当前位置:文档之家› 37-FRIPP-直馏柴油加氢裂化增产航煤及化工原料技术开发及应用-吴子明 刘红磊等_246-251_

37-FRIPP-直馏柴油加氢裂化增产航煤及化工原料技术开发及应用-吴子明 刘红磊等_246-251_

37-FRIPP-直馏柴油加氢裂化增产航煤及化工原料技术开发及应用-吴子明 刘红磊等_246-251_
37-FRIPP-直馏柴油加氢裂化增产航煤及化工原料技术开发及应用-吴子明 刘红磊等_246-251_

直馏柴油加氢裂化增产航煤及化工原料

技术开发及应用

吴子明1 刘红磊2 孙洪江1 王仲义1 崔哲1

(1 中国石化抚顺石油化工研究院辽宁抚顺 113001)

(2 中国石油化工股份有限公司北京燕山分公司北京 102500)

摘要:近年来中国成品油消费结构变化明显,汽油和航煤表观消费量快速上升,柴油表观消费量增长逐渐放缓,消费柴汽比逐年降低,炼油企业因柴油库存压力被迫降低原油加工量,影响

企业整体经济效益提升。中国石化抚顺石油化工研究院(FRIPP)针对性的开发了直馏柴油加氢

裂化增产航煤及化工原料技术,并且在中海石油宁波大榭石化有限公司(大榭石化)及中国石油

化工股份有限公司北京燕山分公司成功进行工业应用,可以增产优质航煤、优质蒸汽裂解制乙烯

原料和优质催化重整原料等产品,从而明显降低炼油企业柴汽比,满足炼油企业调整产品结构的

迫切需求。

关键词:直馏柴油中压加氢裂化航煤制乙烯原料重整原料

1 前言

FRIPP前期已成功开发MHC缓和加氢裂化、MPHC中压加氢裂化、MHUG加氢改质、MCI最大限度提高催化柴油十六烷值和FD2G催化柴油加氢转化等系列中压加氢技术。根据FRIPP上述中压加氢技术工艺研究结果,在中等压力下加工柴油原料增产优质航煤产品和制乙烯原料存在三方面问题,首先,常规中压加氢裂化技术由于反应压力偏低,所产航煤馏分通常芳烃饱和深度不足,导致其烟点偏低,并且装置运行末期随着反应温度超过加氢热力学平衡限制点,加氢产品芳烃饱和深度较初期明显下降,导致产品质量进一步降低;其次以柴油为原料的中压加氢裂化技术操作模式由最大量生产柴油向增产航煤、未转化柴油向生产优质乙烯原料方向转变;再次不同柴油原料组成直接影响加氢裂化产品质量,需优化各类柴油加氢装置原料最佳加工路线,选择最适宜增产航煤或乙烯原料的柴油原料。

FRIPP针对上述问题依次开展针对性工艺研究工作,开发了直馏柴油加氢裂化增产航煤及化工原料技术,在中等压力等级下主要加工直馏柴油原料,解决了中压加氢裂化航煤馏分烟点偏低和装置运行末期产品质量下降等难题,在增产优质航煤产品的同时,还可生产部分富含链烷烃的优质制乙烯原料和高芳烃潜含量的催化重整原料,有助于炼油企业压减柴油、降低柴汽比的产品结构调整需求。

2 技术路线

FRIPP在直馏柴油加氢裂化增产航煤及化工原料技术开发过程中分别进行了原料类型优选、加氢裂化催化剂类型优化、补充精制工艺流程优选等方面工作,最终确定FDHC中压加氢裂化技术路线为采用加氢裂化-补充精制工艺流程,选用活性适宜、优先转化环状烃、链烷烃保留能力强的高中油型加氢裂化催化剂和非贵金属补充精制催化剂,在中等压力等级下加工直馏柴油原料和少量焦化柴油原料,直接增产优质航煤产品、优质制乙烯原料和重整原料。

3 工艺研究

FRIPP在直馏柴油加氢裂化增产航煤及化工原料技术开发过程中,深入开展了不同反应压力、不同转化深度、不同生产方案及不同原料油适应性等工艺研究。

不同反应压力工艺研究结果列于图1~图2,采用直馏柴油加氢裂化增产航煤及化工原料技术,在中等压力等级下加工直馏柴油原料,在相同加氢裂化反应温度下,不同反应压力加氢裂化转化深度基本相当,加氢裂化产品分布基本相同,化学氢耗略有增加;在相同补充精制反应温度下,随着氢分压上升,芳烃饱和能力提高,航煤馏分和未转化柴油主要产品质量明显改善,航煤馏分烟点由26.6mm提高至28.1mm,均可以直接生产优质3#喷气燃料;未转化柴油BMCI值由11.9降低至10.7,芳烃含量由2.9%降低至2.2%,链烷烃含量基本相当,十六烷值由67.8提高至69.0,可作为优质乙烯裂解原料或国V车用柴油调合组分。

因此,炼油企业在压减柴油的产品结构调整规划中可以利旧现有8.0MPa压力等级的柴油加氢装置或更高等级的中压加氢裂化装置,经适应性改造后以直馏柴油为主要原料,增产优航煤产品、优质制乙烯原料和重整原料,降低柴汽比,缓解目前存在的柴油销售压力。

图1 反应压力对产品分布影响图2 反应压力对产品性质影响不同转化深度工艺研究结果列于图3~图4,由转化深度对产品分布的影响结果可以看出,采用直馏柴油加氢裂化增产航煤及化工原料技术,在中等压力等级下加工直馏柴油原料,随着转化深度的提高,未转化柴油馏分收率由44.19%降低至15.12%,航煤馏分收率仅从40.17%提高至48.17%,石脑油收率由15.02%快速提高至31.61%,化学氢耗由1.37%提高至2.06%。由此可见,随着转化深度的提高,航煤馏分收率增长缓慢,石脑油收率增长幅度更高,代价是化学氢耗也快速增加。

图3 转化深度对产品分布影响图4 转化深度对产品性质影响

因此,炼油企业需根据自身乙烯原料与重整原料平衡需求选择适宜的转化深度,在乙烯原料紧缺时,追求过高的航煤收率需付出更大的氢耗代价。

由转化深度对产品质量的影响结果可以看出,随着转化深度的提高,芳烃饱和总体能力提高,主要目的产品质量明显提高;其中未转化柴油馏分BMCI值由13.4降低至9.5,链烷烃含量富集程度提高,芳烃含量降低,乙烯裂解性能进一步提高,同时十六烷值由63.5提高至69.0,调和生产满足国Ⅴ车用柴油标准清洁燃料的能力更强;但是重石脑油芳潜由56.8%降低至49.2%,与常规减压蜡油加氢裂化反应规律相同,仍然是优质的催化重整原料。

不同生产方案工艺研究主要研究航煤与未转化柴油间切割点影响及重石脑油与航煤间切割点影响。未转化柴油初馏点对未转化柴油馏分收率及质量和航煤馏分收率及质量影响工艺研究结果列于图5~图6,在相同转化深度下,未转化柴油馏分收率随其初馏点降低而增加,但其BMCI值则明显升高;在柴油馏分包含航煤组分时,其BMCI值超过15,乙烯裂解性能明显降低;航煤馏分收率随着航煤终馏点提高而明显增加,其烟点和芳烃含量指标有所改善,但是对航煤馏分冰点指标影响较大,随着航煤终馏点提高,航煤馏分冰点明显提高;在航煤终馏点提高到280℃时,航煤馏分冰点已不能满足3#喷气燃料质量标准,但是此时其十六烷值相应提高,可以作为清洁车用柴油调和组分。

图5 柴油初馏点对其收率及性质影响图6 航煤终馏点对其收率及性质影响航煤馏分初馏点对航煤馏分收率及质量和重石脑油馏分收率及质量影响工艺研究结果列于图7~图8,在相同工艺条件下,航煤馏分收率随其初馏点降低而增加,其烟点明显升高,重石脑油馏分收率随其干点降低而减少,同时其芳潜也略有降低。

