当前位置:文档之家› 红外光谱检测技术

红外光谱检测技术

红外光谱检测技术
红外光谱检测技术

中药材红外光谱鉴别技术操作规程

一、红外光谱分析原理

分子的振动能量比转动能量大,当发生振动能级跃迁时,不可避免地伴随有转动能级的跃迁,所以无法测量纯粹的振动光谱,而只能得到分子的振动-转动光谱,这种光谱称为红外吸收光谱。红外吸收光谱也是一种分子吸收光谱。当样品受到频率连续变化的红外光照射时,分子吸收了某些频率的辐射,并由其振动或转动运动引起偶极矩的净变化,产生分子振动和转动能级从基态到激发态的跃迁,使相应于这些吸收区域的透射光强度减弱。记录红外光的百分透射比与波数或波长关系曲线,就得到红外光谱(产生红外光谱的基本条是:要有偶矩的变化)。

1 红外光区的划分

红外光谱在可见光区和微波光区之间,波长范围约为 0.75 - 1000μm,根据仪器技术和应用不同,习惯上又将红外光区分为三个区:近红外光区(0.75 -2.5μm ),中红外光区(2.5- 25μm ),远红外光区(25-1000μm )。

1.1 近红外光区(0.75-

2.5μm )

近红外光区的吸收带主要是由低能电子跃迁、含氢原子团(如O—H、N—H、C—H)伸缩振动的倍频吸收等产生的。该区的光谱可用来研究稀土和其它过渡金属离子的化合物,并适用于水、醇、某些高分子化合物以及含氢原子团化合物的定量分析。

1.2 中红外光区(

2.5-25μm )

绝大多数有机化合物和无机离子的基频吸收带出现在该光区。由于基频振动是红外光谱中吸收最强的振动,所以该区最适于进行红外光谱的定性和定量分析。同时,由于中红外光谱仪最为成熟、简单,而且目前已积累了该区大量的数据资料,因此它是应用极为广泛的光谱区。通常,中红外光谱法又简称为红外光

谱法。

1.3 远红外光区(25-1000μm )

该区的吸收带主要是由气体分子中的纯转动跃迁振动-转动跃迁、液体和固体中重原子的伸缩振动、某些变角振动、骨架振动以及晶体中的晶格振动所引起的。由于低频骨架振动能很灵敏地反映出结构变化,所以对异构体的研究特别方便。此外,还能用于金属有机化合物(包括络合物)、氢键、吸附现象的研究。但由于该光区能量弱,除非其它波长区间内没有合适的分析谱带,一般不在此范围内进行分析。

曲线或T-λ红外吸收光谱一般用T-1(单位为μm ),或波数(单位为cm-1)。λ波数曲线表示。纵坐标为百分透射比T%,因而吸收峰向下,向上则为谷;横坐标是波长

中红外区的波数范围是4000-400 cm-1 。

二、红外光谱法的特点

紫外、可见吸收光谱常用于研究不饱和有机物,特别是具有共轭体系的有机化合物,而红外光谱法主要研究在振动中伴随有偶极矩变化的化合物(没有偶极矩变化的振动在拉曼光谱中出现)。因此,除了单原子和同核分子如Ne、He、O2、H2等之外,几乎所有的有机化合物在红外光谱区均有吸收。除光学异构体,某些高分子量的高聚物以及在分子量上只有微小差异的化合物外,凡是具有结构不同的两个化合物,一定不会有相同的红外光谱。通常红外吸收带的波长位置与吸收谱带的强度,反映了分子结构上的特点,可以用来鉴定未知物的结构组成或确定其化学基团;而吸收谱带的吸收强度与分子组成或化学基团的含量有关,可用以进行定量分析和纯度鉴定。由于红外光谱分析特征性强,气体、液体、固体样品都可测定,并具有用量少,分析速度快,不破坏样品的特点。因此,红外光谱法不仅与其它许多分析方法一样,能进行定性和定量分析,而且该法是鉴定化

合物和测定分子结构的最有用方法之一。

产生红外吸收的条件

1 辐射光子具有的能量与发生振动跃迁所需的跃迁能量相等

红外吸收光谱是分子振动能级跃迁产生的。因为分子振动能级差为0.05~1.0eV,比转动能级差(0.0001 0.05eV)大,因此分子发生振动能级跃迁时,不可避免地伴随转动能级的跃迁,因而无法测得纯振动光谱,但为了讨论方便,以双原子分子振动光谱为例说明红外光谱产生的条件。若把双原子分子(A-B)的两个原子看作两个小球,把连结它们的化学键看成质量可以忽略不计的弹簧,则两个原子间的伸缩振动,可近似地看成沿键轴方向的间谐振动。

在室温时,分子处于基态,此时,伸缩振动的频率很小。当有红外辐射照射到分子时,若红外辐射的光子所具有的能量恰好等于分子振动能级的能量差时,则分子将吸收红外辐射而跃迁至激发态,导致振幅增大。

只有当红外辐射频率等于振动量子数的差值与分子振动频率的乘积时,分子才能吸收红外辐射,产生红外吸收光谱。

2 辐射与物质之间有耦合作用

为满足这个条件,分子振动必须伴随偶极矩的变化。红外跃迁是偶极矩诱导的,即能量转移的机制是通过振动过程所导致的偶极矩的变化和交变的电磁场(红外线)相互作用发生的。分子由于构成它的各原子的电负性的不同,也显示不同的极性,称为偶极子。通常用分子的偶极矩来描述分子极性的大小。当偶极子处在电磁辐射的电场中时,该电场作周期性反转,偶极子将经受交替的作用力而使偶极矩增加或减少。由于偶极子具有一定的原有振动频率,显然,只有当辐射频率与偶极子频率相匹时,分子才与辐射相互作用(振动耦合)而增加它的振动能,使振幅增大,即分子由原来的基态振动跃迁到较高振动能级。因此,并非所有的振动都会产生红外吸收,只有发生偶极矩变化的振动才能引起可观测的

红外吸收光谱,该分子称之为红外活性的。

当一定频率的红外光照射分子时,如果分子中某个基团的振动频率和它一致,二者就会产生共振,此时光的能量通过分子偶极矩的变化而传递给分子,这个基团就吸收一定频率的红外光,产生振动跃迁。如果用连续改变频率的红外光照射某样品,由于试样对不同频率的红外光吸收程度不同,使通过试样后的红外光在一些波数范围减弱,在另一些波数范围内仍然较强,用仪器记录该试样的红外吸收光谱,进行样品的定性和定量分析。

三、样品的制样方法

1 在红外光谱分析的具体操作中,对于固体样品,常用的制样方法有以下四种:(1)压片法,是把固体样品的细粉,均匀地分散在碱金属卤化物中并压成透明薄片的一种方法;

(2)粉末法,是把固体样品研磨成2μm以下的粉末,悬浮于易挥发溶剂中,然后将此悬浮液滴于KBr片基上铺平,待溶剂挥发后形成均匀的粉末薄层的一种方法;

(3)薄膜法,是把固体试样溶解在适当的的溶剂中,把溶液倒在玻璃片上或KBr 窗片上,待溶剂挥发后生成均匀薄膜的一种方法;

(4)糊剂法,是把固体粉末分散或悬浮于石蜡油等糊剂中,然后将糊状物夹于两片KBr等窗片间测绘其光谱[1]。

其中最常用的是压片法,但此法常因样品浓度不合适或因片子不透明等问题需要一再返工。

2 对于液体样品,常用的制样方法有以下三种:

