当前位置:文档之家› 用沸石去除自来水原水中氨氮

用沸石去除自来水原水中氨氮

用沸石去除自来水原水中氨氮
用沸石去除自来水原水中氨氮

用沸石去除自来水原水中氨氮

摘要:本文说明自来水原水中氨氮存在的危害,并系统的阐述了利用沸石处理原水中氨氮的几种常用工艺,指出了沸石相较于石英砂等其他滤料处理原水的优越性。

关键词:沸石自来水氨氮

1.水中氨氮的危害

氨氮是指以氨或铵离子形式存在的化合氨,氨氮是水体中的营养素,可导致水富营养化现象产生,是水体中的主要耗氧污染物,对鱼类及某些水生生物有毒害。氨氮主要来源于人和动物的排泄物,生活污水中平均含氮量每人每年可达2.5~4.5公斤;雨水径流以及农用化肥的流失也是氮的重要来源;氨氮还来自化工、冶金、石油化工、油漆颜料、煤气、炼焦、鞣革、化肥等工业废水。氨氮污染是导致江河湖泊水体富营养化的主要因素之一。我国目前合成氨和尿素的年产量都在4000万吨以上,各类氨氮产品生产使企业排出大量的氮氨废水,加上自然界垃圾发酵过程中产生的氨氮废水,总量每年超过上亿吨,对自然环境影响较大。控制氨氮,最重要的是城市污水处理。但当前城市污水处理厂建设缓慢,运行低效是个普遍问题。

当氨溶于水时,其中一部分氨与水反应生成铵离子,一部分形成水合氨,也称非离子氨。氨离子相对基本无毒,而非离子氨是引起水生生物毒害的主要因子,其毒性比氨盐大几十倍,并随碱性的增强,游离氨的浓度应控制在0.1毫克/升以下。尤其是当氨转化为硝酸盐,在此过程中产生一种中间物质叫亚硝酸盐,亚硝酸盐对鱼、虾的毒性较强,是养殖水域中诱发暴发性疾病的重要因素。当水中亚硝酸盐浓度积累到0.1毫克/升后,鱼、虾红细胞数量和血红蛋白数量逐渐减少,血液载氧能力逐渐减低,造成鱼、虾慢性中毒,此时鱼、虾摄食量降低,鳃组织出现病变,呼吸困难,骚动不安或反应迟钝,严重时则发生暴发性死亡。

氨氮一般难以感觉到,但进入人体后可能转变为有害物,对人的大脑、胎儿均有影响。虽然氨氮的危害显而易见,可是我们对氨氮的防卫体系依然薄弱。事实上,直到2002年6月1日开始实施的由国家环保总局和国家质量监督检验检

疫总局联合发布的《地表水环境质量标准》,才将氨氮指标列入其内;此前至1998年,氨氮仅仅是作为部颁标准,非国家标准;1998年前,地表水就没有氨氮指标这一说。即使现在,由卫生部颁发的有90多项指标内容的我国饮用水标准依然还没有氨氮这一指标。最近生活饮用水卫生标准GB5749-2006才刚刚有氨氮指标,其限值为0.5mg/L。目前,我国自来水企业尚没有处理氨氮的很好办法。

由于作为自来水的原水中的氨氮在消毒过程中能与有机氯化物反应生成氯胺等有毒有机化合物,严重地影响水质并进而危害人们的健康,世界上许多国家在饮用水标准中对氨的含量进行了严格的限制,水中氨的处理技术也引起人们的广泛重视。

2. 目前常用的除氨工艺

当前从饮用水中去除氨氮的技术,按去除原理大致可以分为三类:一是物理法去除,如吹脱、吸附等,二是生物氧化法,三是膜过滤法。物理法主要是利用氨氮的物理性质来去除;生物氧化法是利用亚硝化和硝化菌将氨氮转变成硝酸盐,然后再利用反硝化菌将硝酸盐转化成氮气释放到大气中,从而彻底的将氨氮从水中去除;膜过滤法是利用膜的拦截作用将氨根离子及硝酸根、亚硝酸根离子等拦截下来,从而使出水达到要求。

2.1吹脱法

吹脱法除氨氮是在碱性条件下,使大量空气与废水接触,将废水中呈离子态的氨氮转换成游离氨被吹出,以达去除废水中的氨氮的目的。空气吹脱法的氨氮去除率高达85%以上,水中余氨的质量浓度可低于1 mg/L,吹脱出的氨气易用水、盐酸、硫酸吸收,工艺简单,操作简便,因而被认为是去除氨的一种有效的方法,但是该方法对于低温水除氨效率明显降低,且只能去除废水中的氨氮,对总氮的去除率不高,能耗大,运行成本高,若投加碳调节pH值还容易结垢。

2.2. 硝化与反硝化

硝化作用是指氨在微生物作用下氧化为硝酸的过程。硝化细菌将氨氧化为硝酸的过程。通常发生在通气良好的土壤、厩肥、堆肥和活性污泥中。硝化作用由自养型细菌分阶段完成:第一阶段为亚硝化,即氨氧化为亚硝酸的阶段。第二阶段为硝化,即亚硝酸氧化为硝酸的阶段。

反硝化也称脱氮作用,反硝化细菌在缺氧条件下,还原硝酸盐,释放出分子态氮(N2)或一氧化二氮(N2O)的过程。微生物和植物吸收利用硝酸盐有两种完全不同的用途,一是利用其中的氮作为氮源,称为同化性硝酸还原作用:NO3-→NH4+→有机态氮。许多细菌、放线菌和霉菌能利用硝酸盐做为氮素营养。另一用途是利用NO2-和NO3-为呼吸作用的最终电子受体,把硝酸还原成氮(N2),称为反硝化作用或脱氮作用:NO3-→NO2-→N2↑。能进行反硝化作用的只有少数细菌,这个生理群称为反硝化菌。大部分反硝化细菌是异养菌,例如脱氮小球菌、反硝化假单胞菌等,它们以有机物为氮源和能源,进行无氧呼吸,其生化过程可用下式表示:

C6H12O6+12NO3-→6H2O+6CO2+12NO2-+能量

CH3COOH+8NO3-→6H2O+10CO2+4N2+8OH-+能量

反硝化作用使硝酸盐还原成氮气,从而降低了土壤中氮素营养的含量,对农业生产不利。农业上常进行中耕松土,以防止反硝化作用。反硝化作用是氮素循环中不可缺少的环节,可使土壤中因淋溶而流入河流、海洋中的NO3-减少,消除因硝酸积累对生物的毒害作用。硝化与反硝化技术仅适合于处理废水中的氮,而对于处理给水中低浓度的氮无效。

2.3 膜生物反应器

膜生物反应器是以膜组件作为取代二沉池的泥水分离单元设备,并与生物反应器组合构成的一种新型生物处理装置。它具有处理效率高,系统流程简单,设备少,占地小,控制灵活,泥龄长,产泥量少,易于实现自动控制,操作管理方便等优点。并且众多试验表明膜生物反应器对氨氮具有很好的去除效果。

2.4. 沸石过滤法

沸石是一族架状构造含水铝硅酸盐矿物,构造开放性大,除有稳定的[( Si, Al)O4] 四面体从角顶相互联结形成架状硅铝氧骨干外,还存在宽阔的大小均一的空间和孔道。在这些空洞和孔道中占据有阳离子和水分子,从而具有良好的离子交换性能。国内外对沸石处理各种废水已做了大量的研究,近年来尤其是在对城市污水二级处理中的应用做了进一步探讨。目前在净水工艺中广泛采用的过滤介质是活性炭,但活性炭的价格昂贵,这在一定程度上妨碍了其推广应用,而沸石作为一种廉价的无机非金属矿物,因其独特的吸附、筛分和离子交换性能而在

