当前位置:文档之家› 材料科学基础教案中的复习思考题

材料科学基础教案中的复习思考题

材料科学基础教案中的复习思考题
材料科学基础教案中的复习思考题

复习思考题

第一章材料中的晶体结构

(1)要求学生课后复习并巩固晶体的性质以及原子间相互作用力与原子之间距离的关系方面的教学内容

(2)说明为何十四种布拉菲点阵中底心四方点阵和面心四方点阵?

(3)画出面心立方晶体中(111)面上的[112]晶向。

(4)何谓晶带定律?判断(110)、(132)和(311)晶面是否属于同一晶带。

(5)分别计算晶格常数为a的面心和体心立方晶体{110}晶面的面间距

(6)分别画出面心立方、体心立方、密排六方晶胞,并分别计算面心立方、体心立方、密排六方晶体的致密度。

(7)分别计算面心立方晶体{111}晶面和体心立方晶体{110}晶面原子面密度。(8)何谓金属的多晶型性?

(9).分别计算面心立方和体心立方结构中八面体和四面体间隙的大小。

(10)何谓间隙固溶体?何谓置换固溶体?

(11)M g

2Si、Mg

2

Sn、Mg

2

Pb、Cu

3

Al、Cu

5

Si、Cu

5

Zn

8

、CuZn

3

、Au

5

Zn

8

化合物中,哪些属

于正常价化合物?哪些属于电子浓度化合物?

(12)F e

4N、Cr

2

N、VC、TiH

2

、Fe

3

C、Cr

7

C

3

、Cr

23

C

6

化合物中,哪些属于间隙相?哪些

属于间隙化合物?

(13)指出间隙相和间隙化合物之间的主要区别。

第2章晶体缺陷

(1)按空间几何特征,晶体缺陷共分为几种类型?列举出每种类型晶体缺陷的具体实例。

(2)何谓点缺陷的热力学平衡性?

(3)指出刃型位错与螺型位错在结构方面的不同之处。

(4)一个环形位错能否各部分均为刃型位错或螺型位错?为什么?

(5)面心立方晶体中(111)晶面上的[]10121=b螺型位错在滑移过程中受阻时,将通过交滑移转移到哪一个{111}晶面上继续滑移?为什么?※

(6)何谓位错的滑移与攀移?其实质各是什么?※

(7)何谓位错交割?

(8)分析柏氏矢量互相垂直的两个刃型位错的交割过程。

第3章固体中的扩散

(1)扩散第二定律表达式的推导过程

(2)针对实际渗碳问题,根据已知条件计算达到一定渗层深度所需要的时间或计算经过一定渗碳时间后所达到的渗层深度。

(3)何谓上坡扩散?

(4)简要说明原子的间隙扩散机制和空位扩散机制。

(5)间隙扩散激活能和空位扩散激活能的具体表达式

(6)指出影响晶体中原子扩散的主要因素,并分析这些因素对晶体中原子扩散的影

响规律。

(7)何谓反应扩散和相变扩散?

(8)为何二元系反应扩散后的扩散层组织中不存在两相混合区?※

第4章材料的凝固

(1)何谓过冷度?何谓过冷现象?

(2)晶体材料凝固的两个基本过程各是什么?

(3)何谓均匀形核和非均匀形核?

(4)纯金属凝固时,除了需要结构起伏外,为何还需要能量起伏?

(5)指出纯金属凝固所需满足的基本条件。

(6)何谓动态过冷度?

(7)指出材料凝固过程中可以细化晶粒的主要途径及相应的作用机理。

第5章相图

(1)何谓相律?写出不含气相的凝聚态体系中相律的具体表达式。

(2)利用热分析法测定Cu-Ni二元合金相图的具体过程。

(3)何谓匀晶转变?何谓晶内偏析?何谓枝晶偏析?

(4)指出单相固溶体合金的凝固过程与纯金属(或纯组元)的凝固过程之间的主要区

别。

(5)何谓共晶转变?何谓伪共晶?何谓离异共晶?

(6)典型成分的Pb-Sn系合金的平衡凝固过程分析及室温平衡组织中相组成物和组织

组成物相对量的计算。

(7)分别解释包晶转变、熔晶转变、合晶转变、偏晶转变、共析转变和包析转变的概

念。

(8)分别解释铁素体、奥氏体、渗碳体、莱氏体、珠光体的概念。

(9)指出一次渗碳体、二次渗碳体、三次渗碳体、共晶渗碳体和共析渗碳体之间的主

要区别。

(10)指出七种铁碳合金的类别及其相应的室温平衡组织。

(11)分析亚共析钢、过共析钢和亚共晶白口铸铁的平衡凝固过程,并分别计算上述

合金的室温平衡组织中相组成物和组织组成物的相对量。

(12)简述三元相图中的重心法则及其应用范围。

(13)三元匀晶相图及其水平截面图、垂直截面图的分析。

(14)典型的固态互不溶解的三元共晶系合金的平衡凝固过程分析及室温组织组成物

相对量的计算。

(15)为何三元系中的四相平衡共晶转变面为一平面?

第6章材料的塑性变形与再结晶

(1)指出三种典型结构金属晶体的滑移面和滑移方向并比较其滑移难易程度。(2)为何晶体的滑移通常沿着其最密晶面和最密晶向进行?

(3)何谓加工硬化?运用位错理论说明细化晶粒可以提高材料强度的原因。

(4)单相固溶体合金的强度均高于纯溶剂组元的强度,试用位错理论分析之。(5)合金化是提高材料强度的一种有效途经,试运用所学理论分析合金化可以提高

材料强度的原因。

(6)何谓回复?何谓再结晶?冷变形金属加热时发生再结晶的驱动力和标志各是什么?

(7)试分别叙述冷变形金属在加热时发生回复和再结晶的相应机制。

材料科学基础习题及参考答案复习过程

材料科学基础习题及 参考答案

材料科学基础参考答案 材料科学基础第一次作业 1.举例说明各种结合键的特点。 ⑴金属键:电子共有化,无饱和性,无方向性,趋于形成低能量的密堆结构,金属受力变形时不会破坏金属键,良好的延展性,一般具有良好的导电和导热性。 ⑵离子键:大多数盐类、碱类和金属氧化物主要以离子键的方式结合,以离子为结合单元,无方向性,无饱和性,正负离子静电引力强,熔点和硬度均较高。常温时良好的绝缘性,高温熔融状态时,呈现离子导电性。 ⑶共价键:有方向性和饱和性,原子共用电子对,配位数比较小,结合牢固,具有结构稳定、熔点高、质硬脆等特点,导电能力差。 ⑷范德瓦耳斯力:无方向性,无饱和性,包括静电力、诱导力和色散力。结合较弱。 ⑸氢键:极性分子键,存在于HF,H2O,NF3有方向性和饱和性,键能介于化学键和范德瓦尔斯力之间。 2.在立方晶体系的晶胞图中画出以下晶面和晶向:(1 0 2)、(1 1 -2)、(-2 1 -3),[1 1 0],[1 1 -1],[1 -2 0]和[-3 2 1]。