(1)液膜法,是在可拆液体池两片窗片之间,滴上1~2滴液体试样,使之形成一薄的液膜;

(2)溶液法,是将试样溶解在合适的溶剂中,然后用注射器注入固定液体池中进行测试;

(3)薄膜法,用刮刀取适量的试样均匀涂于窗片上,然后将另一块窗片盖上,稍加压力,来回推移,使之形成一层均匀无气泡的液膜。其中最常用的是液膜法,此法所使用的窗片是由整块透明的溴化钾(或氯化钠)晶体制成,制作困难,价格昂贵,稍微使用不当就容易破裂,而且由于长期使用也会被试样中微量水分将其慢慢侵蚀,到一定时候这对窗片也就报废了。

现在采用溴化钾压片作片基,在得到同等效果图谱的情况下,降低了重新压片的次数,减少了清洗液体池和窗片的时间,避免了窗片破裂和损耗的可能性,而且此方法成本很低。

四分析测试

1 实验条件测定方式:

积分球漫反射,扫描范围:4 050~7 500cm-1,分辨率:4cm-1,扫描次数:64次,光谱处理:21点平滑后求一阶导数、25点平滑后求二阶导数,用OPUS/INDENT定性分析软件,进行聚类分析。

2 考察影响实验因素

2.1 考察粒度大小

取经60℃干燥的样品,粉碎,分别过28、40、80、100、200目筛,取约2g 样品在上述条件下进行测定,取光谱重现性好样品进行测定。

2.2 考察装样量差异

分别取约0.25、0.50、1.0、1.5、2.0、4.0g过筛的样品进行测定。观察光谱变化情况,筛选出合适的装样量。

2.3 考察分辨率

分辨率分别设置为2、4、8、16、32、64cm-1时,取样品进行测定,根据光谱信息丰富,噪音的影响不大的要求来确定条件。

2.4 考察扫描次数

扫描次数分别设置为2、4、8、16、32、64、100、150次时,取样品进行测定,筛选出噪音影响较小者。

2.5 考察重复测定次数

为了减小重复装样时的误差,一般需测定多次,求平均光谱。取样品,重复测定8次,选择平均光谱的结果较好者。

2.6 考察谱区范围

选择近红外仪的扫描波长范围为3 700~12 000cm-1,通过全谱区扫描,确定谱区进行数据处理。

2.7 考察光谱预处理

用NIR原谱及原谱经一、二阶导数预处理后到的一、二阶导数光谱分别用于鉴别,筛选鉴别效果最佳的条件。

五结果分析

3.1 可以进行聚类分析,找出具有共性的特征。

3.2 从峰位、峰强、峰形加以直观鉴别。

红外反射光谱原理实验技术及应用

高级物理化学实验讲义 实验项目名称:红外反射光谱原理、实验技术及应用 编写人:苏文悦编写日期:2011-7-7 一、实验目的(宋体四号字) 1、了解并掌握FTIR-ATR、FTIR-DRS和FTIR-RAS等红外光谱表面分析技术的原理、实验技术及应用 2、比较分析FTIR-ATR、FTIR-DRS和FTIR-RAS等红外光谱技术各自适用的样品、同一样品不同红外光谱的谱带位置及形状。 二、实验原理 衰减全反射(ATR)、漫反射(DRS)和反射吸收(RAS)都是傅里叶变换红外反射光谱,是FTIR常用的表面分析技术。 图1 入射角(θ)及折射率(n1,n2)对光在界面上行为的影响 θc为临界角,sinθc=n2/n1 1全反射光谱原理、实验技术及应用 全反射:光由光密(即光在此介质中的折射率大的)媒质射到光疏(即光在此介质中折射率小的)媒质的界面时,全部被反射回原媒质内的现象。很多材料如交联聚合物、纤维、纺织品和涂层等,用一般透射法测量其红外光谱往往很困难,但使用FTIR及ATR技术却可以很方便地测绘其红外光谱。 (1)入射角与临界角 在通常情况下,光透射样品时是从光疏介质的空气射向光密介质样品的,当垂直入射(入射角θ为0°)时,则全部透过界面;当θ≠0°时,如果两者的折射率相差不大,则光是以原方向透射的,但如折射率差别较大,则会产生折射现象。 当n2与n1有足够的差值(0.5以上),且入射光从光密介质(n1)射向光疏介

质(n 2 ),入射角θ 大于一定数值时,光线会产生全反射现象。这个“一定数值”的角度称为临界角,也即当折射角φ 等于90°时的入射角θ称为临界角θc ,如图1,其中临界角θc 和折射率n 1和n 2有如下关系: sin θ=n 2/n 1 显然,临界角的数值取决于样品折射率与全反射晶体的折射率之比,对同一种全反射晶体,不同材质的样品会有不同的临界角值,表1所列数值可看出这一关系。 表1 在ATR 和MIR 方法中必须选用远大于临界角的入射角,即sin θ>n 2/n 1,以确保全反射的产生和所获光谱的质量,本实验运用单次衰减全反射ATR 附件,反射晶体是锗,入射角固定为45°,远大于临界角。 (2)衰减全反射 衰减全反射(Attenuated Total Reflectance)缩写为ATR 。当入射角大于临界角时,入射光在透入光疏介质(样品)一定深度后,会折回射入全反射晶体中。进入样品的光,在样品有吸收的频率范围内光线会被样品吸收而强度衰减,在样品无吸收的频率范围内光线被全部反射。因此对整个频率范围而言,由于样品的选择性吸收,使ATR 中的入射光能被部分衰减,除穿透深度dp 外,其衰减的程度与样品的吸收系数有关,还与多次内反射中的光接触样品的次数有关。这种衰减程度在全反射光谱上就是它的吸收强度。 全反射光谱的强度及分布 ATR 光谱的强度取决于穿透深度dp 、反射次数和样品与棱镜的紧密贴合情况以及样品本身吸收的大小。 内反射次数则是设计装置时的一个参数,入射角?越小,对同样尺寸的全反射晶体,全反射的次数就越多,谱峰越增强。 在全反射过程中光线穿透入样品的深度dp 的表示公式如下: 其中,dp :是光透入样品的垂直深度,称穿透深度 λl :是光在内反射晶体材料中的波长,与入射光波长λ成正比λ1=λ/n 1 ?:为入射角, n 21=n 2/n 1 :是样品与全反射晶体的折射率之比 21221 21)(sin 2n dp -=θπλ

