当前位置:文档之家› 后张法20米简支梁计算书

后张法20米简支梁计算书

后张法20米简支梁计算书
后张法20米简支梁计算书

预应力混凝土公路桥梁通用图设计成套技术

通用图设计计算书

20m简支装配式后张法预应力混凝土空心板配束计算(手算)

(高速公路和一级公路)

设计计算人:日期:

复核核对人:日期:

单位审核人:日期:

项目负责人:日期:

编制单位:湖南省交通规划勘察设计院

编制时间:二○○六年三月

目录

1 计算依据与基础资料 (1)

1.1 标准及规范 (1)

1.1.1 标准 (1)

1.1.2 规范 (1)

1.1.3 参考资料 (1)

1.2 主要材料 (1)

1.3 设计要点 (2)

2 横断面布置 (2)

2.1 横断面布置图 (2)

2.2 预制板截面尺寸 (3)

3 汽车荷载横向分布系数、冲击系数的计算 (3)

3.1 汽车荷载横向分布系数计算 (3)

3.1.1 跨中横向分布系数 (3)

3.1.2 支点横向分布系数 (5)

3.1.3 车道折减系数 (5)

3.2 汽车荷载冲击系数计算 (5)

3.2.1汽车荷载纵向整体冲击系数 (5)

3.2.2 汽车荷载的局部加载冲击系数 (6)

4 作用效应组合 (6)

4.1 作用的标准值 (6)

4.1.1 永久作用标准值 (6)

4.1.2 汽车荷载效应标准值 (8)

4.2 作用效应组合 (13)

4.2.1 基本组合(用于结构承载能力极限状态设计) (13)

8m钢筋混凝土空心板简支梁桥上部结构计算书完整版

8m钢筋混凝土空心板简支梁桥 上部结构计算书 7.1设计基本资料 1.跨度和桥面宽度 标准跨径:8m(墩中心距) 计算跨径:7.6m 桥面宽度:净7m(行车道)+2×1.5m(人行道) 2技术标准 设计荷载:公路-Ⅱ级,人行道和栏杆自重线密度按照单侧8kN/m计算,人群荷载取3kN/m2 环境标准:Ⅰ类环境 设计安全等级:二级 3主要材料 混凝土:混凝土空心板和铰接缝采用C40混凝土;桥面铺装采用0.04m 沥青混凝土,下层为0.06m厚C30混凝土。沥青混凝土重度按23kN/m3计算,混凝土重度按25kN/m3计算。 钢筋:采用R235钢筋、HRB335钢筋 2.构造形式及截面尺寸 本桥为c40钢筋混凝土简支板,由8块宽度为1.24m的空心板连接而成。 桥上横坡为双向2%,坡度由下部构造控制

空心板截面参数:单块板高为0.4m ,宽1.24m ,板间留有1.14cm 的缝隙用于 灌注砂浆 C40混凝土空心板抗压强度标准值Mpa f ck 8.26=,抗压强度设计值 Mpa f cd 4.18=,抗拉强度标准值Mpa f tk 4.2=,抗拉强度设计值Mpa f td 65.1=, c40混凝土的弹性模量为Mpa E C 41025.3?= 图1 桥梁横断面构造及尺寸图式(单位:cm ) 7.3空心板截面几何特性计算 1.毛截面面积计算 如图二所示 2)-4321?+++=S S S S S A (矩形 2 15.125521cm S =??= 2 cm 496040124=?=矩形S 225.1475)5.245(cm S =?+= 2 35.2425.2421cm S =??=

预应力张拉伸长量计算书(后张法)

、钢绞线伸长量计算 1. 计算依据 ① 《公路桥涵施工技术规范》中公式(12.8.3-1); ② 《公路桥涵施工技术规范》中《附录 G-8预应力筋平均张拉力的计算》; ③ 《海滨大道北段二期(疏港三线立交?蛏头沽)设计图纸》 。 2 ?计算公式: 其中:x —从张拉端至计算截面的孔道长度( m ),取张拉端到跨中孔道长度; k —孔道每米局部偏差对摩擦的影响系数,本工程采用塑料波纹管,取 0.0015 ; s —预应力筋与孔道壁的摩擦系数,本工程采用 15.2mm 高强低松弛钢绞线及塑料波纹管 孔道,根据图纸取 0.17 ; P —预应力筋张拉端的张拉力(N ); A p —预应力筋的截面面积(mm ); con —张拉控制应力(MPa ,根据图纸取 0.73 f pk ; P p —预应力筋平均张拉力(N ); L —预应力筋的长度(mr ),取张拉端到跨中钢绞线长度; P p L A p E p (12.8.3-1) P P P(1 e (kx )) kx (附录G-8) con A p

p —钢绞线弹性模量,本工程采用 15.2mm 高强低松弛钢绞线,根据试验取 5 1.91 10 MPa (钢绞线弹性模量检测报告附后 ) L —理论伸长值(mr ) 3?伸长值计算 ① 连续端N1 pk A p 0.73 1860 140 4 760368 N 741293 ? 97 17205 119.2mm 140 4 1.91 105 ③连续端N3 7412 74 68 1724 0 119.5mm 140 4 1.91 105 P P P(1 e (kx kx ) (0.0015 17.165 0.17 0.148353) ) )760368 (1 e ( ) ) 0.0015 17.165 0.17 0.148353 741316.02N P p L A p E p 741316。2 1716 5 119.0mm 140 4 1.91 105 ②连续端N2 con A p °.73f pk A pk A p 0.73 1860 140 4 760368 N P P P(1 e (kx kx ) (0.0015 17.205 0.17 0.148353)、 丿) 760368 (1 e _______ )) 0.148353 0.0015 17.205 0.17 741293.97N con A p 0.73 f pk A P p L A p E p P P con A p 0.73f pk A p 0.73 1860 140 4 760368 N 0.17 0.148353) ) 0.0015 17.24 0.17 0.148353 P(1 e (kx )) 760368 (1 e (0.001517.24 kx 741274.68 N P p L A p E p