图7 航煤初馏点对其收率及性质影响图8 重石脑油干点对其收率及性质影响因此,炼油企业可以根据自身产品结构调整需求,选择适宜的直馏柴油加氢裂化装置转化深度和馏分切割范围,优化航煤产品、重整原料和乙烯原料产品结构和产品质量,实现经

济效益最大化。

不同原料油适应性工艺研究结果列于图9~图10,采用直馏柴油加氢裂化增产航煤及化工原料技术加工常三直柴、直馏柴油和焦化柴油,在控制相同转化深度时产品分布基本相当,但是加工焦化柴油原料时主要产品质量明显降低,其中航煤馏分烟点降低2个单位以上,未转化柴油十六烷值基本相当,但是BMCI值升高至17.0,乙烯裂解性能降低,但是其链烷烃含量较高,特殊情况仍然可以作为乙烯原料。因此,采用直馏柴油加氢裂化增产航煤及化工原料技术生产优质航煤产品和制乙烯原料时,需在产品质量有富余的情况下,才可以考虑掺炼部分焦化柴油原料。

图9 初馏点对柴油收率及性质影响图10 干点对航煤收率及性质影响直馏柴油加氢裂化增产航煤及化工原料技术所产未转化柴油与常规减压蜡油加氢裂化技术所产柴油馏分和未转化尾油作蒸汽裂解制乙烯原料的差异列于图11,未转化柴油正构烷烃组成列于图12,结果表明,未转化柴油BMCI值与未转化尾油相当,但其链烷烃含量比后者高出近20个百分点,正构烷烃含量不低于38%;与加氢裂化柴油馏分相比,BMCI值降低5个单位,链烷烃含量提高50%以上,芳烃含量降低50%以上。因此,直馏柴油加氢裂化未转化柴油是优质的制乙烯原料,乙烯收率不低于未转化尾油,高于加氢裂化柴油。

图11 制乙烯原料性质及组成对比图12 未转化柴油正构烷烃组成

4 工业应用

FRIPP开发的直馏柴油加氢裂化增产航煤及化工原料技术已于2016年成功工业应用于燕山分公司120万吨/年直馏柴油裂化装置和大榭石化200万吨/年柴油加氢裂化装置。

燕山分公司120万吨/年直馏柴油裂化装置工业应用结果列于表1,该装置采用单段串联一次通过工艺流程及配套FF-56/FC-50加氢裂化级配催化剂体系,设计按多产航煤方式运行,

目前运行按实际控制转化深度偏低,在反应氢分压7.4MPa、总体积空速1.6/2.0h-1、反应温

度339/351℃等工艺条件下加工直馏柴油原料,65~160℃重石脑油馏分收率为13.77%;165~

250℃航煤馏分收率为30.50%,烟点为26.6mm,是优质3#喷气燃料,>250℃柴油馏分收率

为52.56%,十六烷值为67.4,BMCI值为11.8,链烷烃为71.9%,芳烃为1.1%,既是高质量

车用柴油调和组分,也是优质蒸汽裂解制乙烯原料。

表1 燕山分公司直馏柴油裂化装置工业应用结果

项目直馏柴油原料轻石脑油重石脑油航煤柴油

收率,% 100 1.68 13.77 30.50 52.56

密度(20℃)/g·cm-30.8463 0.7254 0.7958 0.8024

馏程范围/℃ 227~338 42~160 157~247 245~328

S/μg·g-112000 3.8 <3.2 3.5

N/μg·g-162 0.4 0.4 0.4

烟点/mm 26.6

十六烷值67.4 BMCI 11.8 链烷烃,% 71.9 芳烃,% 1.1 大榭石化200万吨/年柴油加氢裂化装置工业应用结果列于表2,该装置采用单段串联部

分循环工艺流程及配套FF-56/FC-32加氢裂化级配催化剂体系,按多产重整原料方式运行。

在反应氢分压12.0MPa、体积空速2.0/1.5h-1、反应温度345℃/350℃等工艺条件下加工直馏

柴油原料,65~175℃重石脑油馏分收率为52.31%,硫氮含量均低于0.5mg/kg,芳潜不低于

50%,是优质催化重整装置原料;>175℃混合柴油馏分收率为34.45%,其中175~250℃航

煤馏分收率为24.12%,烟点为28.5mm,是优质3#喷气燃料,>250℃柴油馏分收率为10.34%,

十六烷值为73.5,BMCI值为9.7,链烷烃为80.4%,芳烃为1.5%,既是高质量车用柴油调

和组分,也是优质蒸汽裂解制乙烯原料。

表2 大榭石化柴油加氢裂化装置工业应用结果

项目直馏柴油轻石脑油重石脑油混合柴油航煤柴油

收率,% 100 6.6952.3134.4524.1210.34

密度(20℃)/g·cm-30.86190.74650.80230.79640.8180

馏程范围/℃157~38268~175172~350172~240258~354

S/μg·g-11980<0.5 <0.5 <0.5 <0.5

N/μg·g-1205<0.5 <0.5 <0.5 <0.5

芳潜,% 50

烟点/mm28.5

十六烷值455073.5

BMCI 9.7

链烷烃,% 80.4

芳烃,% 1.5

5 结论

1)FRIPP开发的直馏柴油加氢裂化增产航煤及化工原料技术通过优化原料构成、催化剂

体系和操作参数,在增产优质航煤产品的同时,还可生产部分富含链烷烃的优质蒸汽裂解制

乙烯原料和高芳烃潜含量的催化重整装置原料,有助于炼油企业压减柴油、降低柴汽比的产

品结构调整需求。

2)工业应用结果表明,直馏柴油加氢裂化增产航煤及化工原料技术适用于改造或新建压力等级不低于8.0MPa的中压加氢裂化装置,加工以直馏柴油为的原料,可以灵活增产优质航煤产品优质重整原料以及优质蒸汽裂解制乙烯原料。

参考文献

[1]柯晓明."十三五"炼油工业发展环境思路探讨[J].国际石油经济,2015,(5):32~42

[2]金云,朱和等.“十三五”炼油新常态,生存发展双重考验[J].中国石油石化杂志,2015,(12):31~25

[3]石章雄,徐影等.我国柴油供需现状及其影响因素分析[J].科技创新导报,2011,(16):56~57

柴油加氢改质装置

柴油加氢改质装置 一工艺原理 1加氢精制 加氢精制主要反应为加氢脱硫、加氢脱氮、加氢脱氧、烯烃与芳烃的饱和加氢,以及加氢脱金属。其 典型反应如下 (1)脱硫反应: 在加氢精制条件下石油馏分中的含硫化合物进行氢解,转化成相应的烃和H2S,从而硫杂原 子被脱掉。 化学反应方程式: 二硫化物:RSSR’ + 3H2→RH + R’H + 2H2S 二硫化物加氢反应转化为烃和H2S,要经过生成硫醇的中间阶段,即首先S-S键上断开,生 成硫醇,再进一步加氢生成烃和硫化氢,中间生成的硫醇也能转化成硫醚。 噻吩与四氢噻吩的加氢反应: 噻吩加氢产物中观察到有中间产物丁二烯生成,并且很快加氢成丁烯,继续加氢成丁烷苯并噻吩在50-70大气压和425℃加氢生成乙基苯和硫化氢: 对多种有机含硫化物的加氢脱硫反应进行研究表明:硫醇、硫醚、二硫化物的加氢脱硫反应 多在比较缓和的条件下容易进行。这些化合物首先在C-S键,S-S键发生断裂,生成的分子碎片 再与氢化合。环状含硫化物加氢脱硫较困难,需要苛刻的条件。环状含硫化物在加氢脱硫时,首 先环中双键发生加氢饱和,然后再发生断环再脱去硫原子。 各种有机含硫化物在加氢脱硫反应中的反应活性,因分子结构和分子大小不同而异,按以下 顺序递减:

RSH>RSSR>RSR>噻吩 噻吩类化合物的反应活性,在工业加氢脱硫条件下,因分子大小不同而按以下顺序递减:噻吩>苯并噻吩>二苯并噻吩>甲基取代的苯并噻吩 (2)脱氮反应 石油馏分中的含氮化合物可分为三类: a 脂肪胺及芳香胺类 b 吡啶、喹啉类型的碱性杂环化合物 c 吡咯、咔唑型的非碱性氮化物 在各族氮化物当中,脂肪胺类的反应能力最强,芳香胺(烷基苯胺)等较难反应。无论脂肪族胺或芳香族胺都能以环状氮化物分解的中间产物形态出现。碱性或非碱性氮化物都是比较不活泼的,特别是多环氮化物更是如此。这些杂环化合物存在于各种中间馏分,特别是重馏分,以及煤及油母页岩的干馏或抽提产物中。在石油馏分中,氮化物的含量随馏分本身分子量增大而增加。在石油馏分中,氮含量很少,一般不超过几个ppm。 在加氢精制过程中,氮化物在氢作用下转化为NH3和烃。几种含氮化物的氢解反应如下: 根据发表的有关加氢脱氮反应的热力学数据,至少对一部分氮化物来说,当温度在300-500℃范围内,需要较高的氢分压才能进行加氢脱氮反应。从热力学观点来看,吡啶的加氢脱氮比其它氮化物更困难。为了脱氮完全,一般需要比脱硫通常采用的压力范围更高的压力。 在几种杂原子化合物中,含氮化合物的加氢反应最难进行,或者说它的稳定性最高。当分子结构相似时,三种杂原子化合物的加氢稳定性依次为: 含氮化合物>含氧化合物>含硫化合物 例如:焦化柴油加氢时,当脱硫率达到90%的条件处,其脱氮率仅为40%。

新材料产业技术研究与开发

一、立项理由 粉末冶金是制造金属、合金或化合物粉末,经过成形与烧结制备金属材料、复合材料以及各种类型制品的工艺。 粉末冶金凸显的优势是具有其他工艺方法无法制造或难以制造的新材料,如制取高熔点、难熔点合金,采用粉末冶金工艺可以低温制取难溶合金新材料,可以制造具有多孔性能的新材料,制造含油自润滑轴承;利用这一特性制造高强度多孔材料,作为分离材料;制造金属化合物和超硬质合金材料,如硬质合金切削刀具、工具材料;金属粉末加入硬质点,可以制取硬质耐磨材料等。特别是以粉末冶金工艺的优势,在我国军事工业急需材料方面的应用:如研制尖端微孔材料为浓缩铀气相分离的关键材料,高浓缩铀为我国第一颗原子弹爆炸成功发挥了重要作用;高比重钨合金作为卫星与导弹上陀螺仪转子材料是第一代人造卫星、洲际导弹应用的关键材料;研制成功第一代航天工程火箭尾喷管喉衬粉末冶金特制发汗材料等。以上这些材料都是用粉末冶金工艺方法生产制造的。可以预料,谁掌握了新材料谁就掌握了21世纪高新技术竞争的主动权。 在粉末冶金零件生产中,为了减少粉末颗粒之间和粉末颗粒与模壁之间的摩擦,粉末混合料中都添加有一定量的润滑剂,诸如硬脂酸锌等。要除去这些润滑剂始终是粉末冶金机械零件生产中一个难题。能否将润滑剂混入粉末中改为喷

涂于模壁上,是长期探索的一条途径。据文献报导,用铁粉(F-0000)和钢粉(FN0205,Fe-2.Ni-0.45 C-1.3Cu)进行的试验表明,在密度6.0g/e m3-7.3g/cm3的围,模壁润滑者比将润滑剂掺加于粉末者,生坯强度可增高128%~127%(对于F-0000)和66%-139%(对于FN0205),而两者的烧结件强度相差很小,可认为在试验的误差围之。现在,美国Gasbarre Products己采用模壁润滑,其系统已在市场出售。烧结硬化是将铁基粉末冶金零件的烧结过程和借助于通过炉子冷却带时进行淬火硬化结合起来的一项新工艺。在美国MPIF1997年版“粉末冶金结构零件材料标准”中,己含有这类材料的技术标准。这类材料是由预合金化Ni-Mo钢粉混合以铜粉与石墨粉制成的。QMP的ATOMET4701粉就是为烧结硬化工艺而开发的。在烧结硬化过程中,可通过控制烧结炉冷却带的冷却速度来调整材料的显微组织,使之达到所要求的马氏体含量和力学性能。很明显,这类材料的开发,对于需要进行后续热处理的高强度粉末冶金结构零件的发展具有重要实际意义。在美国通用汽车公司的整体线圈与电子线路(ICE-4)点火装置中己得到了应用。在1997年SAE国际会议与博览会上,这个产品获得了汽车革新奖。这个产品是用温压试制的第一产品,1990年开始在葡萄牙试生产,1992年样品开始投放欧洲与南美市场,1998年这种产品将开始用于美国车辆中,现在这种SMC材料已发展到第三代,

煤变油大有作用

煤化工迎来的新的发展时机 石油是一种重要的战略物质,有了它,船舰可以乘风破浪,汽车可以翻山越岭,飞机可以穿云透雾……然而,近年来国际石油价格飞涨,供需差距越来越大。以我国为例,石油年消费量约为2.5亿吨,生产能力仅约15亿吨,预计2005年和2015年消费量将超过2.6亿吨和3.1亿吨,尤其若干年后石油开采枯竭的时候,这些动力和交通工具又该靠什么来运行呢?不必担心,聪慧的科学家们早已为我们设计了一个煤变石油的方案。 许多勘探资料都表明,全世界煤的可开采资源是巨大的,其能量值相当于石油资源的10倍。煤和石油的形态、形成历史、地质条件虽然不同,但是它们的化学组成却大同小异。煤中约含碳80% ~85%,含氢4%~5%,平均分子量在2000以上。石油含碳85%,含氢13%,平均分子量在600以内。从组成上看,它们的主要差异是含氢量和分子量的不同,因此,只要人为地改变压力和温度,设法使煤中的氢含量不断提高,就可以使煤的结构发行变异,由大分子变成小分子。当其碳氢比降低到和石油相近时,则煤就可以液化成汽油、柴油、液化石

油气、喷气燃料等石油产品了。同时还可以开发出附加值很高的上百种产品,如乙烯、丙烯、蜡、醇、酮、化肥等,综合经济效益十分可观。 国际上经典的煤变石油工艺是把褐煤或年轻烟煤粉与过量的重油调成糊状(称为煤糊),加入一种能防止硫对催化剂中毒的特殊催化剂,在高压釜里加压到20266~70931千帕并加热到380~500摄氏度的温度,在隔绝空气的条件下通入氢气,使氢气不断进入煤大分子结构的内部,从而使煤的高聚合环状结构逐步分解破坏,生成一系列芳香烃类的液体燃料和烷烃类的气体燃料。一般约有60%的煤能转化成液化燃料,30%转化成为气体燃料。具体来说,煤变石油的工艺可分为“直接液化”和“间接液化”两种,从世界范围来看,无论哪一类液化技术,都有成熟的范例。 “直接液化”是对煤进行高压加氢直接转化成液体产品。早在第二次世界大战之前,纳粹德国就注意到了煤和石油的相似性,从战略需要出发,于1927年下令建立了世界上第一个煤炭直接液化厂,年产量达10万吨,到1944年达到423万吨,用来开动

