当前位置:文档之家› 浙江大学实验报告阶RC电路的瞬态响应过程实验研究精编版

浙江大学实验报告阶RC电路的瞬态响应过程实验研究精编版

浙江大学实验报告阶RC电路的瞬态响应过程实验研究精编版
浙江大学实验报告阶RC电路的瞬态响应过程实验研究精编版

浙江大学实验报告阶R C电路的瞬态响应过程实验研究

文件编码(008-TTIG-UTITD-GKBTT-PUUTI-WYTUI-8256)

三墩职业技术学院实验报告课程名称:电子电路设计实验指导老师:成绩:__________________

实验名称:一阶RC电路的瞬态响应过程实验研究实验类型:探究类同组学生

姓名:__

一、实验目的二、实验任务与

要求

三、实验方案设计与实验参数计算(总体设计、各功能电路设计与计算、完整

的实验电路……)

六、实验调试、实验数据记录七、实验结果和分析处

八、讨论、心得

一、实验目的

1、熟悉一阶RC电路的零状态响应、零输入响应过程。

2、研究一阶RC电路在零输入、阶跃激励情况下,响应的基本规律和特点。

3、学习用示波器观察分析RC电路的响应。

4、从响应曲线中求RC电路的时间常数。

二、实验理论基础

1、一阶RC电路的零输入响应(放电过程)

零输入响应:

电路在无激励情况下,由储能元件的初始状态引起的响应,即电路初始状态不为零,输入为零所引起的电路响应。 (实际上是电

容器

C 的初始电压经电阻R 放电过程。)

在图1中,先让开关K 合于位置a ,使电容C 的初始电压值0)0(U u c =-,再将开关K 转到位置b 。

电容器开始放电,放电方程是

可以得出电容器上的电压和电流随时间变化的规律:

式中τ=RC 为时间常数,其物理意义是衰减到1/e (%))0(u c 所需要的时间,反映了电路过渡过程的快慢程度。τ越大,暂态响应所持续的时间越长,即过渡过程的时间越长;反之,τ越小,过渡过程的

时间越短。时

间常数可以通过相应的衰减曲线来反应,如图2。由于经过5τ时间后,已经衰减到初态的1%以下,可以认为经过5τ时间,电容已经放电完毕。

图2

2、一阶RC 电路的零状态响应(充电过程)

所谓零状态响应是指初始状态为零,而输入不为零所产生的电路响应。一阶RC 电路在阶跃信号激励下的零状态响应实际上就是直流电源经电阻R 向C 充电的过程。在图1所示的一阶电路中,先让开关K 合于位置b ,当t = 0时,将开关K 转到位置a 。

图1 )

0(0≥=+t dt

du RC

u C

C )

0()0()(0≥-=-=--

-

t e R

U R

e

u t i t

RC

t C C τ

)

(u t C )

0()0()(0≥==-

--t e

U e

u t u t

RC

t C C τ

)

(u t C 装 订

电容器开始充电,充电方程为(0)

C

C S

du u RC

U t dt

+=≥

初始值)0(u c =0

可以得出电压和电流随时间变化的规律:

式中τ=RC 为时间常数,其物理意义是由初始值上升至稳态值与初始值差值的%处所需要的时间。同样可以从响应曲线中求出τ,如图3。

图3

3.方波响应

当方波信号激励加到RC 两端时,在电路的时间常数远小于方波周期时,可以视为零状态响应和零输入响应的多次过程。方波的前沿相当于给电路一个阶跃输入,其响应就是零状态响应;方波的后沿相当于在电容具有初始值uc(0)时,把电源用短路置换,电路响应转换成零输入响应。

当方波的1/2周期小于电路的时间常数时,方波前后沿对应的是瞬态过程

的其中一小部分。

由于方波是周期信号,可以用普通示波器显示出稳定的响应图形,便于观察和作定量分析。 三、实验仪器设备

实验电路板、示波器(电路图如图所示)、直流稳压源(为电路板提供12V 电压)

测试信号产生部分 实验测试部分

四、实验任务与步骤

装 订

1.用示波器观察RC电路的零输入响应、零状态响应,描绘响应曲线,求出电路的时间常数。

2.更换电路中电阻、电容的大小,重新测量电路的各种响应,分别求出每次测量的时间常数。

3.理论计算电路的时间常数,并与实验测量值比较。

五、实验操作要点

1、明确实验目的、实验要求与实验原理。

2、根据示波器的显示,描绘出各种RC电路的响应波形,加以比较。

3、进行测量误差分析。

六、实验数据记录

七、实验结果与处理

述四组实验中,

①③两组在方波的一个周期内响应完全,可根据完全响应时t=5τ来得到τ;②④两组在一个周期内未响应完全,可根据)-1(τt

s e U u -=?来得到τ。理论计算τ=RC 。

表2、最终数据处理结果

可以看到,最终测量计算出的时间

常数τ,基本符

合理论计算结

果。

八、讨

论、

心得

(1)实验心得

本次实验测量了在接入不同电阻电容情况下的RC 电路时间常数,分析了瞬态过程中电路响应,也练习了示波器的操作。在实验中,需要注意如何判断电路以达到完全响应,也就是用示波器的刻度线与曲线水平部分重合,找到曲线与直线的切点,该点表示RC 电路刚达到完全响应。测量出起始到完全响应的时间即可计算时间常数。

(2)误差分析

本实验主要误差来自于读数的误差。因为示波器的图像有一定宽度,实际上是很难准确判断刚好达到完全响应的时刻点的,只能大致估计,所以会造成误

装 订

差。另外,直流稳压源所提供的电压不一定始终保持12V ,仪器误差也会影响最终的计算结果。

(3)思考题

1、什么是零输入响应,零状态响应?

答:

零输入响应:电路在无激励情况下,由储能元件的初始状态引起的响应。(即电路初始状态不为零,输入为零所引起的电路响应)(放电过程)

零状态响应:初始状态为零,而输入不为零所产生的电路响应。(充电过程)

2、在用示波器观察RC 电路响应时如何才能使示波器的扫描与电路激励同步?