简支梁设计计算

第四章 简支梁(板)桥设计计算 第一节 简支梁(板)桥主梁内力计算 对于简支梁桥的一片主梁,知道了永久作用和通过荷载横向分布系数求得的可变作用,就可按工程力学的方法计算主梁截面的内力(弯矩M 和剪力Q ),有了截面内力,就可按结构设计原理进行该主梁的设计和验算。 对于跨径在10m 以内的一般小跨径混凝土简支梁(板)桥,通常只需计算跨中截面的最大弯矩和支点截面及跨中截面的剪力,跨中与支点之间各截面的剪力可以近似地按直线规律变化,弯矩可假设按二次抛物线规律变化,以简支梁的一个支点为坐标原点,其弯矩变化规律即为: )(42max x l x l M M x -= (4-1) 式中:x M —主梁距离支点x 处的截面弯矩值; m ax M —主梁跨中最大设计弯矩值; l —主梁的计算跨径。 对于较大跨径的简支梁,一般还应计算跨径四分之一截面处的弯矩和剪力。如果主梁沿桥轴方向截面有变化,例如梁肋宽度或梁高有变化,则还应计算截面变化处的主梁内力。 一 永久作用效应计算 钢筋混凝土或预应力混凝土公路桥梁的永久作用,往往占全部设计荷载很大的比重(通常占60~90%),桥梁的跨径愈大,永久作用所占的比重也愈大。因此,设计人员要准确地计算出作用于桥梁上的永久作用。如果在设计之初通过一些近似途径(经验曲线、相近的标准设计或已建桥梁的资料等)估算桥梁的永久作用,则应按试算后确定的结构尺寸重新计算桥梁的永久作用。 在计算永久作用效应时,为简化起见,习惯上往往将沿桥跨分点作用的横隔梁重力、沿桥横向不等分布的铺装层重力以及作用于两侧人行道和栏杆等重力均匀分摊给各主梁承受。因此,对于等截面梁桥的主梁,其永久作用可简单地按均布荷载进行计算。如果需要精确计算,可根据桥梁施工情况,将人行道、栏杆、灯柱和管道等重力像可变作用计算那样,按荷载横向分布的规律进行分配。 对于组合式梁桥,应按实际施工组合的情况,分阶段计算其永久作用效应。 对于预应力混凝土简支梁桥,在施加预应力阶段,往往要利用梁体自重,或称先期永久作用,来抵消强大钢丝束张拉力在梁体上翼缘产生的拉应力。在此情况下,也要将永久作用分成两个阶段(即先期永久作用和后期永久作用)来进行计算。在特殊情况下,永久作用可能还要分成更多的阶段来计算。 得到永久作用集度值g 之后,就可按材料力学公式计算出梁内各截面的弯矩M 和剪力Q 。当永久作用分阶段计算时,应按各阶段的永久作用集度值g i 来计算主梁内力,以便进行内力或应力组合。 下面通过一个计算实例来说明永久作用效应的计算方法。 例4-1:计算图4-1 所示标准跨径为20m 、由5片主梁组成的装配式钢筋混凝土简支梁桥主梁的永久作用效应,已知每侧的栏杆及人行道构件的永久作用为m kN /5。 图4-1 装配式钢筋混凝土简支梁桥一般构造图(单位:cm )

midas简支梁桥计算书

1、模型简介 中梁模型图 弯矩 剪力

扭转(剪力最大) 扭转(扭转最大) 自振模态振型图

2、计算书 1. 设计规范 1.1. 公路工程技术标准(JTG B01-2003) 1.2. 公路桥涵设计通用规范(JTG D60-2004) 1.3. 公路钢筋混凝土及预应力混凝土桥涵设计规范(JTG D62-2004) 1.4. 公路桥涵地基与基础设计规范(JTG D63-2007) 1.5. 公路桥梁抗震设计细则(JTG/T B02-01-2008) 2.设计资料 2.1. 使用程序: MIDAS/Civil, Civil 2006 ( Release No. 1 ) 2.2. 截面设计内力: 3维 2.3. 构件类型: 全预应力 2.4. 公路桥涵的设计安全等级: 一级 2.5. 构件制作方法: 预制 3.主要材料指标 3.1. 混凝土 强度等级弹性模量 (MPa) 容重 (kN/m3) 线膨胀系数 标准值设计值 f ck (MPa) f tk (MPa) f cd (MPa) f td (MPa) C50 34500.00 25.00 1.000e-005 32.40 2.65 22.40 1.83 3.2. 预应力钢筋 预应力钢筋弹性模量 (MPa) 容重 (kN/m3) 线膨胀系数 f pk (MPa) f pd (MPa) f'pd (MPa) 预应力钢束195000.00 78.50 1.200e-005 1860.00 1260.00 390.00 3.3. 普通钢筋 普通钢筋弹性模量 (MPa) 容重 (kN/m3) f sk (MPa) f sd (MPa) f'sd (MPa) HRB335 200000.00 76.98 335.00 280.00 280.00 R235 210000.00 76.98 235.00 195.00 195.00 4.模型简介 4.1. 单元数量: 梁单元14 个 4.2. 节点数量: 15 个 4.3. 钢束数量: 3 个 4.4. 边界条件数量: 2 个 4.5. 施工阶段: 6 个 步骤名称 结构组边界组荷载组 激活钝化激活钝化激活钝化T梁预制结构组1 - 边界- 自重- 预应力N1 - - - - 预应力1 -

