当前位置:文档之家› CMOS-两级运算放大器

CMOS-两级运算放大器

CMOS-两级运算放大器
CMOS-两级运算放大器

3.2 仿真结果与分析

图3基本电路图

3.2.1直流仿真:DC仿真、静态工作点、输出电压摆幅、失调电压

图 4 DC仿真电路图

图5 DC仿真结果

分析:如图所示输入级放大电路由M1~M5 组成。M1 和M2 组成PMOS 差分输入对,差分输入与单端输入相比可以有效抑制共模信号干扰;M3、M4 电流镜为有源负载;M5 为第一级提供恒定偏置电流。

输出级放大电路由M6、M7 组成。M6 为共源放大器,M7 为其提供恒定偏置电流同时作为第二级输出负载。相位补偿电路由M14 和Cc 构成。M14 工作在线性区,可等效为一个电阻,与电容Cc 一起跨接在第二级输入输出之间,构成RC 密勒补偿。

M3 和M4 为第一级负载,将差模电流恢复为差模电压。M6 为第二级跨导级,将差分电压信号转换为电流,而M7 再将此电流信号转换为电压输出。由图知各个器件在静态工作点均工作在饱和区,M14工作于线性区。

图6输出电压摆幅电路图

图7输出电压摆幅仿真结果图

分析:输出动态范围即输出摆幅,是所有晶体管都工作在饱和区时的输出电压的范围。如果输出电压过低,M6工作在线性区,如果输出电压过高,M7 工作在线性区。所以输出摆幅范围是V GST6≤V OUT≤V DD-V GST7。一旦输出电压超过输出摆幅,某一个MOS 管就会进入线性区,输出阻抗降低,增益也就会下降。降低过驱动电压可以拓展输出摆幅。注意,如果仅仅是容性负载,输出电压可以达到电源电压和地,但此时增益严重下降,失真已经出现。如果有阻性负载(接地),输出电压是无论如何都到达不了电源电压的。由图可知输出电压摆幅为0.27V≤V OUT≤2.97V。

图8失调电压电路图

图9失调电压仿真结果图

分析: 对于差分输入、单端输出的运放,为最大化输出摆幅,输出电压共模点取在输出摆幅的一半处,即(V DD-V GST7+V GST6)/2,如果M6和M7过驱动电压相同,那么输出电压共模点取在V DD/2 处。输入失调电压定义为单端输出电压为V DD/2 时的差分输入电压值。注意,失调电压是指直流失调。由图可知该电路的失调电压为0.3mV

静态功耗:一旦电源电压确定,静态功耗取决于各支路静态电流总和。考察各路电路,可以知道,此运放的静态功耗为PDC=VDD*(IDS5+IDS7+IDS8+IDS9)=3* (220+70+2.5+3.5)=0.9mW。电流的分配受其他性能指标的影响,比如GBW、转换速率、噪声性能等。

3.2.2交流仿真:增益、单位增益带宽、相位裕度、CMRR、PSRR

图10增益和单位增益带宽、相位裕度电路图

图11增益和单位增益带宽、相位裕度仿真结果图

分析:运算放大器的増益是个重要的设计指标,运算放大器的增益直接影咱负反馈系统的精度。在线性系统结构中,电压的增益一般都为G m R OUT其中G m是整个系统在输出接地的等效跨导;而R OUT代表的输出电阻是当输入电压为零时得到的。输入电压用V IN表示;V CM则代表共模输入电平,负责提供运算放大器的直流偏置,直流偏置的变化会引起运放增益的改变所以Gm=I OUT/V IN;单位增益带宽是运放最重要的指标之一,它定义为当运放增益为1 时,所加输入信号的频率,这是运放所能正常工作的最大频率,即増益为0dB处的带宽即为单位增益带宽。而此时对应的相移与180度的差即为相位裕度。由图可知电路的增益为70.08dB,单位增益带宽为5.382MHZ,相位裕度为90度。

图12 CMRR仿真电路图

图13 CMRR仿真结果图

分析:共模抑制比(CMRR)的定义为运算放大器的差分输入增益与共模増益的比值。将运算放大器接成单位增益负反馈的形式,在运算放大器的同相和反相输入端加上相同的小信号电压V CM=1V。由此可得V OUT/V CM=1/CMRR=V OUT.由图可知CMRR=70dB。

图14 PSRR仿真电路图

图15 PSRR仿真结果图

分析:运算放大器的电源抑制比(PSRR)可以定义为其输入端到输出端的増益和电源到输出端的増益的比值。将运放接成单位增益负反馈的结构,即将运算放大器的反相输入端和输出短接。将差分输入信号设为零,在电源电压源添加1V的交流分量V cm。由小信号等效模型可计算出:V OUT/Vcm=1/PSRR=V OUT。由图可知PSRR=71dB。

3.2.3瞬态Tran仿真

图16 SR仿真电路图

图17 SR仿真结果图1

图18 SR仿结果图2

分析:运放的压摆率(Slew Rate,SR)是指输出电压变化的最大速率,单位为V/S(或者更常见的是V/us)。将运放连接成单位増益负反馈的形式,反相输入端和输出端相连。在同相输入端添加一个小的方波信号观察输出端的波形。进行瞬态扫描,观察输出曲线。由图可得压摆率为37V/us。另外通过测量其上升沿时通过C C的电流I=335uA,由SR=I/C C=34V/us 知误差不大可以接受。

3.3 CMOS 两级运算放大器设计及验证的优化

本文基于设计要求,选择电路结构,详细设计了MOS管的尺寸,对运放进行了Candence 仿真,仿真结果表明,开环直流增益,相位裕度,转换速率,共模抑制比,电源抑制比等性能参数均达到预期设计要求,但是静态功耗和等效输入噪声两项未能达到设计要求,说明还需要对设计进行优化。优化设计主要针对静态功耗和等效输入噪声两项未达标的参数,思路是适当减小静态电流以降低功耗,同时优化M1-M4管尺寸以减小噪声。