城市污水处理中有着很好的应用前景。采用不同的改性方法对沸石进行处理,使之对氨氮具有较高的交换容量。

天然沸石去除氨的机理:研究表明,天然沸石的晶体结构是由硅氧四面体和铝氧四面体构成。在铝氧四面体中,为保持电中性需添加一些碱金属和碱土金属离子;这些离子在水溶液中能够电离因而具有离子交换性。由于沸石晶体结构的离子筛分作用,其优先交换离子的顺序如下:

Cs+>Rb+>K+>NH4+>Ba2+>Sr2+>Na+>Ca2+>Fe3+>Al+>Mg2+。

由此可见,天然沸石交换氨离子的能力强于水中的常见的离子如Na+、Ca2+和Mg2+等。其氨离子交换过程可表述如下:NH4++BZ=NH4Z+B+。式中:BZ为经预处理后的沸石,B为沸石中可交换的阳离子。

沸石预处理及除氨工艺,赵南霞,孙德智等人研究认为:为了提高沸石的离子交换能力,用1mol/L的NaCl溶液浸泡天然沸石,并在70℃下恒温煮沸4 h,然后冲洗样品,并在110℃下干燥2 h,即可得到仅含钠离子的沸石。

将处理好的沸石装填在一交换柱中,含氨水溶液按控制流速从离子交换柱上方连续进入,流出液中氨离子浓度采用Phanate法进行测定。当沸石的离子交换容量达饱和后,使用质量浓度为6.0—25.0g/L的Nacl溶液作为再生液来研究其再生效率。再生液的pH值控制在1l—12;再生工艺采用上流式,并控制再生液的流速,再生后的沸石重复使用以研究其再生效果和交换容量的变化。

3. 沸石除氨的影响因素

沸石粒径对除氨的影响,离子交换速率主要由氨离子在沸石表面的内外扩散及在沸石表面的离子交换反应所控制,通常内外扩散是其控制步骤.所谓外扩散(也称膜扩散)是指体相中的NH4+扩散到沸石的表面;而内扩散(也称粒子扩散)是指沸石表面的NH4+进一步扩散到离子交换点。理论上讲,沸石粒子半径愈小,其NH4+扩散速率也就愈快,而且沸石粒子愈小,单位重量沸石的可交换活性点也就愈多,因而离子交换容量也就愈大。

流速对除氨的影响,低流速条件下,氨离子与沸石有较长的接触时间,从而增加了离子交换容量,实际操作中当然希望氨交换容量大和具有较大流速,但是二者是互相矛盾的。

水中pH对除氨的影响,水中氨有两种存在形式:NH3·H2O和NH4+,这主

要取决于水中的pH,即NH3+H20=NH4++OH-。显然,酸性条件下,主要以NH4+存在,这有利于离子交换,即NaZ+NH4+=NH4Z+Na+。然而,pH进一步降低,水中大量H+将优先与沸石进行离子交换,而不利于NH4+交换,即:

NaZ+NH4++H+=NH4++HZ+Na+。因此,氨的离子交换有一最佳pH值。

4.结论

天然沸石经预处理后,能有效地去除水中低浓度氨;用天然沸石去除水中的氨,其沸石的粒径、水力负荷流速、水中氨的浓度和pH对离子交换容量有较大影响;使用后的沸石能被有效她再生,而且再生后的沸石经多次次重复使用,其离子交换容量仅降低较少。

氨氮去除方法

根据废水中氨氮浓度的不同,可将废水分为3类:高浓度氨氮废水(NH3-N>500mg/l),中等浓度氨氮废水(NH3-N:50-500mg/l),低浓度氨氮废水(NH3-N<50mg/l)。然而高浓度的氨氮废水对微生物的活性有抑制作用,制约了生化法对其的处理应用和效果,同时会降低生化系统对有机污染物的降解效率,从而导致处理出水难以达到要求。 故本工程的关键之一在于氨氮的去除,去除氨氮的主要方法有:物理法、化学法、生物法。 物理法含反渗透、蒸馏、土壤灌溉等处理技术;化学法含离子交换、氨吹脱、折点加氯、焚烧、化学沉淀、催化裂解、电渗析、电化学等处理技术;生物法含藻类养殖、生物硝化、固定化生物技术等处理技术 目前比较实用的方法有:折点加氯法、选择性离子交换法、氨吹脱法、生物法以及化学沉淀法。1.折点氯化法去除氨氮 折点氯化法是将氯气或次氯酸钠通入废水中将废水中的NH3-N氧化成N2的化学脱氮工艺。当氯气通入废水中达到某一点时水中游离氯含量最低,氨的浓度降为零。当氯气通入量超过该点时,水中的游离氯就会增多。因此该点称为折点,该状态下的氯化称为折点氯化。处理氨氮废水所需的实际氯气量取决于温度、pH值及氨氮浓度。氧化每克氨氮需要9~10mg氯气。pH值在6~7时为最佳反应区间,接触时间为0.5~2小时。 折点加氯法处理后的出水在排放前一般需要用活性碳或二氧化硫进行反氯化,以去除水中残留的氯。1mg残留氯大约需要0.9~1.0mg的二氧化硫。在反氯化时会产生氢离子,但由此引起的pH值下降一般可以忽略,因此去除1mg残留氯只消耗2mg左右(以CaCO3计)。折点氯化法除氨机理如下: Cl2+H2O→HOCl+H++Cl-NH4++HOCl→NH2Cl+H++H2O NHCl2+H2O→NOH+2H++2Cl-NHCl2+NaOH→N2+HOCl+H++Cl- 折点氯化法最突出的优点是可通过正确控制加氯量和对流量进行均化,使废水中全部氨氮降为零,同时使废水达到消毒的目的。对于氨氮浓度低(小于50mg/L)的废水来说,用这种方法较为经济。为了克服单独采用折点加氯法处理氨氮废水需要大量加氯的缺点,常将此法与生物硝化连用,先硝化再除微量残留氨氮。氯化法的处理率达90%~100%,处理效果稳定,不受水温影响,在寒冷地区此法特别有吸引力。投资较少,但运行费用高,副产物氯胺和氯化有机物会造成二次污染,氯化法只适用于处理低浓度氨氮废水。

废水除氨氮工艺比较知识讲解

国内高浓度氨氮废水处理常见工艺 物化法 国内外处理高浓度氨氮废水的物理化学方法很多,主要有空气吹脱法、蒸 汽汽提法、折点加氯法、离子交换法、化学沉淀法、催化湿式氧化法和烟 道气治理法等,这些方法各有优缺点,可用于不同条件的废水处理。 1.2.1.1空气吹脱法 空气吹脱法是使废水作为不连续相与空气接触,利用废水中组分的实际浓 度与平衡浓度之间的差异,使氨氮由液相转移至气相而去除。废水中的氨 氮通常以离子铵(NH4+)和游离氨(NH3)的状态保持平衡而存在,将废水pH值调节至碱性时,NH4+转化为NH3,然后通入空气将NH3吹脱出来。 NH4++ OH-→ NH3+ H2O 在吹脱过程中,废水pH值、水温、水力负荷及气水比对吹脱效果有较大影响。一般来说,pH值要提高至10.8~11.5,水温一般不能低于20℃,水力 负荷为2.5~5 m3/(m2·h),气水比为2500~5000 m3/m3,此时氨氮去除率 在80%~95%。 空气吹脱法工艺流程简单,但NH3-N仅从溶解状态转化为游离态,并没有 彻底除去,需要相应的回收装置,否则易造成二次污染;当温度低时, NH3-N吹脱效率大大低,不适合在寒冷的冬季使用。 另外,在当前越来越严格的排放要求条件下,作为一种较为简单粗糙的氨 氮废水处理工艺,空气吹脱法由于无法达到排放要求(如15 mg?L-1以下),加上氨的回收利用上受到限制,因此采用它的改良方法。

