当前位置:文档之家› 射频功率测量的基础知识

射频功率测量的基础知识

射频功率测量的基础知识
射频功率测量的基础知识

射频基础知识培训

射频基础知识培训 1、无线通信基本概念 利用电磁波的辐射和传播,经过空间传送信息的通信方式称之为无线电通信(Wireless Communication),也称之为无线通信。利用无线通信可以传送电报、电话、传真、数据、图像以及广播和电视节目等通信业务。 目前无线通信使用的频率从超长波波段到亚毫米波段(包括亚毫米波以下) 以至光波。无线通信使用的频率范围和波段见下表1-1

由于种种原因,在一些欧、美、日等西方国家常常把部分微波波段分为、、C、X、Ku、K、Ka 等波段(或称子波段),具体如表1 - 2所示 极长波(极低频ELF)传播 极长波是指波长为1~10万公里(频率为3~30HZ的电磁波。理论研究表明, 这一波段的电磁波沿陆地表面和海水中传播的衰耗极小。 1.2超长波(超低频SLF)传播 超长波是指波长1千公里至1万公里(频率为30~300HZ的电磁波。这一波段的电磁波传播十分稳定,在海水中衰耗很小(频率为75Hz时衰耗系数为m 对海水穿透能力很

强,可深达100 m以上。 甚长波(甚低频VLF)传播 甚长波是指波长10公里~100公里(频率为3~30kHz)的电磁波。无线通信中使用的甚长波的频率为10~30kHz该波段的电磁波可在大地与低层的电离层间形成的波导中进行传播,距离可达数千公里乃至覆盖全球。 长波(低频LF)传播 长波是指波长1公里~10公里(频率为30~300kHZ的电磁波。其可沿地表面传播(地波)和靠电离层反射传播(天波)。 中波(中频MF传播 中波是指波长100米~1000米(频率为300~3000kHZ的电磁波。中波可沿地表面传播(地波)和靠电离层反射传播(天波)。中波沿地表面传播时,受地表面的吸收较长波严重。中波的天波传播与昼夜变化有关。 短波(高频HF)传播 短波是指波长为10米~100米(频率为3~30MHZ的电磁波。短波可沿地表面传播(地波),沿空间以直接或绕射方式传播(空间波)和靠电离层反射传播 (天波)O 超短波(甚高频VHF传播 超短波是指波长为1米~10米(频率为30~300MHZ的电磁波。超短波难以靠地波和天波传播,而主要以直射方式(即所谓的“视距”方式)传播。 微波传播 微波是指波长小于1米(频率高于300MHZ的电磁波。目前又按其波长的不同,分为分米波(特高频UHF、厘米波(超高频SHF、毫米波(极高频EHF和亚毫米波(至高频THF O 微波的传播类似于光波的传播,是一种视距传播。其主要在对流层内进行。总的说 来,这种传播方式比较稳定,但其传播也受到大气折射和地面反射的影响。另外, 对流层中的大气湍流气团对微波有散射作用。利用这种散 射作用可实现微波的超视距传播。

射频测量指标参数

射频指标 1)频率误差 定义 :发射机的频率误差是指测得的实际频率与理论期望的频率之差。它是通过测量手机的I/Q 信号并通过相位误差做线性回归,计算该回归线的斜率即可得到频率误差。频率误差是唯一要求在衰落条件下也要进行测试的发射机指标。 测试目的 :通过测量发射信号的频率误差可以检验发射机调制信号的质量和频率稳定 度。频 率误差小,则表示频率合成器能很快地切换频率,并且产生出来的信号足够稳 定。只有信号 频率稳定,手机才能与基站保持同步。若频率稳定达不到要求 (±0.1ppm),手机将出现信 号弱甚至无信号的故障,若基准频率调节范围不 够,还会出现在某一地方可以通话但在另一 地方不能正常通话的故障。 条件参数 : GSM 频段选 1、62、124 三个信道,功率级别选 最大LEVEL5 ;DCS 频段选 512、698、885 三个信道,功率级别选最 大LEVEL0 进行测试。 GSM 频段的频率误差范围为+90HZ —— -90HZ ,频率误差小 于40HZ 时为最好,大于40HZ 小于 60HZ 时为良好,大于60HZ 小于 90HZ 时为一般,大 于90HZ 时为不合格; DCS 频段的频率误差范围为 +180HZ —— -180HZ ,频率误差小于 80HZ 时为最好,大于 80HZ 小于 100HZ 时为良好,大 于100HZ 小于 180HZ 时为一般,大于180HZ 时为不合格。 2)相位误差 定义 :发射机的相位误差是指测得的实际相位与理论期望的相位之差。理论上的相位 轨迹可 根据一个已知的伪随机比特流通过0.3 GMSK 脉冲成形滤波器得到。相位轨迹可看作与载 波 相位相比较的相位变化曲线。连续的1 将引起连续的 90 度相位的递减,而连续的0 将引起连续的 90 度相位的递 增。 峰值相位误差表示的是单个抽样点相位误差中最恶略的情况,而均方根误差表示的是所有 点 相位误差的恶略程度,是一个整体性的衡量。 测试目的 :通过测试相位误差了解手机发射通路的信号调制准确度及其噪声特性。可以看出 调制器是否正常工作,功率放大器是否产生失真,相位误差的大小显示了I 、Q 数位类比转 换器和高斯滤波器性能的好坏。发射机的调制信号质量必须保持一定的指标,才能当存在着各种外界干扰源时保持无线链路上的低误码率。 测试方法 :在业务信道( TCH )激活 PHASE ERROR 即可观测到相位误差值。测试时通过 综合测试仪 MU200 产生比特流进行调制后送给手机,并指令手机处于环回模式。然后去捕 捉 手机的一个突发信号,对其进行均匀相位抽样,抽样周期为调制信号周期的1/2,最后根据