答:

将触头与测试点勾住,架子夹住接地点,转动示波器上的TIME/DIV 旋钮,使得

示波器上的图像从杂乱无章到稳定不变,即扫描与激励同步。 3、什么是时间常数它在电路中起什么作用

答:

时间常数是指一个物理量从最大值衰减到最大值的1/e 所需要的时间。在RC 电路零输入响应中,电容电压Uc 总是由初始值Uc(0)按指数衰减到零,则电容电压Uc 从Uc(0)衰减到1/eUc(0)的时间即为时间常数。在RC 电路零状态响应中,电容电压从初始值上升至稳态值的1-1/e=%所需的时间,即为时间常数τ。

声明

本实验报告内容可随意编辑、参考、引用,但请不要完全抄袭。

本实验报告仅供参考,严禁用于商业用途。

RC一阶电路的响应测试 实验报告

实验六RC一阶电路的响应测试 一、实验目的 1. 测定RC一阶电路的零输入响应、零状态响应及完全响应。 2. 学习电路时间常数的测量方法。 3. 掌握有关微分电路和积分电路的概念。 4. 进一步学会用虚拟示波器观测波形。 二、原理说明 1. 动态网络的过渡过程是十分短暂的单次变化过程。要用普通示波器观察过渡过程和测量有关的参数,就必须使这种单次变化的过程重复出现。为此,我们利用信号发生器输出的方波来模拟阶跃激励信号,即利用方波输出的上升沿作为零状态响应的正阶跃激励信号;利用方波的下降沿作为零输入响应的负阶跃激励信号。只要选择方波的重复周期远大于电路的时间常数τ,那么电路在这样的方波序列脉冲信号的激励下,它的响应就和直流电接通与断开的过渡过程是基本相同的。 2.图6-1(b)所示的 RC 一阶电路的零输入响应和零状态响应分别按指数规律衰减和增长,其变化的快慢决定于电路的时间常数τ。 3. 时间常数τ的测定方法 用示波器测量零输入响应的波形如图6-1(a)所示。 根据一阶微分方程的求解得知u c=U m e-t/RC=U m e-t/τ。当t=τ时,Uc(τ)=0.368U m。此时所对应的时间就等于τ。亦可用零状态响应波形增加到0.632 U m所对应的时间测得,如图6-1(c)所示。 (a) 零输入响应 (b) RC一阶电路(c) 零状态响应 图 6-1 4. 微分电路和积分电路是RC一阶电路中较典型的电路,它对电路元件参数和输入信号的周期有着特定的要求。一个简单的 RC T时串联电路,在方波序列脉冲的重复激励下,当满足τ=RC<< 2(T为方波脉冲的重复周期),且由R两端的电压作为响应输出,这就是一个微分电路。因为此时 电路的输出信号电压与输入信号电压的微分成正比。如图6-2(a)

RC一阶电路的响应测试

实验题目RC一阶电路的响应测试 一、实验目的 1.测定RC一阶电路的零输入响应、零状态响应及完全响应。 2.学习电路时间常数的测量方法。 3.掌握有关微分电路和积分电路的概念。 4.进一步学会用示波器观测波形。 二、原理说明 1.动态网络的过渡过程是十分短暂的单次变化过程。要用普通示波器观察过渡过程和测量有关的参数,就必须使这种单次变化的过程重复出现。为此,我们利用信号发生器输出的方波来模拟阶跃激励信号,即利用方波输出的上升沿作为零状态响应的正阶跃激励信号;利用方波的下降沿作为零输入响应的负阶跃激励信号。只要选择方波的重复周期远大于电路的时间常数τ,那么电路在这样的方波序列脉冲信号的激励下,它的响应就和直流电接通与断开的过渡过程是基本相同的。 2.图2-16(b)所示的RC 一阶电路的零输入响应和零状态响应分别按指数规律衰减和增长,其变化的快慢决定于电路的时间常数τ。 3.时间常数τ的测定方法: 用示波器测量零输入响应的波形如图2-16(a)所示。 根据一阶微分方程的求解得知u c=U m e-t/RC=U m e-t/τ。当t=τ时,Uc(τ)=0.368U m。此时所对应的时间就等于τ。亦可用零状态响应波形增加到0.632U m 所对应的时间测得,如图2-16(c)所示。 τ t t 0.632 c u u U m c u U m

图 2-16 (a) 零输入响应 (b) RC 一阶电路 (c) 零状态响应 4.微分电路和积分电路是RC 一阶电路中较典型的电路, 它对电路元件参数和输入信号的周期有着特定的要求。一个简单的 RC 串联电路, 在方波序列 脉冲的重复激励下,当满足τ=RC<<2 T 时(T 为方波脉冲的重复周期),且由R 两端的电压作为响应输出,则该电路就是一个微分电路。因为此时电路的输出信号电压与输入信号电压的微分成正比。如图2-17(a)所示。利用微分电路可以将方波转变成尖脉冲。 图2-17 (a)微分电路 (b) 积分电路 若将图2-17(a)中的R 与C 位置调换一下,如图2-17(b)所示,由 C 两端的 电压作为响应输出,且当电路的参数满足τ=RC>>2 T ,则该RC 电路称为积分 电路。因为此时电路的输出信号电压与输入信号电压的积分成正比。利用积分电路可以将方波转变成三角波。 从输入输出波形来看,上述两个电路均起着波形变换的作用,请在实验过程仔细观察与记录。 三、实验设备 四、实验内容 实验线路板的器件组件,如图2-18所示,请认清R 、C 元件的布局及其标称值,各开关的通断位置等。 1.从电路板上选R =10K Ω,C =6800pF 组成如图2-16(b)所示的RC 充放电电路。u i 为脉冲信号发生器输出的U m =3V 、f =1KHz 的方波电压信号,并通过两根同轴电缆线,将激励源u i 和响应u C 的信号分别连至示波器的两个输入口Y A 和Y B 。这时可在示波器的屏幕上观察到激励与响应的变化规律,请测算出时间常数τ,并用方格纸按1:1 的比例描绘波形。 少量地改变电容值或电阻值,定性地观察对响应的影响,记录观察到的现象。 C