红外光谱测试条件

红外光谱分析采用Nicolet Impact 410 型红外光谱仪,样品的结构及骨架振动采用KBr 支撑片,在400-4000 cm-1范围内记录样品的骨架振动红外吸收峰。 吡啶FT-IR 分析:首先将压成自支撑薄片的样品(~20 mg)装入原位红外样品池中,在200 ℃,10-4mmHg 高真空条件下处理0.5 h 以活化样品,降温至室温。将吡啶引入真空系统中。吸附0.5 h 后,抽真空至10-4mmHg 清除吸附后余气,再利用Nicolet-Impact 410 型红外光谱仪进行红外扫描,测定吡啶吸附态的红外光谱。 采用美国Nicolet公司的Nexus 670型傅立叶变换红外光谱仪测试,测试分辨率为4cm-1,扫描次数为32次,测试范围为400-4000cm-1。 红外光谱制样方法: 1、用玛瑙研钵将KBr固体研成极细的粉末,放入玻璃小盒内,放到100℃烘箱里保存,以防KBr粉末潮解; 2、称取0.2g KBr粉末和2-4mg样品(无机材料),放入研钵内研磨,将二者充分混合; 3、用药匙加适量样品至压片磨具中,用圆柱体铁棒旋转压实。套上空心圈及顶盖; 4、讲磨具放到压片机上,拧到上方转盘固定,拧紧下方螺旋钮; 5、摆动右侧长臂,至压力为8-9MPa,等待30s即可取出。 注意事项: 1、KBr粉末不用时,最好放入烘箱中,否则易潮解; 2、若样品为有机物,则加入样品量1mg即可; 3、样品量过多会造成出现宽峰的情况,此时数据无效; 4、KBr粉末潮解后,压片以后容易粘在磨具上,无法取下导致压片失败; 5、压力过大可能导致压片破裂,视破裂程度也可能进行红外测定(中间未破损即可测量)。红外光谱测试方法: 测试分辨率:4cm-1,扫描次数:64次,测试范围400-4000cm-1 点测量快捷键,改文件名和保存路径; 改变设置:OPTIC→Aperture Setting→1.5mm(狭缝设置) OPTIC→preamp Gain→Ref(放大倍数) Check signal:1万以上(若低于1万有可能液氮量不够,补充液氮即可) Basic→Background Signal Channel(采背景,大概60s,此时不放置样品) Background→Save Background 装样品,点Sample Signal Channel 选中点,可变换颜色,点---校准峰 保存:选中图(变换颜色按钮),File→Save as→名称→路径 Mode→Data point table(保存以后为DPH文件,大小为69k)

红外光谱(FTIR)实验报告

红外光谱仪调查及实验报告 第一部分红外光谱仪调查 1.1 简介 傅里叶红外光谱仪: 全名为傅里叶变换红外光谱仪(Fourier Transform Infrared Spectrometer,FTIR Spectrometer),是基于对干涉后的红外光进行傅里叶变换的原理而开发的红外光谱仪,主要由红外光源、光阑、干涉仪(分束器、动镜、定镜)、样品室、检测器以及各种红外反射镜、激光器、控制电路板和电源组成。傅里叶红外光谱仪不同于色散型红外分光的原理,可以对样品进行定性和定量分析,广泛应用于医药化工、地矿、石油、煤炭、环保、海关、宝石鉴定、刑侦鉴定等领域。 滤光片型近红外光谱仪器: 滤光片型近红外光谱仪器以滤光片作为分光系统,即采用滤光片作为单色光器件。滤光片型近红外光谱仪器可分为固定式滤光片和可调式滤光片两种形式,其中固定滤光片型的仪器时近红外光谱仪最早的设计形式。仪器工作时,由光源发出的光通过滤光片后得到一宽带的单色光,与样品作用后到达检测器。 色散型近红外光谱仪器: 色散型近红外光谱仪器的分光元件可以是棱镜或光栅。为获得较高分辨率,现代色散型仪器中多采用全息光栅作为分光元件,扫描型仪器通过光栅的转动,使单色光按照波长的高低依次通过样品,进入检测器检测。根据样品的物态特性,可以选择不同的测样器件进行投射或反射分析。 傅里叶变换型近红外光谱仪器: 傅里叶变换近红外分光光度计简称为傅里叶变换光谱仪,它利用干涉图与光谱图之间的对应关系,通过测量干涉图并对干涉图进行傅里叶积分变换的方法来测定和研究近红外光谱。其基本组成包括五部分:①分析光发生系统,由光源、分束器、样品等组成,用以产生负载了样品信息的分析光;②以传统的麦克尔逊干涉仪为代表的干涉仪,以及以后的各类改进型干涉仪,其作用是使光源发出的光分为两束后,造成一定的光程差,用以产生空间(时间)域中表达的分析光,即干涉光;③检测器,用以检测干涉光;④采

近红外光谱分析技术在煤质检测中的应用

近红外光谱分析技术在入炉煤煤质 在线检测中的应用 一.煤质分析的意义: 煤炭在我国占一次能源消费的68%,大部分用于发电或燃煤锅炉,在热电厂的成本核算中,燃料消耗占到成本的70%左右。 充分了解当前燃煤质量,可以有效的提高锅炉燃烧效率、提升企业经济效益,同时还可以减少炉受热面结焦、积灰等情况,极大的提高锅炉运行的安全性。 二.煤质分析现状: 国内企业目前多采用传统的煤质分析方法,主要测定灰分、水分、发热量等指标,分析精度高,但检测周期长,严重滞后于当前生产,只能进行抽检,不能实时指导生产。 国内还有少量企业使用γ射线来分析煤质,实时性较好,但由于采用辐射源,给工作人员和企业带来了很大的安全隐患,并且价格昂贵,增大了企业的成本负担。 国外相关企业普遍采用近红外光谱技术来分析煤质,实时性好、精确度高、无安全隐患、成本适中。 三.近红外光谱技术检测煤质: 1.近红外光谱的原理: 近红外波长范围为780~2526nm,当近红外光照射到对于含氢基团X—H(X=C、N、O)的物质上时,组成物质的化学键就会吸收一定波长的特征波,吸光度与成分的含量大小有关,而煤炭中燃烧成分主要是含氢基团,正适用于近红外技术。 2.建立近红外模型: 近红外技术是二次测量方法,通过取样,测量样品的近红外光谱、并用

传统分析方法得到该样品的灰分、发热量、水分等含量,通过算法建立光谱与成分和含量之间的联系(模型)。 3.在线实时测量: 近红外仪器安装在入炉煤传送皮带上方,采集皮带上当前煤炭的近红外光谱,通过近红外模型,使用化学计量学方法分析光谱,即可获得该煤炭的灰分、发热量、水分等含量信息。 4.技术特点: ●分析速度快,分析效率高:不到1分钟就可以采集一次光谱,并同时得到 多个组分的性质和含量数据。 ●安装方便:采用非接触的方式进行检测,可以根据生产线的工况采用俯 视、仰视、侧视等方式进行安装。比如安装在入炉煤传送皮带上方。 ●适应复杂环境:仪器具有防尘、防水、防暴等多种特点。 ●运行成本低:近红外仪器自动化程度非常高,日常运行中基本不需要维 护人员,没有消耗品,不产生运行费用。 ●样品不需要预处理,不需要使用化学试剂,不会产生化学、生物或电磁 污染。 ●安全性:近红外仪器使用的是近红外光,没有高温、高压、辐射、易燃 品等构件,保证人员、设备和生产环境的安全。

傅里叶红外光谱仪测试原理及常用制样方法

傅里叶红外光谱仪测试原理及常用制样方法 傅里叶变换红外光谱仪由迈克耳逊干涉仪和数据处理系统组合而成,它的工作原理就是迈克耳逊干涉仪的原理。 迈克耳逊干涉仪的光路如图所示,图中已调到M2与M1垂直。∑是面光源(由被单色光或白光照亮的一块毛玻璃充当),面上每一点都向各个方向射出光线,又称扩展光源,图中只画出由S点射出光线中的一条来说明光路。这条光线进入分束板G1后,在半透膜上被分成两条光线,反射光线①和透射光线②,分别射向M1和M2又被反射回来。反射后,光线①再次进入G1并穿出,光线②再次穿过补偿板G2并被G1上的半透膜反射,最后两条光线平行射向探测器的透镜E,会聚于焦平面上的一点,探测器也可以是观测者的眼睛。由于光线①和光线②是用分振幅法获得的相干光,故可产生干涉。光路中加补偿板G2的作用是使分束后的光线①和光线②都以相等的光程分别通过G1、G2两次,补偿了只有G1而产生的附加光程差。M2′是M2被G1上半透膜反射所成的虚象,在观测者看来好象M2位于M2′的位置并与M1平行,在它们之间形成了一个空气薄膜。移动M1即可改变空气膜的厚度,当M1接近M2′时厚度减小,直至二者重合时厚度为零,继续同向移动,M1还可穿越M2′的另一测形成空气膜。最后通过观测干涉条纹的分布情况就可以获得我们所要的信息。 如果是傅里叶变换红外光谱仪,那还要加上对干涉信息的数据处理系统而最终获得我们的数据图表。 二.紫外;-;可见分光光度计定量分析法的依据是什么? 比耳(Beer)确定了吸光度与溶液浓度及液层厚度之间的关系,建立了光吸收的基本定律。 ○1. 朗伯定律 当溶液浓度一定时,入射光强度与透射光强度之比的对数,即透光率倒数的对数与液层厚度成正比。人们定义:溶液对单色光的吸收程度为吸光度。公式表示为A=Lg (I0/It) ○2.比耳定律 当一束单色光通过液层厚度一定的均匀溶液时,溶液中的吸光物质的浓度增大dC,则透