射频通过式功率计的应用

射频通过式功率计的应用 一、通过式功率计的工作原理 射频功率可由两类仪器来测量:热偶式功率计和通过式功率计。 1.1 热偶功率计 热偶式测试法是先将射频功率转换为热能,测出其所产生的能量的总和,再将其转换为相应的功率读数(瓦特)。在热偶式测量法中,其测试结果基本上不受信号波形的影响。但热偶式功率计的成本,物理尺寸,测试响应时间,所需的附件设备,电缆和交流电源都决定了它不能得到广泛的应用。 1.2 通过式功率计 早在1952年,BIRD公司的创始人J. Raymond Bird发明了通过式功率计原理——Thruline?技术。从此,通过式功率测量法成为射频功率测量的工业标准一直至今。在工程应用及工程计量中,通过式功率计的作用是任何其它功率测试手段所无法替代的。 Thruline?通过式功率测量法的原理如下(见图1): 图1、通过式功率测量法图图2、连续波(CW)功率计的代表产品—BIRD 43 通过式射频功率计实际上是一种信号激励装置,采用了一个无源的二极管射频传感器。在同轴线的一侧装有一个定向的,半波二极管检波电路,并将其接到一个已校正的表头以读出有效值功率。检波电路与传输线通过介质耦合,并根据置于传输线旁的传感器的方向取样出正向和反射功率。 Thruline?功率计的代表产品是BIRD公司的43型功率计(见图2),它自发明以来已经有超过25万台在全世界范围得到应用。43采用了无源线性二极管检波技术,可以测量单载频的FM,PM和CW信号的功率,或者与校准信号的峰均功率比完全一致的信号。 二、模拟调制和数字调制的射频信号 不同的射频调制信号的功率测量方法是不同的,让我们首先来比较一下不同的调制信号各有什么特点。 2.1 连续波(CW)和模拟调制信号 图3所示为连续波(CW)信号的波形,其特点是峰值包络是恒定的,FM和PM信号也同样。

射频基本知识

引言 在进入射频测试前,让我们回顾一下单相交流电的基本知识。 一、单相交流电的产生 在一组线圈中,放一能旋转的磁铁。当磁铁匀速旋转时,线圈内的磁通一会儿大一会 儿小,一会儿正向一会儿反向,也就是说线圈内有呈周期性变化的磁通,从而线圈两端即感生出一个等幅的交流电压,这就是一个原理示意性交流发电机。若磁铁每秒旋转50周,则电压的变化必然也是50周。每秒的周期数称为频率f,其单位为赫芝Hz。103Hz=千赫kHz,,106Hz=兆赫MHz,109Hz=吉赫GHz。b5E2RGbCAP 在示波器上可看出电压的波形呈周期性,每一个周期对应磁铁旋转一周。即转了2π弪,每秒旋转了f个2π,称2πf为ω<常称角频率,实质为角速率)。则单相交流电的表达式可写成:p1EanqFDPw V=Vm=Vm 式中Vm(电压最大值>=Ve(有效值或Vr.m.s.>。t为时间<秒),为初相。 二、对相位的理解 1、由电压产生的角度来看 ·设想有两个相同的单相发电机用连轴器连在一起旋转,当两者转轴<磁铁的磁极)

位置完全相同时,两者发出的电压是同相的。而当两者转轴错开角度时,用双线示波器来看,两个波形在时轴上将错开一个角度;这个角度就叫相位角或初相。相位领先为正,滞后为负。DXDiTa9E3d ·假如在单相发电机上再加一组线圈,两组线圈互成90°<也即两电压之间相位差 90°),即可形成两相电机。假如用三组线圈互成120°<即三电压之间,相位各差120°)即可形成三相电机。两相电机常用于控制系统,三相电机常用于工业系统。RTCrpUDGiT 2、同频信号<电压)之间的叠加 当两个电压同相时,两者会相加;而反相时,两者会抵消。也就是说两者之间为复数运算关系。若用方位平面来表示,也就是矢量关系。矢量的模值<幅值)为标量,矢量的角度为相位。5PCzVD7HxA 虽然人们关心的是幅值,但运算却必须采用矢量。 虽然一般希望信号相加,但作匹配时,却要将反射信号抵消。 三、射频 交流电的频率为50Hz时,称为工频。20Hz到20kHz为音频,20kHz以上为超声波 ,当频率高到100 kHz以上时,交流电的辐射效应显著增强;因此100 kHz以上的频率泛称射频。有时会以3 GHz为界,以上称为微波。常用频段划分见附录。jLBHrnAILg

不看不知道 射频功率测试,就是这么简单

不看不知道射频功率测试,就是这么简单 自从第一台无线电发射机诞生之日起,工程师们就开始关心射频功率测量问题,知道今天这依然是个热门话题。无论是在实验室,产线上还是教学中,功率测量都是必不可少的。 在无线电发展初期,测试工程师所面对的大多数是连续波、调幅、调频、调相或脉冲信号,这些信号都是有规律可循的。例如,连续波(如图1)调频或调相信号的功率测量都是很简单,只需要测量其平均功率;调幅信号(如图2)的功率与其调制深度有关,而脉冲信号的特性是以脉冲宽度和占空比来表达。对于以上这些模拟或模拟调制信号,射频功率测量所关心的基本上都是平均功率和峰值功率。 而现在,特别是20世纪90年代以后,数字通信开始快速发展,射频功率测量的重点也开始有些变化。因为数字调制信号(如图3)的包络无规律可循,其最大和最小电平会随机变化,而且变化量很大。为了描述这类信号的特征,引入了一些新的描述方法,如领道功率,突发功率,通道功率等。很多传统的功率计已经无法满足数字信号功率的测量要求,一部分功率测量的任务已经开始由频谱分析仪来完成。 下面我们介绍常见的几种射频功率测量方法,在此之前我们还需要明确一件事在频域测试测量中,为什么习惯以功率来描述信号强度,而不是像时域测试测量中常用的电压和电流?那是因为在射频电路中,由于传输线上存在驻波,电压和电流失去了唯一性,所以射频信号的大小一般用功率来表示,国际通用的功率单位为W,mW,dBm。 频谱分析仪和功率计都是可以测量射频功率的,其中功率计又分为吸收式功率计与通过式功率计两种。 同样是功率测量,不同的测试仪器和测试方法所关注的重点是不同的。 射频功率的测量方法: 频谱分析仪测量吸收式功率测量通过式功率测量