后张法预应力张拉计算书

后张法预应力张拉计算书 后张法预应力钢绞线在张拉过程中,主要受到以下两方面的因素影响:一是管道弯曲影响引起的摩擦力,二是管道偏差影响引起的摩擦力;两项因素导致钢绞线张拉时,锚下控制应力沿着管壁向跨中逐渐减小,因而每一段的钢绞线的伸长值也是不相同的。 1、计算公式 (1)预应筋伸长值ΔL的计算按照以下公式: ΔL= Pp×L Ap×Ep ΔL—各分段预应力筋的理论伸长值(mm); Pp—各分段预应力筋的平均张拉力(N); L—预应力筋的分段长度(mm); Ap—预应力筋的截面面积(mm2); Ep—预应力筋的弹性模量(Mpa); (2)《公路桥梁施工技术规范》(JTJ 041-2000)附录G-8中规定了Pp的计算公式 Pp=P×(1-e-(kx+μθ)) kx+μθ P—预应力筋张拉端的张拉力,将钢绞线分段计算后,为每分段的起点张 拉力,即为前段的终点张拉力(N); θ—从张拉端至计算截面曲线孔道部分切线的夹角之和,对于圆曲线, 为该段的圆心角,如果孔道在竖直面和水平面同时弯曲时,则θ为 双向弯曲夹角之矢量和。设水平角为α,竖直角为β,则θ=Arccos (cosα×cosβ)。 x—从张拉端至计算截面的孔道长度,分段后为每个分段长度。 k—孔道每束局部偏差对摩擦的影响系数(1/m),管道内全长均应考虑 该影响; μ—预应力筋与孔道壁之间的磨擦系数,只在管道弯曲部分考虑该系数 的影响。 注: a、钢绞线的弹性模量Ep是决定计算值的重要因素,它的取值是否正确,对计算预应力筋伸长值的影响较大。所以钢绞线在使用前必须进行检测试验,计算时按实测值Ep’进行计算。 b、 k和μ是后张法钢绞线伸长量计算中的两个重要的参数,其大小取决于多方面的因素:管道的成型方式、预应力筋的类型、表面特征是光滑的还是有波纹的、表面是否有锈斑,波纹管的布设是否正确,弯道位置及角度是否正确,成型管道内是否漏浆等,计算时根据设计图纸确定。 2、划分计算分段 2.1 工作长度:工具锚到工作锚之间的长度,Pp=千斤顶张拉力;

midas_civil简支梁模型计算

第一讲 简支梁模型的计算 工程概况 20 米跨径的简支梁,横截面如图 1-1 所示。 迈达斯建模计算的一般步骤 1- 理处 前 第五步:定义荷载工况 第六步:输入荷载第四步:定义边界条件 第三步:定义材料和截面 第二步:建立单元 第一步:建立结点

具体建模步骤 第 01 步:新建一个文件夹,命名为 Model01,用于存储工程文件。这里,在桌面的“迈达斯”文件夹下新建了它,目录为 C:\Documents and Settings\Administrator\桌面\迈达斯\模型 01。 第 02 步:启动 Midas ,程序界面如图 1-2 所示。 图 1-2 程序界面 第 03 步:选择菜单“文件(F)->新项目(N)”新建一个工程,如图 1-3 所示。

图 1-3 新建工程 第04 步:选择菜单“文件(F)->保存(S) ”,选择目录C:\Documents and Settings\Administrator\桌面\迈达斯\模型 01,输入工程名“简支梁.mcb”。如图 1-4 所示。 图 1-4 保存工程

第05 步:打开工程目录C:\Documents and Settings\Administrator\桌面\迈达斯\模型 01,新建一个 excel 文件,命名为“结点坐标”。在 excel 里面输入结点的 x,y,z 坐标值。如图 1-5 所示。 图 1-5 结点数据 第 06 步:选择树形菜单表格按钮“表格->结构表格->节点”,将excel 里面的数据拷贝到节点表格,并“ctrl+s”保存。如图 1-6 所示。

第四章简支梁设计计算

第四章 简支梁(板)桥设计计算 第一节 简支梁(板)桥主梁内力计算 对于简支梁桥的一片主梁,知道了永久作用和通过荷载横向分布系数求得的可变作用,就可按工程力学的方法计算主梁截面的内力(弯矩M 和剪力Q ),有了截面内力,就可按结构设计原理进行该主梁的设计和验算。 对于跨径在10m 以内的一般小跨径混凝土简支梁(板)桥,通常只需计算跨中截面的最大弯矩和支点截面及跨中截面的剪力,跨中与支点之间各截面的剪力可以近似地按直线规律变化,弯矩可假设按二次抛物线规律变化,以简支梁的一个支点为坐标原点,其弯矩变化规律即为: )(42 max x l x l M M x -= (4-1) 式中:x M —主梁距离支点x 处的截面弯矩值; m ax M —主梁跨中最大设计弯矩值; l —主梁的计算跨径。 对于较大跨径的简支梁,一般还应计算跨径四分之一截面处的弯矩和剪力。如果主梁沿桥轴方向截面有变化,例如梁肋宽度或梁高有变化,则还应计算截面变化处的主梁内力。 一 永久作用效应计算 钢筋混凝土或预应力混凝土公路桥梁的永久作用,往往占全部设计荷载很大的比重(通常占60~90%),桥梁的跨径愈大,永久作用所占的比重也愈大。因此,设计人员要准确地计算出作用于桥梁上的永久作用。如果在设计之初通过一些近似途径(经验曲线、相近的标准设计或已建桥梁的资料等)估算桥梁的永久作用,则应按试算后确定的结构尺寸重新计算桥梁的永久作用。 在计算永久作用效应时,为简化起见,习惯上往往将沿桥跨分点作用的横隔梁重力、沿桥横向不等分布的铺装层重力以及作用于两侧人行道和栏杆等重力均匀分摊给各主梁承受。因此,对于等截面梁桥的主梁,其永久作用可简单地按均布荷载进行计算。如果需要精确计算,可根据桥梁施工情况,将人行道、栏杆、灯柱和管道等重力像可变作用计算那样,按荷载横向分布的规律进行分配。 对于组合式梁桥,应按实际施工组合的情况,分阶段计算其永久作用效应。 对于预应力混凝土简支梁桥,在施加预应力阶段,往往要利用梁体自重,或称先期永久作用,来抵消强大钢丝束张拉力在梁体上翼缘产生的拉应力。在此情况下,也要将永久作用分成两个阶段(即先期永久作用和后期永久作用)来进行计算。在特殊情况下,永久作用可能还要分成更多的阶段来计算。 得到永久作用集度值g 之后,就可按材料力学公式计算出梁内各截面的弯矩M 和剪力Q 。当永久作用分阶段计算时,应按各阶段的永久作用集度值g i 来计算主梁内力,以便进行内力或应力组合。 下面通过一个计算实例来说明永久作用效应的计算方法。

