当前位置:文档之家› 喷焊工艺

喷焊工艺

喷焊工艺方法原理

喷焊是对经预热的自溶性合金粉末涂层再加热至1000~1300℃,使颗粒熔化,造渣上浮到涂层表面,生成的硼化物和硅化物弥散在涂层中,使颗粒间和基体表面达到良好结合。最终沉积物是致密的金属结晶组织并与基体形成约0.05~0.1mm的冶金结合层,其结合强度约400MPa,抗冲击性能较好、耐磨、耐腐蚀,外观呈镜面。与喷涂层相比,喷焊层的优点显著。但由于重熔过程中基体局部受热后温度达900℃,会产生较大热变形。因此,喷焊的使用范围有一定局限性。适于喷焊的零件和材料一般是:①受冲击载荷,要求表面硬度高,耐磨性好的易损零件,如抛砂机叶片,破碎机齿板,挖掘机铲斗齿等;②几何形状比较简单的大型易损零件,如轴、柱塞、滑块、液压缸、溜槽板等;③低碳钢、中碳钢(含碳0.4%以下)、含锰、钼、钒总量<3%的结构钢、镍铬不锈钢、铸铁等材料。(1)喷焊用自熔性合金粉末自熔性合金粉末是以镍、钴、铁为基材的合金,其中加入适量硼和硅元素,起脱氧造渣焊接熔剂的作用,同时能降低合金熔点,适于乙炔一氧焰对涂层进行重熔。国产自熔性合金粉末品种较多,镍基合金粉末有较强的耐蚀性,抗氧化性可达650°C,耐磨性强;钴基合金粉末最大的特点是红硬性好,可在700℃保持较好的耐磨性和耐蚀性;铁基合金粉末耐磨粒磨损性优于其他两类。(2)喷焊工艺喷焊的工艺程序基本与喷涂相同,所不同者在喷粉工序中增加了重熔程序。喷焊有一步喷焊法和二步喷焊法。施工前应注意:①工件表面有渗碳层或氮化层,在预处理时必须清除;②工件的预热温度为一般碳钢200~300℃,耐热奥氏体钢350~400℃。预热火焰用中性或弱碳焰。此外,喷涂层重熔后,厚度减小25%左右,喷熔后在热态测量时,应将此量考虑在内。一步喷焊法。一步法即喷一段后即熔一段,喷、熔交替进行,使用同一支喷枪完成。可选用中、小型喷焊枪。在工件预热后先喷涂0. 2mm的保护层,并将表面封严,以防氧化,喷熔从一端开始,喷距10~30mm,有顺序地对保护层局部加热到熔融开始湿润(不能流淌)时再喷粉,与熔化反复进行,直至达到预定厚度,表面出现“镜面”反光,再向前扩展,达到表面全部覆盖喷焊层。如一次厚度不足,可重复加厚。一步法适用于小型零件或小面积喷焊。二步喷焊法。二步法即先完成喷涂层再对其重熔。喷涂与重熔均用大功率喷枪,例如SpH-E 喷、焊两用枪,使合金粉末充分在火焰中熔融,在工件表面上产生塑性变形的沉积层。喷铁基粉末时用弱碳火焰,喷镍基和钴基粉末时用中性或弱碳火焰。喷粉每层厚度<

0.2mm,重复喷涂达到重熔厚度,一般可在0.5~0. 6 mm时重熔。如果喷焊层要求较厚,一次重熔达不到要求时,可分几次喷涂和重熔。重熔是二步法的关键工序,在喷涂后立即进行。用中性焰或弱碳化焰的大功率柔软火焰,喷距约20 ~30mm,火焰与表面夹角为60°~75°,从距涂层约30mm处开始,适当掌握重熔速度,将涂层加热,直至涂层出现“镜面”反光为度,然后进行下一个部位的重熔。重熔时应防止过熔(即镜面开裂),涂层金属流淌,或局部加热时间过长使表面氧化。多层重熔时,前一层降温至700℃左右,清除表面熔渣后,再作二次喷熔。重熔宜不超过3次。工件的冷却。中低碳钢、低合金钢的工件和薄焊层、形状简单的铸铁件在空气中自然冷却。对于焊层较厚、形状复杂的铸铁件,锰、铜、钒含量较大的合金钢件,冷硬性高的零件,要埋在石灰坑中缓冷。

喷焊工艺

喷焊的工艺程序基本与喷涂相同,所不同者在喷粉工序中增加了重熔程序。喷焊有一步喷焊法和二步喷焊法。施工前应注意:①工件表面有渗碳层或氮化层,在预处理时必须清除;②工件的预热温度为一般碳钢200~300℃,耐热奥氏体钢350~400℃。预热火焰用中性或弱碳焰。此外,喷涂层重熔后,厚度减小25%左右,喷熔后在热态测量时,应将此量考虑在内。

一步喷焊法。一步法即喷一段后即熔一段,喷、熔交替进行,使用同一支喷枪完成。可选用中、小型喷焊枪。在工件预热后先喷涂0. 2mm的保护层,并将表面封严,以防氧化,喷熔从一端开始,喷距10~30mm,有顺序地对保护层局部加热到熔融开始湿润(不能流淌)时再喷粉,与熔化反复进行,直至达到预定厚度,表面出现“镜面”反光,再向前扩展,达到表面全部覆盖喷焊层。如一次厚度不足,可重复加厚。一步法适用于小型零件或小面积喷焊。