参考文献

[1] 《CMOS 模拟集成电路设计第二版》【美Phillip E.Allen 等著冯军等译】

[2] 《模拟CMOS集成电路设计》【美毕查得·拉扎维】

[3] 《二级密勒补偿运算放大器设计教程》【美Phillip E.Allen 等著冯军等译】

CMOS二级运算放大器设计

CMOS二级运算放大器设计 (东南大学集成电路学院) 一.运算放大器概述 运算放大器是一个能将两个输入电压之差放大并输出的集成电路。运算放大器是模拟电子技术中最常见的电路,在某种程度上,可以把它看成一个类似于BJT 或FET 的电子器件。它是许多模拟系统和混合信号系统中的重要组成部分。 它的主要参数包括:开环增益、单位增益带宽、相位阈度、输入阻抗、输入偏流、失调电压、漂移、噪声、输入共模与差模范围、输出驱动能力、建立时间与压摆率、CMRR、PSRR以及功耗等。 二.设计目标 1.电路结构 最基本的COMS二级密勒补偿运算跨导放大器的结构如图所示。主要包括四部分:第一级输入级放大电路、第二级放大电路、偏置电路和相位补偿电路。 图两级运放电路图 2.电路描述 电路由两级放大器组成,M1~M4构成有源负载的差分放大器,M5提供该放大器的工作电流。M6、M7管构成共源放大电路,作为运放的输出级。M6 提供给M7 的工作电流。M8~M13组成的偏置电路,提供整个放大器的工作电流。相位补偿电路由M14和Cc构成。M14工作在线性区,可等效为一个电阻,与电容Cc一起跨接在第二级输入输出之间,构成RC密勒补偿。 3.设计指标 两级运放的相关设计指标如表1。

表1 两级运放设计指标 三.电路设计 第一级的电压增益: )||(422111o o m m r r g R G A == 第二级电压增益: )||(766222o o m m r r g R G A =-= 所以直流开环电压增益: )||)(||(76426221o o o o m m o r r r r g g A A A -== 单位增益带宽: c m O C g A GBW π2f 1 d == 偏置电流: 2 13 122121)/()/()/(2??? ? ??-=L W L W R L W KP I B n B 根据系统失调电压: 7 5 6463)/()/(21)/()/()/()/(L W L W L W L W L W L W == 转换速率: ? ?? ???-=L DS DS C DS C I I C I SR 575,min 相位补偿: 12.1)/()/()/()/(1 61311 146 6+== m m m C g g L W L W L W L W g R

运算放大器部分

运算放大器部分 第一节:理想运算放大电路 一、运算放大器的理想性能运算放大器的内部线路图、外部符号图 特别提示: 运算放大器的内部是用很多三极管组成的差动放大器,结构复杂。在学习魔鬼电路的起步阶段,要避免研究它的内部结构。只需象记住三极管的特性一样,记住运算放大器非常有限的几个外部电气特性就可以了。 理想运算放大器的外部电气特性 1、同相端与输出端电压的变化相位相同 当运算放大器同相输入端的电压高于反向输入端电压的时候,输出端会向正电压方向变化。 2、反向端与输出端电压的变化相位相反 当运算放大器反相输入端的电压高于同相输入端电压的时候,输出端会向负电压反向变化。 3、输出端电压可以达到接近等于电源电压正极或负极的位置 4、开环电压放大倍数无穷大 运算放大器的同相输入端只要高于反相输入端的电压,无论电压有多小,输出端电压就会向正极方向发生无穷大的变化。 反过来,运算放大器的同相输入端只要低于反相输入端的电压,无论电压有多小,输出端电压就会向负极方向发生无穷大的变化。 运算放大器的反相输入端只要高于同相输入端的电压,无论电压有多小,输出端电压就会向负极方向发生无穷大的变化。 反过来,运算放大器的反相输入端只要低于同相输入端的电压,无论电压有多小,输出端电压就会向正极方向发生无穷大的变化。 5、运行速度无穷大 6、输入失调电压等于零 当运算放大器同相输入端和反相输入端的电压差等于零的时候,输出电压会稳定在电源正负压之间的某一点。 7、输入偏置电流等于零 8、输入失调电流等于零 9、电源共模抑制比无穷大 10、输入共模抑制比无穷大

11、输出负载能力无穷大 12、输入开环阻抗无穷大 13、输出阻抗等于零 二、同向比较器a、同向过零比较器电路运行原理 如图所示: 根据开环电压放大倍数无穷大的性能特点: 如果在运算放大器同相输入端加入一个很小的交流信号,每当交流信号越过零电压进入正半周的时候,输出端电压就会到达电源电压的正极。相反,每当交流信号越过零电压进入负半周的时候,输出端电压就会达到电源电压的负极。这个电路被称为同向过零比较器。 三、反向过零比较器电路运行原理 如图所示: 根据开环电压放大倍数无穷大的性能特点: 运算放大器的反相输入端是要高于同相输入端的电压,无论电压有多小,输出端电压就会向负极方向发生无穷大的变化。如图C所示如果在运算放大器反相输入端加入一个很小的交流信号,每当交流信号越国林电压就如正半周的时候,输出端电压就会大大电源电压的负极。相反,每当交流信号越过零电压进入负半周的时候,输出端电压就会达到电源电压的正极。这个电路被称为反向过零比较器。 四、回差比较器

常用运算放大器型号及功能

常用运算放大器型号及功能 型号(规格) 功能简介 兼容型号 CA3130 高输入阻抗运算放大器 CA3140 高输入阻抗运算放大器 CD4573 四可编程运算放大器 MC14573 ICL7650 斩波稳零放大器 LF347 带宽四运算放大器 KA347 LF351 BI-FET 单运算放大器 LF353 BI-FET 双运算放大器 LF356 BI-FET 单运算放大器 LF357 BI-FET 单运算放大器 LF398 采样保持放大器 LF411 BI-FET 单运算放大器 LF412 BI-FET 双运放大器 LM124 低功耗四运算放大器(军用档) LM1458 双运算放大器 LM148 四运算放大器 LM224J 低功耗四运算放大器(工业档) LM2902 四运算放大器 LM2904 双运放大器 LM301 运算放大器 LM308 运算放大器 LM308H 运算放大器(金属封装) LM318 高速运算放大器 LM324 四运算放大器 HA17324,/LM324N LM348 四运算放大器 LM358 通用型双运算放大器 HA17358/LM358P LM380 音频功率放大器 LM386-1 音频放大器 NJM386D,UTC386 LM386-3 音频放大器 LM386-4 音频放大器 LM3886 音频大功率放大器 LM3900 四运算放大器 LM725 高精度运算放大器

