当前位置:文档之家› 扇翼飞行器模型的设计与制作

扇翼飞行器模型的设计与制作

扇翼飞行器模型的设计与制作
扇翼飞行器模型的设计与制作

扇翼飞行器模型的设计与制作

摘要:扇翼飞机是介于直升机和固定飞机的一种大载荷低速新型飞行器,其飞行原理特殊,结构独特。本文根据其设计原理,参考国内外扇翼飞行器为数不多的模型案例,研究、设计、并制作了一架扇翼飞行器的模型,同时,通过试飞,验证了扇翼飞行器的飞行原理和基本控制原理。

扇翼飞行器是利用机翼加上风扇上的吹风装置,将升力和推力结合起来,从而使飞行器能够飞起来。该构思开辟了一类新型通用飞行器研究、开发的新领域。

扇翼飞机的扇翼由水平叶片组成,类似“松鼠笼”,该“松鼠笼”的柱状机翼取代了直升机的旋翼。这种机翼能提供相当大的升力,同时具有很好的低速安全性能。与普通的直升机和固定翼飞机相比,扇翼飞机只要很小的动力就能飞行,其优点表现为:

1)升力大;

2)可以短距离起飞和降落;

3)飞行时噪音小,非常安静;

4)飞行安全性好,机翼不会失速,飞行稳定

5)控制操纵系统简单;

6)飞行效率高,节省能源。

有研究表示扇翼飞行器要比直升机的飞行效率高50%,并且预测具有100马力的扇翼飞行器其最大载荷量可以达到2吨。由于其独特的飞行原理和结构设计,使该种结构的机翼永远不会失速,具有很好的安全性。可以预见,将扇翼飞行器作为一种新型无人机机型,在军用及民用领域将会有很广阔的应用前景。

1 扇翼飞行器的飞行原理

常见的固定翼飞机飞行原理,是当飞机在向前运动时,空气在机翼的前缘分流为上下两股气流,上表面的气流,受到机翼翼型突起的影响,使流线收敛变密,流速加快;而流过下表面的流线也受凸起的影响,但下表面的凸起程度小于上表面,所以,相对于上表面来说流线较疏松,流速较慢。由于机翼上表面流管变细,流速加快,压力较小,而下表面流管粗,流速慢,压力较大。从而在机翼上、下表面产生了压力差。而上下压力差使机翼产生了升力。

扇翼飞行器是根据马格努斯效应制造而成的。所谓马格努斯效应是:当气流沿着一个旋转物体的旋转平面流过时,就会在物体上产生一个垂直于气流流向的作用力。该构想的实现,是通过在机翼上装配水平轴向转动的风扇,从而获得升力。

该装置类似‘松鼠笼’。通过水平轴上扇翼的主动旋转,在机翼前缘抽取空气,通过叶片的旋转使上表面的气流加速,由于机翼下表面的空气流速没有经过加速的,增大机翼上下表面的压力差,使扇翼飞行器的机翼能够产生足够的升力。

1999年,英国的发明家帕特·皮布尔斯与他的妻子狄科拉·皮布尔斯,以及来自美国的加雷斯·詹金,共同研制并成功试飞了第一架扇翼飞行器的原型机。该原型机最大起飞重量为44磅(约20千克),其中载荷就达22磅(10千克)。同年12月在JMR Graham教授的指导下,对扇翼飞行器的机翼进行了风洞试验。并在2000年7月和2001年5月份再次进行了风洞试验。2001年lO月在风洞试验的基础上制作并试飞成功了-个全新的扇翼飞行器原型机,该原型机展长1.8米、重6千克。随后,为了向小型机发展,2002年2月制作了一个较小的原型机并

航空航天飞行器设计

武汉大学《航空航天技术概论》作业2 题目:新型神飞器的设计制做 学院:物理科学与技术学院 专业:物理学 姓名:胡万景 学号:2012335550114 2013年7月30日

