当前位置:文档之家› 光学基本知识及设备基本原理

光学基本知识及设备基本原理

一级注册建筑师之建筑物理与建筑设备知识汇总

采光窗种类、特性及使用范围 二、采光窗种类、特性及使用范围 (一)侧窗:侧窗构造简单,布置方便,造价低,光线的方向性好,有利于形成阴影,适于观看立体感强的物体,并可通过窗看到室外景观,扩大视野,在大量的民用建筑和工业建筑中得到广泛的应用。侧窗的主要缺点是照度分布不均匀,近窗处照度高,往里走,水平照度下降速度很快,到内墙处,照度很低,离内墙lm处照度最低。侧窗采光房间进深不要超过窗口上沿高度的2倍,否则需要人工照明补充。 侧窗分单侧窗、双侧窗和高侧窗三种,高侧窗主要用于仓库和博览建筑。 (二)天窗:随着建筑物室内面积的增大,只用侧窗不能达到采光要求,需要设计天窗。天窗分为以下几种类型: 1.矩形天窗:这种天窗的突出特点是采光比侧窗均匀,即工作面照度比较均匀,天窗位置较高,不易形成眩光,在大量的工业建筑,如需要通风的热加工车间和机加工车间应用普遍。为了避免直射阳光射入室内,天窗的玻璃最好朝向南北,这样阳光射人的时间少,也易于遮挡。天窗宽度一般为跨度的一半左右,天窗下沿至工作面的高度为跨度的0.35-0.7倍。 2.横向天窗(横向矩形天窗):这种天窗比避风天窗采光系数高,均匀性好,省去天窗架,造价低,能降低建筑高度。设计时,车间长轴应为南北向,即天窗玻璃朝向南北。 3.锯齿形天窗:这种天窗有倾斜的顶棚作反射面,增加了反射光分量,采光效率比矩形天窗高,窗口一般朝北,以防止直射阳光进入室内,而不影响室内温度和湿度的调节,光线均匀,方向性强,在纺织厂大量使用这种天窗,轻工业厂房、超级市场、体育馆也常采用这种天窗。 4.平天窗:这种天窗的特点是采光效率高,是矩形天窗的2-3倍。从照度和亮度之间的关系式召E=L.Ω.cosa看出,对计算点处于相同位置的矩形天窗和平天窗,如果面积相等,平天窗对计算点形成的立体角大,所以其照度值就高。另外乎天窗采光均匀性好,布置灵活,不需要天窗架,能降低建筑高度,在大面积车间和中庭常使用平天窗。设计时应注意采取防止污染、防直射阳光影响和防止结露措施。 5.井式天窗:采光系数较小,这种窗主要用于通风兼采光,适用于热处理车间。 设计时,可用以上某一种采光窗,也可同时使用几种窗,即混合采光方式。 天然采光基本知识 二、采光窗种类、特性及使用范围 (一)侧窗:侧窗构造简单,布置方便,造价低,光线的方向性好,有利于形成阴影,适于观看立体感强的物体,并可通过窗看到室外景观,扩大视野,在大量的民用建筑和工业建筑中得到广泛的应用。侧窗的主要缺点是照度分布不均匀,近窗处照度高,往里走,水平照度下降速度很快,到内墙处,照度很低,离内墙lm处照度最低。侧窗采光房间进深不要超过窗

鼠标结构及原理

鼠标的定位原理 光电鼠标就是通过红外线或者激光检测鼠标的位移,将位移信号转换为电脉冲信号,通过程序的处理控制屏幕中光标箭头的移动。 一.鼠标的结构 光学鼠标主要由四部分的核心组件构成,分别就是发光二极管、透镜组件、光学引擎以及控制芯片组成。 光电鼠标的控制芯片 控制芯片负责协调光电鼠标中各元器件的工作,并与外部电路进行沟通(桥接)及各种信号的传送与收取。我们可以将其理解成就是光电鼠标中的“管家婆”,实现与主板USB接口之间的桥接。当然,它也具备了一块控制芯片所应该具备的控制、传输、协调等功能。 这里有一个非常重要的概念大家应该知道,就就是dpi对鼠标定位的影响。dpi就是它用来衡量鼠标每移动一英寸所能检测出的点数,dpi越小,用来定位的点数就越少,定位精度就低;dpi 越大,用来定位点数就多,定位精度就高。 光学感应器 光学感应器就是光电鼠标的核心。 光学感应器主要由CMOS感光块(低档摄像头上采用的感光元件)与DSP组成。CMOS感光块负责采集、接收由鼠标底部光学透镜传递过来的光线(并同步成像),然后CMOS感光块会将一帧帧生成的图像交由其内部的DSP进行运算与比较,通过图像的比较,便可实现鼠标所在位置的定位工作。