1.2.1.2蒸汽汽提法 蒸汽汽提法是利用蒸汽将废水中的游离氨转变为氨气逸出,处理机理与吹脱法一样,即在高pH值时使废水与气体密切接触,从而降低废水中氨浓度的过程。其传质过程的推动力是气体中氨的分压与废水中氨的浓度相当的平衡分压之间的差值。延长汽水间的接触时间及接触紧密程度可提高NH3-N 的处理效率,用填料塔可以满足此要求。由于采用蒸汽作为工作介质,氨自废水进入蒸汽中,然后在塔顶蒸馏成浓氨水、浓氨气或者液氨回收,或是采用酸吸收成为相应的铵盐。 蒸汽汽提法适用于处理连续排放的高浓度氨氮废水(浓度在1000 mg?L-1以上),操作条件易于控制。对于浓度在1000~30000 mg?L-1,甚至更高浓度的氨氮废水,采用该法可以经一次处理后,氨氮浓度达到15 mg?L-1(国家一级排放标准)以下。 蒸汽汽提脱氨技术因为是以蒸汽为脱氨介质,由于蒸汽价格较高(约200元/吨),因此蒸汽消耗就成为了该技术关键指标。传统蒸汽汽提脱氨技术蒸汽消耗达到300kg/吨废水以上,因此传统蒸汽汽提脱氨技术成本很高。随着近些年来技术的进步,一些在传统蒸汽汽提脱氨技术上研究开发的新型蒸汽汽提脱氨技术已经大大降低了蒸汽单耗,达到了30kg/吨废水,因此新型蒸汽汽提脱氨技术正在高浓度工业氨氮废水处理领域得到广泛地推广应用,为我国氨氮污染物减排起到了强有力的技术支撑作用。 1.2.1.3折点加氯法 折点加氯法是将氯气通入水中,当投入量达到某一值(点)时,水中游离氯含量最低而氨的浓度降为零,当投入量超过该点时,水中的游离氯就会增多。因此,该点称为折点,该状态下的氯化称为折点氯化。折点氯化去除氨的的机理为氯气与氨反应生成无害的氮气,氮气逸入大气。

氨氮吹脱塔

氨氮吹脱吸收系统 技术方案

一、方案设计依据: 1、废水水量:3600m3/d,设计水量为150m3/h。 2、出水氨氮要求:去除率60%-70% 二、氨氮吹脱原理介绍 氨氮在废水中主要以铵离子(NH4+)和游离氨(NH3)状态存在,其平衡关系如下所示: NH3+H2O—NH4+ +OH- 这个关系受pH值的影响,当pH值高时,平衡向左移动,游离氨的比例增大。常温时,当pH 值为7左右时氨氮大多数以铵离子状态存在,而pH为11左右时,游离氨大致占98%。不同pH、温度下氨氮的离解率详见表。 不同pH、温度下氨氮的离解率(%) 当水的pH值升高,呈游离状态的氨易于逸出。若加以搅拌、曝气等物理作用更可促使氨从水中溢出。在实际工程中大多采用吹脱塔。吹脱塔的构造一般采用气液接触装置,在塔的内部填充材料,用以提高接触面积。调节pH值后的水从塔的上部淋洒到填料上而形成水滴,顺着填料的间隙次第落下,与由风机从塔底向上或水平方向吹送的空气逆流接触,完成传质过程,使氨由液相转为气相,随空气排放,完成吹脱过程。

三、运行条件 进水pH值≥11 外界条件:气温24℃,水温:35℃ PH: 四、工艺流程说明 氨氮废水首先进入调节池将pH值调到11左右,然后泵入吹脱塔的液体分布器,同时空气在风机的作用下进入氨氮吹脱塔塔体下方进气口,并且充满进气段空间,然后匀压上升到填料段。在填料的表面上,蒸汽将游离状态的氨吹出,出水流出。 具体工艺流程见下图: 原水 pH调节池氨氮吹脱塔氨氮吸收 风机 废水经吹脱塔吹脱后,氨氮去除率达到60%-70%,氨氮含量由700mg/L处理至200-230mg/L。 六、设备清单(第一方案)三台并联

水中氨氮的去除方法

水中氨氮的去除方法 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】

水中氨氮的去除方法 废水中的氮常以合氮有机物、氨、硝酸盐及亚硝酸盐等形式存在。生物处理把大多数有机氮转化为氨,然后可进一步转化为硝酸盐。 水中氨氮的去除方法有多种,但目前常见的除氮工艺有生物硝化与反硝化、沸石选择性交换吸附、空气吹脱及折点氯化等。 下面我们详细介绍一下这几种水中氨氮的去除方法: 一、生物硝化与反硝化(生物陈氮法) (一) 生物硝化在好氧条件下,通过亚硝酸盐菌和硝酸盐菌的作用,将氨氮氧化成亚硝酸盐氮和硝酸盐氮的过程,称为生物硝化作用。生物硝化的反应过程为: 由上式可知:(1)在硝化过程中,1g氨氮转化为硝酸盐氮时需氧;(2)硝化过程中释放出H+,将消耗废水中的碱度,每氧化lg氨氮,将消耗碱度(以CaCO3计) 。 影响硝化过程的主要因素有:(1)pH值当pH值为~时(20℃),硝化作用速度最快。由于硝化过程中pH将下降,当碱度不足时,即需投加石灰,维持pH值在以上;(2)温度温度高时,硝化速度快。亚硝酸盐菌的最适宜水温为35℃,在15℃以下其活性急剧降低,故水温以不低于15℃为宜;(3)污泥停留时间硝化菌的增殖速度很小,其最大比生长速率为=~(温度20℃,~。为了维持池内一定量的硝化菌群,污泥停留时间必须大于硝化菌的最小世代时间。在实际运行中,一般应取>2 ,或>2 ; (4)溶解氧氧是生物硝化作用中的电子受体,其浓度太低将不利于硝化反

应的进行。一般,在活性污泥法曝气池中进行硝化,溶解氧应保持在2~3mg/L以上;(5)BOD负荷硝化菌是一类自养型菌,而BOD氧化菌是异养型菌。若BOD5负荷过高,会使生长速率较高的异养型菌迅速繁殖,从而佼白养型的硝化菌得不到优势,结果降低了硝化速率。所以为要充分进行硝化,BOD5负荷应维持在(BOD5)/kg(SS).d以下。 (二) 生物反硝化在缺氧条件下,由于兼性脱氮菌(反硝化菌)的作用,将NO2--N和NO3--N还原成N2的过程,称为反硝化。反硝化过程中的电子供体(氢供体)是各种各样的有机底物(碳源)。以甲醇作碳源为例,其反应式为: 6NO3-十2CH3OH→6NO2-十2CO2十4H2O 6NO2-十 3CH3OH→3N2十3CO2十3H2O十60H- 由上可见,在生物反硝化过程中,不仅可使NO3--N、NO2--N被还原,而且还可位有机物氧化分解。 影响反硝化的主要因素:(1)温度温度对反硝化的影响比对其它废水生物处理过程要大些。一般,以维持20~40℃为宜。苦在气温过低的冬季,可采取增加污泥停留时间、降低负荷等措施,以保持良好的反硝化效果;(2)pH值反硝化过程的pH值控制在~;(3)溶解氧 氧对反硝化脱氮有抑制作用。一般在反硝化反应器内溶解氧应控制在L以下(活性污泥法)或1mg/L以下(生物膜法);(4)有机碳源当废水中含足够的有机碳源,BOD5/TN>(3~5)时,可无需外加碳源。当废水所含的碳、氮比低于这个比值时,就需另外投加有机碳。外加有机碳多采用甲醇。考虑到甲醇对溶解氧的额外消耗,甲醇投量一般为NO3--N的3倍。