RC一阶电路的响应测试实验报告

? 实验七 RC 一阶电路的响应测试 一、实验目的 1. 测定RC 一阶电路的零输入响应、零状态响应及完全响应。 2. 学习电路时间常数的测量方法。 3. 掌握有关微分电路和积分电路的概念。 4. 进一步学会用示波器观测波形。 二、原理说明 1. 动态网络的过渡过程是十分短暂的单次变化过程。要用普通示波器观察过渡过程和测量有关的参数,就必须使这种单次变化的过程重复出现。为此,我们利用信号发生器输出的方波来模拟阶跃激励信号,即利用方波输出的上升沿作为零状态响应的正阶跃激励信号;利用方波的下降沿作为零输入响应的负阶跃激励信号。只要选择方波的重复周期远大于电路的时间常数τ,那么电路在这样的方波序列脉冲信号的激励下,它的响应就和直流电接通与断开的过渡过程是基本相同的。 2.图7-1(b )所示的 RC 一阶电路的零输入响应和零状态响应分别按指数规律衰减和增长,其变化的快慢决定于电路的时间常数τ。 3. 时间常数τ的测定方法: 用示波器测量零输入响应的波形如图7-1(a)所示。 根据一阶微分方程的求解得知u c =U m e -t/RC =U m e -t/τ 。当t =τ时,Uc(τ)=0.368U m 。 此时所对应的时间就等于τ。亦可用零状态响应波形增加到0.632U m 所对应的时间测得,如图13-1(c)所示。 a) 零输入响应 (b) RC 一阶电路 (c) 零状态响应 图 7-1 4. 微分电路和积分电路是RC 一阶电路中较典型的电路, 它对电路元件参数和输入信号的周期有着特定的要求。一个简单的 RC 串联电路, 在方波序列脉冲的重复激励下, 当 满足τ=RC<< 2 T 时(T 为方波脉冲的重复周期),且由R 两端的电压作为响应输出,则该电路就是一个微分电路。因为此时电路的输出信号电压与输入信号电压的微分成正比。如图 0.368t t t t 0.6320 000c u u U m c u c u u U m U m U m

RC一阶电路的响应测试实验内容

实验五 RC一阶电路的响应测试 一、实验目的 1. 测定RC一阶电路的零输入响应、零状态响应及全响应。 2. 掌握有关微分电路和积分电路的概念。 3. 学会时间常数τ的测定方法。 4. 进一步学会用示波器观测波形。 二、原理说明 图5.1所示的矩形脉冲电压波u i可以看成是按照一定规律定时接通和关断的直流电压源U。若将此电压u i加在RC串联电路上(见图5.2),则会产生一系列的电容连续充电和放电的动态过程,在u i的上升沿为电容的充电过程,而在u i的下降沿为电容的放电过程。它们与矩形脉冲电压u i的脉冲宽度t w及RC串联电路的时间常数τ有十分密切的关系。当t w不变时,适当选取不同的参数,改变时间常数τ,会使电路特性发生质的变化。 图5.1 矩形脉冲电压波形图5.2 RC串联电路图 1. RC一阶电路的零状态响应 所有储能元件初始值为0的电路对于激励的响应称为零状态响应。电路的微分方程为:,其解为,式中,τ=RC为该电路的时间常数。 2. RC一阶电路的零输入响应 电路在无激励情况下,由储能元件的初始状态引起的响应称为零输入响应。电路达到稳态后,电容器经R放电,此时的电路响应为零输入响应。电路的微分方程为:,其解为。RC一阶电路的零输入响应和零状态响应分别按指数规律衰减和增长(如图5.3所示),其变化的快慢决定于电路的时间常数τ。 3. 时间常数τ的测定方法 方法一:在已知电路参数的条件下,时间常数可以直接由公式计算得出,τ=RC。 方法二:对充电曲线(零状态响应),电容的端电压达到最大值的(约0.632)倍时所需要的时间即是时间常数τ。如图5.3(a)所示,用示波器观测响应波形,取上升曲线中波形幅值的0.632倍处所对应的时间轴的刻度,计算出电路的时间常数: 其中,扫描时间是示波器上X轴扫描速度开关“t/div”的大小。是X轴上O、P两点之间占有的格数。而对放电曲线(零输入响应),时间常数是电容的端电压下降到初值的,即约0.368倍时所需要的时间,如图5.3(b)所示。 (a) 零状态响应(b) 零输入响应 图5.3 时间常数τ的测定 方法三:利用时间常数的几何意义求解。在图5.4中,取电容电压u c的曲线上任意一点A,通过A点作切线AC,则图中的次切距

RC一阶电路的响应测试实验报告

RC一阶电路的响应测试实验报告 一、实验目的 1. 测定RC一阶电路的零输入响应、零状态响应及完全响应。 2. 学习电路时间常数的测量方法。 3. 掌握有关微分电路和积分电路的概念。 4.进一步学会用示波器观测波形。 二、实验环境 电容、面包板、单刀双掷开关、导线若干、电阻、示波器、VICTOR VC890D万用电表、CPC-型电路基础实验箱 三、实验原理与步骤 1.检查元器件的好坏 2.面包板上搭建电路图 3. 一阶RC电路的时域响应 用一阶微分方程描述的电路,称为一阶动态电路。一阶动态电路通常是由一个(或若干个)电阻元件和一个动态元件(电容或电感)组成。一阶动态电路时域分析的步骤是建立换路后的电路微分方程,求满足初始条件微分方程的解,即电路的响应。 一阶RC电路 R1=10千欧U1=5V C1=10uF

零状态响应曲线 如图所示电路中,若uc(0-)=0,t=0时开关S1由1打向3,直流电源经R 向C 充电,此时,电路的响应为零状态响应。 电路的微分方程为: 解: 式中, =RC 为该电路的时间常数。 若开关由1打向2,电容器经R 放电,此时的电路响应为零输入响应 零输入状态响应状态 电路的微分方程为: 解: 4.记录电容两端电压充放电的变化 s c c du RC u U dt +=() 1t c S u t U e τ??=- ???—0c c du RC u dt +=()() 0t t c c S u t u e U e ττ--+==