一体化通过式功率计GC 8320

GC 8320一体化通过式功率计 GC8320是澳大利亚 司专门为现代移动通信系统的功率测量而设计的一款高性能的通过 GC8320采用独特的、前沿技术的设计,大 大降低了仪表操作的复杂程度,使之成为目前仪表领域中独一无 二,功能全面,使用方便的一体化通过式功率计。 基本功能: 门支持GSM900/1800, SCDMA, WCDMA, CDMA2000 频段 人性化用户界面及3.5英寸高清晰度 式功率计 标准N型微波接口,支持各种发射及天馈系统 高精度,正反向功率、驻波比、回损、负载功率及温度 测试 平均功率、峰值功率、突发平均功率、峰均比/ 通过式功率测量重要性介绍 : 一个典型的射频发射系统由三个基本部分组成:发射 机,馈线和天线。发射机发出的功率通过馈线输送到天线, 由天线辐射出去。如果发射系统的各个部分之间具有良好的

分析,尤其是正向功率和驻波比的分析,可以快速地缩小故障范围。 例如,把通过式功率计插入到天线和馈线之间,如果监测数据显示正向功率稳定而驻波比不稳,则提示故障在天线系统;如果驻波比很稳定而正向功率不稳,则提示故障可能在发射机,也可能在馈线,此时只要把通过式功率计插入到发射机的输出端和馈线之间,再做一次监测,如果正向功率仍显示不稳定,则提示故障在发射机,否则,故障就在馈线系统。 订货须知 : 订货时请按需要选择一下频段,如需要其他特殊频段,请提前告知。 ● GSM900 ● GSM1800 ● WCDMA ● CDMA800 ● CDMA1900 ● CDMA 2000 ● TD-SCDMA ● WiMAX 标准配件 : ● 电源适配器 ● 1.2米USB-A 转USB-B 数据线 ● 用户手册 ● 便携包

射频基础知识点

一、频谱分析仪部分 什么是频谱分析仪? 频谱分析仪是研究电信号频谱结构的仪器,用于信号失真度、调制度、谱纯度、频率稳定度和交调失真等信号参数的测量,可用以测量放大器和滤波器等电路系统的某些参数,是一种多用途的电子测量仪器。我们现在所用的频谱仪大部分是扫频调谐超外差频谱分析仪。 频谱仪工作原理 输入信号经衰减器以限制信号幅度,经低通输入滤波器滤除不需的频率,然后经混频器与本振(LO)信号混频将输入信号转换到中频(IF)。LO的频率由扫频发生器控制。随着LO频率的改变,混频器的输出信号(它包括两个原始信号,它们的和、差及谐波,)由分辨力带宽滤波器滤出本振比输入信号高的中频,并以对数标度放大或压缩。然后用检波器对通过IF滤波器的信号进行整流,从而得到驱动显示垂直部分的直流电压。随着扫频发生器扫过某一频率范围,屏幕上就会画出一条迹线。该迹线示出了输入信号在所显示频率范围内的频率成分。 输入衰减器 保证频谱仪在宽频范围内保持良好匹配特性,以减小失配误差;保护混频器及其它中频处理电路,防止部件损坏和产生过大的非线性失真。 混频器 完成信号的频谱搬移,将不同频率输入信号变换到相应中频。在低频段(<3G Hz)利用高混频和低通滤波器抑制镜像干扰;在高频段(>3GHz)利用带通跟踪滤波器抑制镜像干扰。 本振(LO) 它是一个压控振荡器,其频率是受扫频发生器控制的。其频率稳定度锁相于参考源。 扫频发生器 除了控制本振频率外,它也能控制水平偏转显示,锯齿波扫描使频谱仪屏幕上从左到右显示信号,然后重复这个扫描不断更新迹线。扫频宽度(Span)是从左fstart到右fstop10格的频率差,例如:Span=1MHz,则100kHz/div.

射频测量指标参数

射频指标 1)频率误差 定义:发射机的频率误差是指测得的实际频率与理论期望的频率之差。它是通过测量手机的I/Q信号并通过相位误差做线性回归,计算该回归线的斜率即可得到频率误差。频率误差是唯一要求在衰落条件下也要进行测试的发射机指标。 测试目的:通过测量发射信号的频率误差可以检验发射机调制信号的质量和频率稳定度。频率误差小,则表示频率合成器能很快地切换频率,并且产生出来的信号足够稳定。只有信号频率稳定,手机才能与基站保持同步。若频率稳定达不到要求(±0.1ppm),手机将出现信号弱甚至无信号的故障,若基准频率调节范围不够,还会出现在某一地方可以通话但在另一地方不能正常通话的故障。 条件参数: GSM频段选1、62、124三个信道,功率级别选最大LEVEL5;DCS频段选512、698、885三个信道,功率级别选最大LEVEL0进行测试。GSM频段的频率误差范围为+90HZ ——-90HZ,频率误差小于40HZ时为最好,大于40HZ小于60HZ时为良好,大于60HZ 小于90HZ时为一般,大于90HZ时为不合格;DCS频段的频率误差范围为+180HZ——-180HZ,频率误差小于80HZ时为最好,大于80HZ小于100HZ时为良好,大于100HZ小于180HZ时为一般,大于180HZ时为不合格。 2)相位误差 定义:发射机的相位误差是指测得的实际相位与理论期望的相位之差。理论上的相位轨迹可根据一个已知的伪随机比特流通过0.3 GMSK脉冲成形滤波器得到。相位轨迹可看作与载波相位相比较的相位变化曲线。连续的1将引起连续的90度相位的递减,而连续的0将引起连续的90度相位的递增。 峰值相位误差表示的是单个抽样点相位误差中最恶略的情况,而均方根误差表示的是所有点相位误差的恶略程度,是一个整体性的衡量。 测试目的:通过测试相位误差了解手机发射通路的信号调制准确度及其噪声特性。可以看出调制器是否正常工作,功率放大器是否产生失真,相位误差的大小显示了I、Q数位类比转换器和高斯滤波器性能的好坏。发射机的调制信号质量必须保持一定的指标,才能当存在着各种外界干扰源时保持无线链路上的低误码率。 测试方法:在业务信道(TCH)激活PHASE ERROR即可观测到相位误差值。测试时通过综合测试仪MU200产生比特流进行调制后送给手机,并指令手机处于环回模式。然后去捕捉手机的一个突发信号,对其进行均匀相位抽样,抽样周期为调制信号周期的1/2,最后根据抽样的正常突发中的样点计算出相位轨迹和误差。 测试条件:GSM频段选1、62、124三个频道,功率级别选最大LEVEL5;DCS频段选512、