229 LM733 带宽运算放大器 LM741 通用型运算放大器 HA17741 MC34119 小功率音频放大器 NE5532 高速低噪声双运算放大器 NE5534 高速低噪声单运算放大器 NE592 视频放大器 OP07-CP 精密运算放大器 OP07-DP 精密运算放大器 TBA820M 小功率音频放大器 TL061 BI-FET 单运算放大器 TL062 BI-FET 双运算放大器 TL064 BI-FET 四运算放大器 TL072 BI-FET 双运算放大器 TL074 BI-FET 四运算放大器 TL081 BI-FET 单运算放大器 TL082 BI-FET 双运算放大器 TL084 BI-FET 四运算放大器

折叠式共源共栅运算放大器设计

折叠式共源共栅运算放大器

目录 一.摘要 (2) 二.电路设计指标 (3) 三.电路结构 (3) 四.手工计算 (7) 五.仿真验证 (10) 六.结论 (12) 七.收获与感悟 (12) 八.参考文献 (13)

摘要 运算放大器在现代科技的各个领域得到了广泛的应用,针对不同的应用领域出现了不同类型的运放。本文完成了一个由pmos作输入的放大器。vdd为3.3v,负载电容为1pf,增益Av 大于80dB,带宽GBM大于100MHz的放大器。输出级采用共源级结构以提高输出摆幅及驱动能力,为达到较宽的带宽,本文详细分析推导了电路所存在的极零点,共源共栅镜像电流源产生Ibias。选择P沟道晶体管的宽度和长度,使得它们的m g 和ds r 与N沟道晶体管的情况相匹配。 关键字:运算放大器、共源共栅级、极点 Abstract Operation amplifiers are widely used in many field s nowadays。All kinds of differential operation amplifiers appear f6r special application.One basic cell of which is fully differential operation amplifiers is designed in the thesis.Power Supply 3.3v,load capacitor 1pf,Gain>80dB,GBM>100MHz。The output stage is common source amplifier for getting proper DC operation point,for the purpose of wider bandwidth,we carefully analysis the pole and zero in the circuit ,use common source common gate as current Ibias。Choose pmos w/l to make their mg and dsr which can match with nmos。 Kay words:Operation amplifiers、common source common gate、pole

集成运放的基本组成部分

集成运放的基本组成部分 偏置电路 偏置电路的作用是向各放大级提供合适的偏置电流,确定各级静态工作点。各个放大级对偏置电流的要求各不相同。对于输入级,通常要求提供一个比较小(一般为微安级)的偏置电流,而且应该非常稳定,以便提高集成运放的输入电阻,降低输入偏置电流、输入失调 电流及其温漂等等。 在集成运放中,常用的偏置电路有以下几种: 镜像电流源也称为电流镜(Current Mirror),在集成运放中应用十分广泛,它的电路如下图所示。 电源VCC通过电阻R和VT1,产生一个基准电流IREF,由图可 得 然后在VT2的集电极得到相应的IC2,作为提供给某个放大级的偏置电流。由于UBE1=UBE2,而VT1和VT2是做在同一硅片上两个相邻的三极管,它们的工艺、结构和参数都比较一致,因此可以认 为 由于输出恒流IC2和基准电流IREF相等,它们之间如同是镜像的关系,所以这种恒流源电路称为镜像电流源。

镜像电流源的优点是结构简单,而且具有一定的温度补偿作用。 二、比例电流源 在镜像电流源的基础上,在VT1、VT2的发射极分别入两个电阻R1和R2,即可组成比例电流源,如下图所示。 由于VT1、VT2是做在同一硅片上的两个相邻的三极管,因此可 以认为UBE1≈IE2R2,则 IE1R1≈IE2R2 如果两管的基极电流可以忽略,由上式可得可见两个三极管的集电极电流之比近似与发射极电阻的阻值成 反比,故称为比例电流源。 以上两种电流源的共同缺点是,当直流电源VCC变化时,输出电流IC2几乎按同样的规律活动,因此不适用于直流电源在大范围内变化的集成运放。此外,若输入级要求微安级的偏置电流,则所有电阻将达兆欧级,在集成电路中无法实现。 差分放大输入级 集成运放的输入对于它的许多指标诸如电阻、共模输入电压、差模输入电压和共模抑制比等等,起着决定性的作用,因此是提高集成 运放质量的关键。

两级运算放大器的仿真验证

实验一、两级运算放大器的仿真验证 一、实验目的 1、学习集成运算电路单元的设计参数的仿真、测试、验证。 2、学习采用Cadence工具实现IC电路设计的基本操作和方法,包括电路图的编辑以及仿真调试过程。 二、实验内容 本实验通过设计一个两级运算放大器电路学习Cadence工具下电路的设计和仿真方法。实验内容包括: 1.熟悉Cadence界面及基本的建立新的cell文件等基本过程; 2.完成两级运算放大器电路的设计; 3.利用Cadence的仿真环境得到波形,分析仿真结果。 该电路设计采用上华CSMC0.5umCMOS工艺设计,工作电压5V。 三、实验原理 运算放大器是一个能将两个输入电压之差放大并输出的集成电路。运算放大器是模拟电子技术中最常见的电路,在某种程度上,可以把它看成一个类似于BJT或FET 的电子器件。它是许多模拟系统和混合信号系统中的重要组成部分。