实物图(充、放电过程) 5..整理仪器 四、实验总结 1.从图中看出,无论是零状态响应还是零输入响应,其响应曲线都是按照指数规律变化的,变化的快慢由时间常数决定,即电路瞬态过程的长短由决定。大,瞬态过程长;小,瞬态过程短。 2.面包板外两侧是按照4、3、4组联通的,在做实验的时候忘记了,使电阻与导线并联,电流不经过电阻。 3.在连接示波器的探头时4,连接的x通道的探头,却在示波器上按成只显示y 通道的信号,致使一直未出现本实验的波形图。

rc一阶电路的响应测试实验报告

RC一阶电路的响应测试 实验目的 1. 测定RC一阶电路的零输入响应、零状态响应及完全响应。 2. 学习电路时间常数的测量方法。 3. 掌握有关微分电路和积分电路的概念。 4. 进一步学会用示波器观测波形。 实验电路 原理说明 1. 电路中某时刻的电感电流和电容电压称为该时刻的电路状态。t=0时电感的初始电流iL (0)和电容电压uc(0)称为电路的初始状态。 在没有外加激励时,仅由t=0零时刻的非零初始状态引起的响应称为零输入响应称为,它取决于初始状态和电路特性 (通过时间常数τ=RC来体现),这种响应时随时间按指数规律衰减的。 在零初始状态时仅由在t0时刻施加于电路的激励引起的响应称为零状态响应,它取 决于外加激励和电路特性,这种响应是由零开始随时间按指数规律增长的。线性动态电路的完全响应为零输入响应和零状态响应之和。 含有耗能元件的线性动态电路的完全响应也可以为暂态响应与稳态响应之和,实践中认为暂态响应在t=5τ时消失,电路进入稳态,在暂态还存在的这段时间就成为“过渡过程”。 2. CC电接通与断开的过渡过程是基本相同的。 3. 时间常数τ的测定方法: 用示波器测量零输入响应的波形如图9-1(b)所示。 根据一阶微分方程的求解得知uc=Ume 如图9-1(c)所示。 -t/RC=Ume-t/τ。当t=τ时,Uc(τ)=0.368Um。此时所对应的时间就等于τ。亦可用零状态响应波形增加到0.632Um所对应的时间测得, 1

uuUmUm tt 00 c ucRUmUm 0.632 uc0.368t t 00 (b) 零输入响应 (a) RC一阶电路(c) 零状态响应 图9-1 4. 微分电路和积分电路是RC一阶电路中较典型的电路,它对电路元件参数和输入信号的周期有着特定的要求。一个简单的RC串联电路,在方波序列脉冲的重复激励下,当满足τ=RC<>T 2,则该RC电路称为积分电路。因为此时电路的输出信号电压与输入信号电压的积分成正比。 2

实验报告rc一阶电路的响应测试

实验报告 祝金华PB 实验题目:RC 一阶电路的响应测试 实验目的 1. 测定RC 一阶电路的零输入响应、零状态响应及完全响应。 2. 学习电路时间常数的测量方法。 3. 掌握有关微分电路和积分电路的概念。 4. 进一步学会用示波器观测波形。 实验原理 1. 动态网络的过渡过程是十分短暂的单次变化过程。要用普通示波器观察过渡过程和测量有关的参数,就必须使这种单次变化的过程重复出现。为此,我们利用信号发生器输出的方波来模拟阶跃激励信号,即利用方波输出的上升沿作为零状态响应的正阶跃激励信号;利用方波的下降沿作为零输入响应的负阶跃激励信号。只要选择方波的重复周期远大于电路的时间常数τ,那么电路在这样的方波序列脉冲信号的激励下,它的响应就和直流电接通与断开的过渡过程是基本相同的。 2.图1(b)所示的 RC 一阶电路的零输入响应和零状态响应分别按指数规律衰减和增长,其变化的快慢决定于电路的时间常数τ。 3. 时间常数τ的测定方法: 用示波器测量零输入响应的波形如图1(a)所示。 根据一阶微分方程的求解得知u c =U m e -t/RC =U m e -t/τ 。当t =τ时,Uc(τ)=。此时所对 应的时间就等于τ。亦可用零状态响应波形增加到 U m 所对应的时间测得,如图1(c)所示。 (a) 零输入响应 (b) RC 一阶电路 (c) 零状态响应 图 1 4. 微分电路和积分电路是RC 一阶电路中较典型的电路, 它对电路元件参数和输入信号的周期有着特定的要求。一个简单的 RC 串联电路, 在方波序列脉冲的重复激励下, 当满足τ=RC<< 2 T 时(T 为方波脉冲的重复周期),且由R 两端的电压作为响应输

RC一阶电路的响应测试实验报告

实验七 RC 一阶电路的响应测试 一、实验目的 1. 测定RC 一阶电路的零输入响应、零状态响应及完全响应。 2. 学习电路时间常数的测量方法。 3. 掌握有关微分电路和积分电路的概念。 4. 进一步学会用示波器观测波形。 二、原理说明 1. 动态网络的过渡过程是十分短暂的单次变化过程。要用普通示波器观察过渡过程和测量有关的参数,就必须使这种单次变化的过程重复出现。为此,我们利用信号发生器输出的方波来模拟阶跃激励信号,即利用方波输出的上升沿作为零状态响应的正阶跃激励信号;利用方波的下降沿作为零输入响应的负阶跃激励信号。只要选择方波的重复周期远大于电路的时间常数τ,那么电路在这样的方波序列脉冲信号的激励下,它的响应就和直流电接通与断开的过渡过程是基本相同的。 2.图7-1(b )所示的 RC 一阶电路的零输入响应和零状态响应分别按指数规律衰减和增长,其变化的快慢决定于电路的时间常数τ。 3. 时间常数τ的测定方法: 用示波器测量零输入响应的波形如图7-1(a)所示。 根据一阶微分方程的求解得知 u c =U m e -t/RC =U m e -t/τ。当 t =τ时,Uc(τ)=。此时所 对应的时间就等于τ。亦可用零状态响应波形增加到所对应的时间测得,如图13-1(c)所示。 a) 零输入响应 (b) RC 一阶电路 (c) 零状态响应 图 7-1 4. 微分电路和积分电路是RC 一阶电路中较典型的电路, 它对电路元件参数和输入信0.368t t C t t 0.6320 000+ c u u U m c u c u u u U m U m U m