本人在现代的航天器基础上利用最新的科研探索方向,从神飞器的名字、要完成的使命、如何设计、功能设计和设计控制、应用前景及任务等几个方面来构想一架现实为未来相结合的神飞器。 神飞器名字:永不落雪域神飞器 要完成的使命:探测宇宙星系、发展现代科学技术、解释科学谜团、携带人们实现太空之旅、军情探窥、为人类探测地球之外的能源 如何设计:“永不落雪域神飞器”将采用非传统的设计,从空气动力学角度来说,可以将它描述为一种升力体结构,在神器身后部设计自动化控制面版,包括全动式水平尾翼和双垂直尾翼与方向舵,这种飞翼可以自动收缩,而且为扁平的。该设计将成为未来全球最大超速巡航的神飞航天一体器,既可以用于航天事业又可以用于作战神器。由于高速巡航的需要和航天的探索,为了减小阻力而将前缘设计得很尖而且扁平,同时控制面也相应很薄很轻巧。神飞器前身下部的外形设计为超冲压核动力发动机进气道,提供外部压缩斜面,同时后身下部的外形设计为单膨胀喷管面。机体上表面采用无缓和的曲率,机身前装备大块的扁压舱,要使飞行器的重心足够靠前,提供近似中心的纵向和横向的稳定性。飞行器的机身桁梁和隔板由钢、钛、铝等纳米材料制成,其上覆盖有钢、铝陶瓷纳米盖。这些材料是由神飞器的硬度、随时可变形需求确定的,而尾舱选用镍钛合金,这是为了热防护的需要。出于飞行器平衡的需要,前舱采用了钨化纳米材料制实心块。机体的热防护采用碳耐高温陶瓷。前缘、上、下表面覆盖强化氧化铝纳米防热瓷瓦。钢铝纳米陶瓷金属盖设计为多个相对简单、低成本的刻面形状,这样会使得外型设计线加工到热防护系统防热陶瓷中,而于防热陶瓷的设计为外表面的机是在陶瓷安装到机身上。为此,表面涂纳米量子隐身漆,从而避免了被其他探测系统发现、热烘烤、抗干扰、防辐射、防腐蚀等性质极强的结构。对于低飞行器来说,水平表面只采用碳纳米材料防热;而对于高速神行器来说,水平和垂直表面都采用碳纳米材料防护。发动机着采用散热性好的珀合金材料,其整流罩和侧壁采用了主动式液氮冷却系统。从整体上说,这个神飞器是一个超级扁的飞行一体机,可以收缩变幻,可以变形。 功能设计和设计控制: 1.。神飞器的发动机:我们不使用传统的固态、液态、或者混合态发动机作为动力来提高效果,而现行的发动机有些国家利用太阳帆,利用太阳的能量,可是太阳能转化速度比较慢,所以传统的化学能和太阳能飞行器不适合进行长时间的飞行。为了我们的飞行器成为世界永不落神飞器,我们将在这个飞行器上装载核聚变动力器,让它成为核动力火箭。这将提供更快的速度和强大的能量源来源,而且消耗不尽,所以我们的神飞器会永远挂在空中而不降落,这也可以解决登陆其他行星时所遇到的各种能源来源问题。核聚变神飞器将大大缩短深空飞行的时间,可以为我们人类充分探索和利用太阳系资源开辟道路,这样的话我们能在一个月之内前往其他星系,那将是多么美妙的情景,也可以减少宇航员暴露在宇宙射线下的风险,人类如果需要进入深空,并有效的配合减速发动机的减速,就可以减少人们在空间飞行中受到的辐射,为人类缩短较短的太空旅程减少节省食物和水,这样我们的太空之旅每个人都可以实现。 宇宙飞船推进技术,我们只有在科幻小说中才听说过的“曲速推进”发动机,物质和反物质动力系统等,而现在我们这款神飞器完全可以实现。除了核动力发动机外,可控核聚变反应堆,使用核裂变技术的发动力系统是我们这个飞行器成为永不落飞行器唯一途径,我们在飞行器上安装四台核动力涡轮发动机,这些核

“纸飞机”实践项目

纸飞机实践项目 尊敬的各位老师大家下午好,欢迎来到美丽的石室中学—这座有着2000多年历史的神圣学堂。今天坐在这里我心里非常忐忑,对于一个资质缺乏的年轻老师来说能有机会和这么多优秀教师进行面对面交流我感到无比荣幸,同时更深知自己的年轻不足和经验缺乏,但老师们充满希望的眼神给了我无比强大的信心,谢谢各位老师的信任!今天我想要通过“纸飞机实践项目”和各位老师分享一下我的实践课是怎么样开展的,希望能对老师们有一些小小的启发,讲得不好和不对的地方敬请各位老师和前辈批评指正。在这里先谢谢老师们耐心的聆听。 本次实践活动包括四个部分:活动前期准备、活动实施过程、活动评价过程、课程中遇到的问题。 一、活动前期准备(包括项目设计和项目筹备两部分) 1.项目设计: (1)构思意图:本次实践活动是通用技术第一个实践项目,所以本堂课主要是一堂体验式的课程,目的在于:一是让学生接触和认识实践室;二是让学生知道和体验一个实践项目开展的各个环节,从材料等的准备到最后的成品成果体现等(包括活动以何种方式开展);三是让学生明确实践课程中的一些常规要求(包括出勤、纪律要求,工具使用时的安全注意事项等),所以本节课不会设很大难度。 (2)学情分析:学生小时候就玩过纸飞机,所以抛出这个活动的话题后初期学生会由于儿时回忆表现出比较浓厚的兴趣。但学生可能普遍会觉得纸飞机活动太小儿科,所以短暂的兴趣后就会觉得无聊。于是在讲纸飞机活动之前要讲清楚构思意图(体验式活动),并且要和劳技课区分开,尽量讲得有深度,让学生在回忆儿时童趣时还能学到新知,感受到简单的纸飞机活动里蕴藏的不简单的知识。 2.项目筹备: ' (1)纸飞机相关知识储备:包括纸飞机的组成(如机身、主翼、侧翼、尾翼等)、飞行原理、简单的受力分析、折法以及影响纸飞机飞行的因素(如飞机头部的形状和重量,主翼的宽度及角度,副翼的的角度,尾翼的角度,迎角的大小,投掷力度等) (2)学生分组:本次实践活动是分组作业,我要求学生按学号顺序每两人一组共同完成纸飞机实践项目(关于学号分组有利有弊,我根据我的课堂对按学号分组进行了粗略的利弊分析:1.好处—便于组织和管理,如由于通用技术上的班比较多,老师可能在一个班认识的学生不多,这样安排可以方便点名和安排清洁卫生等;按学号排可以某种程度上维护咱们课堂的纪律,如果自由组合两个要好的同学一起会聊天。2.缺点—按学号分组组员之间的默契程度可能会小于自由组合,有的同学之间甚至会出现不组合单人一组的现象,要尽量避免这种情况的发生,上课之前就讲好要求,如果没按要求做就视情况扣分或不给分),分好组后要求每组必须制作两架飞机,其中必须有一架为例机(例机能更好的体现各组成部分的功能和调节,学生自选择的机型多数都没有副翼和侧翼等),实践室的座位按学号排,每一列10个人(便于学生快速找准自己的位置和教师的管理)。 (3)材料准备:本次实践项目的材料包括A4纸(没组两张)、剪刀(每组一把)、软尺两套(测距离)、秒表一个(测时间);铅笔、尺子、模型用纸等告诉学生自己准备。 (4)课时安排:本次实践项目共安排3个课时:第一节课介绍实践课堂常规要求、例机折法和一些简单的飞行原理然后学生自己制作纸飞机模型;第二节课学生到实践室自主完成纸飞机制作并进行简单的试飞和调节;第三节课进行飞行测试。 (5)测评表准备:准备一份测评表用来记录测试成绩以及最后成绩。该测评表的项包括:班级、学号、姓名、平时成绩、飞行距离、滞空时间、测试成绩、最后成绩。一份考勤表,包括姓名,学号,迟到情况,旷课情况,纪律情况及平时成绩。 (6)纸飞机选例: a.为了尽量最大限度提高学生,这次纸飞机活动对学生有要求,不能制作太简单的纸飞机,以更好地训练学生的动手能力。在上课之前就必须搜集一些优秀的纸飞机实例并学习折法。于是想办法