它的主要参数包括:开环增益、单位增益带宽、相位阈度、输入阻抗、输入偏流、失调电压、漂移、噪声、输入共模与差模范围、输出驱动能力、建立时间与压摆率、CMRR、PSRR以及功耗等主要包括四部分:第一级输入级放大电路、第二级放大电路、偏置电路和相位补偿电路。 1.共模抑制比:差分放大电路抑制共模信号及放大差模信号的能力,常用 共模抑制比作为一项技术指标来衡量,其定义为放大器对差模信号的电 压放大倍数Aud与对共模信号的电压放大倍数Auc之比,称为共模抑制 比,英文全称是Common Mode Rejection Ratio,因此一般用简写CMRR 来表示,符号为Kcmr,单位是分贝db。 2.共模输入范围:是指在差分放大电路中,二个输入端所加的是大小相 等,极性相同的输入信号叫共模信号,此信号的范围叫共模输入信号范 围。 3.电源抑制比:是输入电源变化量(以伏为单位)与转换器输出变化量 (以伏为单位)的比值(PSRR),常用分贝表示。通常把满量程电压变化 的百分数与电源电压变化的百分数之比称为电源抑制比。 4.输出摆幅:指的是,当输出信号为电压的时候,外部量的变化引起的输 出电压变化。对于无源器件,这个变化通常是从某个负电压到某个正电 压。而对于有源器件,这个变化是相对于某个固定电压,做一定幅度的 上下偏移。(无源器件也可以看作是相对电压0做偏移)。 四、实验步骤 1、登陆到UNIX系统。 在登陆界面,输入用户名stu01和密码123456。 2、Cadence的启动。 登录进去之后,点击Terminal出现窗口,输入icfb命令,启动Cadence软件。 3、根据设计指标及电路结构,估算电路参数。 4、利用Candence原理图的输入。 (1)Composer的启动。在CIW窗口新建一个单元的Schematic视图。 (2)添加器件。在comparator schematic窗口点击Add-Instance或者直

采用折叠式结构的两级全差分运算放大器的设计

目录 1. 设计指标 (1) 2. 运算放大器主体结构的选择 (1) 3. 共模反馈电路(CMFB)的选择 (1) 4. 运算放大器设计策略 (2) 5. 手工设计过程 (2) 5.1 运算放大器参数的确定 (2) 5.1.1 补偿电容Cc和调零电阻的确定 (2) 5.1.2 确定输入级尾电流I0的大小和M0的宽长比 (3) 5.1.3 确定M1和M2的宽长比 (3) 5.1.4确定M5、M6的宽长比 (3) 5.1.5 确定M7、M8、M9和M10宽长比 (3) 5.1.6 确定M3和M4宽长比 (3) 5.1.7 确定M11、M12、M13和M14的宽长比 (4) 5.1.8 确定偏置电压 (4) 5.2 CMFB参数的确定 (4) 6. HSPICE仿真 (5) 6.1 直流参数仿真 (5) 6.1.1共模输入电压范围(ICMR) (5) 6.1.2 输出电压范围测试 (6) 6.2 交流参数仿真 (6) 6.2.1 开环增益、增益带宽积、相位裕度、增益裕度的仿真 (6) 6.2.2 共模抑制比(CMRR)的仿真 (7) 6.2.3电源抑制比(PSRR)的仿真 (8) 6.2.4输出阻抗仿真 (9) 6.3瞬态参数仿真 (10) 6.3.1 转换速率(SR) (10) 6.3.2 输入正弦信号的仿真 (11) 7. 设计总结 (11) 附录(整体电路的网表文件) (12)

采用折叠式结构的两级全差分运算放大器的设计 1. 设计指标 5000/ 2.5 2.551010/21~22v DD SS L out dias A V V V V V V GB MHz C pF SR V s V V ICMR V P mW μ>==?== >=±=?≤的范围 2. 运算放大器主体结构的选择 图1 折叠式共源共栅两级运算放大器 运算放大器有很多种结构,按照不同的标准有不同的分类。从电路结构来看, 有套筒 式共源共栅、折叠式共源共栅、增益提高式和一般的两级运算放大器等。本设计采用的是如图1所示的折叠式共源共栅两级运算放大器,采用折叠式结构可以获得很高的共模输入电压范围,与套筒式的结构相比,可以获得更大的输出电压摆幅。 由于折叠式共源共栅放大器输出电压增益没有套筒式结构电压增益那么高,因此为了得到更高的增益,本设计采用了两级运放结构,第一级由M0-M10构成折叠式共源共栅结构,第二级由M11-M14构成共源级结构,既可以提高电压的增益,又可以获得比第一级更高的输出电压摆幅。 为了保证运放在闭环状态下能稳定的工作,本设计通过米勒补偿电容Cc 和调零电阻Rz 对运放进行补偿,提高相位裕量! 另外,本文设计的是全差分运算放大器,与单端输出的运算放大器相比较,可以获得更高的共模抑制比,避免镜像极点及输出电压摆幅。 3. 共模反馈电路(CMFB )的选择 由于采用的是高增益的全差分结构,输出共模电平对器件的特性和失配相当敏感,而且不能通过差动反馈来达到稳定,因此,必须增加共模反馈电路(CMFB )来检测两个输出端

运算放大器知识点总结

u o t u u i1 i2运算放大器知识点总结 1、 部分组成 偏置电路,输入级,中间级,输出级。 2、零点漂移: (1)表现: 输入u i =0时,输出有缓慢变化的电压产生。 (2)原因: 由温度变化引起的。当温度变化使第一级放大器的静态工作点发生微小变化时,这种变化量会被后面的电路逐级放大,最终在输出端产生较大的电压漂移。因而零点漂移也叫温漂。 (3)衡量方法: 将输出漂移电压按电压增益折算到输入端计算。 例如 100,=u1A 100=u2A 10000=u A 如果输入等效为100uV ,漂移为1V 。 (4)减小漂移的措施: 采用差动放大电路 采用温度补偿,非线性元件 3、差动放大电路 运放的输入级一般采用差动放大电路。 差动放大电路又称差分放大电路,它的输出电压与两个输入电压之差成正比。它能较好地克服直接耦合放大器的零点漂移问题,是集成运算放大器的基本组成单元。 结构如右图: (1)对称性结构 β1=β2=β U BE1=U BE2= U BE r be1= r be2= r be R C1=R C2= R C R b1=R b2= R b (2)信号分类 差模信号:i2i1id =u u u - o u V CC V EE o u V CC V EE

i2 u EE 共模信号:) ( 2 1 = i2 i1 ic u u u+ 差模电压增益: id od ud = u u A 共模电压增益: ic oc uc = u u A 总输出电压: ic uc id ud oc od o =u A u A u u u+ = + 2 1 1 EE AB R R R V U + = 3 AB C3 V 7.0 R U I - = 2 C3 C2 C1 I I I= = ②动态 恒流源等效电阻:) // 1( 3 2 1 be3 3 ce R R R r R r R + + + = β 等效 ,且 2 1 2 1 2 1 // R R R R R R + ? = (5)差动放大器输入、输出方式的接法 u i1=u i2 =u ic,u id=0 设u i1 ↑,u i2↑ →u o1↓,u o2↓。 因u i1 = u i2, →u o1 = u o2 → u o= 0 (理想化) 共模电压放大倍数A UC=0 i2 i1 u