光学透镜组件 光学透镜组件被放在光电鼠标的底部位置,从图中可以清楚地瞧到,光学透镜组件由一个棱光镜与一个圆形透镜组成。 其中,棱光镜负责将发光二极管发出的光线传送至鼠标的底部,并予以照亮。圆形透镜则相当于一台摄像机的镜头,这个镜头负责将已经被照亮的鼠标底部图像传送至光学感应器底部的小孔中。通过观瞧光电鼠标的背面外壳,我们可以瞧出圆形透镜很像一个摄像头。 不管就是阻断棱光镜还就是圆形透镜的光路,均会立即导致光电鼠标“失明”。其结果就就是光电鼠标无法进行定位,由此可见光学透镜组件的重要性。 发光二极管 光学感应器要对缺少光线的鼠标底部进行连续的“摄像”,自然少不了“摄影灯”的支援。否则,从鼠标底部摄到的图像将就是一片黑暗,黑暗的图像无法进行比较,当然更无法进行光学定位了。 通常,光电鼠标采用的发光二极管就是红色的(也有部分就是蓝色的),且就是高亮的(为了获得

光栅的结构及工作原理

光栅的结构及工作原理 光栅是利用光的透射、衍射现象制成的光电检测元件,它主要由标尺光栅和光栅读数头两部分组成。通常,标尺光栅固定在机床的活动部件上(如工作台或丝杠),光栅读数头安装在机床的固定部件上(如机床底座),二者随着工作台的移动而相对移动。在光栅读数头中,安装着一个指示光栅,当光栅读数头相对于标尺光栅移动时,指示光栅便在标尺光栅上移动。当安装光栅时,要严格保证标尺光栅和指示光栅的平行度以及两者之间的间隙(一般取或要求。 1.光栅尺的构造和种类 光栅尺包括标尺光栅和指示光栅,它是用真空镀膜的方法光刻上均匀密集线纹的透明玻璃片或长条形金属镜面。对于长光栅,这些线纹相互平行,各线纹之间距离相等,我们称此距离为栅距。对于圆光栅,这些线纹是等栅距角的向心条纹。栅距和栅距角是决定光栅光学性质的基本参数。常见的长光栅的线纹密度为25,50,100,125,250条/mm。对于圆光栅,若直径为70mm,一周内刻线100-768条;若直径为110mm,一周内刻线达600-1024条,甚至更高。同一个光栅元件,其标尺光栅和指示光栅的线纹密度必须相同。 2.光栅读数头 图4-7是光栅读数头的构成图,它由光源、透镜、指示光栅、光敏元件和驱动线路组成。读数头的光源一般采用白炽灯泡。白炽灯泡发出的辐射光线,经过透镜后变成平行光束,照射在光栅尺上。光敏元件是一种将光强信号转换为电信号的光电转换元件,它接收透过光栅尺的光强信号,并将其转换成与之成比例的电压信号。由于光敏元件产生的电压信号一般比较微弱,在长距离传递时很容易被各种干扰信号所淹没、覆盖,造成传送失真。为了保证光敏元件输出的信号在传送中不失真,应首先将该电压信号进行功率和电压放大,然后再进行传送。驱动线路就是实现对光敏元件输出信号进行功率和电压放大的线路。