几种有机化合物的红外光谱测定

几种有机化合物的红外光测定 一、实验目的 1、学习红外光谱的理论知识,了解红外光谱仪的工作原理及使用操作; 2、初步掌握固体样品和液体样品的红外光谱测定方法; 3、初步学习根据红外光谱图进行结构分析的方法。 二、红外吸收的基本原理 红外光谱分析是研究分子振动和转动信息的分子光谱。当化合物受到红外光照射时,化合物中某个化学键的振动或转动频率与红外光频率相当等,就会吸收光能,并引起分子永久偶极矩的变化, 产生分子振动和转动能级从基态到激发态的跃迁, 使相应频率的透射光强度减弱;分子中不同的化学键振动频率不同,会吸收不同频率的红外光,检测并记录透过光强度与波数(1/cm)或波长的关系曲线,就可得到红外光谱,根据谱带的位置、峰形及强度,对待测样品进行分析。红外光谱反映了分子化学键的特征吸收频率,可用于化合物的结构分析和定量测定。 在化合物分子中,具有相同化学键的原子基团,其基本振动频率吸收峰(简称基频峰)基本上出现在同一频率区域内。但同一类型原子基团,在不同化合物分子中所处的化学环境有所不同,使基频峰频率发生一定移动。因此,掌握各种原子基团基频蜂的频率及其位移规律,就可应用红外吸收光谱来确定有机化合物分子中存在的原子基团及其在分子结构中的相对位置。红外光谱中吸收谱带的位置与分子中组成化学键的原子之间的振动频率有关。每个化合物有着彼此不相同的谱图,通过化合物的红外光谱可以测定化合物的结构。 衰减全反射(ATR)装置是将红外光照射在有较高折射率的晶体上,光穿过晶体折射到样品表面一定深度后,反射回表面;当样品的折射率小于晶体的折射率,入射光的入射角大于临界角时,即可产生全反射现象,收集此时的反射光,可获得样品的衰减全反射光谱。此方法特别适合于材料分析,如塑料、橡胶、纸张等,也可用于液体和固体粉末样品的检测。 三、仪器与试剂 1、仪器:TENSOR27 FT-IR红外光谱仪;透射(TR)装置,衰减全反射(ATR)装置等。 2、样品:聚乙烯(PE)薄膜, 聚苯乙烯薄膜,无水乙醇,苯甲酸。 四、实验步骤 (一)透射法(TR)测试 1.安装透射装置。 2. 打开OPUS软件,点击高级测量选项,检查测量参数,选择MIR_TR.XPM。 3.检查信号,保存峰位。 4.在高级测量中输入文件名(即样品名称)和文件存放路径。 5.再在基本测量里输入样品描述和形态。 6.用TR装置,盖上盖子,先测量背景单通道光谱(注意不同样品,应选择适宜的参照物为背景)。 7.再将样品(聚乙烯或聚苯乙烯)模具卡装在样品架上,盖上盖子,测定样品单通道光谱。 8.扫谱结束后,取出压片模具、试样架等,用无水乙醇擦拭干净,置于干燥器中保存。 (二)衰减全反射法(A TR)测试 1.安装衰减全反射装置。 2. 打开OPUS软件,点击高级测量选项,检查测量参数,选择MIR_ATR.XPM。 3.检查信号,保存峰位。 4.在高级测量中输入文件名(即样品名称)和文件存放路径。 5.再在基本测量里输入样品描述和形态。

仪器分析实验有机化合物的红外光谱分析解读

仪器分析实验有机化合物的红外光谱分析 2015年4月21日 有机化合物的红外光谱分析 开课实验室:环境资源楼312 【实验目的】 1、初步掌握两种基本样品制备技术及傅里叶变换光谱仪器的简单操作; 2、通过谱图解析及网上标准谱图的检索,了解由红外光谱鉴定未知物的一般过程; 3、掌握有机化合物红外光谱测定的制样方法,回顾基础有机化学光谱的相关知识。 【基本原理】 ? 原理概述:物质分子中的各种不同基团,在有选择地吸收不同频率的红外辐射后,发生振动能级之间的跃迁,形成各自独特的红外吸收光谱。据此,可对物质进行定性和定量分析。特别是对化合物结构的鉴定,应用更为广泛。 ? 红外吸收法: 类型:吸收光谱法; 原理:电子的跃迁:电子由于受到光、热、电等的激发,从一个能级转移到另一个能级的现象。这是因为分 子中的电子总是处在某一种运动状态中,每一种状态都具有一定的能量,属于一定的能级。当这些电子有选择地吸收了不同频率的红外辐射的能量,发生振动能级之间的跃迁,形成各自独特的红外吸收光谱。据此,可对化合物进行定性和定量分析; 条件:分子具有偶极矩。 【仪器与试剂】 1、仪器: 傅里叶变换红外光谱仪(德国Bruker公司,TENSOR 27型; 美国Thermo Fisher 公司, Nicolet 6700型);压片机; 玛瑙研钵; 红外灯。 2、试剂:NaCl窗片、KBr晶体,待分析试样液体及固体。 【实验步骤】 1、样品制备 (1)固体样品:KBr压片法 在玛瑙研钵将KBr晶体充分研磨后加入其量5%左右的待测固体样品,混合研磨直至均匀。在一个具有抛光面的金属模具上放一个圆形纸环,用刮勺将研磨好的

近红外光谱技术在药物分析中的应用

近红外光谱技术在药物分析中的应用 1·前言 近红外光谱分析技术是分析化学领域迅猛发展的高新分析技术,越来越引起国内外分析专家的注目,在分析化学领域被誉为分析“巨人”,它的出现可以说带来了又一次分析技术的革命。 近红外(NIR)谱区是人类认识最早的非可见光谱区,波长范围在0.75—2.5 m之间,用波数表示时则在13330—4000cm-1之间。由于近红外的吸收谱带复杂,谱峰重叠,信号弱,在分析上难以应用,长期以来没有受到人们的重视。近十多年来,随着近红外仪器的改良,新的光谱理论和光度分析方法的建立,特别是计算机技术和化学计量学的广泛应用和迅速发展,使近红外光谱技术成为目前发展最快、最引人注目的分析技术,并以其简单快速、实时在线、无损伤无污染分析等特点,在复杂物质的分析上得到广泛应用。在包括制糖和制药的许多与化学分析和品质管理有关的行业中的应用前景极其广阔。 关于近红外光谱技术在制药行业中应用的文献报道越来越多,显示了近红外光谱技术在制药领域中越来越受到人们的重视。近红外光谱分析具有的快速实时、操作简单、无损伤测定、不受样品状态影响的特点很符合药物分析的要求。因此,在制药业中原料药的分析、药物制剂中水分、有效成分的分析、药物生产品质的过程控制等方面近红外光谱技术得到了十分广泛的应用。 2·光谱介绍 近红外光是介于可见光和中红外光之间的电磁波,根据ASTM(美国试验和材料检测协会)定义是指波长在780~2526nm范围内的电