运算放大器构造及原理

万联芯城销售TI,ADI,ST等原装品牌运算放大器IC。全现货库存,提供一站式配套服务,万联芯城,三十年电子元器件销售经验,是您的BOM配单专家,为您节省采购成本。点击进入万联芯城 点击进入万联芯城

运算放大器的工作原理 放大器的作用: 1、能把输入讯号的电压或功率放大的装置,由电子管或晶体管、电源变压器和其他电器元件组成。用在通讯、广播、雷达、电视、自动控制等各种装置中。原理:高频功率放大器用于发射机的末级,作用是将高频已调波信号进行功率放大,以满足发送功率的要求,然后经过天线将其辐射到空间,保证在一定区域内的接收机可以接收到满意的信号电平,并且不干扰相邻信道的通信。高频功率放大器是通信系统中发送装置的重要组件。按其工作频带的宽窄划分为窄带高频功率放大器和宽带高频功率放大器两种,窄带高频功率放大器通常以具有选频滤波作用的选频电路作为输出回路,故又称为调谐功率放大器或谐振功率放大器;宽带高频功率放大器的输出电路则是传输线变压器或其他宽带匹配电路,因此又称为非调谐功率放大器。高频功率放大器是一种能量转换器件,它将电源供给的直流能量转换成为高频交流输出在“低频电子线路”课程中已知,放大器可以按照电流导通角的不同,运算放大器原理 运算放大器(Operational Amplifier,简称OP、OPA、OPAMP)是一种直流耦合﹐差模(差动模式)输入、通常为单端输出(Differential-in, single-ended output)的高增益(gain)电压放大器,因为刚开始主要用于加法,乘法等运算电路中,因而得名。一个理想的运算放大器必须具备下列特性:无限大的输入阻抗、等

全差分运算放大器设计

全差分运算放大器设计 岳生生(200403020126) 一、设计指标 以上华0.6um CMOS 工艺设计一个全差分运算放大器,设计指标如下: ?直流增益:>80dB ?单位增益带宽:>50MHz ?负载电容:=5pF ?相位裕量:>60度 ?增益裕量:>12dB ?差分压摆率:>200V/us ?共模电压:2.5V (VDD=5V) ?差分输入摆幅:>±4V 二、运放结构选择

运算放大器的结构重要有三种:(a )简单两级运放,two-stage 。如图2所示;(b )折叠共源共栅,folded-cascode 。如图3所示;(c )共源共栅,telescopic 。如图1的前级所示。本次设计的运算放大器的设计指标要求差分输出幅度为±4V ,即输出端的所有NMOS 管的,DSAT N V 之和小于0.5V ,输出端的所有PMOS 管的,DSAT P V 之和也必须小于0.5V 。对于单级的折叠共源共栅和直接共源共栅两种结构,都比较难达到该 要求,因此我们采用两级运算放大器结构。另外,简单的两级运放的直流增益比较小,因此我们采用共源共栅的输入级结构。考虑到折叠共源共栅输入级结构的功耗比较大,故我们选择直接共源共栅的输入级,最后选择如图1所示的运放结构。两级运算放大器设计必须保证运放的稳定性,我们用Miller 补偿或Cascode 补偿技术来进行零极点补偿。 三、性能指标分析 1、 差分直流增益 (Adm>80db) 该运算放大器存在两级:(1)、Cascode 级增大直流增益(M1-M8);(2)、共源放大器(M9-M12) 第一级增益 1 3 5 11 1357 113 51 3 57 5 3 ()m m m o o o o o m m m m o o o o m m g g g g g g G A R r r r r g g r r r r =-=-=-+ 第二级增益 9 2 2 9112 9 9 11 ()m o o o m m o o g g G A R r r g g =-=-=- + 整个运算放大器的增益: 4 1 3 5 9 1 2 1 3 5 7 5 3 9 11 (80)10m m m m overall o o o o m m o o dB g g g g A A A g g g g r r r r = = ≥++ 2、 差分压摆率 (>200V/us ) 转换速率(slew rate )是大信号输入时,电流输出的最大驱动能力。 定义转换速率SR :

二级运算放大器知识讲解

二级运算放大器

哈尔滨理工大学 软件学院 模拟IC课程设计报告 课程模拟IC设计 题目二级运算放大器 专业集成电路设计与集成 班级集成10-2班 学生唐贝贝 学号1014020227 指导老师陆学斌 2013年6月14日 目录 1.课程设计目的………………………………………………… 2.课程设计题目描述和要求……………………………………

3.课程设计具体内容…………………………………………… 3.1 设计过程分析…………………………………………… 3.2使用软件………………………………………………… 3.3 原理图…………………………………………………… 3.4 仿真网表………………………………………………… 3.5波形分析………………………………………………… 4.心得体会……………………………………………………… 一、课程设计目的 1.熟悉并掌握Hspice与cosmosScope软件的使用。 2.熟练应用Hspice仿真网表并修改分析网表,学会用comosScope查看 分析波形。 3.锻炼学生独立完成二级运算放大器的能力。 4. 在扎实的基础上强化实践能力,把模拟IC理论实践化。 二、课程设计题目描述和要求 设计指标: 静态功耗:小于5mw 开环增益:大于70dB 单位增益带宽大于5MHz 相位裕量:大于60度 转换速率(SR)大于20V/us 共模抑制比:大于60dB 电源抑制比:大于70dB

输入失调:小于1mV 负载电容:2-4pF 要求: 1、手工计算出每个晶体管的宽长比。通过仿真验证设计是否正确,保证每个晶体管的正常工作状态。 2、使用Hspice工具得到电路相关参数仿真结果,包括:幅频和相频特性(低频增益,相位裕度,单位增益带宽)、CMRR、PSRR、共模输入输出范围、SR 等。 3、每个学生应该独立完成电路设计,设计指标比较开放,如果出现雷同按不及格处理。 4、完成课程设计报告的同时需要提交仿真文件,包括所有仿真电路的网表,仿真结果。 5、相关问题参考教材第六章,仿真问题请查看HSPICE手册。 三、课程设计具体内容 3.1理论计算: 3.2原理图