光学基础知识66196知识讲解

光学基础知识66196

光学基础学习报告 一、教学内容: 光电镜头是用来作为光电接收器(CCD,CMOS)的光学传感器元件。 光学特性参数: 1、焦距EFL(学名f’) 是指主面到相应焦点的距离(如图1.1) 图1.1 每个镜片都有前后两个主面-前主面和后主面(放大率为1的共轭面)。相应的也有两个焦点-前焦和后焦。 凸透镜:双凸;平凸;正弯月(如图1.1) 图1.2 凹透镜:双凹;平凹;负弯月

图1.3 折射率实际反映的是光在物质中传播速度与真空中速度的比值关系。 薄透镜:)]1()1[()1('12 1R R n f -?-== Φ Φ—透镜光焦距; f ’—焦距; n —折射率; R 1,R 2-两球面曲率半径 厚透镜:2 1221)1()]1()1[()1('1R nR d n R R n f -+ -?-==Φ d -中心厚度 干涉仪与光距座可以量测f ’,R1,R2,d →利用上述的公式可以计算出n 值,从而来确定所用材料。 A 、 EFL 增加,TOTR (光学总长)增加;要降低TOTR 就必须降低EFL ,但EFL 降低,像高就要降低 B 、 EFL 与某些象差相关 C 、 EFL 上升将使F/NO 增大 D 、 EFL ,FOV (视场角)和IMA (像高)三者间有关系

tanFOV ?=EFL IMA -铁三角关系 EFL 的增大(减小)会使像高变大(小),为了保持像高,就必须要增大(减小)FOV ,然而FOV 的增大会使得REL (相对照度)的数值增大。 2、BFL 后焦距(学名后截距) 图2.1 3、F 数(F/NO ) D f NO F '/= f ’-FEL D 入-入瞳直径 入瞳为光阑经其前方光学镜片所成的像,反映进入光学系统的光线 A 、 与MTF 相关,F/NO ↑,则MTF ↑;反之下降 B 、 与景深相关,F/NO ↑,则景深↑,反之下降 C 、 与象差相关,F/NO ↑,则象差↓,反之增加 D 、 与光通量相关,F/NO ↑,则光通量↓,反之增加 对于光电镜头,F/NO 最大在2.8~3.5之间(经验值)允许有±5%的误差,在物方有照明时,F 数可根据照明的照度情况来增大 4、视场角FOV (2ω),半视场角FOC/2(ω)

典型光学仪器的基本原理

1、光学仪器在国民生产和生活中各个领域广泛应用,绝大多数光学仪器可归纳为望远镜系统、显微镜系统和照明系统三类。 2、人眼构造:人眼本身就相当于一个摄影系统,外表大体呈球形,直径约为25mm,由角膜、瞳孔、房水、睫状体、晶状体和玻璃体等组成的屈光系统相当于成像系统的镜头,起聚焦成像作用。眼睛内的视网膜和大脑的使神经中枢等相当于成像系统的感光底片和控制系统,能够接收外界信号并成像。 3、视度调节:眼睛通过睫状肌的伸缩本能地改变水晶体光焦度的大小以实现对任意距离的物体自动调焦的过程称作眼睛的视度调节。 4、视觉调节:人眼除了随着物体距离的改变而调节晶状体曲率外,还可以在不同的明暗条件下工作,人眼能感受非常大范围的光亮度变化,即眼睛对不同的亮度条件下具有适应的调节能力,这种能力称为眼睛的视觉调节。 5、放大镜定义:放大镜(英文名称:magnifier):用来观察物体细节的简单目视光学器件,是焦距比眼的明视距离小得多的会聚透镜。物体在人眼视网膜上所成像的大小正比于物对眼所张的角(视角)。 6、视角愈大,像也愈大,愈能分辨物的细节。移近物体可增大视角,但受到眼睛调焦能力的限制。使用放大镜,令其紧靠眼睛,并把物放在它的焦点以内,成一正立虚像。放大镜的作用是放大视角。 7、显微镜:显微镜是由一个透镜或几个透镜的组合构成的一种光学仪器,是人类进入原子时代的标志。主要用于放大微小物体成为人的肉眼所能看到的仪器。显微镜分光学显微镜和电子显微镜:光学显微