加氢裂化装置掺炼催化柴油技术工业应用实践

加氢裂化装置掺炼催化柴油技术工业应用实践 发表时间:2019-09-01T18:59:57.400Z 来源:《防护工程》2019年12期作者:薛晓阳 [导读] 为了适应全厂生产的灵活性,本装置设计为全循环和60%转化率两种工况。 中国石油哈尔滨石化公司 150030 摘要:随着社会日益发展的需要和原油的日益劣质化、重质化,以及环境的污染,国家对干净、清洁的能源燃料越来越重视,而蜡油加氢裂化技术是原油深度加工生产清洁燃料的重要方式,所以在未来加氢裂化技术将会越来越普遍和推广。本文就以美国UOP公司的 Unicraking两段加氢裂化工艺技术为例进行实践论证。 关键词:加氢裂化;?催化柴油;?产品质量; 1 装置概况 为了适应全厂生产的灵活性,本装置设计为全循环和60%转化率两种工况。设计加工来自国外的减压蜡油,经过加氢脱硫、加氢脱氮、加氢裂化等反应,生产优质的轻、重石脑油、航煤和柴油产品,加氢尾油作为催化裂化装置原料。本装置反应的部分流程如下: 图1 装置反应部分流程 2?催化剂分布及原料性质 2.1 催化剂分布 本装置一段反应器共六个床层,其中第一床层到第四床层为加氢精制床层,催化剂型号分别为CT-30、KF-542、KG-5、HYT-8109、HYT-8119、KF-848 (再生) 、HYT-6219,第五床层和第六床层为加氢裂化床层,催化剂型号为HC-115LT (再生) ,反应器底部后精制剂型号为KF-851 (再生) 。 表1 原料油性质分析对比表 2.2 原料性质及特点 本装置自开工正常运转一段时间后,为了维持全厂物料平衡和实现效益最大化,开始在原料油中掺入催化柴油,并逐步增加至60 t/h。如表1所示为在总进料量330 t/h不变的情况下,原料中未掺入以及掺入20 t/h、40 t/h及60 t/h数量催化柴油组成的滤后原料油的主要性质参数。在整个掺炼观察期间,装置正常运行,各产品质量合格。 通过表1原料油性质分析对比表可以看出随着催化柴油掺炼比例的提高,混合原料油的密度逐渐增大,氮含量、硫含量所占比例都有相应的升高,这与催化柴油高硫、高氮性质特点相吻合,但由于本装置氮含量设计要求不大于867 mg/kg,所以为保证本装置催化剂失活速率在正常范围内,建议在装置运行前期,当混合原料油中氮含量大于867mg/kg时,操作人员应密切关注原料油性质及反应器床层温度变化。随掺炼比例的增加,初馏点温度呈现下降趋势和350℃馏出量所占体积分数逐渐增大的情况来看,催柴中含有一定比例的小分子轻组分;根据混合原料终馏点温度的逐渐上升和500℃馏出量所占体积分数下降的情况,得出催化柴油中同时含有大量的单环和多环芳烃,使得混合后

煤液化技术

《近代化学》课程作业 煤液化技术的研究现状 The research status of coal liquefaction technology 姓名: 专业: 时间:

煤液化技术的研究现状 能源安全关系到一个国家的长期稳定发展,我国的煤炭资源相对于其他形式的资源而言较为丰富,但是长期以来,我国的煤炭资源一直处于低利用率水平,造成了大量的资源浪费以及环境污染等问题,随着资源的日益减少,如何提高资源利用率成为需要研究的关键问题。 煤炭液化技术可以分为直接、间接两种,所谓煤炭直接液化技术是指将粉状煤炭与循环溶剂制备成的混合油煤浆在定温、定压以及催化剂条件下,进行加氢化学反应,最终生成所需要的液态和气态烃类化合物,同时要对所生成的物体进行脱硫、脱氮处理等有害物质处理;煤炭的间接液化技术先进行的是气化处理,将煤气化后并在催化剂的作用下,通过F-T费托过程,得到相应的烃类化合物。相对于煤炭间接液化而言,直接液化在同样原料的基础上,所能够生产出的油品率更高一些。 1煤直接液化 煤的直接液化是指在适当的温度(400~500℃)和压力(20~30MPa)下,催化加氢裂化(热裂、溶剂、萃取、非催化裂化等)成液体烃类,生成少量气体烃,脱出煤中氮、氧和硫等杂原子的深度转化过程[1]。理论上讲,煤加氢液化分为轻度加氢和深度加氢。通过加氢,煤结构中某些键断开,将固态煤转变成液体产物和气态产物。 1.1煤直接液化的技术的进展 煤直接液化技术主要包括[2]:①煤浆配制、输送和预热过程的煤浆制备单元; ②煤在高温、高压条件下进行加氢反应,生成液体产物的反应单元;③将反应生成的残渣、液化油和气态产物分离的分离单元④稳定加氢提质单元。具体流程图如图1所示: 图1:煤直接液化工艺流程简图 自从1913年德国科学家F.Bergiu发明了煤炭直接液化技术后,美国、日本、英国、俄国也都独自研发出了拥有自主知识产权的液化技术。以下简单介绍几种最具代表性的煤炭直接液化工艺,如德国IGOR工艺[3]、美国H TI工艺[4]、日本NEDOL工艺[5]等。 1.1.1德国IGOR工艺 德国矿冶技术及检测公司在20世纪90年代初改进了原DT工艺,形成了先进的IGOR工艺。该工艺是将循环溶剂和加氢液化油提质加工与煤的直接液化结合成一体的新工艺技术。 该工艺与原工艺相比有如下优点:①液化残渣的固液分离改为减压蒸馏,其

适应用户需求的催化柴油加氢改质技术

适应用户需求的催化柴油加氢改质技术 摘要:针对国内炼油企业在柴油质量升级中所面临的问题,抚顺石油化工研究院开发了系列催化柴油加氢改质技术。工艺研究和工业应用结果表明抚顺石油化工研究院所开发的系列技术各具特点,用户可以根据自身不同的需求选择适宜的相关技术,生产满足清洁燃料标准的高品质油品。 关键词:催化柴油加氢清洁燃料 前言 催化裂化(FCC)技术是重油轻质化的主要工艺手段之一,在世界各国的炼油企业中都占有比较重要的地位。而催化裂化工艺技术的主要特点是对进料中的链烷烃和环烷烃进行裂解,对芳烃基本不具备破环的能力,因此在催化裂化柴油中通常富集了大量稠环芳烃。催化裂化柴油的硫含量和芳烃含量高,发动机点火性能差,属于劣质的柴油调和组分,在国外主要用于调和燃料油、非车用柴油和加热油等。而在我国,由于石油资源的紧缺,催化柴油还主要是加氢精制或加氢改质后用于调和柴油产品,统计资料表明中国石化所属炼油企业所生产的催化柴油中的85%用于普通柴油的生产。 近年来,随着国内所加工原油质量的日益重质化,催化裂化所加工的原料也日趋重质化和劣质化,加之许多企业为了达到改善汽油质量或增产丙烯的目的,对催化裂化装置进行了改造或提高了催化裂化装置的操作苛刻度,导致催化裂化柴油的质量更加恶化。目前,国内炼油企业所生产的催化柴油的芳烃含量通常会达到45%~80%,十六烷值在20~35左右,随着环保法规的日趋严格,企业所面对的产品质量升级压力日益增加。 中国石化是中国最大的一体化能源化工公司之一,也是国内最大的石油、石化产品生产商和供应商,为全社会提供高品质的清洁油品是中国石化所承担的重要任务和责任。抚顺石油化工研究院作为中国石化直属科研单位,多年来在加氢催化剂和工艺技术开发上开拓创新,研发了系列可以满足炼油企业实际生产需求的加氢催化剂和工艺技术,为企业产品质量升级提供助力。 1 催化柴油加工难点 对于炼油企业而言,柴油馏分主要是由常减压、催化裂化、延迟焦化和加氢裂化4 类装置生产的。如表1中国石化炼油事业部装置数据集统计数据显示,2008年催化柴油在中国石化所生产柴油构成中所占比例为17.8%。虽然从中国石化整体上看催化柴油所占比例并不大,但由于各炼油企业的规模、原油性质以及装置构成等方面的不同,这个比例在不同企业的差别较大,有的企业催柴所占比例超过了30%。目前,在中国石化所属企业催化柴油主要用于:加氢后作为普通柴油的调和组份,这种用途目前最为广泛,据统计有85%或更多的催化柴油用于普通柴油的生产;用于船舶燃料生产,需求量相对较小,市场流动性强,主要集中在沿海和沿江地区;作为工业燃料销售,用于陶瓷厂或者发电厂,主要集中于广东和浙江2 省,消耗量低于1.0 Mt/a。 表1 中国石化2008年柴油馏分构成及主要性质 产量/(Mt·a-1) 构成比例,(wt)% 十六烷值总芳烃,(wt)%