氨氮吹脱塔方案

氨氮吹脱系统 技术方案 2013年4月18日 一、方案设计依据: 1、废水水量:每小时额定处理量50立方 2、进水氨氮含量2800mg/L 3、出水氨氮要求:15mg/L 二、氨氮吹脱原理介绍 氨氮在废水中主要以铵离子(NH 4+)和游离氨(NH 3 )状态存在,其平衡 关系如下所示:NH 3+H 2 O—NH 4 ++OH-这个关系受pH值的影响,当pH值高时, 平衡向左移动,游离氨的比例增大。常温时,当pH值为7左右时氨氮大多数以铵离子状态存在,而pH为11左右时,游离氨大致占98%。不同pH、温度下氨氮的离解率详见表。 不同pH、温度下氨氮的离解率(%)

当水的pH值升高,呈游离状态的氨易于逸出。若加以搅拌、曝气等物理作用更可促使氨从水中溢出。在实际工程中大多采用吹脱塔。吹脱塔的构造一般采用气液接触装置,在塔的内部填充材料,用以提高接触面积。调节pH值后的水从塔的上部淋洒到填料上而形成水滴,顺着填料的间隙次第落下,与由风机从塔底向上或水平方向吹送的蒸汽逆流接触,完成传质过程,使氨由液相转为气相,随蒸汽排放,完成吹脱过程。 三、运行条件 进水pH值≥11 进水温度≥30℃ SS含量≤50mg/L 四、工艺流程说明 氨氮废水首先进入调节池将pH值调到11左右,然后泵入吹脱塔的液体分布器,同时蒸汽在风机的作用下进入氨氮吹脱塔塔体下方进气口,并且充满进气段空间,然后匀压上升到填料段。在填料的表面上,蒸汽将游离状态的氨吹出,由排气口排至吸收塔;出水流入中间池。 五、预期处理效果 废水经吹脱塔吹脱后,氨氮去除率达到90%,氨氮含量≤280mg/L.经二级吹脱后,氨氮去除率达到95%,氨氮含量≤14mg,达到排放标准。 六、占地面积 氨氮吹脱项目主要为设备,设备主体面积4*4(两台)平米,考虑附属设备占地及设备间距,总占地面积约50平米。

水质氨氮检测方法及操作步骤

水质氨氮检测方法及操作步骤 氨氮 氨氮(NH3-N)以游离氨(NH3)或铵盐(NH4+)形式存在于水中,两者的组成比取决于水的pH值。当pH值偏高时,游离氨的比例较高。反之,则铵盐的比例为高。 水中氨氮的来源主要为生活污水中含氮有机物受微生物作用的分解产物,某些工业废水,如焦化废水和合成氨化肥厂废水等,以及农田排水。此外,在无氧环境中,水中存在的亚硝酸盐亦可受微生物作用,还原为氨。在有氧环境中,水中氨亦可转变为亚硝酸盐、甚至继续转变为硝酸盐。 测定水中各种形态的氮化合物,有助于评价水体被污染和“自净”状况。 氨氮含量较高时,对鱼类则可呈现毒害作用。 1.方法的选择 氨氮检测方法,通常有纳氏比色法、苯酚-次氯酸盐(或水酸-次氯酸盐)比色法和电极法等。纳氏试剂比色法具操作简便、灵敏等特点,水中钙、镁和铁等金属离子、硫化物、醛和酮类、颜色,以及浑浊等干扰测定,需做相应的预处理,苯酚-次氯酸盐比色法具灵敏、稳定等优点,干扰情况和消除方法同纳氏试剂比色法。电极法通常不需要对水样进行预处理和具测量围宽等优点。氨氮含量较高时,尚可采用蒸馏﹣酸滴定法。 2.水样的保存 水样采集在聚乙烯瓶或玻璃瓶,并应尽快分析,必要时可加硫酸将水样酸化至pH<2,于2—5℃下存放。酸化样品应注意防止吸收空气中的氮而遭致污染。 预处理 水样带色或浑浊以及含其它一些干扰物质,影响氨氮的测定。为此,在分析时需做适当的预处理。对较清洁的水,可采用絮凝沉淀法,对污染严重的水或工业废水,则以蒸馏法使之消除干扰。 (一)絮凝沉淀法 概述 加适量的硫酸锌于水样中,并加氢氧化钠使呈碱性,生成氢氧化锌沉淀,再经过滤去除颜色和浑浊等。 仪器 100ml具塞量筒或比色管。 试剂

去除氨氮方法

2.化学沉淀(MAP) 法 在一定的pH条件下,水中的Mg2+ 、HPO43- 和NH4+可以生成磷酸铵镁沉淀,而使铵离子从水中分离出来。 影响沉淀效果的因素有沉淀剂种类及配比、pH值、废水中的初始氨的浓度、干扰组分等。 有研究表明沉淀法去除废水中氨氮的pH值为10.0 ,物质的量之比Mg∶N= 1.2、P:N = 1. 02 时沉淀效果最好,氨氮去除率达到90 %。 赵庆良等[ ]研究表明,MgCl2 ?6H2O 和Na2HPO4?12H2O 组合沉淀剂优于MgO 和H3PO4 组合,垃圾渗滤液中的氨氮质量浓度可由5618 mg/ L 降低到65 mg/ L。 李芙蓉等采用氧化镁和磷酸作为沉淀剂去除煤气洗涤循环水中高浓度的氨氮,效果良好。 李才辉等对MAP法处理氨氮废水的工艺进行优化,研究表明氨氮的去除率随着反应时间的增加而增加,随着Mg∶N 比值的增加而增加。 刘小澜探讨了不同操作条件对氨氮去除率的影响,在pH值为8.5-9. 5 的条件下,投加的药剂Mg2+:NH4+ ∶PO43- (摩尔比)为1. 4∶1∶0. 8 时,废水氨氮的去除率达99 %以上,出水氨氮的质量浓度由2 g/ L 降至15 mg/ L。 国外对用化学沉淀法去除废水中的氨氮也有较多研究。 Stratful等详细研究了影响磷酸铵镁沉淀及晶体生长的因素,得出

4点结论: (1)过量的铵离子对形成磷酸铵镁沉淀有利; (2)镁离子可能是形成磷酸铵镁沉淀的限制因素; (3)如果要想从废水中回收磷酸铵镁,需要得到比较大的晶体颗粒,则至少需要3 h 的结晶时间; (4)沉淀的pH 值应大于8. 5。 Battistoni 等进行了用化学沉淀法从废水厌氧消化后的上清液中同时回收氮和磷的研究。废水厌氧消化过程中,有机物中的氮和磷被微生物分解为无机的磷酸盐和氨氮,添加MgO 可以生成磷酸铵镁沉淀可回收磷和氮。 Lind 等则进行了用磷酸铵镁沉淀法从人的尿液中回收营养物质的研究,可以回收65. 0 % -80. 0 %的氮。 化学沉淀法的最大优点是可以回收废水中的氨,所生成的沉淀可以作为复合肥而利用。存在的主要问题是沉淀剂的用量较大,需要对废水的pH 进行调整,另外有时生成的沉淀颗粒细小或是絮状体,工业中固液分离有一定困难。 (二) 生物脱氮法 1. 传统硝化反硝化 传统硝化反硝化工艺脱氮处理过程包括硝化和反硝化两个阶段。在将有机氮转化为氨氮的基础上,硝化阶段是将污水中的氨氮氧化为亚硝酸盐氮或硝酸盐氮的过程;反硝化阶段是将硝化过程中产生的硝酸盐或亚硝酸盐还原成氮气的过程。只有当废水中的氮以亚硝酸盐氮