镜是在1590年由荷兰的詹森父子所首创。现在的光学显微镜可把物体放大1600倍,分辨的最小极限达0.1微米,国内显微镜机械筒长度一般是160mm。 8、光学显微镜由目镜,物镜,粗准焦螺旋,细准焦螺旋,压片夹,通光孔,遮光器,转换器,反光镜,载物台,镜臂,镜筒,镜座,聚光器,光阑组成。 9、显微镜以显微原理进行分类可分为光学显微镜与电子显微镜。 10、光学显微镜:通常皆由光学部分、照明部分和机械部分组成。无

物理光学知识点

第一章 波的基本性质 一. 填空题 1 某介质的介电常数为ε,相对介电常数为r ε,磁导率为μ,相对磁导率为r μ,则光波在该介质中的传播速度v = );该介质的折射率n =。 2 单色自然光从折射率为n 1的透明介质1入射到折射率为n 2的透明介质2中,在两介质的分界面上,发生(反射和 折射)现象;反射角r θ、透射角t θ和入射角i θ的关系为(r i θθ=,12sin sin i t n n θθ=);设12,υυ分别为光波在 介质1、介质2中的时间频率,则12υυ和的关系为(12υυ=);设12,λλ分别为光波在介质1、介质2中的波长,则12λλ和的关系为(11 22n n λλ=)。 3 若一束光波的电场为152cos 210π????=?- ???? ?? ? r r z E j t c ,则,光波的偏振状态是振动方向沿(y 轴)的(线)偏振光; 光波的传播方向是(z 轴)方向;振幅是(2)v m ;频率是(1510)Hz ;空间周期是(7310-?)m ;光速是(8310?)m/s 。 4 已知为波长632.8nm 的He-Ne 激光在真空中的传播速度为3.0x108m/s ,其频率为4.74x1014Hz ;在折射为1.5的透明 介质中传播速度v 为2.0x108m/s ,频率为4.74x1014Hz ,波长为421.9nm ; 5 一平面单色光波的圆频率为ω、波矢为k ,其在真空中的光场E 用三角函数表示为 )cos(0r k t E E ?-=ω,用 复数表示为)(exp 0t r k i E E ω-?=;若单色球面(发散)光波的圆频率为ω、波矢为,其在真空中的光场E 用三角函数表示为 )cos()(1r k t E E ?-=ω,用复数表示为)(ex p 1t r k i r E E ω-?=; 6 一光波的波长为500nm ,其传播方向与x 轴的夹角为300,与y 轴的夹角为600,则其与z 轴的夹角为900,其空间 频率分别为1.732x106m -1、1x106m -1、0; 7 玻璃的折射率为n =1.5,光从空气射向玻璃时的布儒斯特角为________;光从玻璃射向空气时的布儒斯特角为 ________。 8 单色自然光从折射率为n 1的透明介质1入射到折射率为n 2的透明介质2中,在两介质的分界面上,发生现象; (),()()r t θθθi 反射角透射角和入射角的关系为;设12,υυ分别为光波在介质1、介质2中的时间频率,则12 υυ和的关系为;设12,λλ分别为光波在介质1、介质2中的波长,则12λλ和的关系为。 二. 选择题 1 []0exp ()E E i t kz ω=--与[]0exp ()E E i t kz ω=-+描述的是(C )传播的光波。 A.沿正 z 方向;B.沿负z 方向; C.分别沿正z 和负z 方向; D.分别沿负z 和正z 方向。 2 光波的能流密度S r 正比于(B )。 A .E 或H B .2E 或2H C .2E ,与H 无关 D .2H ,与 E 无关

光学测试技术1-光学基础知识

光学测试技术
卓力特光电仪器(苏州)有限公司

几何光学

光学基础知识
成像
实像与虚像 实物与虚物
各光线本身或其延长线交于同一点的光束,叫同心光束 例:从一点光源发出的光束 由若干反射面或折射面组成的光学系统,叫光具组 例:平面镜(一个反射面)、透镜(两个折射面)以及 更复杂的光学仪器

光学基础知识
以Q为中心的同心光束经光具组的反射或折射后转化为另 一以Q’点为中心的同心光束,则光具组使Q成像于Q’。Q 称为物点,Q’称为像点。
实像、虚像
如果光束中各光线实际上确是在某点会聚,那么这个会聚点叫做实像. 如果光束中各光线是发散的,但反向延长后可以找到光束的顶点,那么 这个顶点叫做虚像.