催化柴油MCI工艺技术

催化柴油MCI工艺技术 ?催化柴油MCI工艺技术应用概况 ?催化柴油MCI工艺的理论基础 ?催化柴油MCI技术对催化剂的要求 ?催化柴油MCI技术对不同原料的适应性 ?催化柴油MCI工业应用效果 催化柴油MCI工艺技术应用概况 我国目前的柴汽比较低,柴油数量满足不了市场的需求。柴油中的三分之一是催化裂化柴油。催化柴油中含有较多的杂原子化合物、烯烃和芳烃,颜色不好,安定性较差,尤其是十六烷值很低。随着重油催化裂化技术的发展和掺渣量的增加,催化柴油的质量问题变得更为突出。 当前国内外普遍采用的劣质催化柴油改质手段是加氢精制和加氢裂化。催化柴油加氢精制,是在中、低压的条件下,进行烯烃加氢饱和、脱硫、脱氮及芳烃部分饱和反应,可改善其颜色和安定性,而十六烷值提高幅度较小,尤其是加工劣质原料的催化装置,其催化柴油通过加氢精制远不能满足产品对十六烷值的要求。 近几年开发的劣质柴油中压加氢改质工艺,是中压下的一种加氢裂化过程,转化率一般为40%~60%,虽然其柴油产品的十六烷值较原料可提高10~20个单位,但柴油收率低,化学氢耗高,不适应国内市场的需求。因此,开发一种既能最大限度提高柴油十六烷值,又能得到较高的柴油收率的劣质催化柴油改质技术,是人们普遍关注的课题。 抚顺石油化工研究院新开发的一种提高催化柴油十六烷值的加氢改质工艺技术(Maximum Cetane number Improvement,简称MCI)。该技术在吉林化学工业公司炼油厂20万吨/年加氢装置应用成功后,先后有7家炼厂采用该技术。该技术不仅能大幅度提高催柴的十六烷值,同时还能获得较高的柴油收率,获得2001年度国家科技发明二等奖,具有显著的经济效益和社会效益,有可观推广应用前景。 催化柴油MCI工艺的理论基础 众所周知,石油产品的烃类族组成直接影响产品的性质。十六烷值是柴油燃烧性能的重要指标。柴油馏分中,链烷烃的十六烷值最高,环烷烃次之,芳香烃的十六烷值最低。同类烃中,同碳数异构程度低的烃类化

PHF-102型催化剂在柴油加氢精制装置的应用

PHF-102型催化剂在柴油加氢精制装置的应用 前言 某厂70万吨/年柴油加氢精制装置采用柴油深度加氢脱硫技术。装置由反应、分馏以及公用工程三部分组成, 2013年12月完成设计,2014年10月建成投产。装置加工的原料油为直馏柴油和焦化柴油。装置的主要产品是低硫柴油,副产品是低分气和酸性气,其主要目的是脱硫、脱氮、脱氧和解决色度及贮存安定性的问题,满足日益严格的环保要求,同时提高柴油的十六烷值,降低芳烃含量,使总厂调和柴油达到国Ⅳ柴油标准。本文仅对PHF-102型催化剂在某厂柴油加氢精制装置中的首次应用进行分析。 1反应部分工艺流程 柴油加氢精制装置反应部分流程简图见图1。原料油自装置外来经原料油过滤器进行过滤,再经原料油聚结器脱水后进入原料油缓冲罐,再经反应进料泵升压,经精制柴油-原料油换热器与精制柴油换热后,与混合氢混合作为混合进料。 混合进料经过反应产物-混氢油换热器换热后,进入反应进料加热炉加热至反应所需温度,再进入加氢精制反应器。该反应器设置二个催化剂床层,床层间设有注急冷氢设施。 来自加氢精制反应器的反应产物,经反应产物-混氢油换热器、反应产物-低分油换热器换热后,经反应产物空冷器冷却,进入冷高压分离器。冷高压分离器顶部出来的气体(循环氢)进入循环氢脱硫塔入口分液罐分离出气体中夹带的液体后,进入循环氢脱硫塔(C-101)脱除其中的H2S 气体,然后经过循环氢压缩机入口分液罐分液后,进入循环氢压缩机(K-102)升压后分三路:―路作为急冷氢进入反应器;―路与升压后的新氢混合,混合氢与原料油混合作为混合进料。另―路打旁路至冷高分气空冷器前,返回至循环氢压缩机入口。 冷高压分离器油相减压后送至冷低压分离器进行再次闪蒸分离,低分油经反应产物-低分油换热器换热后进入脱硫化氢汽提塔(C-201)。装置外来的PSA氢气经新氢压缩机入口分液罐分液后进入新氢压缩机(K-101),经二级升压后与循环氢混合,作为反应所需的混氢原料。 柴油加氢精制装置反应部分流程简图见图1。原料油自装置外来经原料油过滤器和聚结器滤除杂质和明水后进入原料油缓冲罐,再经反应进料泵升压,经精制柴油-原料油换热器与精制柴油换热后,与混合氢混合作为混合进料。装置外来的PSA氢气经新氢压缩机入口分液罐分液后进入新氢压缩机(K-101),经二级升压后与循环氢混合,作为反应所需的混合氢。 混合进料经过反应产物-混氢油换热器换热后,进入反应进料加热炉加热至反应所需温度,再进入加氢精制反应器。该反应器设置二个催化剂床层,床层间设有注急冷氢设施。 来自加氢精制反应器的反应产物,分别与混氢油、低分油换热后,经反应产物空冷器冷却,进入冷高压分离器。冷高压分离器顶部出来的气体(循环氢)进入循环氢脱硫系统脱除其中的H2S 气体,循环氢经循环氢压缩机(K-102)升压后分三路:―路作为急冷氢进入反应器;―路与升压后

清洁能源与新材料产业推进方案

清洁能源与新材料产业推进方案 为加快推进全市清洁能源与新材料产业发展,根据《X市X年加快重点产业发展推进机制》要求,制定本方案。 一、产业发展现状 我市清洁能源与新材料产业既包括煤炭、电力、水泥等传统产业,也包括太阳能、风能、生物质能等新能源产业,还包括煤基新材料、新型建材等产业。近年来,市委市政府高度重视,已建设形成了X区、X精细化工园区,建成运行现代煤化工装置7套、清洁能源装置2套、精细化工装置4套。X年实现主营业务收入919.8亿元,占全市规模以上工业主营业务收入的比重为47.4%;规模以上工业完成增加值218亿元,增长9.6%,占全市规模以上工业增加值的比重为30.6%。基本形成了煤—电—建材、煤—精细化工—化工材料、煤—油—煤油融合3条循环经济产业链。 目前,受全国煤炭产能过剩、煤炭价格持续下滑和省外低价煤冲击等因素影响,我市煤炭行业生产经营持续困难,亏损严重。X年,全市完成煤炭产量571万吨,同比下降4.8%;实现营业收入396亿元,累计亏损19.8亿元,同比增亏6.11亿元。煤化工行业遭受全球市场疲软冲击,主要煤化工产品产能过剩,价格大幅下跌,同时面临资金、技术、环境等多方压力。 二、总体思路