沸石吸附氨氮技术研究进展

沸石吸附氨氮技术研究进展 摘要:介绍了沸石脱除氨氮的原理和再生机制,综述了国内外应用沸石在改良常规污水处理工艺、作为氨氮污水处理系统的介质与最终出水的氨氮控制环节等方面的研究进展。炼油催化剂生产过程中产生的污水氨氮浓度高,先后试验了多种处理方法,但水中的氨氮很难达标。研究经济合理的工艺去除催化剂生产污水中的氨氮是紧迫而实际的。沸石吸附可作为组合工艺予以试验。 关键词:沸石污水处理氨氯 氨氮对人体和水体具有一定的危害,水质指标中氨氮是引起水体富营养化和环境污染的一种重要污染物。去除污水中氨氮的方法有生物硝化法、气体吹脱法和离子交换法”等.生物法无污染,耗能低,但其转换作用缓慢,去除难于彻底;气体吹脱法工艺简单,投资少,但易造成二次污染;而离子交换法却没有以上不足,且反应过程稳定、易控,吸附剂可再生利用,处理成本较低,特别是使用沸石作为吸附剂时.沸石具有稳定的硅氧四面体结构、大小均一的宽阔空间和连通孔道,能够吸附大量的氨氮,因此被认为是最有应用前景的去除氨氮吸附剂.。鉴于沸石有着良好的吸附与离子交换性能,而我国是世界上少数几个富产沸石的国家之一,美、日等发达国家已将沸石应用在污水处理、特效干燥剂、土壤饲料改良剂等方面,而我们大部分停留在出卖原矿为主甚至干脆闲置不用。因此加强对沸石的开发和利用研究非常必要。 沸石脱氨氮技术是近年来引起人们重视的一种生物物化相结合实现污水脱氨氮的新技术,这一技术就是把沸石对铵根离子的选择性吸附能力和生物硝化反硝化结合起来,加强生物脱氨氮系统的性能和效率 一、沸石对污水中氨氮的去除机理 沸石是具有四面体骨架结构的多孔性含水硅铝酸盐晶体,有良好的吸附及离子交换性能;同时沸石比表面积大,对微生物无毒害,易于附着微生物作为生物载体。生物沸石脱氨氮工艺中,一方面沸石用于生物载体富集硝化菌;另一方面沸石通过离子交换作用吸附水中的铵,还有很重要的一方面就是沸石表面生物膜中的硝化菌将吸附在沸石上的氨氮转化为硝酸盐,形成了一个自我吸收、自我消化的循环过程。通过生物方式不但能使沸石不断得到再生,还能提高脱氨氮的硝化性能,利用微生物作用有效地去除氨氮。此时,沸石得以全部或者部分自我再生,可以继续循环使用。生物沸石脱氨氮过程实质是化学吸附、离子交换和生物硝化三个过程。 沸石孔径一般在0.4 nm左右,大于这个孔径的分子和离子将不能进入,而NH4+的离子半径为0.286 nm,很容易进入沸石晶穴内部进行离子交换,沸石对氨氮具有很强的选择性吸附能力,其交换能力远大于活性炭和离子交换树脂。利用沸石的离子交换吸附能力去除污水中的氨氮包括:吸附阶段和沸石再生阶段,沸石再生可分为化学再生法和生物再生法。

氨氮废水处理系统设计方案百度文库

应平化肥有限责任公司 30T/h氨氮废水处理系统 宜兴市裕泰华环保有限公司 二00八年五月 一、概述 1、采用国内目前较为先进成熟的吹脱+催化氧化+生物滤池处理工艺,该工艺具有可靠性、成熟性,并符合国内实际情况,并尽量采用新技术、新材料,实用性与先进性兼顾,以实用可靠为主。 2、废水处理主要设施材质以钢砼结构为主,具有结构紧凑,占地面积小,布局合理,尽可削减总投资及运行费用加以考虑。 3、对废水处理设施进行充分的考虑,按地区气候条件,考虑必要的防水防冻及防渗措施。 4、废水处理过程中产生的污泥排入污泥池,进行好氧消化稳定后,经压成泥饼外运,保证污泥出路可靠。 二、废水处理量及废水性质: 1废水来源及水量: 废水来源为化肥厂生产工艺经冷却塔冷却后的高氨氮废水 a、废水量:30m3/h b、废水水质:详见表一 表一、废水水质

序号项目数据(mg/L 1 氨氮846.3 2 化学需氧 量 737 3 环状有机 物(Ar-OH 9.095mg/L 4 总磷0.467 5 BOD 21 6 氰化物未知 7 SS 164 8 石油类未知 9 挥发酚未知 10 硫化物未知

11 pH 6-9 12 水温约30℃ c、运行方式:连续运行 1、处理出水标准:废水处理后达合成氨工业水污染物排放标准GWPB 4-1999中中型化肥厂一级排放标准,详见下表。 (2001年1月1日之后建设(包括改、扩建的单位 序号项目标准(mg/L 1 氨氮70 2 化学需氧 量 150 3 氰化物 1.0 4 SS 100 5 石油类 5 6 挥发酚0.1

7 硫化物0.50 8 pH 6-9 三、废水处理工艺选择: 根据废水处理工程特点、功能、要求及废水排放特征,由于废水含有一定的毒性,B/C比较低,氨氮较高,因此需经脱氮及强氧化来提高废水的B/C比在0.3以上,剩余的氨氮及有机物在后级生化系统中去除。 本公司采用生物滤池工艺,经水解酸化后水中的B/C比约0.35左右,可生化大大提高。根据废水排放标准出水有NH3-N的限制,所以在选择废水处理工艺时除了考虑除解有机物外,还考虑到脱氮,为达到这个目的,我们选用了工艺成熟、运行可靠的水解生化+DC生物滤池+N生物滤池的工艺。 四、废水处理工艺流程简图: 1、废水处理系统工艺: 自动加碱废气高空排放或回收塔回收 废水→格栅→调节池→提升泵→PH调节沉淀→中间槽→二级提升泵→氨氮吹脱塔 风机 →三级提升泵→最终中和槽→催化氧化装置→还原反应槽→提升泵→脉冲布水器 自动加酸加还原剂

氨氮吹脱塔方案

氨氮吹脱系统技术方案 2013年4月18日

一、方案设计依据: 1、废水水量:每小时额定处理量50立方 2、进水氨氮含量2800mg/L 3、出水氨氮要求:15mg/L 二、氨氮吹脱原理介绍 氨氮在废水中主要以铵离子(NH4+)和游离氨(NH3)状态存在,其平衡关系如下所示: NH3+H2O—NH4+ +OH- 这个关系受pH值的影响,当pH值高时,平衡向左移动,游离氨的比例增大。常温时,当pH值为7左右时氨氮大多数以铵离子状态存在,而pH为11左右时,游离氨大致占98%。不同pH、温度下氨氮的离解率详见表。 不同pH、温度下氨氮的离解率(%) 当水的pH值升高,呈游离状态的氨易于逸出。若加以搅拌、曝气等物理作用更可促使氨从水中溢出。在实际工程中大多采用吹脱塔。吹脱塔的构造一般采用气液接触装置,在塔的内部填充材料,用以提高接触面积。调节pH值后的水从塔的上部淋洒到填料上而形成水滴,顺着填料的间隙次第落下,与由风机从塔底向上或水平方向吹送的蒸

汽逆流接触,完成传质过程,使氨由液相转为气相,随蒸汽排放,完成吹脱过程。 三、运行条件 进水pH值≥11 进水温度≥30℃ SS含量≤50mg/L 四、工艺流程说明 氨氮废水首先进入调节池将pH值调到11左右,然后泵入吹脱塔的液体分布器,同时蒸汽在风机的作用下进入氨氮吹脱塔塔体下方进气口,并且充满进气段空间,然后匀压上升到填料段。在填料的表面上,蒸汽将游离状态的氨吹出,由排气口排至吸收塔;出水流入中间池。 五、预期处理效果 废水经吹脱塔吹脱后,氨氮去除率达到90%,氨氮含量≤280mg/L.经二级吹脱后,氨氮去除率达到95%,氨氮含量≤14mg,达到排放标准。 六、占地面积 氨氮吹脱项目主要为设备,设备主体面积4*4(两台)平米,考虑附属设备占地及设备间距,总占地面积约50平米。