自己设计制作模型飞机的体会

尽管学飞以来一直在飞成品机(ARF),但是,我自己要设计制作一架模型飞机的愿望一直在心里涌动。几经周折后,我成功地将自己亲手设计制造的一架航模送上了蓝天。我的愿望得到了厚重的实现,那种喜悦满足的心情是难以用语言来表达的。 下面我就讲讲我的设计制作过程,希望能对想动手做航模的朋友有所帮助。不对之处,还望大家共同交流提高。 按照现成的图纸制作一架模型飞机,不是一件太难的事。但是,如果根据您的需要自己设计制作一架飞机,恐怕就具有一定的挑战性了。当您要下手设计制作时,会遇到很多需要解决的问题。如:为什么要选用这个翼型、翼展和翼弦是怎么确定的、机身长度应该是多少、尾翼的面积需要多大、各部件的位置应该放在哪里等等。好在现在的由有关书籍较多,只要认真学习归纳,就能找到答案。根据我所学的知识,我是这样设计制造我的“菜鸟1号”的。 第一步,整体设计。 1。确定翼型。我们要根据模型飞机的不同用途去选择不同的翼型。翼型很多,好几千种。但归纳起来,飞机的翼型大致分为三种。一是平凸翼型,这种翼型的特点是升力大,尤其是低速飞行时。不过,阻力中庸,且不太适合倒飞。这种翼型主要应用在练习机和像真机上。二是双凸翼型。其中双凸对称翼型的特点是在有一定迎角下产生升力,零度迎角时不产生升力。飞机在正飞和到飞时的机头俯仰变化不大。这种翼型主要应用在特技机上。三是凹凸翼型。这种翼型升力较大,尤其是在慢速时升力表现较其它翼型优异,但阻力也较大。这种翼型主要应用在滑翔机上和特种飞机上。另外,机翼的厚度也是有讲究的。同一个翼型,厚度大的低速升力大,不过阻力也较大。厚度小的低速升力小,不过阻力也较小。因为我做的是练习机,那就选用经典的平凸翼型克拉克Y了。因伟哥有一定飞行基础,速度可以快一些,所以我选的厚度是12%的翼型。 实际上就选用翼型而言,它是一个比较复杂、技术含量较高的问题。其基本确定思路是:根据飞行高度、翼弦、飞行速度等参数来确定该飞机所需的雷诺数,再根据相应的雷诺数和您的机型找出合适的翼型。还有,很多真飞机的翼型并不能直接用于模型飞机,等等。这个问题在这就不详述了。机翼常见的形状又分为:矩形翼、后掠翼、三角翼和纺锤翼(椭圆翼)。 矩形翼结构简单,制作容易,但是重量较大,适合于低速飞行。后掠翼从翼根到翼梢有渐变,结构复杂,制作也有一定难度。后掠的另一个作用是能在机翼安装角为0度时,产生上反1-2度

四翼飞行器设计最新版 (1)

四旋翼飞行器设计 飞行器设计小组 组员:李阳,张响,马具彪,袁学松 指导老师:李培

目录 一四旋翼飞行器的发展背景 (3) 二四旋翼飞行器结构 (4) 三工作原理 (6) 1 四旋翼飞行器工作原理概述 (6) 2四旋翼飞行器运动状态 (6) 四零件数据详情 (12) 五外观设计 (14) 六内部设计 ............................................................错误!未定义书签。七四翼飞行器组装基本步骤 . (19) 八特点及其应用 (23) 1.飞行器的功能特点 (23) 2.飞行器的运用 (23) 3.未来前景 (23) 九参考文献 (24)