光学基础知识
实 像
如果光束中各光线实际上确是在某点会聚,那么这个 会聚点叫做实像。
虚 像
如果光束中各光线是发散的,但反向延长后可以找到 光束的顶点,那么这个顶点叫做虚像。

光学基础知识
平面镜成像原理
由镜前一发光点Q射出的 同心光束经镜面反射后成 为发散光束,由反射定 理,反射线的延长线严格 地交于镜面后同一点Q’ , 像点Q’与物点Q对镜面对 称。
眼睛为什么能看到虚像?
眼睛是根据射入眼睛的那部分光线的最后方向和 发散程度来判断它们发光中心的位置的。所以当 一束成虚像的发散光束射入眼睛后,我们的感觉 是它们延长线的交点处似乎真有一个发光点。

光学基础知识98149

光学基础学习报告 一、教学内容: 光电镜头是用来作为光电接收器(CCD,CMOS)的光学传感器元件。 光学特性参数: 1、焦距EFL(学名f’) 是指主面到相应焦点的距离(如图1.1) 图1.1 每个镜片都有前后两个主面-前主面和后主面(放大率为1的共轭面)。相应的也有两个焦点-前焦和后焦。 凸透镜:双凸;平凸;正弯月(如图1.1) 图1.2 凹透镜:双凹;平凹;负弯月

图1.3 折射率实际反映的是光在物质中传播速度与真空中速度的比值关系。 薄透镜:)]1()1[()1('12 1R R n f -?-== Φ Φ—透镜光焦距; f ’—焦距; n —折射率; R 1,R 2-两球面曲率半径 厚透镜:2 1221)1()]1()1[()1('1R nR d n R R n f -+ -?-==Φ d -中心厚度 干涉仪与光距座可以量测f ’,R1,R2,d →利用上述的公式可以计算出n 值,从而来确定所用材料。 A 、 EFL 增加,TOTR (光学总长)增加;要降低TOTR 就必须降低EFL ,但EFL 降低, 像高就要降低 B 、 EFL 与某些象差相关 C 、 EFL 上升将使F/NO 增大 D 、 EFL ,FOV (视场角)和IMA (像高)三者间有关系 tanFOV ?=EFL IMA -铁三角关系 EFL 的增大(减小)会使像高变大(小),为了保持像高,就必须要增大(减小)FOV ,然而FOV 的增大会使得REL (相对照度)的数值增大。 2、 BFL 后焦距(学名后截距) 图2.1 3、 F 数(F/NO ) D f NO F '/= f ’-FEL D 入-入瞳直径 入瞳为光阑经其前方光学镜片所成的像,反映进入光学系统的光线 A 、 与MTF 相关,F/NO ↑,则MTF ↑;反之下降 B 、 与景深相关,F/NO ↑,则景深↑,反之下降

(精选)光学基本理论

光学基础理论 一. 光学基本定律 1.光直线传播定律 2.光独立传播定律 3.光反射定律 I**= - I I –入射角 I**-- 反射角 4.光折射定律 n Sin I = n*Sin I* I –入射角 I*-- 折射角 n-- 折射率(入射空间) n*--折射率(折射空间) 光在介质中的速度 直角棱鏡 材質:K9(Bk7) n=1.5163 Im=41.26° I=45° 產生反射 二 在特定条件下,光线在界面能全部反射回去,这叫光的全反射. 临界角: Sin I m=n*/n I m--临界角当入射角大于临界角时,产生全反射. 全反射的用途: 1.棱镜 2.光纤 三. 球面与球面系统 -1-

由二个球面组成一个透镜,一个或多个透镜组成一个镜头, 多个镜头和其它光学元件组成一个光学系统. 四. 与镜头和透镜相关的基本参数 1.焦距 (EFL) A.物方焦距 ( f ): 由前主面到前焦点的距离. B.像方焦距 ( f*): 由后主面到后焦点的距离. Q—前主面 Q’---后主面 H---前主点 H’---后主点 F---前焦点 F’---后焦点 U---物方孔径角 U’---像方孔径角 焦距公式: f*=h/tgU* f =h/tgU 在镜头或透镜中有一对垂轴放大率为+1的二个平面Q和Q’. 2.后截距 (BFL) A.由镜头或光学系统最后一面到像面的距离为光学后截距(BFL). B.由下座端部到像面的距离为机械后截距(BFL*) BFL>BFL* -2-