坚持创新、协调、绿色、开放、共享发展理念,以市场需求为导向,以转型升级、提升发展为目标,以发展煤油融合、煤化一体为主攻方向,拉长煤基新能源新材料等循环经济产业链条,积极发展风电、光电产业,努力建设清洁能源和新材料基地。 三、工作目标 X年,全市清洁能源与新材料产业实现主营业务收入950亿元,增长3.3%;实现规模以上工业增加值230亿元,增长5.5%。 四、重点工作 (一)产业提升发展工程。持续强化产业支撑,坚持煤油融合、煤化一体发展,拉长煤基新能源新材料等循环经济产业链条,加快培育链条健全、高端高效的现代产业集群。 1.推动产业集群发展。持续发挥X能源、X三聚环保、X化纤等现有龙头企业的带动作用,向高端化、精细化、差异化发展,着力推动产业链向前端的研发和后端的销售、服务延伸,价值链向提高核心竞争力和附加值方向转变,积极打造在国内具有一定影响力的清洁能源与新材料产业集群。(责任单位:市发改委) 2.发挥基金杠杆撬动作用。抓住国家、省出台支持项目建设优惠政策有利时机,分级申报各项建设资金。按照国家政策,结合现有招商成果,谋划包装一批投资大且对产业具有战略支撑作用的龙头项目,积极争取国家债券资金,充分利用国开行、农发行债券基金撬动作用,促使整装大项目落地;利用省级先进制造业发展专项资金等财政专项资金作为引导基金,适时设立产业发展投资基金,发挥其投资

费托合成油生产技术及经济评价

费托合成油生产技术及经济评价(一) 1.概述 由天然气制液体燃料的气转液(GTL)技术是当前C1化工的重要发展方向。合成油作为21世纪GTL的三种燃料(合成油、二甲醚、甲醇)之一,则成为发展热点。 费托法生产合成油的历史大约可追溯到20世纪20年代。1923年德国科学家F.Fischer和H.Tropsch发明了由合成气制液态烃技术,简称FT合成。1936年德国首先工业化,到1946年德、法、日、中、美共建16套以煤为基础的装置,总生产能力达136万t/a(1)。之后,由于石油工业的兴起和发展,致使大部分FT合成装置关闭停运。 目前世界上掌握合成油技术的生产商主要有两家,其中一家是南非的Sasol公司,另一家是英荷Shell公司。Sasol公司40多年来已不断完善煤基合成油的技术,并在此基础上开发出用天然气制合成油的技术。1991年Sasol开发的先进循环流化床合成工艺(Sasol Advanced synthol,简称SAS),由于SAS反应器改善了气体分布状况,使催化剂消耗量减少40%(2,3)。Sasol用该技术在西开普省的Mossel湾建成南非第一个天然气制合成油工厂。该厂装备了三座SAS反应炉,设备总投资约12亿美元,日产合成油3万桶。与此同时,Sasol公司还开发了浆态床馏分油合成工艺(Slurry Phase Distillate,简称SPD)。现Sasol公司已成为世界最大的以煤为原料生产合成油及化工产品的煤化工基地。如今每年消耗4590万t低质煤,生产458万t燃油(15万桶/日)和310万t化工产品。合成油占南非总燃油市场的40%(2)。

英荷Shell公司经多年开发,已拥有世界先进的天然气制合成油技术,即中间馏分油合成技术(Shell Middle Distillate Synthesis,简称SMDS)。该工艺将传统FT技术和分子筛裂化或加氢裂化相结合生产高辛烷值汽油或优质柴油。1993年,利用该技术已在马来西亚建成工业装置,其天然气处理量约为10亿m3/a,产品为1.2万桶/日(相当于45万t/a),现扩建为75万t/a。此外,Exxon公司也在1996年声称开发成功AGC-21合成油工艺(3)。Syntroleum、Rentech等公司也相继开发了各自的合成油工艺。 中科院山西煤炭化学研究院长期以来一直从事以煤为原料的合成油技术开发。针对通常FT合成油存在产物分子量分布宽、烷烃多、产物中汽油馏分少、辛烷值低的缺点,提出采用超细Fe-Mn催化剂设想,目的是提高催化剂活性、抑制碳链过度增长,制成Fe-Mn尖晶石以降低加氢活性使产物富含烯烃,并改善结炭倾向。为提高汽油质量,采用等压两段连串反应器,第二段用ZSM-5分子筛使第一段富烯产物发生叠合、烷基化、异构化、氢转移等重整反应以提高汽油的辛烷值[4]。现该工艺完成中试和技术经济评估,正进行万吨级软件开发。该工艺主要特点是产品单一,流程简单。为了提高效率,该所还进行了浆态床的开发,并力争在2006年建成百万吨级工业装置。 本文主要介绍国外几种合成油工艺及技术经济评价,以为我国合成油工业的发展提供借鉴。 2.几种合成油工艺过程 以合成气为原料的FT合成工艺通常由合成气发生、FT合成及改

加氢裂化柴油回炼技术探讨

龙源期刊网 https://www.doczj.com/doc/d614703782.html, 加氢裂化柴油回炼技术探讨 作者:臧晖 来源:《科学大众》2019年第12期 摘; ;要:文章在分析加氢裂化柴油回炼技术的基础上,进行了小型回炼实验。实验结果表明,通过对比加氢柴油、加氢蜡油的单独反应情况,在运用混合原料进行实验后,低价值产物产率会下降,总液体收率会有所增加。分别选择了两种工况进行工业生产验证,实践证明该技术路线是可行的。 关键词:加氢裂化柴油;加氢;回炼技术 加氢裂化工艺技术对原料油适应性强,具有可大量生产优质中间馏分油产品、液体产品收率高并且灵活调整产品结构等优点,是炼油企业提高柴汽比的最有效的重油加工技术和清洁生产技术。因此,加氢裂化及加氢精制工艺和技术越来越受到世界各大石油公司的重视,加氢装置的建设和技术的开发得以更快地发展。近年来,我国加氢裂化及加氢精制技术的开发和应用得到快速发展,在低利润、高竞争性的炼油行业中,如何提高产品收率成为工艺流程研究的重点,这就需要应用新技术进行柴油的回炼,可使炼油企业在减少投入和操作成本的情况下,改善产品结构,提高目的产品收率。 1; ; 加氢回炼技术原理 一般情况下,催化柴油的转化有两种方式,一种是催化裂化,另一种是加氢裂化。无论是采用哪种技术,其技术开发点都是以催化柴油组成特点为基础的。其技术路线可分为4种:第一种是加氢精制。要么直接加工催化柴油,要么在直馏柴油中加入10%左右的催化柴油,这样就可有效增加十六烷值单元。第二种是加氢改质。主要就是指运用加氢裂化剂、加氢精制剂,实现烯烃、芳烃等的饱和加氢,以此达到增加十六烷值单元的目的。比如催化柴油深度加强处理技术、提高催化柴油十六烷值的加氢改质工艺技术就是以此为原理的。第三种是利用加氢装置掺入部分催化柴油,并进行回炼,主要就是实现柴油的深度转化。第四种是加氢-催化裂化组合技术,即在加氢装置的基础上,进行柴油加氢或蜡油加氢,然后将其与精制蜡油进行混合,作为装置原料,接下来利用加氢装置进行催化柴油的转化。在具体选择中,企业必须要根据实际生产流程、柴油质量升级要求、柴油组成等,选择性价比较高的技术路线。 另外,还需注意加氢柴油黏度低、沸点低,正有利于加氢柴油、高黏度新鲜原料的混合原料黏度。比如对比常压渣油、加氢柴油的密度和蒸馏曲线,并利用软件模拟混合不同比例加氢柴油,且基准温度为180 ℃,210 ℃的原料黏度。可以明显地发现在混合加氢柴油后,混合原料黏度会下降,且随着温度的降低,其黏度下降数值越大。这主要就是因为混合原料运动黏度可以改变原料油的性质,使其能经受住高温的催化。