磁波,习惯上又将近红外区划分为近红外短波(780~1100nm)和近红外长波(1100~2526nm)两个区域。 近红外光谱属于分子振动光谱的倍频和主频吸收光谱,主要是由于分子振动的非谐振性使分子振动从基态向高能级跃迁时产生的,具有较强的穿透能力。近红外光主要是对含氢基团X-H(X=C、N、O)振动的倍频和合频吸收,其中包含了大多数类型有机化合物的组成和分子结构的信息。由于不同的有机物含有不同的基团,不同的基团有不同的能级,不同的基团和同一基团在不同物理化学环境中对近红外光的吸收波长都有明显差别,且吸收系数小,发热少,因此近红外光谱可作为获取信息的一种有效的载体。近红外光照射时,频率相同的光线和基团将发生共振现象,光的能量通过分子偶极矩的变化传递给分子;而近红外光的频率和样品的振动频率不相同,该频率的红外光就不会被吸收。因此,选用连续改变频率的近红外光照射某样品时,由于试样对不同频率近红外光的选择性吸收,通过试样后的近红外光线在某些波长范围内会变弱,透射出来的红外光线就携带有机物组分和结构的信息。通过检测器分析透射或反射光线的光密度,就可以确定该组分的含量。 3·近红外光谱技术在制药业中的应用 3·1 原料和活性组分的测定 药物加工过程中第一步就是原料的鉴定,其质量的好坏直接决定后续加工过程的成败于否,而同一类型的原料中多变因素主要是湿度和颗粒大小,近红外光谱在湿度测定中的灵敏度及其适于固体表面的表征的特性,使他能够很快地得到样品的湿度和颗粒大小的信息,然

红外光谱检测原理

红外光谱测试作为一种比较成熟的测试手段,对于材料的定性检测具有重要的作用,应用在许多领域。但是很多人对于红外光谱的检测原理并不是很清楚,下面,我们将进行一些基本原理的介绍。 在了解红外光谱的检测原理之前我们先来看一下什么是光谱分析。 光谱分析是一种根据物质的光谱来鉴别物质及确定它的化学组成,结构或者相对含量的方法。按照分析原理,光谱技术主要分为吸收光谱,发射光谱和散射光谱三种;按照被测位置的形态来分类,光谱技术主要有原子光谱和分子光谱两种。红外光谱属于分子光谱,有红外发射和红外吸收光谱两种,常用的一般为红外吸收光谱。 接下来是红外吸收光谱的基本原理。 分子运动有平动,转动,振动和电子运动四种,其中后三种为量子运动。分子从较低的能级E1,吸收一个能量为hv的光子,可以跃迁到较高的能级E2,整个运动过程满足能量守恒定律E2-E1=hv。能级之间相差越小,分子所吸收的光的频率越低,波长越长。 红外吸收光谱是由分子振动和转动跃迁所引起的, 组成化学键

或官能团的原子处于不断振动(或转动)的状态,其振动频率与红外光的振动频率相当。所以,用红外光照射分子时,分子中的化学键或官能团可发生振动吸收,不同的化学键或官能团吸收频率不同,在红外光谱上将处于不同位置,从而可获得分子中含有何种化学键或官能团的信息。 红外光谱法实质上是一种根据分子内部原子间的相对振动和分子转动等信息来确定物质分子结构和鉴别化合物的分析方法。 分子的转动能级差比较小,所吸收的光频率低,波长很长,所以分子的纯转动能谱出现在远红外区(25~300 μm)。振动能级差比转动能级差要大很多,分子振动能级跃迁所吸收的光频率要高一些,分子的纯振动能谱一般出现在中红外区(2.5~25 μm)。(注:分子的电子能级跃迁所吸收的光在可见以及紫外区,属于紫外可见吸收光谱的范畴) 值得注意的是,只有当振动时,分子的偶极矩发生变化时,该振动才具有红外活性(注:如果振动时,分子的极化率发生变化,则该振动具有拉曼活性)。

仪器分析红外光谱实验

仪器分析实验报告 实验名称:红外光谱分析(IR)实验学院:化学工程学院 专业:化学工程与工艺 班级:化工112 姓名:王文标学号11402010233 指导教师:张宗勇 日期:2014.4.29

一、 实验目的 1、掌握溴化钾压片法制备固体样品的方法; 2、学习并掌握美国尼高立IR-6700型红外光谱仪的使用方法; 3、初步学会对红外吸收光谱图的解析。 二、实验原理 红外光是一种波长介于可见光区和微波区之间的电磁波谱。波长在0.75~1000μm 。通常又把这个波段分成三个区域,即近红外区:波长在0.75~2.5μm (波数在13300~4000cm -1),又称泛频区;中红外区:波长在 2.5~50μm (波数在4000~200cm -1),又称振动区;远红外区:波长在50~1000μm (波数在200~10cm -1),又称转动区。其中中红外区是研究、应用最多的区域。 红外区的光谱除用波长λ表征外,更常用波数σ表征。波数是波长的倒数,表示单位厘米波长内所含波的数目。其关系式为: )(10)(4 1 cm cm λσ=- 作为红外光谱的特点,首先是应用面广,提供信息多且具有特征性,故把红外光谱通称为“分子指纹”。它最广泛的应用还在于对物质的化学组成进行分析。用红外光谱法可以根据光谱中吸收峰的位置和形状来推断未知物的结构,依照特征吸收峰的强度来测定混合物中各组分的含量。其次,它不受样品相态的限制,无论是固态、液态以及气态都能直接测定,甚至对一些表面涂层和不溶、不熔融的弹性体(如橡胶)也可直接获得其光谱。它也不受熔点、沸点和蒸气压的限制,样品用量少且可回收,是属于非破坏分析。而作为红外光谱的测定工具-红外光谱仪,与其他近代分析仪器(如核磁共振波谱仪、质谱仪等)比较,构造简单,操作方便,价格便宜,最常用于工业及实验研究领域,如医药鉴别,人造皮革中异氰酸酯基确定等等。因此,它已成为现代结构化学、分析化学最常用和不可缺少的工具。 根据红外光谱与分子结构的关系,谱图中每一个特征吸收谱带都对应于某化合物的质点或基团振动的形式。因此,特征吸收谱带的数目、位置、形状及强度取决于分子中各基团(化学键)的振动形式和所处的化学环境。只要掌握了各种基团的振动频率(基团频率)及其位移规律,即可利用基团振动频率与分子结构的关系,来确定吸收谱带的归属,确定分子中所含的基团或键,并进而由其特征振动频率的位移、谱带强度和形状的改变,来推定分子结构。 红外光谱仪可分为色散型和干涉型。色散型红外光谱仪又有棱镜分光型和光栅分光型,干涉型为傅立叶变换红外光谱仪(FTIR ),最主要的区别是FTIR 没

