命掀起的缘由是微电子学和微电子技术兴起的,而这场革命的漩涡中心则是集成电路和微型计算机。 一微电子学简介 所谓“微”就是小的意思,通俗地讲,微电子学和微电子技术就是使电子器件和电子设备由大变小,或由小变微的科学和技术,其中心内容就是集成电路和计算机,而其实质则是精细或超精细的“微”加工技术。其中微电子学是对电子系统-整机-部件-元器件-工艺-材料进行综合微型化设计和研究的一门学科,而现今广义的微电子技术除了包括有集成电路构成的微电子系统的应用技术和应用产品在内。当前,微电子技术的进展势头犹如咆哮江河,奔腾向前;由其激起的层层冲击波正以极其迅速之势,冲击着各科学技术分支的传统栅栏,冲击着人类社会各个角落,以至于每户家庭。微电子技术作为一门主导技术,由于它的发展带动了一批新的重要尖端技术群的陆续兴起或取得突破,从而促进信息社会的诞生,迎来了世界新技术革命的曙光。在当代,我们还找不出任何一门其他技术,在促进生产力的迅速发展方面,能与微电子技术相比。由于它的兴起和发展,创造了在一块小指甲般大小的硅片上集中了近百万个晶体管的奇迹;使过去占满整幢大楼的复杂电子设备系统缩小到能放入人们的口袋中;使整个社会出现了电子化、计算机化、自动化、和信息化的发展趋势,从而开创了无线电电子学的新纪元。 二微电子技术的兴起和发展历程 微电子技术在上世纪六十年代初随着集成电路的出现和推广应用逐渐发展成为一门独立的新兴技术。它的兴起和获得急速发展深刻地反映了社会生产和科学技术的

相关主题
文本预览
相关文档 最新文档