简支梁桥的设计计算

简支梁桥的设计计算 1.车轮荷载在板上是如何分布的? 答:作用在桥面上的车轮荷载,与桥面的接触面近似于椭圆,但为了便于计算,通常把接触面看错矩形,作用在桥面上的车轮荷载,与桥面的接触面近似于椭圆,为便于计算,把此接触面看作的矩形。车轮荷载在桥面铺装层中呈450角扩散到行车道板上。 2.梁桥横向力计算时,杠杆法的基本原理和使用条件是什么? 答:杠杆法基本原理是忽略了主梁之间横向结构的联系作用,即假设桥面班在主梁上断开,把桥面板看作沿横向支承在主梁上的简支梁获简支单悬臂梁。 杠杆法的适用条件:(1)双肋式梁桥;(2)多梁式桥支点截面 3.杠杆法计算荷载横向分布系数的步骤是什么? 答:(1)绘制主梁的荷载反力影响线; (2)确定荷载的横向最不利的布置; (3)内插计算对应于荷载位置的影响线纵标ηi ; (4)计算主梁在车道荷载和人群荷载作用下的横向分布系数; 4.多跨连续单向板的内力计算时,计算弯矩和剪力有哪些需要注意的地方? 答: 1.弯矩首先计算出跨度相同的简支板在恒载和活载作用下的跨中弯矩M0,再乘以相应的修正系数,得支点、跨中截面的设计弯矩,弯矩修正系数可根据板厚t和梁肋高度h的比值(即主梁的抗扭能力的大小)来选用。 2.剪力计算单向板支点剪力时,一般不考虑板和主梁的弹性固结作用,荷载应尽量靠近梁肋边缘布置。计算跨径取用梁肋间的净跨径。考虑相应的有效工作宽度沿桥梁跨径方向的变化,计算出荷载强度q和q',将每米板宽承受的分布荷载分为矩形部分A1 和三角形部分A2 。对于跨内只有一个车轮荷载的情况,由恒载及活载引起的支点剪力Qs为:如行车道板的跨径内不只一个车轮进入时,需计及其它车轮的影响。 5.桥梁支座必须满足那些方面的要求? 答:(1)首先具有足够的承载力(包括恒载和活载引起的竖向力和水平力),以保证安全可靠地传递支座反力;

预应力张拉伸长量计算书(后张法)

一、钢绞线伸长量计算 1. 计算依据 ①《公路桥涵施工技术规范》中公式(12.8.3-1); ②《公路桥涵施工技术规范》中《附录G-8 预应力筋平均张拉力的计算》; ③《海滨大道北段二期(疏港三线立交~蛏头沽)设计图纸》。 2.计算公式: p p p E A L P L = ? (12.8.3-1) μθ μθ+-=+-kx e P P kx p ) 1()( (附录G-8) p con A P σ= 其中:x —从张拉端至计算截面的孔道长度(m ),取张拉端到跨中孔道长度; θ—从张拉端至计算截面曲线孔道部分切线的夹角之和(rad ),取8.5o即 0.148353rad; k —孔道每米局部偏差对摩擦的影响系数,本工程采用塑料波纹管,取0.0015; μ—预应力筋与孔道壁的摩擦系数,本工程采用s Φ15.2mm 高强低松弛钢绞线及塑料波纹 管孔道,根据图纸取0.17; P —预应力筋张拉端的张拉力(N ) ; p A —预应力筋的截面面积(mm 2);

con σ—张拉控制应力(MPa ),根据图纸取pk f 73.0; p P —预应力筋平均张拉力(N ); L —预应力筋的长度(mm ) ,取张拉端到跨中钢绞线长度; p E —钢绞线弹性模量,本工程采用s Φ15.2mm 高强低松弛钢绞线,根据试验取 51091.1?MPa ;(钢绞线弹性模量检测报告附后) L ?—理论伸长值(mm ) 。 3.伸长值计算 ①连续端N1 N A f A P p pk p con 7603684140186073.073.0=???===σ N e kx e P P kx P 02.741316148353 .017.0165.170015.0)1(760368)1()148353.017.0165.170015.0()(=?+?-?=+-=?+?-+-μθμθ mm E A L P L p p p 0.1191091.1414017165 02.7413165 =????= = ? ②连续端N2 N A f A P p pk p con 7603684140186073.073.0=???===σ N e kx e P P kx P 97.741293148353 .017.0205.170015.0)1(760368)1()148353.017.0205.170015.0()(=?+?-?=+-=?+?-+-μθμθ