煤基化工原料---芳烃主要产能及下游产品发展

煤基化工原料--芳烃主要产能及下游产品发展 3.2.1对二甲苯急需加快发展 对二甲苯已成为化工原料的供应短板,急需加快发展。对二甲苯是最主要的芳烃产品,消费量超过芳烃总量的一半。但其国内自给率仅为47%,明显低于烯烃的国内自给率,已形成化工原料的供应短板,急需加快发展。 我国在“十二五”期间规划了一批联合芳烃项目,但因为社会在环保方面对PX项目有误解,使多个联合芳烃项目推迟建设,而同期日本、韩国等国建设了多套联合芳烃装置,产品主要出口到中国。这种不正常的现象引起了国家领导人的高度重视,国家制定了七大石化基地的发展规划,联合芳烃项目的建设有望加快。 表12013年国内主要联合芳烃装置(万吨/年) 序号企业名称PX产能序号企业名称PX产能 一中国石化小计466 二中国石化小计181.5 1 中国石化上海石油化有限公司83.5 1 中国石油乌鲁木齐石化105.5 2 扬子石油化工有限公司80 2 中国石油辽阳石化分公司76 3 福建炼化一体化项目70 三其它小计374 4 金陵石化60 1 大连福佳大化140 5 海南石化60 2 中海油惠州84 6 中国石化镇海炼油化工有限公司52 3 福建腾龙芳轻80 7 中国石化集团天津石油化工公司33.4 4 青岛丽东化工70 8 中国石化洛阳石油化工总厂21.5 国内合计1022.3 9 中国石化齐鲁石化公司 6.4 邻二甲苯主要与对二甲苯联产,供应情况类似,下游市场与工业萘存在竞争。甲苯可通过歧化生产对二甲苯,对二甲苯是甲苯下游的第二大市场,两者的供求关系具有很强的相关性。 3.2.2苯的当量自给率需提高 苯的表观自给率高,但当量自给率低,也应加快发展。苯的供应来源比较多元化,供应情况好于对二甲苯,表观自给率达91%。但苯下游产品苯乙烯、苯酚、己内酰胺等大量进口,苯的当量进口依存度超过三分之一,整体市场处于严重供不应求的状态,应加快发展。 从苯的五种供应途径看(联合芳烃、炼油厂芳烃抽提、乙烯厂芳烃抽提、焦化苯加氢、煤制芳烃),焦化苯受到钢铁和焦炭行业不景气的影响,乙烯厂芳烃抽提苯受到石脑油制乙烯竞争力较弱和新疆项目进度较慢的影响,应重点加快联合芳烃和煤制芳烃项目建设。 表2国内主要焦化苯加氢装置(10万吨/年及以上规格) 序号企业名称产能序号企业名称产能

煤液化

煤液化 煤液化是指经过一定的加工工艺,将固体煤炭转化为液体燃料或液体化工原料的过程。按化学加工方法的不同煤的液化可分为两类:①煤在较高温度和压力下加氢直接转化为液体产品。煤的间接液化是指煤经气化产生合成气(CO + H2),再催化合成液体产品。 煤的液化是具有战略意义的一种煤转化技术,可将煤转化为替代石油的液体燃料和化工原料,有利于缓解石油资源的紧张局面。从全世界能源消耗组成看,可燃矿物(煤、石油、天然气)占92%左右,其中石油44%,煤30%,天然气18%。每个国家由于自身能源禀赋和工业发达程度的不同,各种能源所占的比重也不同。目前全世界已探明的石油可采储量远不如煤炭,不能满足能源、石油化工生产的需求。因此可以将储量相对较丰富的煤炭,通过煤炭液化转化为石油替代用品。尤其由于我国相对“富煤、贫油、少气”的能源格局,煤炭液化技术对于保障国家能源战略安全和经济可持续发展具有重要的意义[1]。 煤的直接液化已经走过了漫长的历程。1913年德国科学家F.Bergius发明了煤炭直接液化技术,为煤的加氢液化奠定了基础。此后,德国IG公司在第二次世界大战期间实现了工业化,战后由于中东地区廉价石油的开发,煤炭液化失去了竞争力。20世纪70年代由于石油危机煤炭液化又活跃起来。日本、德国、美国等工业发达国家相继开发出一批煤炭液化工艺。这些国家集中在如何降低反应条件的苛刻度,从而达到降低煤炭液化成本。目前,世界上煤炭直接液化有代表性的是德国的IGOR工艺、日本的NEDOL工艺和美国的HTI工艺。这些新工艺的特点是:反应条件与老液化工艺相比大大缓和,压力从40MPa降低到17-30MPa。并且产油率和油的质量都有很大提高,具备了大规模建设液化厂的技术能力。目前,国外没有实现工业化生产的主要原因是:由于原煤价格和液化设备造价以及人工费用偏高,导致液化成本相对于石油偏高,难以与石油竞争。 我国从20世纪70年代末开始进行煤炭直接液化技术的研究和攻关,其目的是用煤生产汽油、柴油等运输燃料和芳香烃等化工原料。煤炭科学研究总院先后从日本、德国、美国引进直接液化试验装置。经过近20年的试验研究,找出了14种适于直接液化的中国煤种;选出了5种活性较高的、具有世界先进水平的催化剂;完成了4种煤的工艺条件试验。为开发适于中国煤种的煤直接液化工艺奠定了基础,成功地将煤液化后的粗油加工成合格的汽油、柴油和航空煤油等。目前,从煤一直到合格产品的全流程已经打通,煤炭直接液化技术在中国已完成基础性研究,为进一步工艺放大和建设工业化生产厂打下了坚实的基础。 1923年,德国出现了煤炭间接液化技术。第二次世界大战时期,建造了9个煤炭间接液化工厂。战后,同样由于廉价的石油开发,导致这项技术停滞不前。之后,由于铁系催化剂的研制成功,新型反应器的开发和利用,煤炭液化技术得到了发展。但是,由于煤炭间接液化工艺复杂,初期投资大,成本高,除了南非外,其他国家对间接液化的兴趣相对于直接液化来说逐渐淡弱。 间接液化的技术主要3种,南非的费一托合成法、美国的莫比尔法和正在开发的直接合成法。目前间接液化技术在世界上已实现商业化生产。全世界共有3家商业生产厂正在运行,其中有南非的萨索尔公司和新西兰、马来西亚的煤炭间接液化厂。新西兰采用莫比尔法液化工艺,但是只进行间接液化的第一部反应,即利用天然气或者煤气化合成气生产甲醇。马来西亚煤炭间接液化厂采用的工艺和南非的类似,但不同的是以天然气为原料来生产优质柴油和煤油。因此,从严格意义上来说,南非的萨索尔公司是世界上唯一的煤炭间接液化商业化生产企业。该公司生产的汽油和柴油可满足南非28%的需求量,其煤炭间接液化技术处于世界领先地位。 我国从20世纪50年代初即开始进行煤炭间接液化技术的研究,曾在锦州进行过煤间接液化试验,后因发现大庆油田而中止。由于70年代的两次石油危机,以及“富煤少油”的能源结构带来的一系列问题,我国自80年代初又恢复对煤间接液化合成汽油技术的研究,

炼油厂催化柴油转化装置运行方式

炼油厂催化柴油转化装置运行方式摘要在国五车用柴油升级后,催化柴油组分油无法全部平衡,只能外销部分催化柴油,效益损失大。为应对2017年国五普柴升级,新建催化柴油转化装置。本文对催化柴油转化装置与其它加氢精制装置并行运行方式进行总结,提出未来的运行思路。 关键词催化柴油十六烷值辛烷值转化芳烃含量 1.普通柴油升级进度说明 按照国家规定,普通柴油从2017年7月1日开始执行国Ⅳ标准,从2018年1月1日开始执行国Ⅴ标准。 按照总部规定,普通柴油的升级时间比国家要求还要提前一个季度,从2017年4月1日开始执行国Ⅳ标准,从2017年10月1日开始执行国Ⅴ标准。也就是说,2017年内,普通柴油质量在半年时间需跳跃2级。 总部要求普柴升级规定(比国家要求提前三个月) 普柴内控指标2017年4月1日前2017年4月1日(国Ⅳ)2017年10月1日(国Ⅴ) 硫含量(mg/kg) 340 47 8 十六烷值45.5 45.5 45.5 十六烷指数45 45 45 下表为外销混合催化柴油分析数据,因外销柴油没有芳含数据要求,总芳烃含量用历史数据表示。 表一: 第一批第二批第三批第四批 密度(kg/m3)936.3 946.3 952.4 948.4 馏程(℃)170-345 159-351 161-348 162-345 氮含量(ppm) 743 905 857 822 十六烷指数22.3 21.1 20.6 20.7 总芳烃(%) 80-85 硫含量(%) 0.6477 0.6097 0.6283 0.5201 由此表可以看出催化柴油密度大、十六烷值低、芳烃含量高。富含芳烃是催化柴油 质量差的根源(80%~85%芳烃),如何有效利用催化柴油是柴油质量升级必须解决的难题。