现代近红外光谱分析仪工作原理

现代近红外光谱分析仪工作原理 现代近红外光谱分析仪工作原理 2011年02月08日 20世纪90年代初,外国厂商开始在我国销售近红外光谱分析仪器产品,但在很长时间内,进展不大,其原因主要是:首先,近红外光谱分析要求光谱仪器、光谱数据处理软件(主要是化学计量学软件)和应用样品模型结合为一体,缺一不可。但被分析样品会由于样品产地的不同而不同,国内外的样品通常有差异,因此,进口仪器的应用模型一般不适合分析国内样品。如果自己建立模型,就需要操作人员了解和熟悉化学计量学知识和软件,而外商在中国的代理机构缺乏这方面的专业人才,不能有效地根据用户的需要组织培训,因此,用户对这项技术缺乏全面了解,影响到了它的推广使用。其次,进口仪器价格昂贵,售后技术服务费用也往往超出大多数用户的承受能力。 现代近红外光谱分析技工作原理 近红外光谱主要是由于分子振动的非谐振性使分子振动从基态向高能级跃迁时产生的。近红外光谱记录的是分子中单个化学键的基频振动的倍频和合频信息,它常常受含氢基团X-H(X-C、N、O)的倍频和合频的重叠主导,所以在近红外光谱范围内,测量的主要是含氢基团X-H振动的倍频和合频吸收。 由于倍频和合频跃迁几率低,而有机物质在NIR光谱区为倍频与合频吸收,所以消光系数弱,谱带重叠严重。因此从近红外光谱中提取有用信息属于弱信息和多元信息,需要充分利用现有的光机技术、电子技术和计算机技术进行处理。计算机技术主要包括光谱数据处理和数据关联技术。光谱数据处理是消除仪器因素(灯及测量方式等)环境因素(如温度等)和样品物态(如颜色、形态等)等对光谱的影响。常采用的方法有平滑、微分、基线漂移扣减、多元散射校正(MSC)和有限脉冲响应滤波(FIR)等也可以用小波变换来进行部分处理。数据关联技术主要是化学计量学方法。化学计量学的发展使多组分分析中多元信息处理理论和技术日益成熟,解决了近红外光谱区重叠的问题。通过关联技术可以实现近红外光谱的快速分析。在近红外光谱的应用中我们所关心的是被测样品的组成或各种物化性质,因此,如何提取这些有用信息是近红外光谱分析的技术核心。现在的许多研究与应用表明,

红外光谱仪验证方案

第1 页共4 页1主题内容 本方案规定了FTIR—8300红外光谱仪的验证方案及实施。 2适用范围 本方案适用于FTIR—8300红外光谱仪的到货后的首次验证。 3职责 工程部计量管理员:负责安装确认。 QC仪器验证责任人:参与安装确认,并负责功能试验及适用性试验。 验证协调员:组织协调验证工作的开展,并根据验证情况,出具验证报告。 4内容 4.1简介 本仪器为日本岛津制作所生产,该公司生产科学仪器及材料试验的工厂均已取得ISO9001认证,产品在国内及国际上有一定知名度。该仪器型号为FTIR—8300,它以MS—Windows 为基础,操作简便,数据处理功能齐全,并可进行光谱图库检索,可用于定性及定量测试。 我公司现主要用于西药原料、中间体或成品的定性分析。因其性能直接关系到分析结果的可信度,故依据我公司验证管理程序(1205·001)及GMP要求,制定本方案对该仪器进行验证,以保证应其能满足使用要求。制定依据为《中国药典》1995年版二部附录P19页及中国药品生物制品检定所1999年1月编《药品检验仪器检定规程》P12页。 4.2安装确认 4.2.1建立完整的设备档案,专人妥善保管。并记录设备档案编号。 药品生产质量管理文件

4.2.3仪器应置于平稳的工作台上,安放处无强振动源,无强光直射。室内应清洁,无腐蚀性气 体,无强电磁场干扰。室温15~30℃;相对湿度≤65%;供电电源:电压为AC(220±22)V,频率为(50±1)Hz。安装及安装环境其他方面也应符合GMP要求及仪器供应商要求。 4.2.4 是否建立相应的仪器使用SOP、维护保养SOP等文件。 4.2.5是否对操作人员进行了必要的培训,并记录培训人员名单。 4.2.6维修服务单位 单位名称: 地址: 联系人:电话: 4.2.7仪器校验情况 4.2.8安装确认结论 检查人:复核人:日期: 4.3运行确认 4.3.1功能试验(应在开机预热稳定后进行) 4.3.1.1按仪器使用说明书,运行仪器各项功能,要求每种功能至少运行一次,各项功能均应能正常运行,无误操作或死机等异常现象。

红外光谱实验报告

红外光谱实验报告 一、实验原理: 1、红外光谱法特点: 由于许多化合物在红外区域产生特征光谱,因此红外光谱法广 泛应用于这些物质的定性和定量分析,特别是对聚合物的定性 分析,用其他化学和物理方法较为困难,而红外光谱法简便易 行,特别适用于聚合物分析。 2、红外光谱的产生和表示 红外光谱定义:分子吸收红外光引起的振动能级跃迁和转动能级跃 迁而产生的吸收信号。 分子发生振动能级跃迁需要的能量对应光波的红外区域分类为: i.近红外区:10000-4000cm-1 ⅱ.中红外区:4000-400cm-1——最为常用,大多数化合物的化键振 动能级的跃迁发生在这一区域。 ⅲ.远红外区:400-10cm-1 产生红外吸收光谱的必要条件: 1)分子振动:只有在振动过程中产生偶极矩变化时才能吸收红外辐射。 ⅰ.双原子分子的振动:(一种振动方式)理想状态模型——把两个 原子看做由弹簧连接的两个质点,用此来 描述即伸缩振动;

图1 双原子分子的振动模型 ⅱ.多原子分子的振动:(简正振动,依据键长和键角变化分两大类) 伸缩振动:对称伸缩振动 反对称伸缩振动 弯曲振动:面内弯曲:剪切式振动 (变形振动)平面摇摆振动 面外弯曲振动:扭曲振动 非平面摇摆振动 ※同一种键型,不对称伸缩振动频率大于对称伸缩振动频率,伸缩振动频率大于弯曲振动频率。 ※当振动频率和入射光的频率一致时,入射光就被吸收,因而同一基团基本上总是相对稳定地在某一特定范围内出现吸收峰。ⅲ.分子振动频率: 基频吸收(强吸收峰):基态到第一激发态所产生分子振动 的振动频率。 倍频吸收(弱吸收峰):基态到第二激发态,比基频高一倍 处弱吸收,振动频率约为基频两倍。 组频吸收(复合频吸收):多分子振动间相互作用,2个或2