二级运算放大电路版图设计

1前言1 2二级运算放大器电路 1 2.1电路结构 1 2.2设计指标 2 3 Cadence仿真软件 3 3.1 schematic原理图绘制 3 3.2 生成测试电路 3 3.3 电路的仿真与分析 4 3.1.1直流仿真 4 3.1.2交流仿真 4 3.4 版图绘制 5 3.4.1差分对版图设计 6 3.4.2电流源版图设计 7 3.4.3负载MOS管版图设计 7 3.5 DRC & LVS版图验证 8 3.5.1 DRC验证 8 3.5.2 LVS验证 8 4结论 9 5参考文献 9

本文利用cadence软件简述了二级运算放大器的电路仿真和版图设计。以传统的二级运算放大器为例,在ADE电路仿真中实现0.16umCMOS工艺,输入直流电源为5v,直流电流源范围27~50uA,根据电路知识,设置各个MOS管合适的宽长比,调节弥勒电容的大小,进入stectre仿真使运放增益达到40db,截止带宽达到80MHz和相位裕度至少为60。。版图设计要求DRC验证0错误,LVS验证使电路图与提取的版图相匹配,观看输出报告,要求验证比对结果一一对应。 关键词:cadence仿真,设计指标,版图验证。 Abstract In this paper, the circuit simulation and layout design of two stage operational amplifier are briefly described by using cadence software. In the traditional two stage operational amplifier as an example, the realization of 0.16umCMOS technology in ADE circuit simulation, the input DC power supply 5V DC current source 27~50uA, according to the circuit knowledge, set up each MOS tube suitable ratio of width and length, the size of the capacitor into the regulation of Maitreya, the simulation of stectre amplifier gain reaches 40dB, the cut-off bandwidth reaches 80MHz and the phase margin of at least 60.. The layout design requires DRC to verify 0 errors, and LVS validation makes the circuit map matching the extracted layout, viewing the output report, and requiring verification to verify the comparison results one by one. Key words: cadence simulation, design index, layout verification.

运算放大器组成的比较器

1. 功能及应用:主要用来判断输入信号电位之间的相对大小,它至少有两个输入端及一个输出端,通常用一个输入端接被比较信号U i,另一个则接基准电压V R定门限电压(或称阀值)的U T。输出通常仅且仅有二种可能即高、低二电平的矩形波,应用于模-数转换,波形产生及变换,及越限警等。 2. 运放的工作状态:开环和正反馈应用:运放在线性运用时,由于开环增益一般在105以上,所以其对应的输入的线性范围很小,U i数量级,为了拓宽其线性范围就必须引入负反馈,降低其开环增益。而比较器则希望其输入的线性范围越小越好(即比较灵敏度越高)采用开环或使开环增益更高的正反馈应用。在这儿有必要重复展现运放开环电压传输特性。见图8.2.1,请注意横、纵坐标标度的不同 (1) 从途中可化称 (2) 若U i发出变化,使Uo从负波饱和值突变到正饱和值,只在经过极窄的线性区 时,才遵循在线性工作时才特有的“虚短”,其它时刻“虚短”不复存在。 (3) 若横坐标采用与纵坐标相同的标尺,则线性部分特性与纵轴合拢。 (4) 若用正反馈使Aod↑,则可缩短状态的转换时间。 3. 分类: (1) 单限比较器

(2) 迟滞比较器(Schmitt) (3) 双限比较器(窗口比较器) 二. 单限比较器 1. U i与U R分别接运放两输入端的开环串接比较器,见图8. 2.2 ΔU i>U R Uo=+Uom ΔU i

常用运算放大器电路 (全集)

常用运算放大器电路(全集) 下面是[常用运算放大器电路(全集)]的电路图 常用OP电路类型如下: 1. Inverter Amp. 反相位放大电路: 放大倍数为Av = R2 / R1但是需考虑规格之Gain-Bandwidth数值。R3 = R4 提供1 / 2 电源偏压 C3 为电源去耦合滤波 C1, C2 输入及输出端隔直流 此时输出端信号相位与输入端相反 2. Non-inverter Amp. 同相位放大电路: 放大倍数为Av=R2 / R1 R3 = R4提供1 / 2电源偏压 C1, C2, C3 为隔直流

此时输出端信号相位与输入端相同 3. Voltage follower 缓冲放大电路: O/P输出端电位与I/P输入端电位相同 单双电源皆可工作 4. Comparator比较器电路: I/P 电压高于Ref时O/P输出端为Logic低电位 I/P 电压低于Ref时O/P输出端为Logic高电位 R2 = 100 * R1 用以消除Hysteresis状态, 即为强化O/P输出端, Logic高低电位差距,以提高比较器的灵敏度. (R1=10 K, R2=1 M) 单双电源皆可工作 5. Square-wave oscillator 方块波震荡电路: R2 = R3 = R4 = 100 K R1 = 100 K, C1 = 0.01 uF

Freq = 1 /(2π* R1 * C1) 6. Pulse generator脉波产生器电路: R2 = R3 = R4 = 100 K R1 = 30 K, C1 = 0.01 uF, R5 = 150 K O/P输出端On Cycle = 1 /(2π* R5 * C1) O/P输出端Off Cycle =1 /(2π* R1 * C1) 7. Active low-pass filter 主动低通滤波器电路: R1 = R2 = 16 K R3 = R4 = 100 K C1 = C2 = 0.01 uF 放大倍数Av = R4 / (R3+R4) Freq = 1 KHz 8. Active band-pass filter 主动带通滤波器电路:

两级运算放大器

两级运算放大器实验报告 一、实验名称:两级运算放大器 二、实验目的: 1.熟悉掌握Orcad captureCIS的使用方法以及常见的仿真方法和参数设置。 2.利用Orcad captureCIS设计两级运算放大器,并完成要求功能。 3.掌握运算放大器中的增益、带宽、输出摆幅、压摆率、速率、噪声等各个参数之间的折中调试。 三、实验步骤: (一)参数要求: 1.电源电压VCC= 2.7V. 2.CL=10pF. 3.增益Ad>80dB. 4.增益带宽积GW>5M. 5.共模电压输入范围ICMR=1~2V. 6.共模抑制比CMRR>70dB. 7.输出电压摆幅>2V. 8.diss<1mW. 9.SR>10V/us (二)实验步骤及数据: (1)由参数要求,共模电压输入范围为1~2V,电源电压为2.7V,Pdiss<1mW,由这些参数以及相位余度要为60度,由相应的公式估算出来,电路如图所示: 如电路所示,为一个差分输入级与共源放大器组成,采用了密勒补偿,按照计算步骤确定各个元件参数之后,下边进行仿真验证与调试。 (2)交流仿真验证增益带宽是否满足,仿真结果如图所示:

如图结果,增益Av=82dB,增益带宽积GW=6.6M,相位裕度有42度,满足要求,并且还有一定的余量。 (3)交流仿真验证共模电压输入范围ICMR与共模抑制比CMRR是否满足要求,仿真电路如图所示: 1、在仿真验证CMRR之前,先做了一个增益随共模输入电压的变化曲线,大致了解共模电压输入范围,结果如图所示: 如图所示,增益在大于80dB时,共模电压输入范围为0.96V~2.66V,能达到要求,且还有余量。 2、现在仿真验证一下CMRR随共模电压的变化曲线,需要更改仿真电路图,更改的电路图如图所示:

10种运算放大器

10种运算放大器

各种不同类型的运算放大器介绍 董婷 076112班 一.uA741M ,uA741I ,uA741C (单运放)高增益运算放大器 用于军事,工业和商业应用.这类单片硅集成电路器件提供输出短路保护和闭锁自由运作。 这些类型还具有广泛的共同模式,差模信号范围和低失调电压调零能力与使用适当的电位。目前价格1元/个。 Package 封装 Part Number 零件型号 Temperature Range 工作温 度范围 N D UA741C 0℃ - +70℃ ? ? UA741I -40℃ - +105℃ ? ? UA741M -55℃ - +125℃ ? ? 例如 : UA741CN uA741主要参数 ABSOLUTE MAXIMUM RATINGS 最大额定值 Symbo l 符号 Parameter 参数 UA741M UA741I UA741C Uni t 单位 VCC Supply voltage 电源电压 ±22 V Vid Differential Input Voltage 差分输入电压 ±30 V Vi Input Voltage 输入电压 ±15 V Ptot Power Dissipation 功耗 500 mW Toper Output Short-circuit Duration 输出 短路持续时间 Infinite 无限制 Operating Free-air Temperature Range 工作温度 -55 to +125 -40 to +105 0 to +70 ℃ Tstg Storage Temperature Range 储存温度范围 -65 to +150

几种常用集成运算放大器的性能参数

几种常用集成运算放大器的性能参数 1.通用型运算放大器 A741(单运放)、LM358(双运放)、LM324(四运放)及以场效应管为输入级的LF356都属于此种。它们是目前应用最为广泛的集成运算放大器。μ通用型运算放大器就是以通用为目的而设计的。这类器件的主要特点是价格低廉、产品量大面广,其性能指标能适合于一般性使用。例 2.高阻型运算放大器 ,IIB为几皮安到几十皮安。实现这些指标的主要措施是利用场效应管高输入阻抗的特点,用场效应管组成运算放大器的差分输入级。用FET作输入级,不仅输入阻抗高,输入偏置电流低,而且具有高速、宽带和低噪声等优点,但输入失调电压较大。常见的集成器件有LF356、LF355、LF347(四运放)及更高输入阻抗的CA3130、CA3140等。Ω这类集成运算放大器的特点是差模输入阻抗非常高,输入偏置电流非常小,一般rid>(109~1012) 3.低温漂型运算放大器 在精密仪器、弱信号检测等自动控制仪表中,总是希望运算放大器的失调电压要小且不随温度的变化而变化。低温漂型运算放大器就是为此而设计的。目前常用的高精度、低温漂运算放大器有OP-07、OP-27、AD508及由MOSFET组成的斩波稳零型低漂移器件ICL7650等。4.高速型运算放大器 s,BWG>20MHz。μA715等,其SR=50~70V/μ在快速A/D和D/A转换器、视频放大器中,要求集成运算放大器的转换速率SR一定要高,单位增益带宽BWG一定要足够大,像通用型集成运放是不能适合于高速应用的场合的。高速型运算放大器主要特点是具有高的转换速率和宽的频率响应。常见的运放有LM318、 5.低功耗型运算放大器 W,可采用单节电池供电。μA。目前有的产品功耗已达微瓦级,例如ICL7600的供电电源为1.5V,功耗为10μ由于电子电路集成化的最大优点是能使复杂电路小型轻便,所以随着便携式仪器应用范围的扩大,必须使用低电源电压供电、低功率消耗的运算放大器相适用。常用的运算放大器有TL-022C、TL-060C等,其工作电压为±2V~±18V,消耗电流为50~250 6.高压大功率型运算放大器 A791集成运放的输出电流可达1A。μ运算放大器的输出电压主要受供电电源的限制。在普通的运算放大器中,输出电压的最大值一般仅几十伏,输出电流仅几十毫安。若要提高输出电压或增大输出电流,集成运放外部必须要加辅助电路。高压大电流集成运算放大器外部不需附加任何电路,即可输出高电压和大电流。例如D41集成运放的电源电压可达±150V, 集成运放的分类 1. 通用型 这类集成运放具有价格低和应用范围广泛等特点。从客观上判断通用型集成运放,目前还没有明确的统一标准,习惯上认为,在不要求具有特殊的特性参数的情况下所采用的集成运放为通用型。由于集成运放特性参数的指标在不断提高,现在的和过去的通用型集成运放的特性参数的标准并不相同。相对而言,在特性