号的周期有着特定的要求。一个简单的 RC 串联电路, 在方波序列脉冲的重复激励下, 当满足τ=RC<< 2 T 时(T 为方波脉冲的重复周期),且由R 两端的电压作为响应输出,则该电路就是一个微分电路。因为此时电路的输出信号电压与输入信号电压的微分成正比。如图7-2(a)所示。利用微分电路可以将方波转变成尖脉冲。 (a)微分电路 (b) 积分电路 图7-2 若将图7-2(a)中的R 与C 位置调换一下,如图13-2(b)所示,由 C 两端的电压作为响应输出,且当电路的参数满足τ=RC>> 2 T ,则该RC 电路称为积分电路。因为此时电路的输出信号电压与输入信号电压的积分成正比。利用积分电路可以将方波转变成三角波。 从输入输出波形来看,上述两个电路均起着波形变换的作用,请在实验过程仔细观察与记录。 四、实验内容 实验线路板的器件组件,如图7-3所示,请认清R 、C 元件的布局及其标称值,各开关的通断位置等。 1. 从电路板上选R =10K Ω,C =6800pF 组成如图13-1(b)所示的RC 充放电电路。u i 为脉冲信号发生器输出的U m =3V 、f =1KHz 的方波电压信号,并通过两根同轴电缆线,将激励源u i 和响应u C 的信号分别连至示波器的两个输入口Y A 和Y B 。这时可在示波器的屏幕上观察到激励与响应的变化规律,请测算出时间常数τ,并用方格纸按1:1 的比例描绘波形。 少量地改变电容值或电阻值,定性地观察对响应的影响,记录观察到的现象。 C

rc一阶电路的响应测试实验报告

r c一阶电路的响应测试实验 报告 标准化文件发布号:(9312-EUATWW-MWUB-WUNN-INNUL-DQQTY-

RC一阶电路的响应测试 实验目的 1. 测定RC一阶电路的零输入响应、零状态响应及完全响应。 2. 学习电路时间常数的测量方法。 3. 掌握有关微分电路和积分电路的概念。 4. 进一步学会用示波器观测波形。 实验电路 原理说明 1. 电路中某时刻的电感电流和电容电压称为该时刻的电路状态。t=0时电感的初始电流iL (0)和电容电压uc(0)称为电路的初始状态。 在没有外加激励时,仅由t=0零时刻的非零初始状态引起的响应称为零输入响应称为,它取决于初始状态和电路特性 (通过时间常数τ=RC来体现),这种响应时随时间按指数规律衰减的。 在零初始状态时仅由在t0时刻施加于电路的激励引起的响应称为零状态响应,它取 决于外加激励和电路特性,这种响应是由零开始随时间按指数规律增长的。线性动态电路的完全响应为零输入响应和零状态响应之和。 含有耗能元件的线性动态电路的完全响应也可以为暂态响应与稳态响应之和,实践中认为暂态响应在t=5τ时消失,电路进入稳态,在暂态还存在的这段时间就成为“过渡过程”。 2. CC电接通与断开的过渡过程是基本相同的。 3. 时间常数τ的测定方法: 用示波器测量零输入响应的波形如图9-1(b)所示。 根据一阶微分方程的求解得知uc=Ume 如图9-1(c)所示。 -t/RC=Ume-t/τ。当t=τ时,Uc(τ)=。此时所对应的时间就等于τ。亦可用零状态响应波形增加到所对应的时间测得, 1

uu UmUm tt 00 c ucR UmUm t 00 (b) 零输入响应 (a) RC一阶电路 (c) 零状态响应 图 9-1 4. 微分电路和积分电路是RC一阶电路中较典型的电路,它对电路元件参数和输入信号的周期有着特定的要求。一个简单的 RC串联电路,在方波序列脉冲的重复激励下,当满足τ=RC<>T 2,则该RC电路称为积分电路。因为此时电路的输出信号电压与输入信号电压的积分成正比。 2

实验报告RC一阶电路的响应测试

实验报告 祝金华PB15050984 实验题目:RC一阶电路的响应测试 实验目的 1. 测定RC一阶电路的零输入响应、零状态响应及完全响应。 2. 学习电路时间常数的测量方法。 3. 掌握有关微分电路和积分电路的概念。 4. 进一步学会用示波器观测波形。 实验原理 1. 动态网络的过渡过程是十分短暂的单次变化过程。要用普通示波器观察过渡过程和测量有关的参数,就必须使这种单次变化的过程重复出现。为此,我们利用信号发生器输出的方波来模拟阶跃激励信号,即利用方波输出的上升沿作为零状态响应的正阶跃激励信号;利用方波的下降沿作为零输入响应的负阶跃激励信号。只要选择方波的重复周期远大于电路的时间常数τ,那么电路在这样的方波序列脉冲信号的激励下,它的响应就和直流电接通与断开的过渡过程是基本相同的。 2.图1(b)所示的 RC 一阶电路的零输入响应和零状态响应分别按指数规律衰减和增长,其变化的快慢决定于电路的时间常数τ。 3. 时间常数τ的测定方法: 用示波器测量零输入响应的波形如图1(a)所示。 根据一阶微分方程的求解得知u c =U m e-t/RC=U m e-t/τ。当t=τ时,Uc(τ)=0.368U m 。此 时所对应的时间就等于τ。亦可用零状态响应波形增加到0.632 U m 所对应的时间测得,如图1(c)所示。