如何选择射频测试仪器

如何选择射频测试仪器 当前,基于射频原理的无线通信产品俯拾即是,其数量的增长速度也非常惊人。从蜂窝电话和无线PDA,到支持WiFi的笔记本电脑、蓝牙耳机、射频身份标签、无线医疗设备和Zigbee传感器,射频设备的市场规模在飞速扩大。要想进行全面的生产测试并提高测试产能,测试工程师们必须懂得选用最适合的仪器完成这些测试工作。那么,如何选择射频测试仪器呢? 一、射频信号源的选择 所有的射频信号源都能产生连续(CW)射频正弦波信号。某些信号发生器也能够产生模拟调制射频信号(如AM信号或脉冲射频信号),矢量信号发生器采用IQ调制器产生各种模拟或数字调制信号。 射频信号源进一步可以分成很多种,包括固定频率CW正弦波输出源、扫描输出一个频段非固定频率CW正弦波的扫频源、模拟信号发生器以及增加模拟和数字调制功能的矢量信号发生器。 如果测试需要激励信号,那么就需要射频信号源。射频信号源的关键指标是频率与幅值范围、幅值精度和调制质量(对于产生调制信号的信号源而言)。频率调谐速度和幅值稳定时间对于减少测试时间也是非常关键的。 矢量信号发生器是一种高性能的信号源,通常结合任意波形发生器一起产生某些调制信号。通过任意波形发生器可以使矢量信号发生器产生任意类型的模拟或数字调制信号。这种发生器可以在内部产生多种基带波形,在某些情况下,也可以在外部产生某种基带波形然后载入到仪器中。如果测试规范要求被测的元件、设备或系统按照待测设备最终使用中的处理调制方式进行测试,那么这种情况下通常需要使用矢量信号发生器。 如果测试规范需要进行接收器灵敏度测试、误码率测试、相邻信道抑制、双音互调抑制、或双音互调失真的测试,那么也需要使用射频信号源。双音互调测试和相邻信道抑制测试需要两个信号源,接收器灵敏度测试和/或误码率测试只需要使用一个射频信号源。 如果待测器件是用于移动电话的,那么测试者可能要根据移动电话标准的需要进行调制信

射频功率测量电路设计

射频功率测量电路设计 近年来,随着3G 技术的快速发展,在进行通信系统设计时,射频功率的 控制和测量十分重要。本文以美国ADI 公司的AD8318 单片射频功率测量芯片为核心,设计了基于对数放大器检测方法的射频功率测量电路,该方法具有动 态范围大,频率范围广,精度高和温度稳定性好的特点。 1 测量原理 射频功率测量方法有多种多样,其中对数放大器检测法是射频测量的主要方 向之一,下面从对数放大器内部结构进行分析,研究对数放大检测器如何检测 射频信号。 射频信号检测的实质是如何实现将功率信号无失真地转换成电压信号,而这 个转换工作则由对数放大检测器来完成,因此,对数放大检测器是射频测量的 关键。它的核心是对数放大器,对数放大器之间采用直接耦合方式,分成N 级,每级由对数放大器和检波器组成。每级的输出送到求和器,由求和输出经低通 滤波器后得到一个电压信号。N 一般取值为5~9 级,级数越多,单级增益越小,则输出特性曲线越趋向于线性,这里以5 级为例进行分析,具体电路如图 1 所示。 该对数放大检测器的传递函数为:U0=Ks(Pin-b) (1)式中:b 为截距;Ks 为对数检测器的斜率,是一个常数;Pin 是输入信号的功率。在一定的动态范围内,可通过Matlab 仿真软件得到对数放大器的特性曲线,如图2 所示。 从图2 可知,线性动态范围约为-3~67 dBm,在此范围内,输出电压与输入功率之间呈线性关系。图2 的横坐标是输入信号的功率,纵坐标为输出电压和 误差值。在坐标系上作图可知,该特性曲线的斜率约为18 mV/dB,截距约为93 dBm,已知输入信号的情况下,可根据式(1)得到输出电压的大小。若输入信

射频基础知识

第一部分射频基本概念 第一章常用概念 一、特性阻抗 特征阻抗是微波传输线的固有特性,它等于模式电压与模式电流之比。对于TEM波传输线,特征阻抗又等于单位长度分布电抗与导纳之比。无耗传输线的特征阻抗为实数,有耗传输线的特征阻抗为复数。 在做射频PCB板设计时,一定要考虑匹配问题,考虑信号线的特征阻抗是否等于所连接前后级部件的阻抗。当不相等时则会产生反射,造成失真和功率损失。反射系数(此处指电压反射系数)可以由下式计算得出: z1 二、驻波系数 驻波系数式衡量负载匹配程度的一个指标,它在数值上等于: 由反射系数的定义我们知道,反射系数的取值范围是0~1,而驻波系数的取值范围是1~正无穷大。射频很多接口的驻波系数指标规定小于1.5。 三、信号的峰值功率 解释:很多信号从时域观测并不是恒定包络,而是如下面图形所示。峰值功率即是指以某种概率出现的尖峰的瞬态功率。通常概率取为0.1%。

四、功率的dB表示 射频信号的功率常用dBm、dBW表示,它与mW、W的换算关系如下: dBm=10logmW dBW=10logW 例如信号功率为x W,利用dBm表示时其大小为 五、噪声 噪声是指在信号处理过程中遇到的无法确切预测的干扰信号(各类点频干扰不是算噪声)。常见的噪声有来自外部的天电噪声,汽车的点火噪声,来自系统内部的热噪声,晶体管等在工作时产生的散粒噪声,信号与噪声的互调产物。 六、相位噪声