运算放大器应用电路的设计与制作

运算放大器应用电路的设计与制作 运算放大器 1.原理 运算放大器是目前应用最广泛的一种器件,当外部接入不同的线性或非线性元器件组成输入和负反馈电路时,可以灵活地实现各种特定的函数关系。在线性应用方面,可组成比例、加法、减法、积分、微分、对数等模拟运算电路。 运算放大器一般由4个部分组成,偏置电路,输入级,中间级,输出级。 图1运算放大器的特性曲线 图2运算放大器输入输出端图示 图1是运算放大器的特性曲线,一般用到的只是曲线中的线性部分。如图2所示。U -对应的端子为“-”,当输入U -单独加于该端子时,输出电压与输入电压U -反相,故称它为反相输入端。U +对应的端子为“+”,当输入U +单独由该端加入时,输出电压与U +同相,故称它为同相输入端。 输出:U 0= A(U +-U -) ; A 称为运算放大器的开环增益(开环电压放大倍数)。 在实际运用经常将运放理想化,这是由于一般说来,运放的输入电阻很大,开环增益也很大,输出电阻很小,可以将之视为理想化的,这样就能得到:开环电压增益A ud =∞;输入阻抗r i =∞;输出阻抗r o =0;带宽f BW =∞;失调与漂移均为零等理想化参数。 理想运放在线性应用时的两个重要特性 输出电压U O 与输入电压之间满足关系式:U O =A ud (U +-U -),由于A ud =∞,而U O 为有限值,因此,U +-U -≈0。即U +≈U -,称为“虚短”。 由于r i =∞,故流进运放两个输入端的电流可视为零,即I IB =0,称为“虚断”,这说明运放对其前级吸取电流极小。

上述两个特性是分析理想运放应用电路的基本原则,可简化运放电路的计算。 运算放大器的应用 (1)比例电路 所谓的比例电路就是将输入信号按比例放大的电路,比例电路又分为反向比例电路、同相比例电路、差动比例电路。 (a) 反向比例电路 反向比例电路如图3所示,输入信号加入反相输入端: 图3反向比例电路电路图 对于理想运放,该电路的输出电压与输入电压之间的关系为: 为了减小输入级偏置电流引起的运算误差,在同相输入端应接入平衡电阻 R ’=R 1 // R F 。 输出电压U 0与输入电压U i 称比例关系,方向相反,改变比例系数,即改变两个电阻的阻值就可以改变输出电压的值。反向比例电路对于输入信号的负载能力有一定的要求。 (b) 同向比例电路 同向比例电路如图4所示,跟反向比例电路本质上差不多,除了同向接地的一段是反向输入端: 图4 同相比例电路电路图 i 1 f O U R R U -=

运算放大器工作原理、分类及特点介绍

运算放大器工作原理、分类及特点介绍 1.模拟运放的分类及特点 模拟运算放大器从诞生至今,已有40多年的历史了。最早的工艺是采用硅NPN工艺,后来改进为硅NPN-PNP工艺(后面称为标准硅工艺)。在结型场效应管技术成熟后,又进一步的加入了结型场效应管工艺。当MOS管技术成熟后,特别是CMOS技术成熟后,模拟运算放大器有了质的飞跃,一方面解决了低功耗的问题,另一方面通过混合模拟与数字电路技术,解决了直流小信号直接处理的难题。 经过多年的发展,模拟运算放大器技术已经很成熟,性能曰臻完善,品种极多。这使得初学者选用时不知如何是好。为了便于初学者选用,本文对集成模拟运算放大器采用工艺分类法和功能/性能分类分类法等两种分类方法,便于读者理解,可能与通常的分类方法有所不同。 1.1.根据制造工艺分类 根据制造工艺,目前在使用中的集成模拟运算放大器可以分为标准硅工艺运算放大器、在标准硅工艺中加入了结型场效应管工艺的运算放大器、在标准硅工艺中加入了MOS工艺的运算放大器。按照工艺分类,是为了便于初学者了解加工工艺对集成模拟运算放大器性能的影响,快速掌握运放的特点。 标准硅工艺的集成模拟运算放大器的特点是开环输入阻抗低,输入噪声低、增益稍低、成本低,精度不太高,功耗较高。这是由于标准硅工艺的集成模拟运算放大器内部全部采用NPN-PNP管,它们是电流型器件,输入阻抗低,输入噪声低、增益低、功耗高的特点,即使输入级采用多种技术改进,在兼顾起啊挺能的前提下仍然无法摆脱输入阻抗低的问题,典型开环输入阻抗在1M欧姆数量级。为了顾及频率特性,中间增益级不能过多,使得总增益偏小,一般在80~110dB之间。标准硅工艺可以结合激光修正技术,使集成模拟运算放大器的精度大大提高,温度漂移指标目前可以达到0.15ppm。通过变更标准硅工艺,可以设计出通用运放和高速运放。典型代表是LM324。 在标准硅工艺中加入了结型场效应管工艺的运算放大器主要是将标准硅工艺的集成模拟运算放大器的输入级改进为结型场效应管,大大提高运放的开环输入阻抗,顺带提高通用运放的转换速度,其它与标准硅工艺的集成模拟运算放大器类似。典型开环输入阻抗在1000M欧姆数量级。典型代表是TL084。 在标准硅工艺中加入了MOS场效应管工艺的运算放大器分为三类,一类是是将标准硅工艺的集成模拟运算放大器的输入级改进为MOS场效应管,比结型场效应管大大提高运放的开环输入阻抗,顺带提高通用运放的转换速度,其它与标准硅工艺的集成模拟运算放大器类似。典型开环输入阻抗在10^12欧姆数量级。典型代表是CA3140。 第二类是采用全MOS场效应管工艺的模拟运算放大器,它大大降低了功耗,但是电源电压降低,功耗大大降低,它的典型开环输入阻抗在10^12欧姆数量级。 第三类是采用全MOS场效应管工艺的模拟数字混合运算放大器,采用所谓斩波稳零技术,主要用于改善直流信号的处理精度,输入失调电压可以达到0.01uV,温度漂移指标目前可以达到0.02ppm。在处理直流信号方面接近理想运放特性。它的典型开环输入阻抗在10^12欧姆数量级。典型产品是ICL7650。1.2.按照功能/性能分类 按照功能/性能分类,模拟运算放大器一般可分为通用运放、低功耗运放、精密运放、高输入阻抗运放、高速运放、宽带运放、高压运放,另外还有一些特殊运放,例如程控运放、电流运放、电压跟随器等等。实际上由于为了满足应用需要,运放种类极多。本文以上述简单分类法为准。 需要说明的是,随着技术的进步,上述分类的门槛一直在变化。例如以前的LM108最初是归入精密

相关主题
文本预览
相关文档 最新文档