(a) 零输入响应 (b) RC 一阶电路 (c) 零状态响应 图 1 4. 微分电路和积分电路是RC 一阶电路中较典型的电路, 它对电路元件参数和输入信号的周期有着特定的要求。一个简单的 RC 串联电路, 在方波序列脉冲的重复激励下, 当满足τ=RC<< 2 T 时(T 为方波脉冲的重复周期),且由R 两端的电压作为响应输 出,这就是一个微分电路。因为此时电路的输出信号电压与输入信号电压的微分成正比。如图2(a)所示。利用微分电路可以将方波转变成尖脉冲。 (a) 微分电路 (b) 积分电路 图2 若将图2(a )中的R 与C 位置调换一下,如图2(b )所示,由 C 两端的电压作为响应输出。当电路的参数满足τ=RC>> 2 T 条件时,即称为积分电路。因为此时电路的输出信号电压与输入信号电压的积分成正比。利用积分电路可以将方波转变成三角波。 实验设备 脉冲信号发生器,双踪示波器,动态电路实验板 预习思考题 1. 什么样的电信号可作为RC 一阶电路零输入响应、 零状态响应和完全响应的激励信号? 方波输出的上升沿可以作为零状态响应的正阶跃激励信号,方波的下降沿作为零输入响应的负阶跃激励信号;正弦信号可以作为完全响应的激励信号。 2. 已知RC 一阶电路R =10K Ω,C =0.1μF ,试计算时间常数τ,并根据τ值的物理意义,拟定测量τ的方案。

实验十二《RC一阶电路的响应测试》

实验十二 RC 一阶电路的响应测试 一、实验目的 1. 测定RC 一阶电路的零输入响应、零状态响应及完全响应。 2. 学习电路时间常数的测量方法。 3. 掌握有关微分电路和积分电路的概念。 4. 进一步学会用示波器观测波形。 二、原理说明 1. 动态网络的过渡过程是十分短暂的单次变化过程。要用普通示波器观察过渡过程和测量有关的参数,就必须使这种单次变化的过程重复出现。为此,我们利用信号发生器输出的方波来模拟阶跃激励信号,即利用方波输出的上升沿作为零状态响应的正阶跃激励信号;利用方波的下降沿作为零输入响应的负阶跃激励信号。只要选择方波的重复周期远大于电路的时间常数τ,那么电路在这样的方波序列脉冲信号的激励下,它的响应就和直流电接通与断开的过渡过程是基本相同的。 2.图12-1(b )所示的 RC 一阶电路的零输入响应和零状态响应分别按指数规律衰减和增长,其变化的快慢决定于电路的时间常数τ。 3. 时间常数τ的测定方法: 用示波器测量零输入响应的波形如图12-1(a)所示。 根据一阶微分方程的求解得知u c =U m e -t/RC =U m e -t/τ 。当t =τ时,Uc(τ)=0.368U m 。 此时所对应的时间就等于τ。亦可用零状态响应波形增加到0.632U m 所对应的时间测得,如图12-1(c)所示。 (a) 零输入响应 (b) RC 一阶电路 (c) 零状态响应 图 12-1 τ τ 0.368t t t t 0.6320 000c u u U m c u c u u U m U m U m

4. 微分电路和积分电路是RC 一阶电路中较典型的电路, 它对电路元件参数和输入信号的周期有着特定的要求。一个简单的 RC 串联电路, 在方波序列脉冲的重复激励下, 当满足τ=RC<< 2 T 时(T 为方波脉冲的重复周期),且由R 两端的电压作为响应输出,则该电路就是一个微分电路。因为此时电路的输出信号电压与输入信号电压的微分成正比。如图12-2(a)所示。利用微分电路可以将方波转变成尖脉冲。 (a)微分电路 (b) 积分电路 图12-2 若将图12-2(a)中的R 与C 位置调换一下,如图12-2(b)所示,由 C 两端的电压作为响应输出,且当电路的参数满足τ=RC>> 2 T ,则该RC 电路称为积分电路。因为此时电路的输出信号电压与输入信号电压的积分成正比。利用积分电路可以将方波转变成三角波。 从输入输出波形来看,上述两个电路均起着波形变换的作用,请在实验过程仔细观察与记录。 四、实验内容 实验线路板的器件组件,如图12-3所示,请认清R 、C 元件的布局及其标称值,各开关的通断位置等。 1. 从电路板上选R =10K Ω,C =6800pF 组成如图12-1(b)所示的RC 充放电电路。u i 为脉冲信号发生器输出的U m =3V 、f =1KHz 的方波电压信号,并通过两根同轴电缆线,将激励源u i 和响应u C 的信号分别连至示波器的两个输入口Y A 和Y B 。这时可在示波器的屏幕上观察到激励与响应的变化规律,请测算出时间常数τ,并用方格纸按1:1 的比例描绘波形。 少量地改变电容值或电阻值,定性地观察对响应的影响,记录观察到的现象。 2. 令R =10K Ω,C =0.1μF ,观察并描绘响应的波形,继续增大C 之值,定性地观察对响应的影响。 C

一阶电路的响应测试

实验十RC一阶电路的响应测试 一、实验目的 1. 测定RC一阶电路的零输入响应、零状态响应及完全响应。 2. 学习电路时间常数的测量方法。 3. 掌握有关微分电路和积分电路的概念。 4. 进一步学会用示波器观测波形。 二、原理说明 1. 动态网络的过渡过程是十分短暂的单次变化过程。要用普通示波器观察过渡过程和测量有关的参数,就必须使这种单次变化的过程重复出现。为此,我们利用信号发生器输出的方波来模拟阶跃激励信号,即利用方波输出的上升沿作为零状态响应的正阶跃激励信号;利用方波的下降沿作为零输入响应的负阶跃激励信号。只要选择方波的重复周期远大于电路的时间常数τ,那么电路在这样的方波序列脉冲信号的激励下,它的响应就和直流电接通与断开的过渡过程是基本相同的。 2.图1-10-1(b)所示的RC 一阶电路的零输入响应和零状态响应分别按指数规律衰减和增长,其变化的快慢决定于电路的时间常数τ。 3. 时间常数τ的测定方法: 用示波器测量零输入响应的波形如图1-10-1(a)所示。 根据一阶微分方程的求解得知u c=U m e-t/RC=U m e-t/τ。当t=τ时,Uc(τ)=0.368U m。此时所对应的时间就等于τ。亦可用零状态响应波形增加到0.632U m所对应的时间测得,如图1-10-1 (c)所示。 (a) 零输入响应(b) RC一阶电路(c) 零状态响应 图1-10-1 4. 微分电路和积分电路是RC一阶电路中较典型的电路,它对电路元件参数和输入信