相位噪声是用来衡量本振等单音信号频谱纯度的一个指标,在时域表现为信号过零点的抖动。理想的单音信号,在频域应为一脉冲,而实际的单音总有一定的频谱宽度,如下页所示。一般的本振信号可以认为是随机过程对单音调相的过程,因此信号所具有的边带信号被称为相位噪声。相位噪声在频域的可以这样定量描述:偏离中心频率多少Hz处,单位带宽内的功率与总信号功率相比。 例如晶体的相位噪声可以这样描述: 七、噪声系数 噪声系数是用来衡量射频部件对小信号的处理能力,通常这样定义:单元输入信噪比除输出信噪比,如下图:

射频功率的快速测量法

射频功率的快速测量法 作者:Joshua Israelsohn RF(射频)电磁场中充满着音乐的喧闹声和电话交谈、寻呼信号、电子邮件和因特网业务的各种嘈杂声。RF零部件、RF系统以及对RF功率测量的需求正扩大到传统的话音通信、无线局域网(WLAN)、码分多址(CDMA)和第三代移动通信(G3)手机以及长途电话费电子收费系统等各种应用领域。 便携式RF产品的激增引发对RF功率测量的极大改进。在模拟RF链路方面,沿用了几十年的传统的测量方法仍在使用。但是如果采用现代化的功率计进行这种测量时,测试人员就会发现,在进行数据记录或数据分析时,现代的更简单的传感器和计量器标定、更容易的传感器更换和计算机接口对测量RF功率更为精确、便捷。现代化的RF功率计也更小、更轻,在某些情况下还可以用电池供电,从而使野外测量像在实验室一样简单而精确。 数字RF链路,特别是采用扩频调制技术的数字RF链路,已向传统的测量方法发出了挑战。基于处理器的RF功率计能够进行数字链路测量,而以前用分析仪进行这种测量,成本是现在的2~5倍。同时,最复杂的数字RF技术,如CDMA(码分多址)代表未来的发展方向:即制造商必须将RF功率测量能力置入无线手机和基站,使之作为RF链路控制的组成部分。这样做将可以有效地利用RF信道利用率,并获得优良的话音质量。 测量方法 测量RF功率有许多好的方法。因频段、功率电平和所测信号的调制技术以及精度、范围和成本不同,测量的方法也不尽相同。对于传统的模拟信号而言,RF功率测量,无论是测量均方根值(rms)还是最大值,都是十分简便的。 大多数概念性的简单方法采用热电传感器来测量(见图1、参考文献1)。这种方法最接近于直接实现均方根值功率的数学定义:交流信号的加热能力与直流信号的加热能力的比较。这里,缓冲放大器采用与RF输入信号一样的信号激励加热部件。加热部件的热量与温度传感器(一般用热电耦)密切相关,但两者在电气上是隔离开的。伺服放大器以平衡方式激励相匹配的一对加热器/传感器,直至直流伺服器传递的功率与输入的RF信号的功率相等为止。 输出电压与输入电压的均方根值相等。因此,用户可以利用附加电路在模拟域计算信号功率,方法是:在显示之前,信号仍在数字域,则附加电路的数据流为:PRF=Vo2/R,其中PRF表示RF功率,Vo表示传感器的输出电压,R表示加热器电阻。 这种测量的主要误差来源是加热器的绝对电阻、匹配和温度系数的公差。因为绝对电阻表示为功率计算的换算因子,用户必须按照特定的探测器示例标定平方函数。热电耦的匹配和热传递(从一个单元到另一个单元,或从一种环境到另一种环境,或两个单元之间)会增加误差预算。幸运的是,传感器的精心设计能够使单元之间的热串扰减少到最小,而且传感器设计或功率计接口可包括环境补偿或校准。现有的商用传感器,与小型半敞开式(benchtop)或手持式功率计一起,能够使所有的误差变小,并有利于精密测量。 热电型RF传感器的一个优点是,它能独立地正确计算波峰因子的均方根值(附文"波峰余值")。而缺点是,热电传感器反应速度较慢,且反应时间不可调,这是由于这种传感器是利用热机械原理而不是利用热电原理决定的。 另一方面,二极管传感器正好使这两种特性颠倒(图2)。峰值检测器、二极管传感器能从根本上显示可调整的电气动态特性,但要求波峰因子补偿。如果用户使用已知的测试信号,或良好的波峰因子估算方法,而且知道传感器和功率计提供哪样的波峰因子补偿,那么这一特性就会使二极管传感器既相当便宜又非常精确。除速度更快和反应时间电气可调节外,二极管检测器可使噪声降低3个数量级,但这些检测器常常局限于300mW的小信号测量。 在热电和二极管传感器之间,市售的小型功率计能够适应各种信号频率、动态范围和复杂的

射频功率计基础知识

功率计三种分类详解 功率计是测量电功率的仪器。搞射频微波的各位亲们相比不陌生,功率计基本上也是和信号源、频谱仪、网络分析仪并行的几个大件之一,当然没有前面几个大哥那么昂贵 图1 功率测量仪器的组成 功率计分类 一、按照连接方式分类 射频或微波功率计按照在测试系统中的连接方式不同,又可分为:终端式和通过式两种。 终端式功率计把功率计探头作为测试系统的终端负载,功率计吸收全部待测功率,由功率指示器直接读取功率值。由于需要吸收全部入射功率,终端式功率计常用于测试小信号。 终端式功率计有如下特点: (1)在常见的射频和微波功率测量仪器中,终端式功率计的幅度测量精度是最高的,超越了频谱仪或者信号分析仪,典型测量精度可以达到±1.6%. (2)不能测量大功率。通常上限为+20dBm,下限为-60dBm左右。 (3)可以测量各种调制信号的平均功率、峰值功率、突发功率等。 通过式功率计,它是利用某种耦合装置,如定向耦合器、耦合环、探针等从传输的功率中按一定的比例耦合出一部分功率,送入功率计度量,传输的总功率等于功率计指示值乘以比例系数。通过式功率计的业内先驱是Bird,射频微波的老人应该都知道。下图就是典型的通过式功率计的原理框图:

图2. 通过式功率计的原理框图 通过式功率计的主要特点; (1)通过式功率计具有大功率测量能力。理论上来说,只要传输线可以通过的功率,通过式功率计都可以测量。所以广电上动辄上千瓦的功率,都是由通过式功率计来测量的。 (2)通过式功率计很难做到宽带,这是由于里面的定向耦合器的限制。 (3)由于定向耦合器的耦合度存在,通过式功率计不能用于太小的功率测量。这个和终端式功率计正好各有所长。 二、按照灵敏度和测量范围分类 射频或微波功率计按灵敏度和测量范围分类,可以分为测热电阻型功率计、热电偶型功率计、量热式功率计、晶体检波式功率计。 测热电阻型功率计使用热变电阻做功率传感元件。热变电阻值的温度系数较大。被测信号的功率被热变电阻吸收后产生热量,使其自身温度升高,电阻值发生显著变化,利用电阻电桥测量电阻值的变化,显示功率值。 热电偶型功率计热电偶型功率计中的热偶结直接吸收高频信号功率,结点温度升高,产生温差电势,电势的大小正比于吸收的高频功率值。这种功率计的测量精度比较高,一般用于比较精确的功率测量。

浅谈射频功率计

浅谈射频功率计 射频功率计是用来测量发射机射频输出功率的仪器,简称功率计。还有测量交直流功率的功率计和测量光波、激光的光功率计。 一、功率计分类 依测量方式、工作原理、量程大小、被测信号形式和传输线类型等进行分类。 ※根据功率计接入传输系统的方式可分为吸收(终端)式和通过 式功率计。 ※功率计依所用的变换器可分为热效应功率计(如量热式功率计、测热电阻功率计和热电式功率计等)、有质功率计、电子式功率计(二极管功率计和霍耳效应功率计)、铁氧体功率计和量子干涉效应功率计等。 ※根据测量的功率量程可分为小功率计、中功率计和大功率计。一般功率量程小于10毫瓦者为小功率计(又称为微功率计)。微功率计一般用于科研和计量,属于专业应用。10毫瓦至10瓦者为中功率计,大于10瓦的为大功率计。 ※根据被测信号形式分为连续波功率计和脉冲功率计。 ※根据传输线类型分为同轴功率计和波导功率计。 A、通过式功率计 通过式功率计有输入和输出两个端口,工作时串联在发射机和天线之间,可以实现在线检测和在线监测。其独立检测发射机输出功率,需要在功率计的天线输出端口上安装匹配负载。通过式功率计只有在

负载匹配的情况下,其测量读数才能确保一定的准确度。 通过式功率计内部大部分都采用耦合方式进行检测(超短波使用微带结构)。 优点:电路简单可以做成定向耦合器电路检测天馈系统中正向和反向功率,还可以加入驻波比指示功能。 缺点:工作频率比较窄,如果做成宽带形式则带内测量波动比较大难以保证测量准确度。大部分通过式功率计测量范围包含短波和超短波(UHF)的宽频驻波比/功率计,其内部短波和超短波检测电路是分开的,通常输入输出也是分开的两组端口。 通过式功率计典型厂家鸟牌,钻石、安捷伦、罗德斯瓦茨。 B、吸收式功率计 吸收式功率计又称为终端式功率计,只有一个输入口,用来离线检测发射机的输出功率。 传统吸收式功率计内部结构有耦合测量型、电热偶型、热敏电阻型。晶体二极管检波型。 *耦合测量型相当于内置匹配负载的通过式功率计,确保负载匹配良好。 *电热偶型功率计电热偶采用两种不同的金属材料组成,通过检测热结点的温差电势来指示功率。 *热敏电阻型功率计采用自动平衡电桥来检测热敏电阻承受到功率发热后的电阻变化来指示功率,具有线性好测量频率特别宽的特点。在实际电路中,采取一些温度补偿措施来减少环境温度变化对热

三种射频功率测量方法

三种射频功率测量方法 自从第一台无线电发射机诞生之日起,工程师们就开始关心射频功率测量问题,直到今天依然是个热门话题。无论是在实验室、产线,还是教学中,功率测量都是必不可少的。 在无线电发展初期,测试工程师所面对的大多数是连续波、调幅、调频、调相或脉冲信号,这些信号都是有规律可循的。例如,连续波(如图1)调频或调相信号的功率测量都是很简单,只需要测量其平均功率;调幅信号(如图2)的功率与其调制深度有关,而脉冲信号的特性是以脉冲宽度和占空比来表达。对于以上这些模拟或模拟调制信号,射频功率测量所关心的基本上都是平均功率和峰值功率。 而现在,特别是20世纪90年代以后,数字通信开始快速发展,射频功率测量的重点也开始有些变化。因为数字调制信号(如图3)的包络无规律可循,其最大和最小电平会随机变化,而且变化量很大。为了描述这类信号的特征,引入了一些新的描述方法,如领道功率、突发功率、通道功率等。很多传统的功率计已经无法满足数字信号功率的测量要求,一部分功率测量的任务已经开始由频谱分析仪来完成。

下面我们介绍常见的几种射频功率测量方法,在此之前我们还需要明确一件事——在频域测试测量中,为什么习惯以功率来描述信号强度,而不是像时域测试测量中常用的电压和电流?那是因为在射频电路中,由于传输线上存在驻波,电压和电流失去了唯一性,所以射频信号的大小一般用功率来表示,国际通用的功率单位为W、mW、dBm。 频谱分析仪和功率计都是可以测量射频功率的,其中功率计又分为吸收式功率计与通过式功率计两种。 同样是功率测量,不同的测试仪器和测试方法所关注的重点是不同的。 射频功率的测量方法有三种: 频谱分析仪测量; 吸收式功率测量; 通过式功率测量。 1. 频谱分析仪测量 频谱分析仪(以下简称频谱仪)是一种基础的频域测试测量仪器,图4为采用数字中频技术频谱仪的基本工作原理。被测信号经过低通滤波器后进入混频器,与同时进入混频器的本地振荡器信号进行混频。由于混频器是非线性器件,所以会产生互调信号,落入滤波器的信号经过ADC,再依次进入中频滤波器,包络检波器,视频滤波器,视频检波器,最后将轨迹显示在屏幕上。 在进行射频功率参数测量时,频谱仪具有以下特点:

PMS1084多通道射频功率计

产品介绍>20180604> PMS 1084
PMS 1084多通道射频功率计
Frankonia设计生产的多通道功率计PMS 1084是一种可以同时测量多个通 道射频信号功率的装置,覆盖频率范围100KHz-6GHz。 技术参数:
通道数
2 (标准); 可以升级为4 (可选)
频率范围
100 kHz – 6000 MHz
量程
-60 dBm - +20 dBm
精度
± 1 dB (典型0.5 dB)
分辨率
0.1 dB
测量响应时间
1 – 100 ms (软件控制)
最大输入电平
+27 dBm (= 500 mW)
驻波比
1.15
RF阻抗
50 Ω
接口 (PC)
RS-232 (九针串口,母)
USB(带USB转串口的转换器)
输入接口
N(母)
1/3

产品介绍>20180604> PMS 1084 尺寸 (L x B x H) 重量 供电电源 包含附件
482.6 x 172 x 44.3 mm 约2.5k g 115/230 V 电源线,操作软件,用户手册, LabView driver
2/3

产品介绍>20180604> PMS 1084
更专业的技术团队,一站式交钥匙工程 更经济的解决方案,贴合用户实际需求 更丰富的产品选择,集成主流厂商设备 更全面的贴心服务,完全摆脱后顾之忧
北京总部: +86 10 82732992 南京办事处: +86 25 84528286 上海办事处: +86 21 52911287 成都办事处: +86 28 87435042
82732962
82732992
82732995
https://www.doczj.com/doc/d6936068.html, info@https://www.doczj.com/doc/d6936068.html,
https://www.doczj.com/doc/d6936068.html,
3/3

射频测试

您需要什么样的射频仪器以满足您的测试需求? 低频测试仪器正不断丰富普及,射频测试仪器的种类也越来越多,应用越来越广泛,包括从信号源和功率计,到频谱和网络分析仪等各种仪器。这些仪器用于产生射频信号,以及测量大量信号参数。 射频功率计——射频领域的数字万用表 功率是射频领域中最经常被测量的一个量。测量功率最简单的方法就是使用功率计,它实际上是用来功率计是所有测量功率的射频仪器中最准确的。高端功率计(通常需要一个外部功率传感器)可以实现或更高的测量精度。功率计最低可以测量- 70dBm(100pW)的功率。传感器有各种模型,从高功率模型、高频率(40GHz)模型,到峰值功率测量的高带宽模型等。功率计有单通道和双通道两种。每个通道都需要配置自己的传感器。两个通道的功率计就能够测量出一个器件、电路或系统的输入和输出功率,并计算出增益或损耗。某些功率计能够达到每秒200到1500次读数的测量速度。而有些功率计能够测量多种信号的峰值功率特性,包括通信和某些应用中使用的调制信号和脉冲射频信号。双通道的功率计还能够准确测量出相对功率。功率计还可以针对便携式应用的需要设计成尺寸精巧的外形,使其更适合于现场测试的需要。功率计的主要局限在于其幅值测量范围。频率范围是与测量量程之间进行折衷的。此外,功率计虽然能够非常准确地测量出功率,但是无法表示信号的频率分量。 射频频谱或射频信号分析仪——射频工程师的示波器 频谱或矢量信号分析仪利用窄带检测技术在频域内测量射频信号。其主要的输出显示是功率频谱与频率之间的关系,包括绝对功率和相对功率。这种分析仪还可以输出解调信号。频谱分析仪和矢量信号分析仪没有像功率计那样的精确性,但是,射频分析仪中使用的窄带检测技术使其能够测量低达 -150dBm的功率。射频分析仪的精度一般在±以上。频谱和矢量信号分析仪可以测量的信号频率从1kHz 到40GHz(甚至以上)。频率范围越宽,分析仪的成本就越大。最常见的分析仪的频率达到3GHz。工作在频率范围的新通信标准就需要带宽为6GHz以上的分析仪。 矢量信号分析仪是增加了信号处理功能的频谱分析仪,它不仅能够测量信号的幅值,而且能够将信号分解成它的同相和正交分量。矢量信号分析仪可以将某些调制信号进行解调,例如一些由移动电话、无线LAN设备和基于其他一些新通信标准的设备所产生的调制信号。矢量信号分析仪可以显示星座图、码域图和调制质量(例如误差矢量幅度)的计算度量。 传统的频谱分析仪是扫描-调谐式设备,因为其中的局部振荡器要扫描一个频率范围,窄带滤波器就可以获取该频率范围内每个单位频率上的功率分量。矢量信号分析仪也扫描一部分频谱,但是它们捕捉一定宽带内的数据进行快速傅立叶变换得到单位频率上的功率分量。因此矢量信号分析仪扫描频谱的速度比频谱分析仪快得多。 评价矢量信号分析仪性能的关键指标在于它的测量带宽。一些新的高带宽通信标准,例如WLAN和WiMax,需要捕捉带宽为20MHz的信号。要想捕捉并分析这些信号,分析仪必须具有足够大的带宽才能捕捉到整个信号。如果测试高带宽、数字调制的信号,那么要确保分析仪的测量带宽能够充分捕捉到所测的信号。 频谱分析仪可以用于检验待测发射机是否产生了正确的功率频谱。如果设计工程要求测试某些失真分量,例如谐波或寄生信号,那么就需要采用频谱分析仪或矢量信号分析仪。类似的,如果设计者关注器件的噪声功率,那么也需要使用这样的射频分析仪。其他一些需要频谱分析仪或矢量信号分析仪的例子包括:测试互调失真、三阶截断、功率放大器或功率晶体管的1dB增益压缩、器件的频率响应等。 测试那些涉及数字调制信号的发射机或放大器就需要使用矢量信号分析仪,对调制信号进行解调。矢量信号分析仪能够测量出某个器件产生了多大的调制失真。解调过程是一个复杂、计算密集的过程。能够快速进行解调和测量计算操作的矢量信号分析仪就可以大大缩短测试时间,降低测试成本。