一四旋翼飞行器的发展背景四旋翼飞行器属飞行器的一种,属于人工智能与自动化机器的一种。在当今社会中,因体积小,功能多,而广泛使用。但由于构造复杂不易操作等原因,四旋翼飞行器的发展一直比较缓慢。近年来,由于新型材料、飞控技术的发展,微型四旋翼飞行器的发展非常迅速。南京航空航天大学研究出飞行器理论和数学建模,模糊控制等技术,促进了我国飞行器的发展。北京航空航天大学自主掌握共轴双翼机的自主控制与研发工作。浙江大学,清华大学研究出,机载GPS和数学建模机器人视觉。在国家的指导与鼓励下,很多所高校,积极响应,促进了我国四旋翼飞行器的发展。 国外已经对四旋翼飞行器做了大量研究,起步比国内早很多。在导航,自主飞行技术等方面领先国内。国外已经把飞行器广泛运用在军事勘察,工业监测,农业预防等多方面。

二四旋翼飞行器结构 四旋翼飞行器共有四个翼,均匀分布在前后左右,且四旋翼均在同平面内,左右上下完全对称。每个旋翼下都附有一个发动机,以提供动力。在飞行器的中心是一个飞行控制器,来控制飞行器的速度和方向。结构形式以及三视图如图1.1、图1.2所示。 图1.1四旋翼飞行器结构图

航模飞机设计基础知识

第一步,整体设计 1、确定翼型 我们要根据模型飞机的不同用途去选择不同的翼型。翼型很多,好几千种。但归纳起来,飞机的翼型大致分为三种。一是平凸翼型,这种翼型的特点是升力大,尤其是低速飞行时。不过,阻力中庸,且不太适合倒飞。这种翼型主要应用在练习机和像真机上。二是双凸翼型。其中双凸对称翼型的特点是在有一定迎角下产生升力,零度迎角时不产生升力。飞机在正飞和到飞时的机头俯仰变化不大。这种翼型主要应用在特技机上。三是凹凸翼型。这种翼型升力较大,尤其是在慢速时升力表现较其它翼型优异,但阻力也较大。这种翼型主要应用在滑翔机上和特种飞机上。另外,机翼的厚度也是有讲究的。同一个翼型,厚度大的低速升力大,不过阻力也较大。厚度小的低速升力小,不过阻力也较小。实际上就选用翼型而言,它是一个比较复杂、技术含量较高的问题。其基本确定思路是:根据飞行高度、翼弦、飞行速度等参数来确定该飞机所需的雷诺数,再根据相应的雷诺数和您的机型找出合适的翼型。还有,很多真飞机的翼型并不能直接用于模型飞机,等等。这个问题在这就不详述了。机翼常见的形状又分为:矩形翼、后掠翼、三角翼和纺锤翼(椭圆翼)。矩形翼结构简单,制作容易,但是重量较大,适合于低速飞行。后掠翼从翼根到翼梢有渐变,结构复杂,制作也有一定难度。后掠的另一个作用是能在机翼安装角为0度时,产生上反1-2度的上反效果。三角翼制作复杂,翼尖的攻角不好做准确,翼根受力大,根部要做特别加强。这种机翼主要用在高速飞机上。纺锤翼的受力比较均匀,制作难度也不小,这种机翼主要用在像真机上。翼梢的处理。由于机翼下面的压力大于机翼上面的压力,在翼梢处,从下到上就形成了涡流,这种涡流在翼梢处产生诱导阻力,使升力和发动机功率都会受到损失。为了减少翼梢涡流的影响,人们采取改变翼梢形状的办法来解决它。 2、确定机翼的面积 模型飞机能不能飞起来,好不好飞,起飞降落速度快不快,翼载荷非常重要。一般讲,滑翔机的翼载荷在35克/平方分米以下,普通固定翼飞机的翼载荷为35-100克/平方分米,像真机的翼载荷在100克/平方分米,甚至更多。还有,普通固定翼飞机的展弦比应在5-6之间。确定副翼的面积机翼的尺寸确定后,就

基于STM32的四旋翼飞行器设计

摘要 四轴飞行器是一种结构紧凑、飞行方式独特的垂直起降式飞行器,与普通飞行器相比,具有结构简单、故障率低和单位体积能够产生更大升力等优点,所以在军事和民用多个领域都有广阔的应用前景,非常适合在狭小空间内执行任务。 本设计采用stm32f103zet6作为主控芯片,3轴加速度传感器mpu6050作为惯性测量单元,通过2.4G无线模块和遥控板进行通信,最终使用PID控制算法以PWM方式控制电子调速器驱动电机实现了四轴飞行器的设计。 关键词:四轴飞行器,stm32;mpu6050,2.4G无线模块.PID.PWM

Abstract Quadrocopter has broad application prospect in the area of military and civilian because of its advantages of simple structure. Small size, low failure rate, taking off and landing ertically . etc. it is suitable for having task in narrow space. This design uses STM32f103zet6 as the master chip, and triaxial accelerometer mpu6050 inertial measurement unit, via 2.4G wireless module and remote control panel for communication. Finally using pid control algorithm with pwm drives the electronic speed controller to change moto to realize the design of quadrocopter. Key word : quadrocopter,stm32,mpu6050,2.4G wireless module ;pid; pwm