(213) (112) (102) [111] [110] [120] [321] 3. 写出六方晶系的{1 1 -20},{1 0 -1 2}晶面族和<2 -1 -1 0>,<-1 0 1 1>晶向族中各等价晶面及等价晶向的具体指数。 {1120}的等价晶面:(1120)(2110)(1210)(1120)(2110)(1210) {1012}的等价晶面: (1012)(1102)(0112)(1012)(1102)(0112)(1012)(1102)(0112)(1012)(1102)(0112) 2110<>的等价晶向:[2110][1210][1120][2110][1210][1120] 1011<>的等价晶向: [1011][1101][0111][0111][1101][1011][1011][1101][0111][0111][1101][1011] 4立方点阵的某一晶面(hkl )的面间距为M /,其中M 为一正整数,为 晶格常数。该晶面的面法线与a ,b ,c 轴的夹角分别为119.0、43.3和60.9度。请据此确定晶面指数。 h:k:l=cos α:cos β:cos γ l k h d a 2 22hk l ++= 5. Cu 具有FCC 结构,其密度为8.9g/cm 3,相对原子质量为63.546,求铜的原子半径。

《材料科学基础》复习提纲剖析

《材料科学基础》复习提纲 一、(共20分)名词解释(每个名词2分) 简单正交点阵、晶向族、无限固溶体、配位数、交滑移、大角度晶界、上坡(顺)扩散、形核功、回复、滑移系 底心正交点阵、晶面族、有限固溶体、致密度、攀移、小角度晶界、下坡(逆)扩散、形核率、再结晶、孪生 二、(共30分)简要回答下列问题 1、计算面心立方晶体的八面体间隙尺寸。 2、简述固溶体与中间相的区别。 3、已知两个不平行的晶面(h1k1l1)和(h2k2l2),求出其所属的晶带轴。 4、计算面心立方晶体{111}晶面的面密度。 5、简述刃型位错线方向、柏氏矢量方向、位错运动方向及晶体运动方向之间的关系。 6、简述刃型位错攀移的实质。 7、简述在外力的作用下,螺型位错的可能运动方式。 8、当碳原子和铁原子在相同温度的 -Fe中进行扩散时,为何碳原子的扩散系数大于铁原子的扩散系数? 9、简述单组元晶体材料凝固的一般过程。 10、如图,已知A、B、C三组元固态完全不互溶,成分为80%A、10%B、10%C的O 合金在冷却过程中将进行二相共晶反应和三相共晶反应,在二元共晶反应开始时,该合金液相成分(a点)为60%A、20%B、20%C,而三元共晶反应开始时的液相成分(E点)为50% A、10%B、40%C,写出图中I和P合金的室温平衡组织。 1、计算体心立方晶体的八面体间隙尺寸。 2、简述决定组元形成固溶体与中间相的因素。 3、已知二晶向[u1v1w1]和[u2v2 w2],求出由此二晶向所决定的晶面指数。· 4、计算体心立方晶体{110}晶面的面密度。 5、简述螺型位错线方向、柏氏矢量方向、位错运动方向及晶体运动方向之间的关系。 6、简述刃型位错滑移的实质。 7、简述在外力的作用下,刃型位错的可能运动方式。 8、当碳原子和铁原子在相同温度的a-Fe 中进行扩散时,为何碳原子的扩散系数大于铁原子的扩散系数? 9、简述纯金属凝固的基本条件。 10、如图,已知A、B、C三组元固态完全不互溶,成分为80%A、10%B、10%C的O合 金在冷却过程中将进行二相共晶反应和三相共晶反应,在二元共晶反应开始时,该合金液相成分(a点)为60%A、20%B、20%C,而三元共晶反应开始时的液相成分(E点)为 %、(A+B)%和(A+B+C)%的相对量。 50% A、10%B、40%C,试计算A 初

《材料科学基础》经典习题及答案全解

材料科学与基础习题集和答案 第七章回复再结晶,还有相图的内容。 第一章 1.作图表示立方晶体的()()()421,210,123晶面及[][][]346,112,021晶向。 2.在六方晶体中,绘出以下常见晶向[][][][][]0121,0211,0110,0112,0001 等。 3.写出立方晶体中晶面族{100},{110},{111},{112}等所包括的等价晶面。 4.镁的原子堆积密度和所有hcp 金属一样,为0.74。试求镁单位晶胞的体积。已知Mg 的密度3 Mg/m 74.1=m g ρ,相对原子质量为24.31,原子半径r=0.161nm 。 5.当CN=6时+Na 离子半径为0.097nm ,试问: 1) 当CN=4时,其半径为多少?2) 当CN=8时,其半径为多少? 6. 试问:在铜(fcc,a=0.361nm )的<100>方向及铁(bcc,a=0.286nm)的<100>方向,原子的线密度为多少? 7.镍为面心立方结构,其原子半径为nm 1246.0=Ni r 。试确定在镍的 (100),(110)及(111)平面上12mm 中各有多少个原子。 8. 石英()2SiO 的密度为2.653Mg/m 。试问: 1) 13 m 中有多少个硅原子(与氧原子)? 2) 当硅与氧的半径分别为0.038nm 与0.114nm 时,其堆积密度为多少(假设原子是球形的)? 9.在800℃时1010个原子中有一个原子具有足够能量可在固体内移 动,而在900℃时910个原子中则只有一个原子,试求其激活能(J/ 原子)。 10.若将一块铁加热至850℃,然后快速冷却到20℃。试计算处理前后空位数应增加多少倍(设铁中形成一摩尔空位所需要的能量为104600J )。

《材料科学基础》教学教案

《材料科学基础》教学教案导论 一、材料科学的重要地位 生产力发展水平,时代发展的标志 二、各种材料概况 金属材料 陶瓷材料 高分子材料 电子材料、光电子材料和超导材料 三、材料性能与内部结构的关系 原子结构、结合键、原子的排列方式、显微组织 四、材料的制备与加工工艺对性能的影响 五、材料科学的意义

第一章材料结构的基本知识 §1-1 原子结构 一、原子的电子排列 泡利不相容原理 最低能量原理 二、元素周期表及性能的周期性变化§1-2 原子结合键 一、一次键 1.离子键 2.共价键 3.金属键 二、二次键 1.范德瓦尔斯键 2.氢键 三、混合键 四、结合键的本质及原子间距 双原子模型 五、结合键与性能 §1-3 原子排列方式 一、晶体与非晶体 二、原子排列的研究方法 §1-4 晶体材料的组织 一、组织的显示与观察

二、单相组织 等轴晶、柱状晶 三、多相组织 §1-5 材料的稳态结构与亚稳态结构 稳态结构 亚稳态结构阿累尼乌斯方程 第二章材料中的晶体结构§ 2-1 晶体学基础 一、空间点阵和晶胞 空间点阵,阵点(结点)晶格、晶胞 坐标系 二、晶系和布拉菲点阵 7 个晶系 14 个布拉菲点阵 表2-1 三、晶向指数和晶面指数 1.晶向指数 确定方法,指数含义,负方向,晶向族2.晶面指数 确定方法,指数含义,负方向,晶向族3.六方晶系的晶向指数和晶面指数 确定方法,换算 4.晶面间距