midascivil简支梁模型计算

第一讲 简支梁模型的计算 1.1 工程概况 20 米跨径的简支梁,横截面如图 1-1 所示。 1.2 迈达斯建模计算的一般步骤 第七步:分析计算 后 处 理 第八步:查看结果 1.3 具体建模步骤 第 01 步:新建一个文件夹,命名为 Model01,用于存储工程文件。这里,在桌面的“迈达斯”文件夹下新建了它,目录为 C:\Documents and Settings\Administrator\桌面\迈达斯\模型 01。 第 02 步:启动 Midas Civil.exe ,程序界面如图 1-2 所示。 图 1-1 横截面 理 处 前 第五步:定义荷载工况 第六步:输入荷载 第四步:定义边界条件 第三步:定义材料和截面 第二步:建立单元 第一步:建立结点

图1-2 程序界面 第03 步:选择菜单“文件(F)->新项目(N)”新建一个工程,如图1-3 所示。 图1-3 新建工程 第04 步:选择菜单“文件(F)->保存(S) ”,选择目录C:\Documents and

Settings\Administrator\桌面\迈达斯\模型01,输入工程名“简支梁.mcb”。如图1-4 所示。 图1-4 保存工程 第05 步:打开工程目录C:\Documents and Settings\Administrator\桌面\迈达斯\模型01,新建一个excel 文件,命名为“结点坐标”。在excel 里面输入结点的x,y,z 坐标值。如图1-5 所示。 图 1-5 结点数据 第06 步:选择树形菜单表格按钮“表格->结构表格->节点”,将excel 里面的数据拷贝到节点表格,并“ctrl+s”保存。如图1-6 所示。

简支梁计算公式总汇

简支梁在各种荷载作用下跨中最大挠度计算公式: 均布荷载下的最大挠度在梁的跨中,其计算公式: Ymax = 5ql^4/(384EI). 式中: Ymax 为梁跨中的最大挠度(mm). q 为均布线荷载标准值(kn/m). E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2. I 为钢的截面惯矩,可在型钢表中查得(mm^4). 跨中一个集中荷载下的最大挠度在梁的跨中,其计算公式: Ymax = 8pl^3/(384EI)=1pl^3/(48EI). 式中: Ymax 为梁跨中的最大挠度(mm). p 为各个集中荷载标准值之和(kn). E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2. I 为钢的截面惯矩,可在型钢表中查得(mm^4). 跨间等间距布置两个相等的集中荷载下的最大挠度在梁的跨中,其计算公式: Ymax = 6.81pl^3/(384EI). 式中: Ymax 为梁跨中的最大挠度(mm). p 为各个集中荷载标准值之和(kn). E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2. I 为钢的截面惯矩,可在型钢表中查得(mm^4).

跨间等间距布置三个相等的集中荷载下的最大挠度,其计算公式: Ymax = 6.33pl^3/(384EI). 式中: Ymax 为梁跨中的最大挠度(mm). p 为各个集中荷载标准值之和(kn). E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2. I 为钢的截面惯矩,可在型钢表中查得(mm^4). 悬臂梁受均布荷载或自由端受集中荷载作用时,自由端最大挠度分别为的,其计算公式: Ymax =1ql^4/(8EI). ;Ymax =1pl^3/(3EI). q 为均布线荷载标准值(kn/m). ;p 为各个集中荷载标准值之和(kn). 你可以根据最大挠度控制1/400,荷载条件25kn/m以及一些其他荷载条件 进行反算,看能满足的上部荷载要求!

简支梁桥设计

桥梁工程课设——简支梁桥设计 1. 基本设计资料 1) 跨度和桥面宽度 (一) 标准跨径:35m (墩中心距)。 (二) 计算跨径:34.5m (三) 主梁全长:34.96m (四) 桥面宽度:净14m (行车道)+2×1m (人行道) 2) 技术标准 设计荷载:公路—I 级,人群荷载为23m KN 。 设计安全等级:一级。 3) 主要材料 (一) 混凝土:混凝土简支T 形梁及横梁采用C40混凝土,容重为3 26m KN ; 桥面铺装为厚0.065~0.17m 的防水混凝土,容重为325m KN 。 (二) 钢材:采用R235钢筋、HRB400钢筋。 4) 构造形式及截面尺寸(见图1-1和1-2) 如图所示,全桥共由9片主梁组成,单片T 形梁高为2m ,宽为1.6m ,桥上 横坡为双向1.5%,坡度由混凝土桥面铺装控制;设有五根横梁。 图1-1 桥梁横断面图

图1-2 主梁纵断面图 2. 主梁的荷载横向分布系数计算 1) 跨中荷载横向分布系数计算 如前所述,本例桥跨内设有5道横隔梁,具有可靠横向连接,且承重结构的宽跨比为:5.0464.05.3416≤==l B ,故可以按照修正的刚性横梁法来绘制横向影响线和计算横向分布系数c m 。 (一) 计算主梁的抗弯和抗扭惯性矩I 和T I 计算主梁截面的重心位置x 翼缘板厚按平均厚度计算,其平均板厚为 cm h 13)1610(2 1 1=+?=