航天飞机概述与建模

航天飞机概述与建模 一、航天飞机的发展 航天飞机(Space Shuttle,又称为太空梭或太空穿梭机)是可重复使用的、往返于太空和地面之间的航天器,结合了飞机与航天器的特点。作为一种可重复使用的天地往返运输器,航天飞机是现代火箭、飞机、飞船三者结合的产物。它能像火箭一样垂直起飞,像飞船一样绕地球飞行,像飞机一样水平着陆。。航天飞机为人类自由进出太空提供了很好的工具,它大大降低航天活动的费用,是航天史上的一个重要里程碑。 1981年以前,美国的载人航天是通过“水星”、“双子星座”、“阿波罗”和“天空实验室”计划进行的。用火箭发射载人航天器一次,就要消耗一枚巨大的火箭。一些卫星发射后也无法回收。为了解决这个问题,美国在“阿波罗”登月计划后,就着手研制一种经济的、可以重复使用的航天器——航天飞机。这种航天器既能象火箭那样冲向太空,也能象飞船那样在轨道上运行,还能象飞机那样在大气里滑行并自行安全返回地球。 美国自1972年开始投巨资进行研究,历时9年,花费约100亿美元。整个工程是由美国政府机构、工业企业和高等院校的庞大队伍合作,并靠国外一些组织的协助,运用科学的管理方法,按照严格的分工和进度分阶段组织实施的。1981年4月12日,第一架航天飞机“哥伦比亚”号首次发射飞上太空,两天后安全返回。 第一架轨道飞行器“企业号”于1976 年9月17日出厂。1977年2月开始进行进场着陆试验。试验分三组进行。第一组试验5次,检验用波音747飞机驮飞时的稳定、颤振等特性,轨道飞行器中不载人;第二组作载人飞行试验,共3次,由飞行员检查轨道飞行器爷系统的性能;第三组试验5次,飞行中轨道飞行器与波音747飞机分离,滑翔飞行返回发射场,试验于1977年11月完成。之后,1978年3月“企业号”被运往马歇尔航天飞行中心与外贮箱和固体火箭组装进行发射状态的地面振动试验,1979年4月“企业号”运往肯尼迪发射场,在39A综合发射中心与固体助推器和外贮箱组合进行合练。1981年4月开始飞行试验,原计划试飞6次,但实际在第4次飞行时已携带国防部卫星执行任务。到1994年底共发射66次,成功率98.48%。

幼儿园大班科学游戏:纸飞机教案

课题一:纸飞机 教学目标: 1、知道飞机的基本结构。 2、学会折一种类型的纸飞机。 教学内容: 1、谈谈自己知道的飞机是什么样? 2、讨论飞机有哪几部分构成。 3、学会折一种纸飞机(远距离飞机或者盘旋飞机)。 4、讨论如何玩纸飞机。 教学准备:飞机模型1个,A4纸250张。 教学过程: 一、导入(2-3’) (1)小朋友们好,很高兴我们又见面了!今天蔡老师继续和大家一起玩有趣的科学游戏!(2)在上课之前,老师想问一个问题:你们见过飞机吗?它是什么样子的? (学生根据自己的经验描述飞机的样子。) 二、新授 1、了解飞机的结构(5’) (1)今天老师给大家带来了一个飞机模型。(出示飞机模型) (2)大家看,飞机的身上有什么?(先请学生说一说,然后再结合飞机模型介绍飞机的基本结构。) (3)我们常见的飞机主要分成3个部分:机身,机翼和尾翼。(请学生指一指,每一部分分别在哪里?) (4)简单介绍机身的作用主要是装载人员,物质和设备。机翼的作用:产生用来支撑飞机重量的升力,就像鸟儿的翅膀一样,帮助鸟儿飞翔。尾翼:操纵飞机俯仰或偏转,保证飞机能平稳的飞行。 2、制作纸飞机(12-15’) (1)你们想不想自己制作一只纸飞机呢? (2)怎样制作呢? (3)老师这边准备了一些纸,你们看看它们能做成飞机吗? (4)怎样制作?(请会的小朋友上来制作。) (5)我们班的小朋友真了不起! (6)今天老师也给大家介绍一种简单的远距离纸飞机的折法。我们用的材料特别的简单,只需要一张A4纸就可以了。在折纸飞机之前,老师有几点要求: 折纸要求:老师示范,老师折一步,你折一步,不能提前折。折的过程中,保护好自己的纸,每位小朋友只有一张纸,损坏了就没有了。折的过程中,如果有不会折的时候,举手示意老师,不能喊叫。 (7)大家都听懂要求了吧,你们能做到吗?(能) (8)请几位小朋友说一说折纸的要求。 (折飞机对学生的动手能力要求较高,授课时慢一点,老师折一步,让学生折,待所有的学