合成油工艺说明

一、费托合成工艺说明 煤间接液化工艺是煤经气化生产合成气(H2+CO),合成气净化后经过费托合成反应生成烃类产品的过程。浆态床费托合成反应是煤间接液化工艺核心技术,合成装置的工艺过程是合成原料气在一定的压力和温度下进入浆态床反应器,在催化剂的作用下发生费托合成反应,生成轻质馏分油、重质馏分油、重质蜡、水及含氧化合物等一系列的产物。费托反应后的合成产品、尾气经过换热、分离和收集后大部分气体直接经过加压循环及循环使用。另一部分尾气和释放气送脱碳和油洗装置中脱除CO2并回收低碳烃。 浆态床煤基合成油工艺可以实现催化剂的在线补充和卸出,实现生产过程的连续操作。费托(F-T)合成反应的化学方程式如下: nCO+(2n+1)H2 (-CH2-)n+nH2O+Q 同时发生水煤气变换反应: CO+H2O CO2+H2+Q 二、工艺流程简述 本装置由合成及分离部分、重质蜡精制部分、还原部分三部分组成。中国石油工程设计抚顺分公司负责合成及分离部分的设计,中科合成油技术有限公司负责重质蜡精制部分、还原部分的设计;本工艺流程叙述仅对合成及分离部分。 合成及分离部分的工艺流程由反应系统、重质蜡分离系统、过滤反吹及反洗系统、浆态床反应器的取热系统等四部分组成。 1.反应系统 来自低温甲醇洗装置2.5MPa(A)、40℃、总硫量<0.05PPPm的新鲜原料气,经原料气4压缩机(780-K-1101)升压到3.4MPa(A)、79℃。与来自循环气压缩机(780-K-1102)的循环气3.4MPa(A)、64℃混合后分为两部分。一部分送到反吹气压缩机(780-K-1103),另一部分进入二次换热器(780-E-1102)壳程与合成气换热到138℃,再与来自PSA装置的一氧化碳气 3.4MPa(A)、130℃和油品加工装置的氢气 3.4MPa(A)、130℃混和进入一次换热器(780-E-1101)壳程与合成气换热到216℃后分为两路。一路经合成气蒸汽加热器(780-E-1106)加热到230℃进入浆态床反应器(780-R-1101),另一路至重质蜡稳压罐(780-D-1112)补充重质蜡分离系统的压力。 进入浆态床反应器(780-R-1101)的循环气以鼓泡的形式通过含有催化剂的浆态床层,进行费托合成反应。反应生成的轻质烃类化合物、合成水和未反应的合成气以气相形式从反应器的顶部导出,反映产生的重质烃类经重质蜡分离装置从反应器中部抽出。 从反应器顶部导出的反应产物2.96MPa(A)、240℃进入一次换热器(780-E-1101)管程与循环气换热到2.91MPa(A)、160℃,并冷凝出重质油,进入重质油分离器(780-D-1103)进行气液分离。 分离出的重质油减压到0.16MPa(A)后与来自重质蜡稳压罐(780-D-1112)的重质蜡释放气一起进入重质油减压罐(780-D-1108)。重质油减压罐的气相经释放气一次水冷器(780-E-1103)冷却到100℃,进入释放气二次水冷器(780-E-1105)冷却到40℃。然后送入油水分离器(780-D-1106)。 重质油减压罐(780-D-1108)的液相进入重质油泵(780-P-1102),升压到0.65MPa(A)后送到油品加工装置,在非正常工况下,也可以经过重质油冷却器(780-E-1108)冷却到90℃后送到中间罐区。 重质油分离器(780-D-1103)的气相经过二次换热器(780-E-1102)管程与循环气换热到109℃,进入合成气空冷器(780-A-1101)冷却到50℃,再经过合成气水冷器(780-E-1104)冷却到2.73MPa(A)、40℃进入轻质油分离器1、2(780-D-1104、1105)进行气液分离。气

煤基化学品

煤 基 化 学 品 学院:化学与化工 专业:化学工程与工业

煤基化学品 摘要煤基化学品是化学工业的主导产品,主要以合成气(CO、H2)、甲醇、甲醛为原料合成的一系列有机化工产品,包括醇类化学品、醛类化学品、胺类化学品、有机酸类化学品、酯类化学品、醚类化学品、甲醇卤化化学品和烯烃化学品。煤基化学品将显现成本优势 关键词煤基化学品化工产品可行性竞争新型产业化学品优势 一.煤基化学品的发展格局 中国、美国和印度是将煤作为化工原料的潜力最大的国家,因为这三个国家拥有世界煤储量的一半(世界煤炭储量),并且本国油气产量供应不足,而又希望减少对进口资源的依存度。因此,他们积极开拓煤气化制甲醇技术。而且以能量当量为基础计算,煤的价格只是原油的1/4,但是用煤生产化学产品要比用油和天然气的传统工艺的投资要昂贵得多。因此煤基化学工厂需要有一个持续的原料成本优势。当油价高于50美元/桶时,煤是一个有利的选择,但如果低于35美元/桶,则昂贵的煤联合企业就要开始亏本。 二.煤制烯烃的现状 煤化工未来的设想是用煤制烯烃,新开发的使甲醇转化成烯烃技术让此目标成为现实——甲醇经过二甲醚再转化为烯烃。UOP和鲁奇是这类技术的主要转让商。这两家公司总的工艺过程相似,但催化剂不同,最终产品也相异。 UOP技术称为MTO,采用SAPO-34催化剂,而鲁奇的技术叫MTP,使用ZSM-5型催化剂。UOP的催化剂孔径小于ZSM-5,当甲醇进入催化剂孔内进行反应之后较小的分子可能存于孔内而较大的副产物将不能剥离,因此使用UOP工艺可得到乙烯、丙烯等一些较重的烯烃;而鲁奇的技术只能生产丙烯而没有乙烯。由于当前市场丙烯价值比乙烯高,鲁奇的技术因此具有一定的优势。 无论是鲁奇还是UOP的技术,迄今为止都没有工业规模装置在运转。UOP有中试装置在运作,在比利时正建设一座投资7500万美元的工业化规模装置。UOP石油化工事业部经理称该公司正在进行用煤基甲醇为基础的MTO计划,但迄今尚无签定的转让项目,他透露公司拟在中国谋求发展。鲁奇公司称已向中国山西的一家公司和神华宁夏煤业公司转让了技术,这两家公司都在中国建设50万t/a的装置。 三.厂址与环境保护 煤制化工产品的装置建设地点选择需要认真考虑,最好建立在煤产地,但这些地区多在内地,远离人口集聚中心,最终产品消费和分销不便,因此煤化工厂建设在靠近煤矿还是产品消费市场需要权衡利弊。据神华集团公司副总裁说,此问题曾引起多次讨论。在与陶氏化学公司合资项目谈判中,双方都考虑是否将全部计划的项目都建设在内地(产煤矿区),或是将项目剥离,甲醇装置建在内地,下游产品工厂建在沿海地区。此问题目前尚无结论,但中方认为将整个联合企业建在煤矿附近是明智的,如果将它分成两部份,相隔数万里,是很难成为一个高效的联合企业,而且长距离运输甲醇也很昂贵。 业内专家指出:要警惕煤制化学品可能存在的经济风险,即使在中国也是如此。必需慎重选择煤基化学品的品种,同时要考虑建厂地点的后勤保障系统。最近中东地区大规模建设的以天然气为原料的石油化工装置,将成为煤基工厂的有力竞争对手。 环境问题是煤化工面临的另一大挑战。特别是已经在《京都议定书》上签字的国家,或是已将CO2当作温室气体进行管理的地区,因为煤中含有硫,汞、砷等其它污染物,公众

相关主题
文本预览
相关文档 最新文档