红外光谱测试法

红外光谱测试法 红外光谱 (Infrared Spectroscopy, IR) 的研究始于 20 世纪初,自1940 年红外光谱仪问世,红外光谱在有机化学研究中广泛应用。新技术(如发射光谱、光声光谱、色红联用等)出现,使红外光谱技术得到发展。 原理 当一束具有连续波长的红外光通过物质,物质分子中某个基团的振动频率或转动频率和红外光的频率一样时,分子就吸收能量由原来的基态振(转)动能级跃迁到能量较高的振(转)动能级,分子吸收红外辐射后发生振动和转动能级的跃迁,该处波长的光就被物质吸收。所以,红外光谱法实质上是一种根据分子内部原子间的相对振动和分子转动等信息来确定物质分子结构和鉴别化合物的分析方法。将分子吸收红外光的情况用仪器记录下来,就得到红外光谱图。红外光谱图通常用波长(λ)或波数 (σ)为横坐标,表示吸收峰的位置,用透光率(T%)或者吸光度(A)为纵坐标,表示吸收强度。 当外界电磁波照射分子时,如照射的电磁波的能量与分子的两能级差相等,该频率的电磁波就被该分子吸收,从而引起分子对应能级的跃迁,宏观表现为透射光强度变小。电磁波能量与分子两能级差相等为物质产生红外吸收光谱必须满足条件之一,这决定了吸收峰出现的位置。 红外吸收光谱产生的第二个条件是红外光与分子之间有偶尔作用,为了满足这个条件,分子振动时其偶极矩必须发生变化。这实际上保证了红外光的能量能传递给分子,这种能量的传递是通过分子振动偶极矩的变化来实现的。并非所有的振动都会产生红外吸收,只有偶极矩发生变化的振动才能引起可观测的红外吸收,这种振动称为红外活性振动;偶极矩等于零的分子振动不能产生红外吸收,称为红外非活性振动。 应用 红外光谱对样品的适用性相当广泛,固态、液态或气态样品都能应用,无机、有机、高分子化合物都可检测。此外,红外光谱还具有测试迅速,操作方便,重复性好,灵敏度高,试样用量少,仪器结构简单等特点,因此,它已成为现代结构化学和分析化学最常用和不可缺少的工具。红外光谱在高聚物的构型、构象、力学性质的研究以及物理、天文、气象、遥感、生物、医学等领域也有广泛的应用。 红外吸收峰的位置与强度反映了分子结构上的特点,可以用来鉴别未知物的结构组成或确定其化学基团;而吸收谱带的吸收强度与化学基团的含量有关,可用于进行定量分析和纯度鉴定。另外,在化学反应的机理研究上,红外光谱也发挥了一定的作用。但其应用最广的还是未知化合物的结构鉴定。 红外光谱不但可以用来研究分子的结构和化学键,如力常数的测定和分子对称性的判据,而且还可以作为表征和鉴别化学物种的方法。例如气态水分子是非线性的三原子分子,它的v1=3652厘米、v3=3756厘米、v2=1596厘米而在液态水分子的红外光谱中,由于水分子间的氢键作用,使v1和v3的伸缩振动谱带叠

红外光谱法测定样品方法

一、红外光谱法测定样品方法 红外光谱的试样可以是液体、固体或气体,一般应要求: 1. 试样应该是单一组份的纯物质,纯度应>98%或符合商业规格,才便于与纯物质的标准光谱进行对照。多组份试样应在测定前尽量预先用分馏、萃取、重结晶或色谱法进行分离提纯,否则各组份光谱相互重叠,难于判断。 2. 试样中不应含有游离水。水本身有红外吸收,会严重干扰样品谱,而且会侵蚀吸收池的盐窗。 3. 试样的浓度和测试厚度应选择适当,以使光谱图中的大多数吸收峰的透射比处于10%~80%范围内。 二、制样的方法 1. 气体样品 气态样品可在玻璃气槽内进行测定,它的两端粘有红外透光的NaCl或KBr窗片。先将气槽抽真空,再将试样注入。 2. 液体和溶液试样 (1)液体池法 沸点较低,挥发性较大的试样,可注入封闭液体池中,液层厚度一般为0.01~1mm。 (2)液膜法 沸点较高的试样,直接滴在两片盐片之间,形成液膜。对于一些吸收很强的液体,当用调整厚度的方法仍然得不到满意的谱图时,可用适当的溶剂配成稀溶液进行测定。一些固体也可以溶液的形式进行测定。常用的红外光谱溶剂应在所测光谱区内本身没有强烈的吸收,不侵蚀盐窗,对试样没有强烈的溶剂化效应等。 3. 固体试样 (1)压片法 将1~2mg试样与200mg纯KBr研细均匀,置于模具中,用(5~10)′107Pa压力在油压机上压成透明薄片,即可用于测定。试样和KBr都应经干燥处理,研磨到粒度小于2微米,以免散射光影响。 (2)石蜡糊法 将干燥处理后的试样研细,与液体石蜡或全氟代烃混合,调成糊状,夹在盐片中测定。

(3)薄膜法 主要用于高分子化合物的测定。可将它们直接加热熔融后涂制或压制成膜。也可将试样溶解在低沸点的易挥发溶剂中,涂在盐片上,待溶剂挥发后成膜测定。当样品量特别少或样品面积特别小时,采用光束聚光器,并配有微量液体池、微量固体池和微量气体池,采用全反射系统或用带有卤化碱透镜的反射系统进行测量。 仪器操作 1. 样品准备(固体样品) 取样品约0.5mg在红外灯下充分研磨,再加入干燥KBr粉末约50mg,继续研磨至混合均匀。 2. 模具准备 将干燥器中保存的简易模具取出,确认模具洁净。若其表面不洁净,可用棉花沾少许无水乙醇轻轻擦拭(绝对不可用力,以免模具表面被划伤),然后在红外灯下干燥。 3. 制片方法 将试样与纯KBr混合粉末置于模具中,用(5~10)′107Pa压力在油压机上压成透明薄片,即可用于测定。试样和KBr都应经干燥处理,研磨到粒度小于2微米,以免散射光影响。 样品测试过程中的注意事项 1. 测试样品一定要干燥,干燥不充分的样品可以在红外灯下烘烤1小时左右。样品研磨要充分,否则会损伤模具。 2. 所有用具应保持干燥、清洁;使用前可以用脱脂棉蘸酒精小心擦拭。 3. 压片过程应在红外灯照射下进行。 4. 操作过程中应保持模具表面干燥、清洁;防止药品腐蚀模具(KBr对模具表面腐蚀很严重) 5. 易吸水和潮解的样品不宜用压片法。 6. KBr在粉末状态下极易吸水、潮解,应放在干燥器中保存,定期在干燥箱中110℃或在真空烘箱中恒温干燥2小时。

红外光谱实验报告

一、实验目的 1、掌握溴化钾压片法制备固体样品的方法; 2、学习并掌握美国尼高立IR-6700型红外光谱仪的使用方法; 3、初步学会对红外吸收光谱图的解析。 二、实验原理 红外光是一种波长介于可见光区和微波区之间的电磁波谱。波长在~1000μm。通常又把这个波段分成三个区域,即近红外区:波长在~μm(波数在13300~4000cm-1),又称泛频区;中红外区:波长在~50μm(波数在4000~200cm-1),又称振动区;远红外区:波长在50~1000μm(波数在200~10cm-1),又称转动区。其中中红外区是研究、应用最多的区域。 红外区的光谱除用波长λ表征外,更常用波数σ表征。波数是波长的倒数,表示单位厘米波长内所含波的数目。其关系式为: 三、仪器和试剂 1、仪器:美国尼高立IR-6700 2、试剂:溴化钾,聚乙烯,苯甲酸 3、傅立叶红外光谱仪(FTIR)的构造及工作原理 四、实验步骤

1、波数检验:将聚苯乙烯薄膜插入红外光谱仪的样品池处,从4000-650cm-1进行波数扫描,得到吸收光谱。 2、测绘苯甲酸的红外吸收光谱——溴化钾压片法 取1-2mg苯甲酸,加入在红外灯下烘干的100-200mg溴化钾粉末,在玛瑙研钵中充分磨细(颗粒约2μm),使之混合均匀。取出约80mg混合物均匀铺洒在干净的压模内,于压片机上制成直径透明薄片。将此片装于固体样品架上,样品架插入红外光谱仪的样品池处,从4000-400cm-1进行波数扫描,得到吸收光谱。 五、注意事项 1、实验室环境应该保持干燥; 2、确保样品与药品的纯度与干燥度; 3、在制备样品的时候要迅速以防止其吸收过多的水分,影响实验结果; 4、试样放入仪器的时候动作要迅速,避免当中的空气流动,影响实验的准确性。 5、溴化钾压片的过程中,粉末要在研钵中充分磨细,且于压片机上制得的透明薄片厚度要适当。 六、数据处理 该图中在波数700~800、1500~1600、2800~2975左右有峰形,证明了该物质中可能有烯烃的C-H变形振动,C-C间的伸缩振动,同时也拥有烷烃的C-H伸缩振动,推测为聚乙烯的红外谱图。 谱带位置/cm-1吸收基团的振动形式 )n—C— n≥4) (—C—(CH 2