飞机模型制作

一、设计篇: 现代F3A运动讲求姿态控制精准,动作细腻柔和,飞行速度均匀稳定。其大部分动作基本在一个面内完成,运动轨迹基本由规则的几何图形组成,包括大量的滚转、倒飞、侧飞和垂直飞行动作,努力达到和更好地完成这些飞行动作是设计工作的基本方向。 3A特技机的气动外形是基于FAI比赛需要而设计的,随不同时代技术进步以及飞行动作发展而不断进化。由早期的大翼展(翼展大于机身长度)过渡到现在的长机身(翼展与机身长度基本相同,或机身长度略大于翼展),由较小的机身侧投影面积发展为较大的投影面积等无不体现着这些变化。据此,对各种姿态下飞行稳定和平衡的追求,作为整体思路贯穿在本架飞机的设计之中--长的尾力臂可以使姿态控制更加柔和,适中的主翼根梢比提供了均衡的横侧稳定性,大的尾舵面弥补了长尾臂带来的操纵迟缓,以完成礼帽等直角空中动作,高而窄的机身使飞机有着较大的侧投影面积,尽量以较小的倾角完成侧飞动作 由于此模型为小型F3A特技机,我不希望其飞行速度过快,不然就缺少了一种稳定感。同时为了使之在做俯冲或垂直下降动作时也尽量保持匀速稳定飞行,在设计过程中增大和利用了形状阻力。比如,使用成熟的NACA0014作为主翼翼型以提高相对小雷诺数机翼模型飞行时的稳定性和抗失速性;适当降低了一些翼载荷--约50g/dm2,以求降低整机的惯性力矩,用以弥补使用NACA0014这类翼型造成的直角动作的相对迟缓;尾翼均使用带翼型的NACA0009。垂直尾翼的设计,尝试了2007年克里斯托弗的参赛机型Osmose的特点,加大了方向舵的后缘厚度,以期达到更好的直线性。垂直安定面采用标准翼身融合的设计,增加了其下部靠近机身纵轴的前缘厚度,然后过渡到较薄的翼尖。这样即可增大整架飞机的纵轴上尾部阻力,同时尽量保持各向气动布局均匀,使飞行更加稳定。 大致确定各项基本参数: 1. 外形尺寸:1.2m x 1.2m 2. 重量:1.2kg 3. 翼载荷:约50g/dm2 4. 主翼面积:约26dm2 5. 水平尾翼面积:6.5dm2

四旋翼飞行器论文(原理图 程序)..

四旋翼自主飞行器(B题) 摘要 系统以R5F100LE作为四旋翼自主飞行器控制的核心,由电源模块、电机调速控制模块、传感器检测模块、飞行器控制模块等构成。飞行控制模块包括角度传感器、陀螺仪,传感器检测模块包括红外障碍传感器、超声波测距模块、TLS1401-LF模块,瑞萨MCU综合飞行器模块和传感器检测模块的信息,通过控制4个直流无刷电机转速来实现飞行器的欠驱动系统飞行。在动力学模型的基础上,将小型四旋翼飞行器实时控制算法分为两个PID控制回路,即位置控制回路和姿态控制回路。测试结果表明系统可通过各个模块的配合实现对电机的精确控制,具有平均速度快、定位误差小、运行较为稳定等特点。

目录 1 系统方案论证与控制方案的选择............................................................................................. - 2 - 1.1 地面黑线检测传感器............................................................................................................. - 2 - 1.2 电机的选择与论证................................................................................................................. - 2 - 1.3 电机驱动方案的选择与论证................................................................................................. - 3 - 2 四旋翼自主飞行器控制算法设计............................................................................................. - 3 - 2.1 四旋翼飞行器动力学模型..................................................................................................... - 3 - 2.2 PID控制算法结构分析.......................................................................................................... - 3 - 3 硬件电路设计与实现................................................................................................................. - 5 - 3.1飞行控制电路设计.................................................................................................................. - 5 - 3.2 电源模块................................................................................................................................. - 6 - 3.3 电机驱动模块......................................................................................................................... - 6 - 3.4 传感器检测模块..................................................................................................................... - 7 - 4 系统的程序设计......................................................................................................................... - 8 - 5 测试与结果分析......................................................................................................................... - 9 - 5.1 测试设备................................................................................................................................. - 9 - 5.2 测试结果................................................................................................................................. - 9 - 6 总结........................................................................................................................................... - 10 - 附录A 部分程序清单.................................................................................................................. - 11 -

遥控飞机模型的制作

遥控飞机模型的制作 从人类诞生以来,一直都有一个梦,梦想着能像鸟儿一样飞翔。人类为此伤透了脑筋:为什么鸟儿有翅膀就能飞上天空,人类却不能。为此,我们的祖先制作出了种类繁多的风筝、竹晴蜒、孔明灯和木鸟模型。它们在飞机发明的过程中起了重要的作用。经过一代又一代人的努力。人类终于梦想成真了。 1903年,美国莱特兄弟(哥哥威尔伯,弟弟奥维尔)利用汽油发动机制造的“飞行者”号在美国基蒂霍克成功进行了历史上第一次机械动力飞行,12秒钟飞行了36米。此后在第一次世界大战中,飞机的性能得到迅速改善。1927年,美国飞行员林白曾驾驶“圣路易精神号(Spirit of Saint Louis)”成功飞越纽约和巴黎之间的大西洋,连续飞行5809公里,飞行时间为33小时50分钟。 但是,我国在航空同工业发达的国家相比,还有不少差距。开展航空模型小制作活动,可以使学生了解我国航空发展的历史和现状,激发学生从小立志献身于祖国的航空事业,为四化建设作出贡献。 航空模型的制作需要运用许多的科学知识,通过模型的制作,可以启发学生运用所学知识勇于实践,培养动手能力和创造能力。 初级橡筋动力模型飞机 初级橡筋动力模型飞机是一个比较典型的传统普及项目。通过制作、放飞初级橡筋动力模型飞机,可以对带有动力的自由飞项目有一个初步了解,为进一步学习制作复杂的模型飞机打下一个扎实的基础,是在初级模型滑翔机的基础上学习的延伸。下面让我们来做一架初级橡筋动力模型飞机. 第一节飞机的制作 一、材料工具: 一套初级橡筋动力模型飞机材料。砂纸板、壁纸刀、尖嘴钳、铅笔、尺子、透明胶带、双面胶带、模型快干胶(白乳胶、502胶水均可)。 二、制作过程: 1、制作机翼: 将吹塑纸按图示尺寸裁出左右机翼