密排面间距大 5.晶带 相交和平行于某一晶向直线的所有晶面的组合晶带 定律:hu+kv+lw=0 ? 晶向指数和晶面指数确定练习,例题 §2-2 纯金属的晶体结构 一、典型金属晶体结构 体心立方bcc 面心立方fcc 密排六方hcp 1.原子的堆垛方式 面心立方:ABCABCAB—C— 密排六方:ABABA—B — 2.点阵常数 3.晶胞中的原子数 4.配位数和致密度 晶体结构中任一原子周围最邻近且等距离的原子数 晶体结构中原子体积占总体积的百分数 5.晶体结构中的间隙 四面体间隙,八面体间隙 二、多晶型性 :-Fe, :-Fe, :-Fe 例:

材料科学基础复习题

第一章原子结构 一判断题 1.共价键是由两个或多个电负性相差不大的原子间通过共用电子对而形成的化学键。 2. 范德华力既无方向性亦无饱和性,氢键有方向性但无饱和性。 3. 绝大多数金属均以金属键方式结合,它的基本特点是电子共有化。 4. 离子键这种结合方式的基本特点是以离子而不是以原子为结合单元。 5. 范德华力包括静电力、诱导力、但不包括色散力。 二、简答题 原子间的结合键对材料性能的影响 第二章晶体结构 一、填空 1.按晶体的对称性和周期性,晶体结构可分为7 空间点阵,14 晶系, 3 晶族。 2.晶胞是能代表晶体结构的最小单,描述晶胞的参数是 a ,b ,c ,α,β,γ。 3. 在立方,菱方,六方系中晶体之单位晶胞其三个轴方向中的两个会有相等的边长。 4. 方向族<111>的方向在铁的(101)平面上,方向族<110>的 方向在铁的(110)平面上。 5. 由hcp(六方最密堆积)到之同素异形的改变将不会产生体积的改变,而由体心最密堆积变成即会产生体积效应。 6. 晶体结构中最基本的结构单元为,在空间点阵中最基本的组元称之为。 7.某晶体属于立方晶系,一晶面截x轴于a/2、y轴于b/3、z轴于c/4,则该晶面的指标为 8. 硅酸盐材料最基本的结构单元是,常见的硅酸盐结构有、、、。 9. 根据离子晶体结构规则-鲍林规则,配位多面体之间尽可能和 连接。

二判断题 1.在所有晶体中只要(hkl)⊥(uvw)二指数必然相等。 2. 若在晶格常数相同的条件下体心立方晶格的致密度,原子半径都最小。 3. 所谓原子间的平衡距离或原子的平衡位置是吸引力与排斥力的合力最小的位置。 4.晶体物质的共同特点是都具有金属键。 5.若在晶格常数相同的条件下体心立方晶格的致密度,原子半径都最小。 6. 在立方晶系中若将三轴系变为四轴系时,(hkIl)之间必存在I=-(h+k)的关系与X1,X2,X3,X4间夹角无关。 7.亚晶界就是小角度晶界,这种晶界全部是由位错堆积而形成的。 8.面心立方与密排六晶体结构其致密度配位数间隙大小都是相同的,密排面上的堆垛顺序也是相同的。 9.柏氏矢量就是滑移矢量。 10.位错可定义为柏氏回路不闭合的一种缺陷,或说:柏氏矢量不为0的缺陷。 11.线缺陷通常指位错,层错和孪晶。 12实际金属中都存在着点缺陷,即使在热力学平衡状态下也是如此。 三选择题 1.经过1/2,1/2,1/2之[102]方向,也经过。 (a) 1,.0,2, (b) 1/2,0,1, (c) –1,0,-2, (d) 0, 0,0, (e) 以上均不是 2. 含有位置0,0,1之(112)平面也包含位置。 (a)1,0,0, (b)0,0,1/2, (c)1,0,1/2。 3.固体中晶体与玻璃体结构的最大区别在于。 (a)均匀性(b)周期性排列(c)各向异性(d)有对称性 4.晶体微观结构所特有的对称元素,除了滑移面外,还有 (a)回转轴(b)对称面(c)螺旋轴(d)回转-反映轴 5.按等径球体密堆积理论,最紧密的堆积形式是。 (a)bcc; (b)fcc; (c)hcp 6.在MgO离子化合物中,最可能取代化合物中Mg2+的正离子(已知各正离子半径 (nm)分别是:(Mg2+)0.066、(Ca2+)0.099、(Li+)0.066、(Fe2+)0.074)是_(c)____。 (a)Ca2+; (b)Li+; (c)Fe2+ 7.下对晶体与非晶体描述正确的是:

《材料科学基础》总复习(完整版)

《材料科学基础》上半学期容重点 第一章固体材料的结构基础知识 键合类型(离子健、共价健、金属健、分子健力、混合健)及其特点;键合的本质及其与材料性能的关系,重点说明离子晶体的结合能的概念; 晶体的特性(5个); 晶体的结构特征(空间格子构造)、晶体的分类; 晶体的晶向和晶面指数(米勒指数)的确定和表示、十四种布拉维格子; 第二章晶体结构与缺陷 晶体化学基本原理:离子半径、球体最紧密堆积原理、配位数及配位多面体; 典型金属晶体结构; 离子晶体结构,鲍林规则(第一、第二);书上表2-3下的一段话;共价健晶体结构的特点;三个键的异同点(举例); 晶体结构缺陷的定义及其分类,晶体结构缺陷与材料性能之间的关系(举例); 第三章材料的相结构及相图 相的定义 相结构 合金的概念:

固溶体 置换固溶体 (1)晶体结构 无限互溶的必要条件—晶体结构相同 比较铁(体心立方,面心立方)与其它合金元素互溶情况(表3-1的说明) (2)原子尺寸:原子半径差及晶格畸变; (3)电负性定义:电负性与溶解度关系、元素的电负性及其规律;(4)原子价:电子浓度与溶解度关系、电子浓度与原子价关系;间隙固溶体 (一)间隙固溶体定义 (二)形成间隙固溶体的原子尺寸因素 (三)间隙固溶体的点阵畸变性 中间相 中间相的定义 中间相的基本类型: 正常价化合物:正常价化合物、正常价化合物表示方法 电子化合物:电子化合物、电子化合物种类 原子尺寸因素有关的化合物:间隙相、间隙化合物 二元系相图: 杠杆规则的作用和应用; 匀晶型二元系、共晶(析)型二元系的共晶(析)反应、包晶(析)

型二元系的包晶(析)反应、有晶型转变的二元系相图的特征、异同点; 三元相图: 三元相图成分表示方法; 了解三元相图中的直线法则、杠杆定律、重心定律的定义; 第四章材料的相变 相变的基本概念:相变定义、相变的分类(按结构和热力学以及相变方式分类); 按结构分类:重构型相变和位移型相变的异同点; 马氏体型相变:马氏体相变定义和类型、马氏体相变的晶体学特点,金属、瓷中常见的马氏体相变(举例)(可以用许教授提的一个非常好的问题――金属、瓷马氏体相变性能的不同――作为题目) 有序-无序相变的定义 玻璃态转变:玻璃态转变、玻璃态转变温度、玻璃态转变点及其黏度按热力学分类:一级相变定义、特点,属于一级相变的相变;二级相变定义、特点,属于二级相变的相变; 按相变方式分类:形核长大型相变、连续型相变(spinodal相变)按原子迁动特征分类:扩散型相变、无扩散型相变