则,cm x 8.7020 20013)20160(10020200213 13)20160(=?+?-??+? ?-= 主梁抗弯惯性矩I 为 4 23238.24294296)8.70100(2002020020121)2138.70(13)20160(13)20160(121cm I =? ?? ???-??+??+-??-+?-?=对于T 形梁截面,抗扭惯性矩可近似按下式计算: i i m i i T t b c I ∑==1 式中 i b ,i t ——单个矩形截面的宽度和高度; i c ——矩形截面抗扭刚度系数,由表2-1可以查的 T I 的计算过程及结果见表2-2 既得4310825.5m I T -?= (二) 计算抗扭修正系数β 对于本例,主梁间距相同,将主梁近似看成等截面,则得 9682.06.153243.01210 825.5425.05.34911 12113 22 2=??????+=+ = -∑E E a EI GI nl i T β (三) 按修正偏心压力法计算横向影响线竖坐标值

后张法预应力钢绞线伸长量的计算

后张法预应力钢绞线伸长量的计算作者:怡海风行 后张法预应力钢绞线伸长量的计算 与现场测量控制 预应力钢绞线施工时,采用张拉应力和伸长值双控,实际伸长值与理论伸长值误差不得超过6%,后张预应力技术一般用于预制大跨径简支连续梁、简支板结构,各种现浇预应力结构或块体拼装结构。预应力施工是一项技术性很强的工作,预应力筋张拉是预应力砼结构的关键工序,施工质量关系到桥梁的安全和人身安全,因此必须慎重对待。一般现行常接触到的预应力钢材主要:有预应力混凝土用钢绞线、PC光面钢丝、刻痕钢丝、冷拔低碳钢丝、精轧螺纹钢等材料。对于后张法预应力施工时孔道成型方法主要有:金属螺旋管、胶管抽芯、钢管抽芯、充气充水胶管抽芯等方法。本人接触多的是混凝土预应力钢绞线(PCstrand、1×7公称直径15,24mm,f pk=1860Mpa,270级高强底松弛),成孔方法多采用金属螺旋管成孔,本文就以此两项先决条件进行论述。 1 施工准备: 1.1 熟悉图纸:拿到施工图纸应先查阅施工说明中关于预应力钢绞线的规格,一般预应力钢束采用ASTMA416-270级低松弛钢绞线,其标准强度为f pk=1860Mpa,1×7公称直径 15,24mm,锚下控制力为Δk=0.75 f pk Mpa。 1.2 根据施工方法确定计算参数: 预应力管道成孔方法采用金属螺旋管成孔,查下表确定K、μ取值:表1 注:摘自《公路桥涵施工技术规范》(JTJ 041-2000)附录G-8 根据钢绞线试验结果取得钢绞线实际弹性模量Ep(一般为1.9~2.04×105Mpa)

1.3 材料检测: 金属螺旋管根据《公路桥涵施工技术规范》(JTJ 041-2000)附录G-7之要求检测; 锚具根据《公路桥梁预应力钢绞线用YM锚具、连接器规格系列》(JT/T 329.1-1997)及《公路桥梁预应力钢绞线用锚具、连接器试验方法及检验规则》(JT/T 329.2-1997)之要求检测; 钢绞线根据《预应力混凝土用钢绞线》GB/T5224-2003之要求检测 2 理论伸长量计算: 后张法预应力钢绞线在张拉过程中,主要受到以下两方面的因素影响:一是管道弯曲影响引起的摩擦力,二是管道偏差影响引起的摩擦力;两项因素导致钢绞线张拉时,锚下控制应力沿着管壁向跨中逐渐减小,因而每一段的钢绞线的伸长值也是不相同的。 2.1 计算公式: 《公路桥梁施工技术规范》(JTJ 041-2000)中关于预应筋伸长值ΔL的计算按照以下公式(1): ΔL= Pp×L Ap×Ep ΔL—各分段预应力筋的理论伸长值(mm); Pp—各分段预应力筋的平均张拉力(N); L—预应力筋的分段长度(mm); Ap—预应力筋的截面面积(mm2); Ep—预应力筋的弹性模量(Mpa); 《公路桥梁施工技术规范》(JTJ 041-2000)附录G-8中规定了Pp的计算公式(2): Pp=P×(1-e-(kx+μθ)) kx+μθ

后张法预应力钢绞线理论伸长量的计算

后张法预应力钢绞线理论伸长量的计算 一、计算公式: 1、《公路桥梁施工技术规范》(JTGT F50-2011)中关于预应筋伸长值ΔL的计算按照以下公式(1): ΔL= Pp×L Ap×Ep ΔL—各分段预应力筋的理论伸长值(mm); Pp—各分段预应力筋的平均张拉力(N); L—预应力筋的分段长度(mm); Ap—预应力筋的截面面积(mm2); Ep—预应力筋的弹性模量(Mpa); 2、《公路桥梁施工技术规范》(JTGT F50-2011)附录G-8中规定了Pp的计算公式(2): Pp= P×(1-e-(kx+μθ)) kx+μθ P—预应力筋张拉端的张拉力,将钢绞线分段计算后,为每分段的起点张拉力,即为前段的终点张拉力(N); θ—从张拉端至计算截面曲线孔道部分切线的夹角之和,分段后为每分段中每段曲线段的切线夹角(rad); x—从张拉端至计算截面的孔道长度,分段后为每个分段长度或为公式1中L值; k—孔道每束局部偏差对摩擦的影响系数(1/m),管道内全长均应考虑该影响; μ—预应力筋与孔道壁之间的磨擦系数,只在管道弯曲部分考虑该系数的影响。 3、每段的终点力与起点力(交界点作用力)的关系如下式: Pz=Pq×e-(KX+μθ)(公式3) Pz—分段终点力(N) Pq—分段的起点力(N) 理论伸长值计算中,钢绞线对称布置,在进行伸长量计算时取计算一半钢绞线的伸长值然后乘以二的方法进行计算; 钢绞线的分段原则:将整束钢绞线根据设计线形分成曲线连续段及直线连续段,而不能将直线段及曲线段分在同一段内。