3.F/NO (F数) F/NO=f*/D入 f *---焦距(EFL)D入---入瞳直径入瞳为光栏经其前方光学系统所成的像.举例: 4.半视角 (FOV/2)(ω)[视场角 (FOV)(2ω)] 物镜在其接收元件上成像的空间范围称为视场角.其一半为半视角. Y’ = f*tgω Y’---像的大小 f*---焦距(EFL) 5.畸变量(DIST) 在视场角较大或者很大时,所产生的像变形称为畸变. DIST=[Y’-Y0’/Y0’]×100% -3-

光学仪器基本原理

第二章光学仪器基本原理 光学仪器分为:助视仪器、投影仪器、分光仪器。本章主要研究常见光学仪器的放大本领、聚光本领、分辨本领。 §1人眼 一、结构与特性 结构如图所示,人眼主要由角膜、前房、瞳孔、水晶体、后房、视网膜 等组成。 简化眼——高尔斯特兰(A.Gullstrand)模型: n r mm f mm f mm D ===-'== 43571712285848 /.... 、、、、Φ 特性: a.适应过程:瞳孔大小调整需要时间,由视近到视远调整需要时间。 b.视觉暂留:人眼看见的画面会在大脑记忆中停留一段时间( 1 16 秒)。 c.立体视觉:用双眼(或单眼转动眼球时)可感觉物体的空间位置。 二、人眼的调节 远点S FO :眼肌松驰,水晶体两曲面曲率半径最大时,能在视网膜上成清晰像的物到眼的距离。 近点S NO :眼肌收缩,水晶体两曲面曲率半径最小时,能在视网膜上成清晰像的物到眼的距离。 明视距离S MS :在合适照明下,一般人眼看眼前25cm处的物不费力,很舒适,且能看清物体的细节,这个距离称为明视距离。

正常眼:S FO →∞,S NO <25cm. 近视眼:S FO 是一有限值,成因是眼球变长,角膜、水晶体曲率过大或折射率异常等。 远视眼:S NO >25cm ,成因是眼球变短等,老年人多半是远视眼(也称老花眼)。 三、非常眼的校正 1.近视眼:眼前加凹透镜,使有限远的远点恢复到无限远。 例:一近视眼的远点为1m ,问需配多少度的眼镜。 [解] 由题设可知:S S m =-∞'=-,1 故 Φ= '='-=-=-1111100f S S D 度 2.远视眼:眼前加凸透镜,使近点移近到离眼为明视距离处。 例:一近视眼的近点为1.5m ,问看近物时需戴多少度的眼镜。 [解] 由题设可知:S m S m =-'=-02515 .., 故 Φ= '='-==11133330f S S D .度 若S NO →∞,则ΦΦ===M 4400D 度,故理论上无高度远视眼。 3*.校正后调节范围的变化 A.近视眼(设S m S m FO NO =-=-101,.): 设眼球的折射率为'n ,眼球的长度为'S ,视近物时眼球的光焦度为ΦNO ,则 不戴镜时:''-=n S S 1 NO NO Φ 戴 镜 时:''-' =+n S S 1 NO NO ΦΦ 故 Φ='-'11 S S NO NO ,'=-S m NO 011 . 即近视眼戴眼镜后也可看近处的物,调节范围变大。 B.远视眼(设S S m FO NO =-∞=-,15.):