《材料科学基础》教学教案

《材料科学基础》教学教案 导论 一、材料科学的重要地位 生产力发展水平,时代发展的标志 二、各种材料概况 金属材料 陶瓷材料 高分子材料 电子材料、光电子材料和超导材料 三、材料性能与内部结构的关系 原子结构、结合键、原子的排列方式、显微组织 四、材料的制备与加工工艺对性能的影响 五、材料科学的意义

第一章材料结构的基本知识 §1-1 原子结构 一、原子的电子排列 泡利不相容原理 最低能量原理 二、元素周期表及性能的周期性变化 §1-2 原子结合键 一、一次键 1.离子键 2.共价键 3.金属键 二、二次键 1.范德瓦尔斯键 2.氢键 三、混合键 四、结合键的本质及原子间距 双原子模型 五、结合键与性能 §1-3 原子排列方式

一、晶体与非晶体 二、原子排列的研究方法 §1-4 晶体材料的组织 一、组织的显示与观察 二、单相组织 等轴晶、柱状晶 三、多相组织 §1-5 材料的稳态结构与亚稳态结构稳态结构 亚稳态结构 阿累尼乌斯方程

第二章材料中的晶体结构 §2-1 晶体学基础 一、空间点阵和晶胞 空间点阵,阵点(结点) 晶格、晶胞 坐标系 二、晶系和布拉菲点阵 7个晶系 14个布拉菲点阵 表2-1 三、晶向指数和晶面指数 1.晶向指数 确定方法,指数含义,负方向,晶向族2.晶面指数 确定方法,指数含义,负方向,晶向族3.六方晶系的晶向指数和晶面指数 确定方法,换算 4.晶面间距 密排面间距大 5.晶带 相交和平行于某一晶向直线的所有晶面的组合 晶带定律:hu+kv+lw=0

●晶向指数和晶面指数确定练习,例题 §2-2 纯金属的晶体结构 一、典型金属晶体结构 体心立方bcc 面心立方fcc 密排六方hcp 1.原子的堆垛方式 面心立方:ABCABCABC—— 密排六方:ABABAB—— 2.点阵常数 3.晶胞中的原子数 4.配位数和致密度 晶体结构中任一原子周围最邻近且等距离的原子数晶体结构中原子体积占总体积的百分数 5.晶体结构中的间隙 四面体间隙,八面体间隙 二、多晶型性 α-Fe, γ-Fe, δ-Fe 例: 碳在γ-Fe 中比在α-Fe中溶解度大

材料科学基础上复习题库

简答题 1?空间点阵与晶体点阵有何区别?晶体点阵也称晶体结构,是指原子的具体排列;而空间点阵则是忽略了原子的体积,而把它们抽象为纯几何点。 2?金属的3种常见晶体结构中,不能作为一种空间点阵的是哪种结构?密排六方结构。 3?原子半径与晶体结构有关。当晶体结构的配位数降低时原子半径如何变化?原子半径发生 收缩。这是因为原子要尽量保持自己所占的体积不变或少变,原子所占体积2人=原子的体积(4/3 n3r间隙体积),当晶体结构的配位数减小时,即发生间隙体积的增加,若要维持上述方程的平衡,则原子半径必然发生收缩。 4?在晶体中插入柱状半原子面时能否形成位错环?不能。因为位错环是通过环内晶体发生滑 移、环外晶体不滑移才能形成。 5?计算位错运动受力的表达式为,其中是指什么?外力在滑移面的滑移方向上的分切应力。6?位错受力后运动方向处处垂直于位错线,在运动过程中是可变的,晶体作相对滑动的方向 应是什么方向?始终是柏氏矢量方向。 7. 位错线上的割阶一般如何形成?位错的交割。 8?界面能最低的界面是什么界面?共格界面。 9?小角度晶界都是由刃型位错排成墙而构成的”这种说法对吗?否,扭转晶界就由交叉的 同号螺型位错构成 10.为什么只有置换固熔体的两个组元之间才能无限互溶,而间隙固熔体则不能?这是因为形成固熔体时,熔质原子的熔入会使熔剂结构产生点阵畸变,从而使体系能量升高。熔质与熔剂原子尺寸相差越大,点阵畸变的程度也越大,则畸变能越高,结构的稳定性越低,熔解度越小。一般来说,间隙固熔体中熔质原子引起的点阵畸变较大,故不能无限互溶,只能有 限熔解。 综合题 1. 作图表示立方晶体的(123) ( 0 -1 -2) (421)晶面及卜102]卜211][346]晶向。 2. 写出立方晶体中晶向族<100>, <110>, <111>等所包括的等价晶向。 3. 写出立方晶体中晶面族{100}, {110}, {111}, {112}等所包括的等价晶面。 4. 总结3种典型的晶体结构的晶体学特征。 5. 在立方晶系中画出以[001]为晶带轴的所有晶面。 6. 面心立方晶体的(100),(110),(111)等晶面的面间距和面密度,并指出面间距最大的面。 7. Ni的晶体结构为面心立方结构,其原子半径为r =0.1243求Ni的晶格常数和密度。 8. Mo的晶体结构为体心立方结构,其晶格常数a=0.3147nm,试求Mo的原子半径r。 9. 在Fe中形成1mol空位的能量为104. 67kJ,试计算从20C升温至850C时空位数目增加多少倍? 10. 判断下列位错反应能否进行。 1) a/2[10-1]+a/6卜121]宀a/3[11-1] 2) a[100]宀a/2[101]+a/2[10-1] 3) a/3[112]+a/2[111] 宀a/6{1]1 4) a[100] a/2[111]+a/2[1-1-1] 11. 若面心立方晶体中有b=a/2[-101]的单位位错及b=a/6[12-1]的不全位错,此二位错相遇 产生位错反应。 1) 问此反应能否进行?为什么? 2) 写出合成位错的柏氏矢量,并说明合成位错的类型。 12. 已知柏氏矢量b=0.25nm,如果对称倾侧晶界的取向差=1及10°求晶界上位错之间的距 离。从计算结果可得到什么结论? 13. ①计算fee和bee晶体中四面体间隙及八面体间隙的大小(用原子半径尺表示),并注明间