四轴飞行器结题报告

学校名称: 队长姓名: 队员姓名: 指导教师姓名:2013年9月6日

摘要 本次比赛我们需要很好地控制飞行器,让它自主完成比赛应该完成的任务。 本文的工作主要针对微型四旋翼无人飞行器控制系统的设计与实现问题展开。首先制作微型四旋翼无人飞行器实验平台,其次设计姿态检测算法,然后建立数学模型并设计姿态控制器和位置控制器,最后通过实验对本文设计的姿态控制器进行验证。设计机型设计全部由小组成员设计并制作,部分元件从网上购得,运用RL78/G13作为主控芯片,自行设计算法对飞行器进行,升降,俯仰,横滚,偏航等姿态控制。并可以自行起飞实现无人控制的自主四轴飞行器。 关键字:四旋翼无人飞行器、姿态控制、位置控制

目录 第1章设计任务.................................................................................... 错误!未定义书签。 1.1 研究背景与目的........................................................................ 错误!未定义书签。 1.2 .................................................................................................... 错误!未定义书签。 1.3...................................................................................................... 错误!未定义书签。第2章方案论证.................................................................................... 错误!未定义书签。 2.1...................................................................................................... 错误!未定义书签。 .................................................................................................... 错误!未定义书签。 .................................................................................................... 错误!未定义书签。 2.2 ........................................................................................................... 错误!未定义书签。第3章理论分析与计算........................................................................ 错误!未定义书签。 ........................................................................................................... 错误!未定义书签。第4章测试结果与误差分析................................................................ 错误!未定义书签。 4.1...................................................................................................... 错误!未定义书签。 4.2...................................................................................................... 错误!未定义书签。 4.3...................................................................................................... 错误!未定义书签。 4.4 .................................................................................................... 错误!未定义书签。 ........................................................................................................... 错误!未定义书签。第5章结论心得体会............................................................................ 错误!未定义书签。 5.1 .................................................................................................................. 错误!未定义书签。.................................................................................................................. 错误!未定义书签。 2设计任务: 基本要求 (1)四旋翼自主飞行器(下简称飞行器摆放在图1所示的A区,一键式

一款制作简单的纸飞机模型

款制作简单的纸飞机模型 手掷模型飞机是制作较简单的无动力模型飞机,它靠人用手向前上方掷出。在模型掷出后的一段时间里,模型在空气中较快移动产生了升力使模型向空中飞去。当遇到向上的气流时,它会飞得更远一些。 小制作准备 手掷模型飞机套材、快干胶、笔、锉、刀、铅丝 科技小制作过程

相关知识 ●纸飞机 纸飞机是一种用纸做成的玩具飞机。它可能是航空类折纸手工中的最常见形式,航空类折纸手工属于折纸手工的一个分支。 由于它是最容易掌握的一种折纸类型,所以深受初学者乃至高手的喜爱。最简单的纸飞机折叠方法只需要六步就可以完成。现在,“纸飞机”这个词也包括那些用纸板做成的飞机。 用纸制作玩具被认为起源于2000年前的中国,那时放风筝是一种流行的娱乐项目,虽然这些可以被看做是现代纸飞机起源的证据,但是没有人能提供准确的证据指出这项发明到底起源于哪里。随着时间的推移,纸飞机速度、浮力和外形的设计已经有了较大的改进。 已经有很多人宣称自己做出了世界上最好的纸飞机。模型DC—03(DC--03纸飞机模型)就是其中之一。Dc--03拥有巨大的滑翔翼,和一个可能在所有纸飞机里独一无二的尾翼。可惜的是没有一个国际性的纸飞机联盟或者协会对这是否是世界最好的飞机进行官方认定。 对于DC--03模型的尾翼,吉尼斯世界纪录保持者肯·布莱克布恩不同意在纸飞机的尾部加尾翼的做法。他在自己的网站解释纸飞机的空气动力学时提到尾翼是不必要的。他以实际的B--2幽灵飞翼轰炸机