改性沸石处理含氨氮废水

改性沸石处理含氨氮废水 NH3-N是高耗氧性物质,每毫克NH3-N氧化成硝酸盐要消耗4157mg的溶解氧,较高的氨氮浓度会直接导致水质的黑臭。作为一种无机营养物质,NH3-N还是引起海洋、湖泊、河流及其它水体富营养化的重要原因,对鱼类及某些水生生物有毒害。桂林某旅游景区的污水处理系统原设计水量为180m3/d,投入使用后,由于实际服务人口增加,导致水量增加。该污水处理工艺未设污泥处理系统,长期以来,沉淀池的污泥通过排入化粪池达到减量目的。以上原因导致该工艺在运行三年后出水氨氮严重超标,污染周围水体,急需脱除水中的氨氮。对于氨氮废水的处理,用常规的生物化学方法去除氨氮效率低、周期长、成本高;用活性炭吸附、磷酸铵镁沉淀等物理化学方法也因其工艺本身的缺陷、成本高等原因而无法广泛应用。因此,寻求高效、切实可行的去除氨氮的方法十分必要。近年来,国内外开展了用沸石去除水中氨氮的研究。沸石是一种廉价的无机非金属矿物,利用它去除水中的氨氮具有效率高、工艺简单、易再生、处理成本低等特点。沸石在水处理中的应用已得到广泛关注。 一、实验部分 1、材料 沸石:采用α改性沸石,其红外光谱见图1。根据其粒径大小分为粗(016~110mm)、中(0125~016mm)、细(0118~0125mm)3种。其化学成分及其含量(wB)为SiO267199%, TiO20123%,Al2O313125%,Fe2O30167%,MnO0116%,CaO2192%,MgO0189%,K2O1127%,Na2O2165%,P2O501013%。含氨氮废水:取自某旅游景区的高浓度氨氮废水,其水质为ρ(CODCr)=200~

氨氮去除剂 次氯酸钠

氨氮去除剂次氯酸钠 随着废水排放标准的日益提高,去除废水中残留氨氮的要求越来越高。在各种去除氨氮的物化方法中。折点加氯法因为简单易行备受关注。与传统的氯系氧化剂液氯相比,次氯酸钠(NaCl0)不仅使用安全无氯气外泄的危险。而且可进一步减少消毒副产物(DBPs)的产生,因此用于氨氮的去除是较合适的氯化氧化剂。施光明等用NaCl0降低ADC发泡剂废水中的氨氮,弥补了在碱性条件下吹脱除氮的不足。 次氯酸钠折点氯化法主要优点是可通过正确控制加氯量和对流量进行均化,使废水中全部氨氮降为零,同时使废水达到消毒的目的。对于氨氮浓度低(小于50mg/L)的废水来说,用这种方法较为经济。 目前污水处理主要措施是次氯酸钠折点氯化法,主要形式是将氯气或次氯酸 钠通入废水中将废水中的NH3-N氧化成N2的化学脱氮工艺。当氯气通入废水中达到某一点时水中游离氯含量较低,氨的浓度降为零。当氯气通入量超过该点时,水中的游离氯就会增多。因此该点称为折点,该状态下的氯化称为折点氯化。处理氨氮污水所需的实际氯气量取决于温度和pH值及氨氮浓度。 COD剂氨氮去除剂去磷剂除臭剂管道清洗除臭剂

氧化每克氨氮需要9至10mg氯气。pH值在6至7时为较佳反应区间,接触时间为0.5至2小时。折点加氯法处理后的出水在排放前一般需要用活性碳或二氧化硫进行反氯化,以去除水中残留的氯。1mg残留氯大约需要0.9至1.0mg的二氧化硫。在反氯化时会产生氢离子,但由此引起的pH值下降一般可以忽略,因此去除1mg残留氯只消耗2mg左右。 为了克服单独采用折点加氯法处理氨氮废水需要大量加氯的缺点,常将此法与生物硝化连用,先硝化再除微量残留氨氮。氯化法的处理率达0.9-1,处理效果稳定,不受水温影响,在寒冷地区此法特别有吸引力。投资较少,但运行费用高,副产物氯胺和氯化有机物会造成二次污染,氯化法只适用于处理低浓度氨氮废水。 南京永禾环保工程有限公司是以承接水处理工程项目为主,并开发经营水处理相关产品,为用户提供综合技术服务的高科技工程公司。环境工程行业中颇具发展,公司实力雄厚,现有从事化工、水处理、环境工程专业和土建、电器、自动控制等专业的高中级工程技术人员20余人。 技术可广泛应用于锅炉水处理、电子、医药、饮料行业的纯水制备:苦碱水、海水淡化以及浓水提取、分离等各个领域。优秀的设计,成熟的技术,优秀的人才,设计、制造、检测等方面有强劲的实力。实业是基础,锐意进取;技术是向导,勇攀高峰。本公司将以不懈的努力,精益求精,以更优秀技术和产品服务与用户。 COD剂氨氮去除剂去磷剂除臭剂管道清洗除臭剂

哪家氨氮去除剂好

氨氮废水主要来源于化肥、焦化、石化、制药、食品、垃圾填埋场等,大量氨氮废水排入水体不仅引起水体富营养化、造成水体黑臭,给水处理的难度和成本加大,甚至对人群及生物产生毒害作用。氨氮去除剂哪家好,首先我们需要了解氨氮去除剂的一些信息,才能够进行判断,下面为大家介绍氨氮去除剂的一些知识点。 废水中的氨氮去除方法中生物法和物理法都只能在一定的程度范围内处理,如果废水的进水浓度高了,跟着出水一般也会跟着高。但是使用氨氮去除剂,可以灵活地根据浓度的高低去进行投药。浓度高的时候投加多一点,浓度低的时候投加少一点,一般通过简单的调整提升泵的频率就能达到控制药剂量的效果。用氨氮去除剂解决废水中的氨氮去除问题无新增污染物,无沉淀,无二次污染。 氨氮去除剂 【产品介绍】 氨氮去除剂是一种专门为解决各类水中氨氮难去除而研发的新型药剂。该产品对污水中的氨氮有催化、分解的作用,能使废水中的氨氮迅速转为无害的气体而达到去除氨氮的目的;适用于线路板、电镀、电子、纺织、印染、制革、化肥厂、屠宰、养殖场等行业产生的高氨氮废水处理。

【性能指标】 外观白色固体 有效物质含量(,≥)99 PH值13~14 加药量(氨氮含量:氨氮去除剂JAD用量)1:100 【使用方法】 1、药剂配置:使用时可将本产品直接投加,或先加入溶解罐,配成浓度为10-20搅拌,用泵投加到反应池; 2、加药条件:该产品的反应PH一般为6-9,反应时间约5分钟; 3、投加量:根据废水中的氨氮含量不同其用量有所差异。根据经验值,倘若要降低10ppm的氨氮,该产品的投放量为1000ppm(即1公斤/吨废水),依次类推,呈线性关系。 4、实验方法: ①方法一:实验时取一定量的原水,调PH6-9,加入适量的本产品,搅拌5分钟,加入少量的混凝剂PAC和絮凝剂PAM在中性或碱性条件下絮凝沉淀后,过滤取上清液测定