号的周期有着特定的要求。一个简单的 RC 串联电路,在方波序列脉冲的重复激励下, 当满足τ=RC<< 2 T 时(T 为方波脉冲的重复周期),且由R 两端的电压作为响应输出,这就是一个微分电路。因为此时电路的输出信号电压与输入信号电压的微分成正比。如图1-10-2(a)所示。利用微分电路可以将方波转变成尖脉冲。 (a) 微分电路 (b) 积分电路 图1-10-2 若将图1-10-2(a)中的R 与C 位置调换一下,如图1-10-2(b)所示,由 C 两端的电压作为响应输出。当电路的参数满足τ=RC>> 2 T 条件时,即称为积分电路。因为此时电路的输出信号电压与输入信号电压的积分成正比。利用积分电路可以将方波转变成三角波。 从输入输出波形来看,上述两个电路均起着波形变换的作用,请在实验过程仔细观察与记录。 三、实验设备 四、实验内容 根据实验表格1选择对应的电阻、电容组成如图1-10-1(b)所示的RC 充放电电路。u 为脉冲信号发生器输出的U m =3V 、f =100Hz 的方波电压信号,并通过两根同轴电缆线,将激励源u 和响应u c 的信号分别连至示波器的两个输入口Y A 和Y B 。这时可在示波器的屏幕上观察到激励与响应的变化规律,请测算出时间常数τ,并按1:1 的比例描绘波形。 u T

RC一阶电路的响应测量

受控源的研究 1、 实验目的 1. 测定RC一阶电路的零输入响应、零状态响应及完全响应。 2. 学习电路时间常数的测量方法。 3. 掌握有关微分电路和积分电路的概念。 4. 进一步学会用虚拟示波器观测波形。 二、实验仪器 数字万用表、模拟电路实验箱(AEDK-AEC)、导线、电容、电阻、面包板、示波器(DS1052E)、信号发生器(EE1641D)等。 3、 实验概述 1、实验原理 1. 动态网络的过渡过程是十分短暂的单次变化过程。要用普通示波器观察过渡过程和测量有关的参数,就必须使这种单次变化的过程重复出现。为此,我们利用信号发生器输出的方波来模拟阶跃激励信号,即利用方波输出的上升沿作为零状态响应的正阶跃激励信号;利用方波的下降沿作为零输入响应的负阶跃激励信号。只要选择方波的重复周期远大于电路的时间常数τ,那么电路在这样的方波序列脉冲信号的激励下,它的响应就和直流电接通与断开的过渡过程是基本相同的。 2.图6-1(b)所示的 RC 一阶电路的零输入响应和零状态响应分别按指数规律衰减和增长,其变化的快慢决定于电路的时间常数τ。 3. 时间常数τ的测定方法 用示波器测量零输入响应的波形如图6-1(a)所示。 根据一阶微分方程的求解得知uc=Ume-t/RC=Ume-t/τ。当t=τ时,Uc(τ)=0.368Um。此时所对应的时间就等于τ。亦可用零状态响应波形增加到0.632 Um所对应的时间测得,如图6-1(c)所示。

(a) 零输入响应 (b) RC一阶电路 (c) 零状态响应 图 6-1 4. 微分电路和积分电路是RC一阶电路中较典型的电路, 它对电路元件参数和输入信号的周期有着特定的要求。一个简单的 RC串联电路, 在方波序列脉冲的重复激励下, 当满足τ=RC<<时(T为方波脉冲的重复周期),且由R两端的电压作为响应输出,这就是一个微分电路。因为此时 电路的输出信号电压与输入信号电压的微分成正比。如图6-2(a)所示。利用微分电路可以将方波转变成尖脉冲。 (a) 微分电路 (b) 积分电路 图6-2 若将图6-2(a)中的R与C位置调换一下,如图6-2(b)所示,由 C两端的电压作为响应输出。当电路的参数满足τ=RC>>条件时,即称为积分电路。因为此时电路的输出信号电压与输入信号电压的积分成正比。利

RC一阶电路的响应测试实验报告

页脚内容1 ? 实验七 RC 一阶电路的响应测试 一、实验目的 1. 测定RC 一阶电路的零输入响应、零状态响应及完全响应。 2. 学习电路时间常数的测量方法。 3. 掌握有关微分电路和积分电路的概念。 4. 进一步学会用示波器观测波形。 二、原理说明 1. 动态网络的过渡过程是十分短暂的单次变化过程。要用普通示波器观察过渡过程和测量有关的参数,就必须使这种单次变化的过程重复出现。为此,我们利用信号发生器输出的方波来模拟阶跃激励信号,即利用方波输出的上升沿作为零状态响应的正阶跃激励信号;利用方波的下降沿作为零输入响应的负阶跃激励信号。只要选择方波的重复周期远大于电路的时间常数τ,那么电路在这样的方波序列脉冲信号的激励下,它的响应就和直流电接通与断开的过渡过程是基本相同的。 2.图7-1(b )所示的 RC 一阶电路的零输入响应和零状态响应分别按指数规律衰减和增长,其变化的快慢决定于电路的时间常数τ。 3. 时间常数τ的测定方法: 用示波器测量零输入响应的波形如图7-1(a)所示。 根据一阶微分方程的求解得知u c =U m e -t/RC =U m e -t/τ。当t =τ时,Uc(τ)=0.368U m 。此时所对应的时间就等于τ。亦可用零状态响应波形增加到0.632U m 所对应的时间测得,如图13-1(c)所示。 t t 0.632 00 u U m c u c u u U m U m U m

页脚内容2 a) 零输入响应 (b) RC 一阶电路 (c) 零状态响应 图 7-1 4. 微分电路和积分电路是RC 一阶电路中较典型的电路, 它对电路元件参数和输入信号的周期有着特定的要求。一个简单的 RC 串联电路, 在方波序列脉冲的重复激励下, 当满足τ=RC<< 2 T 时(T 为方波脉冲的重复周期),且由R 两端的电压作为响应输出,则该电路就是一个微分电路。因为此时电路的输出信号电压与输入信号电压的微分成正比。如图7-2(a)所示。利用微分电路可以将方波转变成尖脉冲。 (a)微分电路 (b) 积分电路 图7-2 若将图7-2(a)中的R 与C 位置调换一下,如图13-2(b)所示,由 C 两端的电压作为响应输出,且当电路的参数满足τ=RC>> 2 T ,则该RC 电路称为积分电路。因为此时电路的输出信号电压与输入信号电压的积分成正比。利用积分电路可以将方波转变成三角波。 从输入输出波形来看,上述两个电路均起着波形变换的作用,请在实验过程仔细观察与记录。 C