材料科学基础 复习题及部分答案

单项选择题: 第1章原子结构与键合 1.高分子材料中的C-H化学键属于。 (A)氢键(B)离子键(C)共价键 2.属于物理键的就是。 (A)共价键(B)范德华力(C)离子键 3.化学键中通过共用电子对形成的就是。 (A)共价键(B)离子键(C)金属键 第2章固体结构 4.以下不具有多晶型性的金属就是。 (A)铜(B)锰(C)铁 5.fcc、bcc、hcp三种单晶材料中,形变时各向异性行为最显著的就是。 (A)fcc (B)bcc (C)hcp 6.与过渡金属最容易形成间隙化合物的元素就是。 (A)氮(B)碳(C)硼 7.面心立方晶体的孪晶面就是。 (A){112} (B){110} (C){111} 8.以下属于正常价化合物的就是。 (A)Mg2Pb (B)Cu5Sn (C)Fe3C 第3章晶体缺陷 9.在晶体中形成空位的同时又产生间隙原子,这样的缺陷称为。 (A)肖特基缺陷(B)弗仑克尔缺陷(C)线缺陷 10.原子迁移到间隙中形成空位-间隙对的点缺陷称为。 (A)肖脱基缺陷(B)Frank缺陷(C)堆垛层错 11.刃型位错的滑移方向与位错线之间的几何关系就是? (A)垂直(B)平行(C)交叉 12.能进行攀移的位错必然就是。 (A)刃型位错(B)螺型位错(C)混合位错 13.以下材料中既存在晶界、又存在相界的就是 (A)孪晶铜(B)中碳钢(C)亚共晶铝硅合金 14.大角度晶界具有____________个自由度。 (A)3 (B)4 (C)5 第4章固体中原子及分子的运动 15.菲克第一定律描述了稳态扩散的特征,即浓度不随变化。 (A)距离(B)时间(C)温度 16.在置换型固溶体中,原子扩散的方式一般为。 (A)原子互换机制(B)间隙机制(C)空位机制 17.固体中原子与分子迁移运动的各种机制中,得到实验充分验证的就是 (A)间隙机制(B)空位机制(C)交换机制 18.原子扩散的驱动力就是。(4、2非授课内容) (A)组元的浓度梯度(B)组元的化学势梯度(C)温度梯度 19.A与A-B合金焊合后发生柯肯达尔效应,测得界面向A试样方向移动,则。 (A)A组元的扩散速率大于B组元 (B)B组元的扩散速率大于A组元 (C)A、B两组元的扩散速率相同 20.下述有关自扩散的描述中正确的为。

材料科学基础考研经典题目doc资料

材料科学基础考研经 典题目

16.简述金属固态扩散的条件。 答:⑴扩散要有驱动力——热力学条件,化学势梯度、温度、应力、电场等。 ⑵扩散原子与基体有固溶性——前提条件;⑶足够高温度——动力学条件;⑷足够长的时间——宏观迁移的动力学条件 17. 何为成分过冷?它对固溶体合金凝固时的生长形貌有何影响? 答:成分过冷:在合金的凝固过程中,虽然实际温度分布一定,但由于液相中溶质分布发生了变化,改变了液相的凝固点,此时过冷由成分变化与实际温度分布这两个因素共同决定,这种过冷称为成分过冷。成分过冷区的形成在液固界面前沿产生了类似负温度梯度的区域,使液固界面变得不稳定。当成分过冷区较窄时,液固界面的不稳定程度较小,界面上偶然突出部分只能稍微超前生长,使固溶体的生长形态为不规则胞状、伸长胞状或规则胞状;当成分过冷区较宽时,液固界面的不稳定程度较大,界面上偶然突出部分较快超前生长,使固溶体的生长形态为胞状树枝或树枝状。所以成分过冷是造成固溶体合金在非平衡凝固时按胞状或树枝状生长的主要原因。 18.为什么间隙固溶体只能是有限固溶体,而置换固溶体可能是无限固溶体? 答:这是因为当溶质原子溶入溶剂后,会使溶剂产生点阵畸变,引起点阵畸变能增加,体系能量升高。间隙固溶体中,溶质原子位于点阵的间隙中,产生的点阵畸变大,体系能量升高得多;随着溶质溶入量的增加,体系能量升高到一定程度后,溶剂点阵就会变得不稳定,于是溶质原子便不能再继续溶解,所以间隙固溶体只能是有限固溶体。而置换固溶体中,溶质原子位于溶剂点阵的阵点上,产生的点阵畸变较小;溶质和溶剂原子尺寸差别越小,点阵畸变越小,固溶度就越大;如果溶质与溶剂原子尺寸接近,同时晶体结构相同,电子浓度和电负性都有利的情况下,就有可能形成无限固溶体。 19.在液固相界面前沿液体处于正温度梯度条件下,纯金属凝固时界面形貌如何?同样 条件下,单相固溶体合金凝固的形貌又如何?分析原因

完整版材料科学基础复习题

名词解释 1. 空间点阵:是表示晶体结构中质点周期性重复规律得几何图形. 2. 同素异构:是指某些元素在t和p变化时,晶体结构发生变化得特征. 3. 固溶体:当一种组分(溶剂)内溶解了其他组分(溶质)而形成的单一、均匀的晶态固体,其晶体结构保持溶剂组元的晶体结构时,这种相就称固溶体。 4. 电子浓度:固溶体中价电子数目e 与原子数目之比。 5. 间隙固溶体:溶质原子溶入溶剂间隙形成的固溶体 6. 晶胞: 能完全反映晶格特征得最小几何单元 7. 清洁表面:是指不存在任何吸附、催化反应、杂质扩散等物理化学效应得表面,这种表面的化学组成与体内相同,但周期结构可以不同于体内。 8. 润湿:是一种流体从固体表面置换另一种流体的过程。 9. 表面改性:是利用固体表面的吸附特性,通过各种表面处理来改变固体表面得结构和性质以适应各种预期要求。 10. 晶界:凡结构相同而取向不同的晶体相互接触,其接触面称为晶界。 11. 相平衡:一个多相系统中,在一定条件下,当每一相的生成速度与它的消失速度相等时,宏观上没有任何物质在相间传递,系统中每一个相的数量均不随时间而变化,这时系统便达到了相平衡。 12. 临界晶胚半径rk :新相可以长大而不消失的最小晶胚半径. 13.枝晶偏析: 固溶体非平衡凝固时不同时刻结晶的固相成分不同导致树枝晶内成分不均匀的现象(或树枝晶晶轴含高熔点组元较多,晶枝间低熔点组元较多的现象). 14. 扩散:由构成物质的微粒得热运动而产生得物质迁移现象。扩散的宏观表现为物质的定向输送。 15. 反应扩散: 在扩散中由于成分的变化,通过化学反应而伴随着新相的形成(或称有相变发生)的扩散过程称为“反应扩散”,也称为“相变扩散。 16. 泰曼温度:反应开始温度远低于反应物熔点或系统低共熔温度,通常相当于一种反应物开始呈现显著扩散作用的温度,此温度称为泰曼温度或烧结温度。 18. 相变:随自由能变化而发生的相的结构变化。 19. 什么是相律:表示材料系统相平衡得热力学表达式,具体表示系统自由能、组元数和相数之间得关系。 20. 二次再结晶:指少数巨大晶粒在细晶消耗时成核长大得过程,又称晶粒异常长大和晶粒不连续生长。 21. 均匀成核:组成一定,熔体均匀一相,在结晶温度下析晶,发生在整个熔体内部,析出物质组成与熔体一致。 22. 固溶强化:溶质原子加入到溶剂原子中形成固溶体,固溶体在 23. 相:化学成分相同,晶体结构相同并有界面与其他部分分开的均匀组成部分。 24. 过冷度: 实际开始结晶温度与理论结晶温度之间的差。 25. 固态相变:固态物质在温度、压力、电场等改变时,从一种组织结构转变成另一种组织结构。 26. 稳定分相:分相线和液相线相交(分相区在液相线上), 分相后两相均为热力学的稳定相。 27. 马氏体相变:一个晶体在外加应力的作用下通过晶体的一个分立体积的剪切作用以极迅速的速率而进行的相变。 28. 无扩散型固态相变:在相变过程中并不要求长程扩散,只需要原子作一些微量