为例,提到沿着机翼的配重使重心更向前,因此飞机也就更平稳。很多人认为轻的纸飞机比重的纸飞机飞得更远,但是肯·布莱克布恩认为这是不正确的。他打破20年前的纸飞机记录就是基于他的信念:最好的飞机拥有短的机翼和重心位于掷飞机的人掷出飞机的那个点上,同时长机翼和更轻的重量能让纸飞机更远的飞行。但是在掷出阶段不能给予更多的力量。 很多年来,许多人试图突破手掷飞机在空中的最长停留时间这一极限。肯·布莱克布恩保持这一吉尼斯世界纪录长达l3年时问(1983年一l996年)。1998年lo月8日他创造了室内纸飞机飞行记录.他的纸飞机在空中保持了27.6秒。吉尼斯官方和国际新闻网见证并报导了这项记录。肯·布莱克布恩在这次冲击记录的尝试中使用的纸飞机被归属到滑翔(无引擎飞机)类当中。美国著名的纸飞机设计者托尼·弗莱特1985年创下飞行距离世界纪录——l93英尺(58.82米)。到目前为止,依然没有人打破它。这个距离比莱特兄弟首次飞行的距离还要长。

11 航天飞行器模型设计 教学设计 (2)

11 航天飞行器模型设计 1教学目标 知识与能力:了解航天飞行器的历史、作用、结构和造型要素。 过程与方法:自主、探究,掌握设计、制作航天飞行器模型的基本方法。 情感态度与价值观:培养学生的环保意识和对人类发展前景的关注、探索宇宙的勇气、热爱航天事业的情怀。 2学情分析 我校作为航天航空科普教育特色学校,又是中国航空之父冯如的故乡,学校非常重视科技,经常举行航模科技活动,所以学生对航天飞行器模型相当感兴趣,特别是男生兴趣更大,女生虽然没有男生兴趣强烈,可以从外观、色彩、装饰等方面多进行启发引导鼓励学生不拘原型,发挥个性,大胆创新。 3重点难点 重点:设计制作航天飞行模型的方法。 难点:怎样激发学生的创新精神和技术意识。 4教学过程 活动1【导入】航天梦想 1、看图片,猜一猜: 多媒体观看冯如与他研制的飞机的图片,激发学生的民族自豪感,并引出本课的课题。 2、通过“全球疯狂科学家十大早期飞行器设计”,了解人类的飞行的梦想和早期飞行工具。 活动2【讲授】航天创举 介绍我国重大航天创举,如“神舟”系列太空飞船等的意义和启示。 活动3【活动】学生活动 学生展示介绍自己在课前搜集的飞行器或航天飞机的图文资料,学习航天飞机的相关知识。 活动4【讲授】知识介绍 (1)航天器又称空间飞行器、太空飞行器。按照天体力学的规律在太空运行,执行探索、开发、利用太空和天体等特定任务的各类飞行器。世界上第一个航

天器是苏联1957年10月 4日发射的“人造地球卫星1号”,第一个载人航天器是苏联航天员加林乘坐的东方号飞船 (2)航天飞机是火箭、航天器、飞机三位一体的科学组合,是一种有翼、可重复使用的航天器,由辅助的运载的火箭发射脱离大气层。本节课的航天飞行器:主要介绍载人飞行器,包括航天飞机和航天飞船。 (3)航天飞机的结构和基本原理。 活动5【讲授】图片欣赏 欣赏现在的航天飞行器,以及未来的飞行梦想和飞行工具,认识航天科技的发展和进步,感受科技的重要性。 活动6【活动】学生活动 请学生写出制作航天飞机模型的材料和工具,看谁写得多,并评价激励。。 活动7【活动】实例示范 用幻灯片播放航模手工制作的步骤,通过实例介绍方法启发的创作思路。 活动8【讲授】启发创作 欣赏各种具有启发性的手工制作的飞行器的图片、模型或科幻作品 活动9【作业】实践活动 设计并画出一幅或一组航天器、航天飞机,或用废弃物品制作一件航天飞机模型。

四旋翼飞行器 设计报告

大学生电子设计竞赛 设计报告 摘要:本设计实现基于STM32开发板的十字形四旋翼飞行器,四旋翼由主控制板、陀螺仪、电机模块、超声波测距、电源和投弹打靶模块等六部分组成。其中,控制核心STM32负责飞行器姿态数据接收和飞行姿态控制;陀螺仪采用MPU6050模块,该模块经过卡尔曼滤波处理采集的数据,输出数据,用PID控制算法对数据进行处理,同时,解算出相应电机需要的的PWM增减量,及时调整电机转速,调整飞行姿态,使飞行器的飞行的更加稳定。电机模块通过电调控制无刷直流电机,超声波传感器进行测距,起飞后悬停在一定高度,打靶后降落。 关键词:四旋翼;PID控制;陀螺仪,姿态角,电机控制

2

目录 1系统方案 (1) 1.1控制系统选择方案 (1) 1.2飞行姿态控制方案论证 (1) 1.3角度测量模块的方案论证 (2) 1.4高度测量模块方案论证.............................................. 错误!未定义书签。2理论分析与计算 (2) 2.1控制模块 .................................................................... 错误!未定义书签。 2.2机翼电机 .................................................................... 错误!未定义书签。 2.3飞行姿态控制单元 (3) 3电路与程序设计 (4) 3.1系统总体设计思路 (4) 3.2主要元器件清单......................................................... 错误!未定义书签。 3.3系统框图 .................................................................... 错误!未定义书签。 3.3.1系统硬件框图 ..................................................... 错误!未定义书签。 3.3.2系统软件框图 ..................................................... 错误!未定义书签。4测试方案与测试结果.. (5) 5结论 (6) 3

相关主题
文本预览
相关文档 最新文档