红外光谱检测技术

以后改动策划类的文档可以用批注简单、明了 中药材红外光谱鉴别技术操作规程 一、红外光谱分析原理 分子的振动能量比转动能量大,当发生振动能级跃迁时,不可避免地伴随有转动能级的跃迁,所以无法测量纯粹的振动光谱,而只能得到分子的振动-转动光谱,这种光谱称为红外吸收光谱。红外吸收光谱也是一种分子吸收光谱。当样品受到频率连续变化的红外光照射时,分子吸收了某些频率的辐射,并由其振动或转动运动引起偶极矩的净变化,产生分子振动和转动能级从基态到激发态的跃迁,使相应于这些吸收区域的透射光强度减弱。记录红外光的百分透射比与波数或波长关系曲线,就得到红外光谱(产生红外光谱的基本条是:要有偶矩的变化)。 1 红外光区的划分 红外光谱在可见光区和微波光区之间,波长范围约为 0.75 - 1000μm,根据仪器技术和应用不同,习惯上又将红外光区分为三个区:近红外光区(0.75 -2.5μm ),中红外光区(2.5- 25μm ),远红外光区(25-1000μm )。 1.1 近红外光区(0.75- 2.5μm ) 近红外光区的吸收带主要是由低能电子跃迁、含氢原子团(如O—H、N—H、C—H)伸缩振动的倍频吸收等产生的。该区的光谱可用来研究稀土和其它过渡金属离子的化合物,并适用于水、醇、某些高分子化合物以及含氢原子团化合物的定量分析。 1.2 中红外光区( 2.5-25μm ) 绝大多数有机化合物和无机离子的基频吸收带出现在该光区。由于基频振动是红外光谱中吸收最强的振动,所以该区最适于进行红外光谱的定性和定量分析。同时,由于中红外光谱仪最为成熟、简单,而且目前已积累了该区大量的数

据资料,因此它是应用极为广泛的光谱区。通常,中红外光谱法又简称为红外光谱法。 1.3 远红外光区(25-1000μm ) 该区的吸收带主要是由气体分子中的纯转动跃迁振动-转动跃迁、液体和固体中重原子的伸缩振动、某些变角振动、骨架振动以及晶体中的晶格振动所引起的。由于低频骨架振动能很灵敏地反映出结构变化,所以对异构体的研究特别方便。此外,还能用于金属有机化合物(包括络合物)、氢键、吸附现象的研究。但由于该光区能量弱,除非其它波长区间内没有合适的分析谱带,一般不在此范围内进行分析。 曲线或T-λ红外吸收光谱一般用T-1(单位为μm ),或波数(单位为cm-1)。λ波数曲线表示。纵坐标为百分透射比T%,因而吸收峰向下,向上则为谷;横坐标是波长 中红外区的波数范围是4000-400 cm-1 。 二、红外光谱法的特点 紫外、可见吸收光谱常用于研究不饱和有机物,特别是具有共轭体系的有机化合物,而红外光谱法主要研究在振动中伴随有偶极矩变化的化合物(没有偶极矩变化的振动在拉曼光谱中出现)。因此,除了单原子和同核分子如Ne、He、O2、H2等之外,几乎所有的有机化合物在红外光谱区均有吸收。除光学异构体,某些高分子量的高聚物以及在分子量上只有微小差异的化合物外,凡是具有结构不同的两个化合物,一定不会有相同的红外光谱。通常红外吸收带的波长位置与吸收谱带的强度,反映了分子结构上的特点,可以用来鉴定未知物的结构组成或确定其化学基团;而吸收谱带的吸收强度与分子组成或化学基团的含量有关,可用以进行定量分析和纯度鉴定。由于红外光谱分析特征性强,气体、液体、固体样品都可测定,并具有用量少,分析速度快,不破坏样品的特点。因此,红外光

近红外光谱仪的性能指标

近红外光谱仪器的主要性能指标 北京英贤仪器有限公司销售工程师王燕岭 在近红外光谱仪器的选型或使用过程中,考虑仪器的哪些指标来满足分析的使用要求,这是分析工作者需要考虑的问题。对一台近红外光谱仪器进行评价时,必须要了解仪器的主要性能指标,下面就简单做一下介绍。 1、仪器的波长范围 对任何一台特定的近红外光谱仪器,都有其有效的光谱范围,光谱范围主要取决于仪器的光路设计、检测器的类型以及光源。近红外光谱仪器的波长范围通常分两段,700~1100nm的短波近红外光谱区域和1100~2500nm的长波近红外光谱区域。 2、光谱的分辨率 光谱的分辨率主要取决于光谱仪器的分光系统,对用多通道检测器的仪器,还与仪器的像素有关。分光系统的光谱带宽越窄,其分辨率越高,对光栅分光仪器而言,分辨率的大小还与狭缝的设计有关。仪器的分辨率能否满足要求,要看仪器的分析对象,即分辨率的大小能否满足样品信息的提取要求。有些化合物的结构特征比较接近,要得到准确的分析结果,就要对仪器的分辨率提出较高的要求,例如二甲苯异构体的分析,一般要求仪器的分辨率好于1nm。[1] 3、波长准确性 光谱仪器波长准确性是指仪器测定标准物质某一谱峰的波长与该谱峰的标定波长之差。波长的准确性对保证近红外光谱仪器间的模型传递非常重要。为了保证仪器间校正模型的有效传递,波长的准确性在短波近红外范围要求好于0.5nm,长波近红外范围好于1.5nm。[1]

4、波长重现性 波长的重现性指对样品进行多次扫描,谱峰位置间的差异,通常用多次测量某一谱峰位置所得波长或波数的标准偏差表示(傅立叶变换的近红外光谱仪器习惯用波数cm-1表示)。波长重现性是体现仪器稳定性的一个重要指标,对校正模型的建立和模型的传递均有较大的影响,同样也会影响最终分析结果的准确性。一般仪器波长的重现性应好于0.1nm。[1] 5、吸光度准确性 吸光度准确性是指仪器对某标准物质进行透射或漫反射测量,测量的吸光度值与该物质标定值之差。对那些直接用吸光度值进行定量的近红外方法,吸光度的准确性直接影响测定结果的准确性。 6、吸光度重现性 吸光度重现性指在同一背景下对同一样品进行多次扫描,各扫描点下不同次测量吸光度之间的差异。通常用多次测量某一谱峰位置所得吸光度的标准偏差表示。吸光度重现性对近红外检测来说是一个很重要的指标,它直接影响模型建立的效果和测量的准确性。一般吸光度重现性应在0.001~0.0004A之间。 7、吸光度噪音 吸光度噪音也称光谱的稳定性,是指在确定的波长范围内对样品进行多次扫描,得到光谱的均方差。吸光度噪音是体现仪器稳定性的重要指标。将样品信号强度与吸光度噪音相比可计算出信噪比。 8、吸光度范围 吸光度范围也称光谱仪的动态范围,是指仪器测定可用的最高吸光度与最低

相关主题
文本预览
相关文档 最新文档