《材料科学基础》总复习题

《材料科学基础》复习题 第1章原子结构与结合键 一、选择题 1、具有明显的方向性和饱和性。 A、金属键 B、共价键 C、离子键 2、以下各种结合键中,结合键能最大的是。 A、离子键、共价键 B、金属键 C、分子键 3、以下各种结合键中,结合键能最小的是。 A、离子键、共价键 B、金属键 C、分子键 4、以下关于结合键的性质与材料性能的关系中,是不正确的。 A、具有同类型结合键的材料,结合键能越高,熔点也越高。 B、具有离子键和共价键的材料,塑性较差。 C、随着温度升高,金属中的正离子和原子本身振动的幅度加大,导电率和导热率 都会增加。 二、填空题 1、构成陶瓷化合物的两种元素的电负性差值越大,则化合物中离子键结合的比例。 2、通常把平衡距离下的原子间的相互作用能量定义为原子的。 3、材料的结合键决定其弹性模量的高低,氧化物陶瓷材料以键为主,结合键故其弹性模量;金属材料以键为主,结合键故其弹性模量;高分子材料的分子链上是键,分子链之间是键,故其弹性模量。 第2章晶体结构(原子的规则排列) 一、名词解释 1、点阵 2、晶胞 3、配位数 4、同素异晶转变 5、组元 6、固溶体 7、置换固溶体 8、间隙固溶体 9、金属间化合物 10、间隙相 二、选择题 1、体心立方晶胞中四面体间隙的r B/r A和致密度分别为 A 0.414,0.68 B 0.225,0.68 C 0.291,0.68 2、晶体中配位数和致密度之间的关系是。 A、配位数越大,致密度越大 B、配位数越小,致密度越大 C、两者之间无直接关系 3、面心立方晶体结构的原子最密排晶向族为。

A <100> B、<111> C、<110> 4、立方晶系中,与晶面(011)垂直的晶向是。 A [011] B [100] C [101] 5、立方晶体中(110)和(211)面同属于晶带。 A [101] B[100] C [111] 6、金属的典型晶体结构有面心立方、体心立方和密排六方三种,它们的晶胞中原子数分别为: A、4;2;6 B、6;2;4 D、2;4;6 6、室温下,纯铁的晶体结构为晶格。 A、简单立方 B、体心立立 C、面心立方 7、组成固溶体的两组元完全互溶的必要条件是。 A、两组元的晶体结构相同 B、两组元的原子半径相同 C、两组元电负性相同 8. 若A、B两组元形成电子化合物,但是该化合物中A组元所占的质量分数超过了60%,则该相晶体结构。 A. 与A相同 B. 与B相同 C. 与A、B都不相同 9. CsCl是有序体心立方结构,它属于。 A 体心立方点阵 B 面心立方点阵 C 简单立方点阵 三、填空题 1、面心立方结构的晶格常数为a,单位晶胞原子数为、原子半径为 a ,配位数为,致密度为。 2、体心立方结构的晶格常数为a,原子半径为 a ,配位数为,致密度为。 3、下图中表示的晶向指数是,晶面指数是。 4、绝大多数金属的晶体结构都属于、和三种典型的紧密结构。 5、面心立方晶体的一个最密排面是,该面上的三个最密排方向分别为、、。 6、合金中的基本相结构有和两类 7、间隙相和间隙化合物主要受组元的因素控制。 8、 NaCl晶胞中Cl-离子作最紧密堆积,Na+填充面体空隙的100%,以(001)面心的一个球(Cl-离子)为例,属于这个球的八面体空隙数为,所以属于这个球的四面体空隙数为,正负离子配位数为_____,配位多面体之间共______连

无机材料科学基础教案

《无机材料科学基础》 绪论 1、材料的发展动向及本课程的重要地位; 2、本课程的特色及基本要求。 3、无机材料物理化学的科学内涵 4、无机材料物理化学的研究方法 5、参考文献 第一章结晶学基础 §1-1—§1-6内容在结晶学课程中讲授 §1-7 晶体化学基本原理 一、结晶化学定律(Goldschmidt——哥希密特定律) 1、数量关系 2、大小关系 3、极化性能 二、决定晶体结构的基本因素 (一)原子半径和离子半径 (二)球体紧密堆积原理 1、等径球的最紧密堆积及其空隙 (1)六方最紧密堆积 1)六方最紧密堆积方式 2)六方最紧密堆积特点 (2)面心立方最紧密堆积 1)立方最紧密堆积方法 2)立方最紧密堆积特点 (a)最紧密堆积的堆积系数 (b)紧密堆积中的空隙类型与数目 2、不等径球的堆积 一、配位数与配位多面体 1、配位数(CN) 2、配位多面体 二、离子极化 三、电负性(X) 四、鲍林规则(L.Pauling) (一)第一规则——配位多面体规则 1、第一规则的意义 2、配位数与临界半径比(极限半径比) (二)第二规则——电价规则(最重要的规则) 1、电价规则的意义——可确定负离子的CN或电价 2、可分析晶体结构是否稳定并分析结构中配位多面体的连接方式(三)第三规则—共顶、共面、共棱规则 (四)第四规则——岛式规则 (五)第五规则——节约规则

作业:P37 1-10 四面体键角109.28; 思考题: P37 1-7; 1-9; 第二章 晶体结构与结构缺陷 §2-1 典型结构类型 一、金刚石结构与石墨结构 (一)描述晶体结构的方法 1.点坐标法—描述结构基元的位置 2.投影法—也叫标高法。 3、球体紧密堆积法—反映质点的堆积特点和充填情况; 4.多面体的连接方式——对复杂的晶体结构,其质点数目多,用其他方法表示不易找出特点,而用此法则简单明了地描述其结构特点。 (二)金刚石结构 (三)石墨结构 金刚石是目前硬度最大的材料,石墨则是最软的材料。性质差异的原因是结构上的差异。 二、NaCl 型结构 NaCl 从化学式上说是属于AX 型化合物: (一)NaCl 型结构分析 NaC 晶体的空间群:Fm3m F ——表示布拉格点阵类型(面心立方) m ——表示对称面[在(001)面上有一对称面]; 3——对称轴[在(111)面上有一个三次轴; m ——表示倒转轴[在垂直于(110)方向有对称面) [2- =m] 1、从堆积方式上分析 2、Na +、Cl -在晶体中的位置分布规律 (二)具有NaCl 型结构的物质有32种 氧化物:MgO 、CaO 、SrO 、BaO 、MnO 、FeO 、CoO 、NiO 氮化物:TiN 、LaN 、TiC 、ScN 、CrN 、ZrN 这些物质其晶系、堆积方式、正负离子配位数、点阵类型均相同,仅晶格常数不同。 三、闪锌矿型结构——(ZnS -β) 1、立方型ZnS 结构分析 2、具有闪锌矿结构的晶体——有27种 四、纤锌矿型结构——(ZnS -α) 1、六方ZnS 结构分析 2、具有六方ZnS 结构的晶体——有23种如: BeO 、ZnO 、AlN 五、萤石型(CaF 2)结构 (一)萤石结构 1、萤石结构分析 2、结构特点 (1)内部空隙较大——1/2有立方体空隙是空的 (2)可看作是正离子作面心立方堆积,F-离子充填在四面体中;