实验三 RC一阶电路的响应测试

实验三 RC 一阶电路的响应测试 一.实验目的 1.研究RC 一阶电路的零输入响应、零状态响应和全响应的规律和特点。 2.学习一阶电路时间常数的测量方法,了解电路参数对时间常数的影响。 二.原理说明 1.RC一阶电路的零状态响应 RC一阶电路如图12-1所示,开关S 在…1?的位置, uC =0,处于零状态,当开关S 合向…2?的位置时,电源通过R 向电容C 充电,uC (t)称为零状态响应, τ t U U u -S S c e -= 变化曲线如图12-2所示,当uC 上升到S 632.0U 所需要的时间称为时间常数τ,RC τ=。 2.RC一阶电路的零输入响应 在图12-1中,开关S 在…2?的位置电路稳定后,再合向…1?的位置时,电容C 通过R 放电,uC (t)称为零输入响应, τ t U u -S c e = 变化曲线如图12-3所示,当uC 下降到S 368.0U 所需要的时间称为时间常数τ,RC τ=。 3.测量RC一阶电路时间常数τ 图12-1电路的上述暂态过程很难观察,为了用普通示波器观察电路的暂态过程,需采用图12-4所示的周期性方波uS 作为电路的激励信号,方波信号 S U c u 图 12-1 S U U 632 . 0 图 12-2 S U U 368 . 0 图12-3 S U T 2 图 12-4 图 12-5

的周期为T ,只要满足, 便可在示波器的荧光屏上形成稳定的响应波形。 电阻R 、电容C 串联与方波发生器的输出端连接,用双踪示波器观察电容 电压uC ,便可观察到稳定的指数曲线,如图12-5所示,在荧光屏上测得电容 电压最大值(cm)a Cm =U ,取 (c m )0.632a b =,与指数曲线交点对应时间t轴的x点,则根据时间t轴比例尺(扫描时间), 该电路的时间常数。 三.实验设备 1.双踪示波器; 2.信号源(方波输出); 3.EEL-52组件。 四.实验内容 实验电路如图12-7所示,图中电阻R 、电容C 从NEEL —003组件上选取(请看懂线路板的走线,认清激励与响应端口所在的位置;认清R、C元件的布局及其标称值,各开关的通断位置等),用双踪示波 器观察电路激励(方波)信号和响应信号。uS 为方波输出信号,将信号源的“波形选择”开关置方波信号位置上,将信号源的信号输出端与示波器探头连接,接通信号源电源,调节信号源的频率旋钮(包括“频段选择”开关、频率粗调和频率细调旋钮),使输出信号的频率为1kHZ (由频率计读出),调节输出信号的“幅值调节”旋钮,使方波的峰-峰值VP-P=2V,固定信号源的频率和幅值不变。 RC一阶电路的充、放电过程 1. 测量时间常数τ:令R=10kΩ,C=0.01μF ,用示波器观察激励uS 与响应uC 的变化规律,测量并记录时间常数τ。 2. 观察时间常数τ(即电路参数R 、C )对暂态过程的影响:令R=10kΩ, C=0.01μF,观察并描绘响应的波形,继续增大C(取0.01μF ~0.1μF )或增大R (取10kΩ、30kΩ),定性地观察对响应的影响。 五.实验注意事项 1.调节电子仪器各旋钮时,动作不要过猛。实验前,尚需熟读双踪示波器 C u 图 12-7 cm (cm)x t ?=τcm t τ5 2 ≥T

RC一阶电路的响应测试实验报告

实验四RC一阶电路的响应测试 姓名学号专业实验时间 一、实验目的 1. 测定RC一阶电路的零输入响应、零状态响应及完全响应。 2. 学习电路时间常数的测量方法。 3. 掌握有关微分电路和积分电路的概念。 4. 进一步学会用示波器观测波形。 二、原理说明 1.电路中某时刻的电感电流和电容电压称为该时刻的电路状态。t=0时电感的初始电流i L(0)和电容电压u c(0)称为电路的初始状态。 在没有外加激励时,仅由t=0零时刻的非零初始状态引起的响应称为零输入响应称为,它取决于初始状态和电路特性(通过时间常数τ=RC来体现),这种响应时随时间按指数规律衰减的。 在零初始状态时仅由在t0时刻施加于电路的激励引起的响应称为零状态响应,它取决于外加激励和电路特性,这种响应是由零开始随时间按指数规律增长的。 线性动态电路的完全响应为零输入响应和零状态响应之和。 含有耗能元件的线性动态电路的完全响应也可以为暂态响应与稳态响应之和,实践中认为暂态响应在t=5τ时消失,电路进入稳态,在暂态还存在的这段时间就成为“过渡过程”。 2. 动态网络的过渡过程是十分短暂的单次变化过程。要用普通示波器观察过渡过程和测量有关的参数,就必须使这种单次变化的过程重复出现。为此,我们利用信号发生器输出的方波来模拟阶跃激励信号,即利用方波输出的上升沿作为零状态响应的正阶跃激励信号;利用方波的下降沿作为零输入响应的负阶跃激励信号。只要选择方波的重复周期远大于电路的时间常数τ,那么电路在这样的方波序列脉冲信号的激励下,它的响应就和直流电接通与断开的过渡过程是基本相同的。 3. 时间常数τ的测定方法: 用示波器测量零输入响应的波形如图9-1(b)所示。 根据一阶微分方程的求解得知u c=U m e-t/RC=U m e-t/τ。当t=τ时,Uc(τ)=0.368U m。此时所对应的时间就等于τ。亦可用零状态响应波形增加到0.632U m所对应的时间测得,如图9-1(c)所示。

相关主题
文本预览
相关文档 最新文档