-光学基础知识

光学基础知识 物理学的一个部门。光学的任务是研究光的本性,光的辐射、 传播和接收的规律;光和其他物质的相互作用(如物质对光的吸收、散射、光的 机械作用和光的热、电、化学、生理效应等)以及光学在科学技术等方面的应用。 17世纪末,牛顿倡立“光的微粒说”。当时,他用微粒说解释观察到的许多光学现象,如光的直线性传播,反射与折射等,后经证明微粒说并不正确。1678 年惠更斯创建了“光的波动说”。波动说历时一世纪以上,都不被人们所重视, 完全是人们受了牛顿在学术上威望的影响所致。当时的波动说,只知道光线会在 遇到棱角之处发生弯曲,衍射作用的发现尚在其后。1801年杨格就光的另一现象(干涉)作实验(详见词条:杨氏干涉实验)。他让光源S的光照亮一个狭长的缝隙S,这个狭缝就可以看成是一条细长的光源,从这个光源射出的光线再通1 过一双狭缝以后,就在双缝后面的屏幕上形成一连串明暗交替的光带,他解释说 光线通过双缝以后,在每个缝上形成一新的光源。由这两个新光源发出的光波在 抵达屏幕时,若二光波波动的位相相同时,则互相叠加而出现增强的明线光带, 若位相相反,则相互抵消表现为暗带。杨格的实验说明了惠更斯的波动说,也确

定了惠更斯的波动说。同样地,19世纪有关光线绕射现象之发现,又支持了波动说的真实性。绕射现象只能借波动说来作满意的说明,而不可能用微粒说解释。 20世纪初,又发现光线在投到某些金属表面时,会使金属表面释放电子,这种现象称为“光电效应”。并发现光电子的发射率,与照射到金属表面的光线强度 成正比。但是如果用不同波长的光照射金属表面时,照射光的波长增加到一定限 度时,既使照射光的强度再强也无法从金属表面释放出电子。这是无法用波动说 解释的,因为根据波动说,在光波的照射下,金属中的电子随着光波而振荡,电 子振荡的振幅也随着光波振幅的增强而加大,或者说振荡电子的能量与光波的振 幅成正比。光越强振幅也越大,只要有足够强的光,就可以使电子的振幅加大到 足以摆脱金属原子的束缚而释放出来,因此光电子的释放不应与光的波长有关。 但实验结果却违反这种波动说的解释。爱因斯坦通过光电效应建立了他的光子学 说,他认为光波的能量应该是“量子化”的。辐射能量是由许许多多分立能量元 组成,这种能量元称之为“光子”。光子的能量决定于方程 E=hν

高中物理光学知识点总结 (1)

第十一单元光的性质一、知识结构 二、学习要求 1、知道有关光的本性的认识发展过程:知道牛顿代表的微粒、惠更斯的波动说一直到光的波粒二象性这一人类认识光的本性的历程,懂得人类对客观世界的认识是不断发展不断深化的。 2、知道光的干涉:知道光的干涉现象及其产生的条件;知道双缝干涉的装置、干涉原理及干涉条纹的宽度特征,会用肥皂膜观察薄膜干涉现象。知道光的衍射:知道光的衍射现象及观察明显衍射现象的条件,知道单缝衍射的条纹与双缝干涉条纹之间的特征区别。 3、知道电磁场,电磁波:知道变化的电场会产生磁场,变化的磁场会产生电场,变化的磁场与变化的磁场交替产生形成电磁场;知道电磁波是变化的电场和磁场——即电磁场在空间的传播;知道电磁波对人类文明进步的作用,知道电磁波有时会对人类生存环境造成不利影响;从电磁波的广泛应用认识科学理论转化为技术应用是一个创新过程,增强理论联系实际的自觉性。知道光的电磁说:知道光的电磁说及其建立过程,知道光是一种电磁波。 4、知道电磁波波谱及其应用:知道电磁波波谱,知道无线电波、红外线、紫外线、X射线及 射线的特征及其主要应用。 5、知道光电效应和光子说:知道光电效应现象及其基本规律,知道光子说,知道光子的能量与光学知识点其频率成正比;知道光电效应在技术中的一些应用 6、知道光的波粒二象性:知道一切微观粒子都具有波粒二象性,知道大量光子容易表现出粒子性,而少量光子容易表现为粒子性。 光的直线传播.光的反射 二、光的直线传播

1.光在同一种均匀透明的介质中沿直线传播,各种频率的光在真空中传播速度:C =3×108m/s ; 各种频率的光在介质中的传播速度均小于在真空中的传播速度,即 v