(完整版)材料科学基础期末考试

期末总复习 一、名词解释 空间点阵:表示晶体中原子规则排列的抽象质点。 配位数:直接与中心原子连接的配体的原子数目或基团数目。 对称:物体经过一系列操作后,空间性质复原;这种操作称为对称操作。 超结构:长程有序固溶体的通称 固溶体:一种元素进入到另一种元素的晶格结构形成的结晶,其结构一般保持和母相一致。 致密度:晶体结构中原子的体积与晶胞体积的比值。 正吸附:材料表面原子处于结合键不饱和状态,以吸附介质中原子或晶体内部溶质原子达到平衡状态,当溶质原子或杂质原子在表面浓度大于在其在晶体内部的浓度时称为正吸附; 晶界能:晶界上原子从晶格中正常结点位置脱离出来,引起晶界附近区域内晶格发生畸变,与晶内相比,界面的单位面积自由能升高,升高部分的能量为晶界能; 小角度晶界:多晶体材料中,每个晶粒之间的位向不同,晶粒与晶粒之间存在界面,若相邻晶粒之间的位向差在10°~2°之间,称为小角度晶界; 晶界偏聚:溶质原子或杂质原子在晶界或相界上的富集,也称内吸附,有因为尺寸因素造成的平衡偏聚和空位造成的非平衡偏聚。 肖脱基空位:脱位原子进入其他空位或者迁移至晶界或表面而形成的空位。 弗兰克耳空位:晶体中原子进入空隙形而形成的一对由空位和间隙原子组成的缺陷。 刃型位错:柏氏矢量与位错线垂直的位错。 螺型位错:柏氏矢量与位错线平行的位错。 柏氏矢量:用来表征晶体中位错区中原子的畸变程度和畸变方向的物理量。 单位位错:柏氏矢量等于单位点阵矢量的位错 派—纳力:位错滑动时需要克服的周围原子的阻力。 过冷:凝固过程开始结晶温度低于理论结晶温度的现象。 过冷度:实际结晶温度和理论结晶温度之间的差值。 均匀形核:在过冷的液态金属中,依靠金属本身的能量起伏获得成核驱动力的形核过程。 过冷度:实际结晶温度和理论结晶温度之间的差值。 形核功:形成临界晶核时,由外界提供的用于补偿表面自由能和体积自由能差值的能量。 马氏体转变:是一种无扩散型相变,通过切变方式由一种晶体结构转变另一种结构,转变过程中,表面有浮凸,新旧相之间保持严格的位向关系。或者:由奥氏体向马氏体转变的

材料科学基础考研经典题目教学内容

16.简述金属固态扩散的条件。 答:⑴扩散要有驱动力——热力学条件,化学势梯度、温度、应力、电场等。 ⑵扩散原子与基体有固溶性——前提条件;⑶足够高温度——动力学条件;⑷足够长的时间——宏观迁移的动力学条件 17. 何为成分过冷?它对固溶体合金凝固时的生长形貌有何影响? 答:成分过冷:在合金的凝固过程中,虽然实际温度分布一定,但由于液相中溶质分布发生了变化,改变了液相的凝固点,此时过冷由成分变化与实际温度分布这两个因素共同决定,这种过冷称为成分过冷。成分过冷区的形成在液固界面前沿产生了类似负温度梯度的区域,使液固界面变得不稳定。当成分过冷区较窄时,液固界面的不稳定程度较小,界面上偶然突出部分只能稍微超前生长,使固溶体的生长形态为不规则胞状、伸长胞状或规则胞状;当成分过冷区较宽时,液固界面的不稳定程度较大,界面上偶然突出部分较快超前生长,使固溶体的生长形态为胞状树枝或树枝状。所以成分过冷是造成固溶体合金在非平衡凝固时按胞状或树枝状生长的主要原因。 18. 为什么间隙固溶体只能是有限固溶体,而置换固溶体可能是无限固溶体? 答:这是因为当溶质原子溶入溶剂后,会使溶剂产生点阵畸变,引起点阵畸变能增加,体系能量升高。间隙固溶体中,溶质原子位于点阵的间隙中,产生的点阵畸变大,体系能量升高得多;随着溶质溶入量的增加,体系能量升高到一定程度后,溶剂点阵就会变得不稳定,于是溶质原子便不能再继续溶解,所以间隙固溶体只能是有限固溶体。而置换固溶体中,溶质原子位于溶剂点阵的阵点上,产生的点阵畸变较小;溶质和溶剂原子尺寸差别越小,点阵畸变越小,固溶度就越大;如果溶质与溶剂原子尺寸接近,同时晶体结构相同,电子浓度和电负性都有利的情况下,就有可能形成无限固溶体。 19. 在液固相界面前沿液体处于正温度梯度条件下,纯金属凝固时界面形貌如何?同样条件下,单相 固溶体合金凝固的形貌又如何?分析原因 答:正的温度梯度指的是随着离开液—固界面的距离Z 的增大,液相温度T 随之升高的情况,即0>dZ dT 。在这种条件下,纯金属晶体的生长以接近平面状向前推移,这是由于温度梯度是正的,当界面上偶尔有凸起部分而伸入温度较高的液体中时,它的生长速度就会减慢甚至停止,周围部分的过冷度较凸起部分大,从而赶上来,使凸起部分消失,这种过程使液—固界面保持稳定的平面形状。固溶体合金凝固时会产生成分过冷,在液体处于正的温度梯度下,相界面前沿的成分过冷区呈现月牙形,其大小与很多因素有关。此时,成分过冷区的特性与纯金属在负的温度梯度下的热过冷非常相似。可以按液固相界面前沿过冷区的大小分三种情况讨论:⑴当无成分过冷区或成分过冷区较小时,界面不可能出现较大的凸起,此时平界面是稳定的,合金以平面状生长,形成平面晶。⑵当成分过冷区稍大时,这时界面上凸起的尖部将获得一定的过冷度,从而促进了凸起进一步向液体深处生长,考虑到界面的力学平衡关系,平界面变得不稳定,合金以胞状生长,形成胞状晶或胞状组织。⑶当成分过冷区较大时,平界面变得更加不稳定,界面上的凸起将以较快速度向液体深处生长,形成一次轴,同时在一次轴的侧向形成二次轴,以此类推,因此合金以树枝状生长,最终形成树枝晶。 20. 纯金属晶体中主要的点缺陷类型是什么?试述它们可能产生的途径? 答:纯金属晶体中,点缺陷的主要类型是空位、间隙原子、空位对及空位与间隙原子对等。产生的途径:⑴依靠热振动使原子脱离正常点阵位置而产生。空位、间隙原子或空位与间隙原子对都可由热激活而形成。这种缺陷受热的控制,它的浓度依赖于温度,随温度升高,其平衡态的浓度亦增高。⑵冷加工时由于位错间有交互作用。在适当条件下,位错交互作用的结果能产生点缺陷,如带割阶的位错运动会放出空位。⑶辐照。高能粒子(中子、α粒子、高速电子)轰击金属晶体时,点阵中的原子由于粒子轰击而离开原来位置,产生空位或间隙原子。 21. 简述一次再结晶与二次再结晶的驱动力,并如何区分冷热加工?动态再结晶与静态再结晶后的组 织结构的主要区别是什么? 答:一次再结晶的驱动力是基体的弹性畸变能,而二次再结晶的驱动力是来自界面能的降低。再结晶温