脱氨分子筛方案

分子筛吸附废水中氨氮及其再生 分子筛是结晶态的硅酸盐或硅铝酸盐,由硅氧四面体或铝氧四面体通过氧桥键相连而形成分子尺寸大小(通常为0.3~2.0 nm)的孔道和空腔体系,从而具有筛分分子的特性,具有均匀的空隙结构。自然界存在的常称为沸石,人工合成的称为分子筛,他们的化学式组成为M x/n[(Al2O3)x.(SiO2) y].ZH2O,式中M为金属阳离子,n为价数,x是Al2O3的分子数,y是SiO2的分子数,Z是水的分子数,因为Al2O3带负电荷,金属离子的存在可以使分子数保持电中性。 对于低浓度氨氮废水处理,应用较多的方法是折点氯化法、离子交换法、生物硝化和反硝化法等,高浓度氨氮废水的处理常采用物化和生物组合工艺。生物法尽管有效,但氨氮的生物转化作用缓慢,而常规的离子交换法多适用于中低浓度氨氮废水的处理,对于高浓度的氨氮废水会因常规交换剂再生频繁而造成操作困难,因此,选择好的吸附材料将非常重要 1.分子筛吸附原理 分子筛对氨氮的去除作用有两种:一种是离子交换作用,主要是去除污水中离子态分布的氨氮;另一种是吸附作用,主要用于去除污水中分子态分布的氨氮。 2.分子筛去除氨氮的影响因素 (1) pH值的影响 在相同的试验条件下,通过动态试验测定pH值对分子筛交换氨氮效果的影响,试验结果表明分子筛吸附氨氮最合适的pH值段为4~8,而最佳值为pH=6左右,这是因为NH4+在水中的离解平衡式为:NH4+ NH3+H+,由式中可以看出:氢离子浓度增加,即pH值减小,平衡向左移动,这时NH4+浓度增加,所以分子筛能够吸附较多的NH4+,其平衡浓度降低;但是pH值太小,H+会与NH4+竞争,造成分子筛吸附氨氮的性能下降。 (2)停留时间的影响 对比不同的停留时间对分子筛吸附氨氮的影响,通过实验研究表明,水力停留时间为1h的处理效果最好,水力停留时间过长很容易阻止其他NH4+-N在分子筛表面上的交换,过短则使有些NH4+-N还没来得及交换分子筛上的阳离子就随出水一起流出了。 因此分子筛对于进水氨氮浓度为50mg/L的氨氮废水处理的最佳工艺条件为中性条件,停留时间为1h。 3.分子筛物理特性 (1)离子交换性是分子筛重要性质之一。在分子筛晶格中的空腔(孔穴) 中K、Na、 Ca等阳离子和水分子与格架结合得不紧,极易与其周围水溶液里的阳离子发生交换作用,交换后的沸石晶格结构也不被破坏。分子筛的离子交换表现出明显的选择性。 (2)分子筛的孔道结构使之具有很大的内表面积(500-1000m2/g),因而能产生较大的扩散力,故可用作出色的吸附剂,选择性吸附是沸石吸附性能的一个重要特征,而且沸石还有良好的热稳定性和耐酸碱性。这都有利于沸石的化学改性处理和在水处理中的运用。

水中低浓度氨氮去除方法

水中低浓度氨氮去除方法 1 引言 随着人类工业、生活污水的排放, 加之农业面源污染, 导致地表水氨氮污染严重.过量的氨氮会引起水体富营养化, 使藻类大量增殖, 对水体生态平衡和人类健康产生了严重的危害(姜瑞等, 2013).因此, 迫切需要寻找一种安全、高效又经济的低浓度氨氮污染水体的去除技术. 目前, 低浓度氨氮(≤50 mg2L-1)废水的处理方法主要有:折点加氯法、沉淀法、离子交换法等(姜瑞等2013;刘莉峰等, 2014).近年来, 半导体光催化技术因具有耐腐蚀、无毒、稳定性高、绿色环保、高效低耗能等优点(靳立民等, 2004; Hu et al., 2006), 在氨氮废水的治理中被逐渐应用(焦宏涛, 2008).其中, 以TiO2为催化剂处理氨氮废水的研究报道相对较多, 通过掺杂和负载处理, TiO2系列催化剂对氨氮的去除率大约在41%~90%之间.ZnO 作为一种廉价的光催化剂, 有关其处理氨氮废水的报道较少.研究发现, 纳米ZnO具有高光敏性、低毒性、良好的光学性能和化学稳定性, 在氨氮废水的去除方面有潜在的应用价值.但纳米ZnO应用于水处理时, 仍存在许多不足, 如在水中易团聚, 分散性差; 光催化结束后只能离心分离, 难以重复利用和实际应用. 通过引入聚合物, 形成ZnO纳米粒子/聚合物复合材料, 将聚合物作为纳米粒子载体, 利用聚合物分子链之间的排斥作用可有效防止纳米粒子的团聚, 能很好地解决上述不足, 并且已见文献报道(Iknur et al., 2015; Farzana et al., 2014).研究发现, 将纳米ZnO 分散于聚合物基质, 所得复合材料兼具纳米ZnO光催化性能和聚合物的延展性等优点(Antonio Carmona et al., 2015).在众多聚合物中, 聚甲基丙烯酸甲酯(PMMA)作为一种无毒环保的热塑型材料, 耐碱、耐烯酸、化学稳定性良好, 且兼具质轻、价廉、易于成型等优点.PMMA能够透过73.5%的紫外光, 与纳米ZnO结合能够提高纳米ZnO的分散性和光学性能; 而且以PMMA大颗粒微球作为载体, 可使原本需经过离心才可分离回收的纳米ZnO可通过简单的过滤即可得到, 解决了催化剂回收难的问题. 因此, 本文通过水热法制备纳米ZnO, 并采用热粘固法负载于PMMA微球表面, 制备纳米ZnO-PMMA复合材料, 研究复合材料对水中低浓度氨氮的去除性能, 探讨此复合材料对氨氮去除的机制, 以期为纳米ZnO聚合物复合材料的制备和应用提供参考. 2 材料和方法 2.1 实验材料 六水合硝酸锌(化学纯)购自阿拉丁试剂(上海)有限公司; 聚甲基丙烯酸甲酯、羧甲基纤维素钠(CMC)均为化学纯, 购自国药集团化学试剂有限公司; 无水乙醇.氯化铵、氢氧化钠及盐酸均为分析纯, 购自南京化学试剂有限公司; 配制溶液和清洗仪器均采用去离子水. 2.2 ZnO-PMMA催化剂制备

水中氨氮的去除方法综述

水中氨氮的去除方法综 述 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

水中氨氮的去除方法综述 引言 氮在废水中以分子态氮、有机态氮、氨态氮、硝态氮、亚硝态氮以及硫氰化物和氰化物等多种形式存在,而氨氮是最主要的存在形式之一。氨氮存在于许多工业废水中,氨氮排入水体,特别是流动较缓慢的湖泊、海湾,容易引起水中藻类及其他微生物大量繁殖,形成富营养化污染,除了会使自来水处理厂运行困难,造成饮用水的异味外,严重时会使水中溶解氧下降,鱼类大量死亡,甚至会导致湖泊的干涸灭亡[1]。 2007年太湖爆发的蓝藻污染就是典型的氨氮污染事件。2007年5月16日,梅梁湖水质变黑;22日,小湾里水厂停止供水;25日,贡湖水厂水质尚满足供水要求;28日,贡湖水厂水源地水质严重恶化,水源恶臭,水质发黑,溶解氧下降到0毫克每升,氨氮指标上升到5毫克每升,居民自来水臭味严重。氨氮还使给水消毒和工业循环水杀菌处理过程增大了用氯量;对某些金属,特别是对铜具有腐蚀性;当污水回用时,再生水中氨氮可以促进输水管道和用水设备中微生物的繁殖,形成生物垢,堵塞管道和用水设备,并影响换热效率[2]。 氨氮去除方法 生物法去除氨氮是在指废水中的氨氮在各种微生物的作用下,通过硝化和反硝化等一系列反应,最终形成氮气,从而达到去除氨氮的目的。生物法脱氮的工艺有很多种,但是机理基本相同。都需要经过硝化和反硝化两个阶段。硝化反应是在好氧条件下通过好氧硝化菌的作用将废水中的氨氮氧化为亚硝酸盐或硝酸盐,包括两个基本反应步骤:由亚硝酸菌参与的将氨氮转化为亚硝酸盐的反应。由硝酸菌参与的将亚硝酸盐转化为硝酸盐的反应。亚硝酸菌和硝酸菌都是自养菌,它们利用废水中的碳源,通过与NH3-N的氧化还原反应获得能量。反应方程式如下:亚硝化:2NH4++3O2→2NO2-+2H2O+4H+ 硝化 : 2NO2- +O2→2NO3- 硝化菌的适宜pH值为~,最佳温度为35℃,温度对硝化菌的影响很大,温度下降10℃,硝化速度下降一半;DO浓度:2~3mg/L;BOD5负荷:;泥龄在3~5天以上。在缺氧条件下,利用反硝化菌(脱氮菌)将亚硝酸盐和硝酸盐还原为氮气而从废水中逸出由于兼性脱氮菌(反硝化菌)的作用,将硝化过程中产生的硝酸盐或亚硝酸盐还原成N2的过程,称为反硝化。反硝化过程中的电子供体是各种各样的有机底物(碳源)。以甲醇为碳源为例,其反应式为: 6NO3-+2CH3OH→6NO2-+2CO2+4H2O 6NO2- +3CH3OH→3N2+3CO2+3H2O+6OH- 反硝化菌的适宜pH值为~;最佳温度为30℃,当温度低于10℃时,反硝化速度明显下降,而当温度低至3℃时,反硝化作用将停止;DO 浓度<L;BOD5/TN>3~5。生物脱氮法可去除多种含氮化合物,总氮去除率可达70%~95%,二次污染小且比较经济,因此在国内外运用最多。其缺点是占地面积大,低温时效率低。常见的生物脱氮流程可以分为3类:⑴多级污泥系统多级污泥系统通常被称为传统的生物脱氮流程。此流程可以得到相当好的BOD5去除效果和脱氮效果,其缺点是流程长,构筑物多,基建费用高,需要外加碳源,运行费用高,出水中残留一定量甲醇;⑵单级污泥系统单级污泥系统的形式包括前置反硝化系统、后置反硝化系统及交替工作系统。前置反硝化的生物脱氮流程,通常称为A/O流程。与传统的生物脱氮工艺流程相比,该工