二、计算书 10m 空心板梁预应力钢绞线理论伸长量计算 钢束N1: 已知E P =195000MP, A P =140m 2,u=0.25, k=0.0015m -1, f pk =1860MP 7°=0.1222rad 计算图示如下 A B D C α 千斤顶工作长度: AB=50cm BC=68.6/cos7°=69.12cm CD=R α=1500×0.1222=183.26cm DE=968/2-69.12-183.26=231.62cm 1、AB 段平均作用力 Pp=P=0.75×1860×140×4=781200N mm L 58.3560 1950005007812001=??=? 2、BC 段平均作用力 () () N e p p 7807956912.00015.017812006912.00015.0=?-?= ?- mm L 94.4560 1950002.691780795 2=??=? 交界点作用力 () N e 780390 781200P 6912.00015.0C =?=?- 3、CD 段平均作用力 ()() () N e p p 7675401222.025.08326.10015.017803901222.025.08326.10015.0=?+?-?=?+?- mm L 88.12560 1950006.1832767540 3=??=? 交界点作用力 ()() N e 754832 780390P 1222.025.08326.10015.0D =?=?+?- 4、DE 段平均作用力

自己整理的简支梁挠度计算公式

简支梁在各种荷载作用下跨中最大挠度计算公式 均布荷载下的最大挠度在梁的跨中,其计算公式: Ymax = 5ql^4/(384EI). 式中: Ymax 为梁跨中的最大挠度(mm). q 为均布线荷载标准值(kn/m). E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2. I 为钢的截面惯矩,可在型钢表中查得(mm^4). 跨中一个集中荷载下的最大挠度在梁的跨中,其计算公式: Ymax = 8pl^3/(384EI)=1pl^3/(48EI). 式中: Ymax 为梁跨中的最大挠度(mm). p 为各个集中荷载标准值之和(kn). E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2. I 为钢的截面惯矩,可在型钢表中查得(mm^4). 跨间等间距布置两个相等的集中荷载下的最大挠度在梁的跨中,其计算公式: Ymax = 6.81pl^3/(384EI). 式中: Ymax 为梁跨中的最大挠度(mm). p 为各个集中荷载标准值之和(kn). E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2. I 为钢的截面惯矩,可在型钢表中查得(mm^4). 跨间等间距布置三个相等的集中荷载下的最大挠度,其计算公式: Ymax = 6.33pl^3/(384EI). 式中: Ymax 为梁跨中的最大挠度(mm). p 为各个集中荷载标准值之和(kn). E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2.

I 为钢的截面惯矩,可在型钢表中查得(mm^4). 悬臂梁受均布荷载或自由端受集中荷载作用时,自由端最大挠度分别为的,其计算公式: Ymax =1ql^4/(8EI). ;Ymax =1pl^3/(3EI). q 为均布线荷载标准值(kn/m). ;p 为各个集中荷载标准值之和(kn). 你可以根据最大挠度控制1/400,荷载条件25kn/m以及一些其他荷载条件 进行反算,看能满足的上部荷载要求!

后张法预应力钢绞线伸长量的计算方法与控制

后张法预应力钢绞线伸长量的计算方法与控制 预应力钢绞线施工时,采用张拉应力和伸长值双控,实际伸长值与理论伸长值误差不得超过6%,后张预应力技术一般用于预制大跨径简支连续梁、简支板结构,各种现浇预应力结构或块体拼装结构。 预应力施工是一项技术性很强的工作,预应力筋张拉是预应力砼结构的关键工序,施工质量关系到桥梁的安全和人身安全,因此必须慎重对待。 一般现行常接触到的预应力钢材主要:有预应力混凝土用钢绞线、PC光面钢丝、刻痕钢丝、冷拔低碳钢丝、精轧螺纹钢等材料。 对于后张法预应力施工时孔道成型方法主要有:金属螺旋管、胶管抽芯、钢管抽芯、充气充水胶管抽芯等方法。 本人接触多的是混凝土预应力钢绞线(PCstrand、1×7公称直径15,24mm,fpk = 1860Mpa,270级高强底松弛),成孔方法多采用金属螺旋管成孔,本文就以此两项先决条件进行论述。 1 施工准备: 1.1 熟悉图纸:拿到施工图纸应先查阅施工说明中关于预应力钢绞线的规格,一般预应力钢束采用ASTMA416-270级低松弛钢绞线,其标准强度为fpk=1860Mpa,1×7公称直径15,24mm,锚下控制力为Δk=0.75 fpk Mpa。 1.2 根据施工方法确定计算参数: 预应力管道成孔方法采用金属螺旋管成孔,查下表确定K、μ取值:表1 表1 注:摘自《公路桥涵施工技术规范》(JTJ 041-2000)附录G-8 根据钢绞线试验结果取得钢绞线实际弹性模量Ep(一般为1.9~2.04×105Mpa) 1.3 材料检测: 金属螺旋管根据《公路桥涵施工技术规范》(JTJ 041-2000)附录G-7之要求检测; 锚具根据《公路桥梁预应力钢绞线用YM锚具、连接器规格系列》(JT/T 329.1-1997)及《公路桥梁预应力钢绞线用锚具、连接器试验方法及检验规则》(JT/T 329.2-1997)之要求检测; 钢绞线根据《预应力混凝土用钢绞线》GB/T5224-2003之要求检测

midas_civil简支梁模型计算

第一讲简支梁模型的计算 1.1 工程概况 20 米跨径的简支梁,横截面如图1-1 所示。 1.2 迈达斯建模计算的一般步骤 1.3 第01 步:新建一个文件夹,命名为Model01,用于存储工程文件。这里,在桌面的“迈达斯”文件夹下新建了它,目录为C:\Documents and Settings\Administrator\桌面\迈达斯\模型01。 第02 步:启动Midas Civil.exe ,程序界面如图1-2 所示。 理 处 前 第五步:定义荷载工况 第六步:输入荷载 第四步:定义边界条件 第三步:定义材料和截面 第二步:建立单元 第一步:建立结点 图 1-1 横截面