《材料科学与工程基础》教案.doc

川大学教案【理、工科】

掌握疲劳 强度的概 念 4.1.8.3疲劳极限和疲劳强度

图 4-49 难点 了解并理 解疲劳断 裂机理 高分了材料宏观疲劳断裂过程:

2()

DTA ——差热分析 Fig 17.2 图 4-51 难点 (2)与温度T 相关 T —Tg Cp 发生突变 DSC ——示差扫描量热仪 测 试原 理示意图。 比热容与温度 比热容与相变 一级相变,二级相变 3. 比热容(C P )或Cv 定义:IKg 质量的固体(或液体)升高(或降低)PC 时,所增加 (或减 少)的(振动能量)热量。固体多用Cp 。单位: J - mol'1 - K 」。 Cp 〉 Cv 。 比热=热容/原子量,单位J ?Kg-I ?K 1 比热容的大小:主要取决于化学结构 等容热容 内能对温度的曲线上的斜率等压热容:嬉对温度的曲线 上的斜率 同体热容理论 经典理论 量了理论 原子的振动---晶格的振动 谐振了 随机振动 德拜模型 金属C P <1, 容易加热、容易冷却。单原子 晶体24.9;银24.3;铝 25.1。 银 C P =0.25 Fe C P =0.50 热容小,很快冷 要点 区分:热 容和比热 Fig 17.1 高分子 C P 1.0?2.0 例 / HDPE LDPE PS 天然橡胶 PVC 环氧树脂 热容大 2.31 1.90 1.20 1.92 1.05 1.05 影响高分了比热容Cp 的因素 (1)分了链柔顺性 温度的升高是由于分子过 其间内摩擦引起的,柔性 链,运动单元小内摩擦小, 反上升慢,热高量大,热 能动能 难点:理解 热容的宏 观效应,及 影响因素

材料科学基础2复习题及参考答案

材料科学基础2复习题及部分参考答案 一、名词解释 1、再结晶:指经冷变形的金属在足够高的温度下加热时,通过新晶粒的形核及长大,以无畸变的等轴晶粒取代变形晶 粒的过程。 2、交滑移:在晶体中,出现两个或多个滑移面沿着某个共同的滑移方向同时或交替滑移。 3、冷拉:在常温条件下,以超过原来屈服点强度的拉应力,强行拉伸聚合物,使其产生塑性变形以达到提高其屈服点 强度和节约材料为目的。(《笔记》聚合物拉伸时出现的细颈伸展过程。) 4、位错:指晶体材料的一种内部微观缺陷,即原子的局部不规则排列(晶体学缺陷)。(《书》晶体中某处一列或者若 干列原子发生了有规律的错排现象) 5、柯氏气团:金属内部存在的大量位错线,在刃型位错线附近经常会吸附大量的异类溶质原子(大小不同吸附的位 置有差别),形成所谓的“柯氏气团”。(《书》溶质原子与位错弹性交互作用的结果,使溶质原子趋于聚集在位错周围,以减小畸变,降低体系的能量,使体系更加稳定。) 6、位错密度:单位体积晶体中所含的位错线的总长度或晶体中穿过单位截面面积的位错线数目。 7、二次再结晶:晶粒的不均匀长大就好像在再结晶后均匀、细小的等轴晶粒中又重新发生了再结晶。 8、滑移的临界分切应力:滑移系开动所需要的最小分切应力。(《书》晶体开始滑移时,滑移方向上的分切应力。) 9、加工硬化:金属材料在再结晶温度以下塑性变形时强度和硬度升高,而塑性和韧性降低的现象,又称冷作硬 化。(《书》随塑性变形的增大,塑性变形抗力不断增加的现象。) 10、热加工:金属铸造、热扎、锻造、焊接和金属热处理等工艺的总称。(《书》使金属在再结晶温度以上发生加 工变形的工艺。) 11、柏氏矢量:是描述位错实质的重要物理量。反映出柏氏回路包含的位错所引起点阵畸变的总积累。(《书》揭 示位错本质并描述位错行为的矢量。)反映由位错引起的点阵畸变大小的物理量。 12、多滑移:晶体的滑移在两组或者更多的滑移面(系)上同时进行或者交替进行。 13、堆垛层错:晶体结构层正常的周期性重复堆垛顺序在某二层间出现了错误,从而导致的沿该层间平面(称为 层错面)两侧附近原子的错排的一种面缺陷。 14、位错的应变能:位错的存在引起点阵畸变,导致能量增高,此增量称为位错的应变能。 15、回复:发生形变的金属或合金在室温或不太高的温度下退火时,金属或合金的显微组织几乎没有变化,然而性能 却有程度不同的改变,使之趋近于范性形变之前的数值的现象。(《书》指冷变形金属加热时,尚未发生光学显微组织变化前(即再结晶前)的微观结构及性能的变化过程。) 16、全位错:指伯氏矢量为晶体点阵的单位平移矢量的位错。 17、弗兰克尔空位:当晶体中的原子由于热涨落而从格点跳到间隙位置时,即产生一个空位和与其邻近的一个间 隙原子,这样的一对缺陷——空位和间隙原子,就称为弗兰克尔缺陷。(《书》存在能量起伏的原子摆脱周围原子的约束而跳离平衡位置进入点阵的间隙中所形成的空位(原子尺度的空洞)。) 18、层错能:单位面积层错所增加的能量。(《书》产生单位面积层错所需要的能量。) 19、表面热蚀沟:金属长时间加热时,与表面相交处因张力平衡而形成的热蚀沟。(《书》金属在高温下长时间加热时, 晶界与金属表面相交处为了达到表面张力间的平衡,通过表面扩散产生的热蚀沟。) 20、动态再结晶:金属在热变形过程中发生的再结晶。 二、填空题 1、两个平行的同号螺位错之间的作用力为排斥力,而两个平行的异号螺位错之间的作用力为吸引力。 2、小角度晶界能随位向差的增大而增大;大角度晶界能与位向差无关。 3、柏氏矢量是一个反映由位错引起的点阵畸变大小的物理量;该矢量的模称为位错强度。 4、金属的层错能越低,产生的扩展位错的宽度越宽,交滑移越难进行。 5、螺型位错的应力场有两个特点,一是没有正应力分量,二是径向对称分布。 6、冷拉铜导线在用作架空导线时,应采用去应力退火,而用作电灯花导线时,则应采用再结晶退火。 7、为了保证零件具有较高的力学性能,热加工时应控制工艺使流线与零件工作时受到的最大拉应力的方向一致,而与外加的切应力方向垂直。

相关主题
文本预览
相关文档 最新文档