一种利用臭氧和树叶去除水中氨氮的方法

一种利用臭氧及树叶去除水中氨氮的方法 (一)技术领域 本发明涉及一种利用臭氧和树叶协同作用去除水中氨氮的方法。 尤其涉及到臭氧氧化技术和杨柳科树叶吸附的协同作用。 (二)背景技术 水体中的氨氮会造成湖泊和河流的富营养化,减少溶解氧浓度,并对水体中的鱼类等水生物产生毒害;同时氨氮也会腐蚀、堵塞管道和用水设备。很多国家对饮用水中的氨氮浓度都有严格限定,根据我 国2002年建设部I类水质标准,饮用水中氨氮的允许浓度为0.5mg/L。现有的技术中,对氨氮的去除方法主要有生物脱氮法、空气吹脱法、离子交换法、折点氯化法、催化湿式氧化法等。一般物化法处理水中氨氮的原理是通过吸附、吹脱、渗滤、化学沉淀等方法将水中的氨氮从污水中分离出来,从而使水中的氨氮含量降低到规定的范围。物理吸附需要利用沸石中的阳离子和废水中的NH3-N进行交 换以达到脱氮的目的,但应用沸石脱氨法必须考虑沸石的再生问题,利用膜的选择透过性进行氨氮脱除的方法操作虽然方便,氨氮回收率 高,但研究表明运行中需加碱,加碱量与废水中氨氮浓度成正比,而且膜分离技术目前尚在研究阶段,并不是十分的成熟。MAP沉淀法(又称磷酸铵镁沉淀法)去除污水中氨氮目前应用的也比较广泛,但加药量和药剂成本均不容乐观。 中国专利CN101041503A提供了一种臭氧催化氧化强化去除水中氨氮的方法,该方法是通过在反应器中布置催化剂、控制臭氧和废水的接触时间以及催化剂和布满臭氧的废水的接触时间来实现的,而所采

用的催化剂为沸石或改性沸石、活性氧化铝、活性炭、硅藻土、硅胶或陶粒中一种或几种。但由于采用的催化剂吸附容量的关系,处理过程均需涉及催化剂的最终处置问题,费用较为昂贵。 (三)发明内容 本发明提供了一种利用臭氧方法去除废水中氨氮的新思路,众所周知,植物具有净化空气、土壤和水的功能,而植物树叶也同样具有这样的功能,本发明即采用了臭氧氧化和树叶吸附协同作用的技术方案,成功去除了实验水样中的氨氮。 本发明将所述的臭氧和树叶协同的技术方案用于处理水样中的氨氮,所述的协同反应的工艺条件具体按照如下进行:将取回的树叶自然干燥或在50 士2 C左右的温度下加热干燥4-6h,然后粉碎成40 目-100目的树叶粉末待用。将500mL含有500~2000mg/L、pH调到9.5-10.5的氨氮溶液加入臭氧反应器中。称取0.5-1.5g树叶粉末加入,然后通入臭氧,臭氧化氧气进气流量为0.167L/min~0.67L/min,臭氧投加量为10-80mgmin-1;反应进行到10min 后,氨氮的去除率为76%~92%。就单独臭氧化处理而言,对氨氮水溶液的处理效果并不明显,反应进行到10min 时,氨氮去除率仅为21%~42%。如单独采用树叶吸附,当投加量达到1.5g时,氨氮的去除率约为25%。以氨氮浓度为1200mg/L 为例,采用单独臭氧氧化,臭氧化氧气进气流量为0.541L/min,臭氧投加量为65mg-min-1时,反应到10min时氨氮去除率为37%,采用单独树叶吸附,当投加量达到 1.3g时,氨氮的去 除率为25%。而同样条件下采用臭氧和树叶同时作用,10min后氨氮的去除率为84%,效率比单独臭氧氧化和树叶吸附的总和还要高,可知这两种技术不仅具有协同效应,树叶的加入同时也给臭氧氧化起到

氨吹脱塔单元设计示例

4.4.1氨吹脱塔单元 4.4.1.1设计说明 设计采用循环空气吹脱,气液比可取1500-3000,取3000。 4.4.1.2设计尺寸 (1)吹脱塔的计算 已知沼液中NH3-N约为2.5g/kg(2.5g/L),即摩尔分率为0.0026。入吹脱塔的沼液流量为5.6m3,即为311.11kmol/h,设定回收率为90%。同时在101.3kPa 和30℃时,该氨水稀溶液的氨分压为0.2kPa,故亨利系数E为76.923kPa, m=(0.2/101.3)/0.0026=0.7592。 30℃空气的分子量为29,密度1.165kg/m3。 ①实际气液比 (G/L)min=(X1-X2)/(Y2e-Y1)=(0.0026×90%)/(0.0026×0.7592)=1.186 (G/L)=(1.1-2)×(G/L)min=1.8×1.186=2.135 (取系数为2) 所以G=2.135×311.11×29/1.165=16534.23m3,即为664.22kmol/h。 故实际气液比(体积比)为: (G/L)v=16534.23/5.6=2952.54 ②理论板数确定 吸收因子A=L/mG=0.617,即脱吸因子S=A-1=1.62 N理论:X1-X2/X1-0=S N+1-S/S N+1-1 0.0026×90%/0.0026=(1.62N+1-1.62)/(1.62N+1-1) 所以N=3.09,取N=4 气相中氨的摩尔分率Y2=(X1-X2)/(G/L)=1.096×10-3; ③塔的有效高度Z 根据Drickanmer-Bradfood法:E T =0.17-0.616lgμ 30℃,进料液体的摩尔粘度μ为0.8007cp(设计应选取最恶劣的条件,故中温35℃发酵,考虑到冬季热损失,选用20℃的进料,此时进料液体的摩尔粘度为1.005cp) 故E T=0.17-0.616lgμ=0.169 实际板数N=N T/E T=23.66 取24 同时取板间距为450mm

相关主题
文本预览
相关文档 最新文档