图1-2 程序界面 第03 步:选择菜单“文件(F)->新项目(N)”新建一个工程,如图1-3 所示。 图1-3 新建工程 第04 步:选择菜单“文件(F)->保存(S) ”,选择目录C:\Documents and

Settings\Administrator\桌面\迈达斯\模型01,输入工程名“简支梁.mcb”。如图1-4 所示。 图 1-4 保存工程 第05 步:打开工程目录C:\Documents and Settings\Administrator\桌面\迈达斯\模型01,新建一个excel 文件,命名为“结点坐标”。在excel 里面输入结点的x,y,z 坐标值。如图1-5 所示。 图 1-5 结点数据 第06 步:选择树形菜单表格按钮“表格->结构表格->节点”,将excel 里面的数据拷贝到节点表格,并“ctrl+s”保存。如图1-6 所示。

图1-6 建立节点 第07 步:打开工程目录C:\Documents and Settings\Administrator\桌面\迈达斯\模 型01,再新建一个excel 文件,命名为“单元”。在excel 里面输入单元结点号。如图1-6 所示。

简支钢梁设计计算书

------------------------------- | 简支梁设计 | | | | 构件:BEAM52 | | 日期:2015/08/31 | | 时间:15:37:10 | ------------------------------- ----- 设计信息 ----- 钢梁钢材:Q235 梁跨度(m): 5.200 梁平面外计算长度(m): 2.600 钢梁截面:焊接组合H形截面: H*B1*B2*Tw*T1*T2=300*250*250*6*12*12 容许挠度限值[υ]: l/400 = 13.000 (mm) 强度计算净截面系数:1.000 计算梁截面自重作用: 计算 简支梁受荷方式: 竖向单向受荷 荷载组合分项系数按荷载规范自动取值 ----- 设计依据 ----- 《建筑结构荷载规范》(GB 50009-2012)

《钢结构设计规范》(GB 50017-2003) ----- 简支梁作用与验算 ----- 1、截面特性计算 A =7.6560e-003; Xc =1.2500e-001; Yc =1.5000e-001; Ix =1.3500e-004; Iy =3.1255e-005; ix =1.3279e-001; iy =6.3894e-002; W1x=9.0000e-004; W2x=9.0000e-004; W1y=2.5004e-004; W2y=2.5004e-004; 2、简支梁自重作用计算 梁自重荷载作用计算: 简支梁自重 (KN): G =3.1252e+000; 自重作用折算梁上均布线荷(KN/m) p=6.0100e-001; 3、梁上活载作用 荷载编号荷载类型荷载值1 荷载参数1 荷载参数2 荷载值2 1 4 8.10 2.60 0.00 0.00 4、单工况荷载标准值作用支座反力 (压为正,单位:KN) △恒载标准值支座反力 左支座反力 Rd1=1.563, 右支座反力 Rd2=1.563 △活载标准值支座反力 左支座反力 Rl1=4.050, 右支座反力 Rl2=4.050

预应力后张法双控值计算书

预应力后张法双控值计算书 一.计算依据 1.十漫高速公路SME5郭家沟1#大桥图 2.《公路桥涵施工技术规范》(JTJ041-2000) 二.计算过程 ⒈基本数据 ⑴钢铰线:每孔9根φj15.24,其R y b=1860Mpa;σK=0.75R y b=1395Mpa;E g(E y) =1.95×105 Mpa;A y=140mm2; ⑵千斤顶:型号YCD-2500,最大行程200mm,最大张拉吨位2500KN.零状态钢铰线穿心长L l=70cm(包括千斤顶、锚环、工具锚长度); ⑶钢铰线曲线坐标值:参见〈计算依据1〉。 2.张拉方式 预应力钢绞线的张拉在预制板砼强度达90%时方可进行,张拉时必须两端同时进行。张拉工序为:( 0 初始应力(0.1σk)50%应力(0.5σk)(中间N2)100%σk (取消超张拉) 3.预应力钢铰线张拉端张拉力(P值)的计算 P=σi×A y 式中σi---i状态下张拉应力(Mpa) ⑴初应力状态: σi=σ0 =0.1σK=0.1×1395=139.5Mpa P0=139.5×140=1.953×104(N) 整束: ΣP0=9×P0=175.77KN ⑵50%应力状态: σ20%= 0.5×1395=697.5Mpa

P20%=697.5×140=9.765×104 (N) 整束: ΣP20%=9×P20%=878.85KN ⑶100%锚固状态: σ锚=σK=1395Mpa P锚=1395×140=1.953×105 (N) 整束: ΣP锚=9×P锚=1757.7KN (4)整束张拉条件下各状态对应油表读数(Mpa)列表如下:(根据具体标控数据计算) 1#千斤顶与与对应油表号(230#) 校对直线方程:Y=49.080X-44.172 注:Y—荷载KN,X—压力表读数Mpa。 1#千斤顶与与对应油表号(235#) 校对直线方程:Y=49.080X+4.908 注:Y—荷载KN,X—压力表读数Mpa。 2#千斤顶与与对应油表号(228#)

相关主题
文本预览
相关文档 最新文档