射频(RF)基础知识

●什么是RF? 答:RF 即Radio frequency 射频,主要包括无线收发信机。 2. 当今世界的手机频率各是多少(CDMA,GSM、市话通、小灵通、模拟手机等)? 答:EGSM RX: 925-960MHz, TX:880-915MHz; CDMA cellular(IS-95)RX: 869-894MHz, TX:824-849MHz。 3. 从事手机Rf工作没多久的新手,应怎样提高? 答:首先应该对RF系统(如功能性)有个系统的认识,然后可以选择一些芯片组,研究一个它们之间的连通性(connectivities among them)。 ● 4. RF仿真软件在手机设计调试中的作用是什么? 答:其目的是在实施设计之前,让设计者对将要设计的产品有一些认识。 5. 在设计手机的PCB时的基本原则是什么? 答:基本原则是使EMC最小化。 6. 手机的硬件构成有RF/ABB/DBB/MCU/PMU,这里的ABB、DBB和PMU等各代 表何意? 答:ABB是Analog BaseBand, DBB是Ditital Baseband,MCU往往包括在DBB芯片中。 PMU是Power Management Unit,现在有的手机PMU和ABB在一个芯片上面。将来这些芯片(RF,ABB,DBB,MCU,PMU)都会集成到一个芯片上以节省成本和体积。 7. DSP和MCU各自主要完成什么样的功能?二者有何区别? 答:其实MCU和DSP都是处理器,理论上没有太大的不同。但是在实际系统中,基于效率的考虑,一般是DSP处理各种算法,如信道编解码,加密等,而MCU处理信令和与大部分硬件外设(如LCD等)通信。 8. 刚开始从事RF前段设计的新手要注意些什么? 答:首先,可以选择一个RF专题,比如PLL,并学习一些基本理论,然后开始设计一些简单电路,只有在调试中才能获得一些经验,有助加深理解。 9. 推荐RF仿真软件及其特点? 答:Agilent ADS仿真软件作RF仿真。这种软件支持分立RF设计和完整系统设计。 详情可查看Agilent网站。 10. 哪里可以下载关于手机设计方案的相应知识,包括几大模快、各个模块的功能以 及由此对硬件的性能要求等内容? 答:可以看看https://www.doczj.com/doc/d6936068.html,和https://www.doczj.com/doc/d6936068.html,,或许有所帮助。关于TI的wireless solution,可以看看https://www.doczj.com/doc/d6936068.html,中的wireless communications.

射频功率放大器实时检测的实现

射频功率放大器实时检测的实现 广播电视发射机是一个综合的电子系统,它不仅包括无线发射视音频通道,而且还包括通道的检测和自动控制电路,因此在设计时,它除了必须保证无线通道的技术指标处于正常范围外,还必须设计先进的取样检测和保护报警等电路,以确保发射机工作正常,从而实现发射机在线自动监测和控制。近年来,随着大功率全固态电视发射机多路功率合成技术的发展,越来越多的厂家采用模块化结构设计,因此单个功率放大器模块是整个发射机的基本测单元,本文就着重讨论单个模块的检测和控制电路,从而实现发射机在线状态自动监测。 一、工作原理 在功放模块中,主要检测和控制参数为电源电压,各放大管的工作电流,输出功率,反射功率,过温度和过激励保护等,图1为实现上述检测控制功能的方框图,它由取样放大电路,V/F变换,隔离电路,F/V变换,A/D转换,AT89C51,显示电路和输出保护电路等组成。 1、隔离电路 在功放模块中,由于大功率器件的应用,往往单个模块的输出功率都比较大,因而对小信号存在较大的高频干扰,如处理不好,就会影响后级模数转换电路工作,从而导致检测数据不准确,显示数据跳动的现象,甚至出现误动作。这里采用光电耦合器进行隔离,由于光电耦合器具有体积小、使用寿命长、工作温度范围宽、抗干扰性能强、无触点且输入与输出在电气上完全隔离等特点,从而将模拟电路和数字电路完全隔离,保障系统在高电压、大功率辐射环境下安全可靠地工作。 2、LM331频率电压转换器

V/F变换和F/V变换采用集成块LM331,LM331是美国NS公司生产的性能价格比较高的集成芯片,可用作精密频率电压转换器用。LM331采用了新的温度补偿能隙基准电路,在整个工作温度范围内和低到4.0V电源电压下都有极高的精度。同时它动态范围宽,可达100dB;线性度好,最大非线性失真小于0.01%,工作频率低到0.1Hz时尚有较好的线性;变换精度高,数字分辨率可达12位;外接电路简单,只需接入几个外部元件就可方便构成V/F或F/V等变换电路,并且容易保证转换精度。 图2是由LM331组成的电压频率变换电路,LM331内部由输入比较器、定时比较器、R-S触发器、输出驱动、复零晶体管、能隙基准电路和电流开关等部分组成。输出驱动管采用集电极开路形式,因而可以通过选择逻辑电流和外接电阻,灵活改变输出脉冲的逻辑电平,以适配TTL、DTL和CMOS等不同的逻辑电路。 当输入端Vi+输入一正电压时,输入比较器输出高电平,使R-S触发器置位,输出高电平,输出驱动管导通,输出端f0为逻辑低电平,同时电源Vcc也通过电阻R2对电容C2充电。当电容C2两端充电电压大于Vcc的2/3时,定时比较器输出一高电平,使R-S触发器复位,输出低电平,输出驱动管截止,输出端f0为逻辑高电平,同时,复零晶体管导通,电容C2通过复零晶体管迅速放电;电子开关使电容C3对电阻R3放电。当电容C3放电电压等于输入电压Vi时,输入比较器再次输出高电平,使R-S触发器置位,如此反复循环,构成自激振荡。输出脉冲频率f0与输入电压Vi成正比,从而实现了电压-频率变换。其输入电压和输出频率的关系为:fo=(Vin×R4)/(2.09×R3×R2×C2) 由式知电阻R2、R3、R4、和C2直接影响转换结果f0,因此对元件的精度要有一定的要求,可根据转换精度适当选择。电阻R1和电容C1组成低通滤波器,可减少输入电压中的干扰脉冲,有利于提高转换精度。 同样,由LM331也可构成频率-电压转换电路。

相关主题
文本预览
相关文档 最新文档