二步喷焊法。二步法即先完成喷涂层再对其重熔。喷涂与重熔均用大功率喷枪,例如SpH-E喷、焊两用枪,使合金粉末充分在火焰中熔融,在工件表面上产生塑性变形的沉积层。喷铁基粉末时用弱碳火焰,喷镍基和钴基粉末时用中性或弱碳火焰。

喷粉每层厚度<0.2mm,重复喷涂达到重熔厚度,一般可在0.5~0. 6 mm时重熔。如果喷焊层要求较厚,一次重熔达不到要求时,可分几次喷涂和重熔。

重熔是二步法的关键工序,在喷涂后立即进行。用中性焰或弱碳化焰的大功率柔软火焰,喷距约20 ~30mm,火焰与表面夹角为60°~75°,从距涂层约30mm处开始,适当掌握重熔速度,将涂层加热,直至涂层出现“镜面”反光为度,然后进行下一个部位的重熔。

重熔时应防止过熔(即镜面开裂),涂层金属流淌,或局部加热时间过长使表面氧化。多层重熔时,前一层降温至700℃左右,清除表面熔渣后,再作二次喷熔。重熔宜不超过3次。

工件的冷却。中低碳钢、低合金钢的工件和薄焊层、形状简单的铸铁件在空气中自然冷却。对于焊层较厚、形状复杂的铸铁件,锰、铜、钒含量较大的合金钢件,冷硬性高的零件,要埋在石灰坑中缓冷。

焊接工艺参数

手工电弧焊的焊接工艺参数选择 选择合适的焊接工艺参数,对提高焊接质量和提高生产效率是十分重要. 焊接工艺参数(焊接规范)是指焊接时,为保证焊接质量而选定的诸多物理量. 1、焊接电源种类和极性的选择 焊接电源种类:交流、直流 极性选择:正接、反接 正接:焊件接电源正极,焊条接电源负极的接线方法。 反接:焊件接电源负极,焊条接电源正极的接线方法。 极性选择原则:碱性焊条常采用直流反接,否则,电弧燃烧不稳定, 飞溅严重,噪声大,酸性焊条使用直流电源时通常采用直流正接。 2、焊条直径 可根据焊件厚度进行选择。一般厚度越大,选用的焊条直径越粗,焊条直径与焊件的关系见下表: 焊件厚度(mm) 2 3 4-5 6-12 >13 焊条直径(mm) 2 3.2 3.2-4 4-5 4-6 3、焊接电流的选择 选择焊接电流时,要考虑的因素很多,如:焊条直径、药皮类型、工件厚度、接头类型、焊接位置、焊道层次等。但主要由焊条直径、焊接位置、焊道层次来决定。 (1)焊条直径焊条直径越粗,焊接电流越大。下表供参考 焊条直径(mm) 1.6 2.0 2.5 3.2 4.0 5.0 6.0 焊接电流(A)

25-45 40-65 50-80 100-130 160-210 260-270 260-300 (2)焊接位置平焊位置时,可选择偏大一些焊接电流。横、立、仰焊位置时,焊接电流应比平焊位置小10~20%。角焊电流比平焊电流稍大一些。 (3)焊道层次 打底及单面焊双面成型,使用的电流要小一些。 碱性焊条选用的焊接电流比酸性焊条小10%左右。不锈钢焊条比碳钢焊条选用的焊接电流小左右等。 总之,电流过大过小都易产生焊接缺陷。电流过大时,焊条易发红,使药皮变质,而且易造成咬边、弧坑等到缺陷,同时还会使焊缝过热,促使晶粒粗大。 (4)电弧电压 电弧电压主要决定于弧长。电弧长,则电弧电压高;反之,则低。 在焊接过程中,一般希望弧长始终保持一致,而且尽可能用短弧焊接。所谓短弧是指弧长焊条直径的0.5~1.0倍,超过这个限度即为长弧。 (5)焊接速度 在保证焊缝所要求尺寸和质量的前提下,由操作者灵活掌握。速度过慢,热影响区加宽,晶粒粗大,变形也大;速度过快,易造成未焊透,未熔合,焊缝成型不良好等缺陷。 (6)速度以及电压与焊工的运条习惯有关不用强制要求,但是根据经验公式,可知当电流小于600A时,电压取20+0.04I。当电流大于600A时电压取44V。 参考资料:https://www.doczj.com/doc/db12278559.html,/jl 16 回答者: trilsen 焊接工艺参数的选择 手工电弧焊的焊接工艺参数主要有焊条直径、焊接电流、电弧电压、焊接层数、电源种类及极性等。 1.焊条直径 焊条直径的选择主要取决于焊件厚度、接头形式、焊缝位置和焊接层次等因素。在一般情况下,可根据表6-4按焊件厚度选择焊条直径,并倾向于选择较大直径的焊条。另外,在平焊时,直径可大一些;立焊时,所用焊条直径不超过5mm;横焊和仰焊时,所用直径不超过4mm;开坡口多层焊接时,为了防止产生未焊透的缺陷,第一层焊缝宜采用直径为3.2mm 的焊条。

手工钨极氩弧焊接工艺指导规程

手工钨极氩弧焊接工艺操作规程 ,保护电极和溶池不受大气有害气体的危害。 (一)手工钨极氩弧焊工艺参数 20~30A 的 、 ,也会使焊缝氧 化或产生焊透不匀等缺陷。应在保证良好视线的前提下短弧操作。通常电弧电压的选用范围是10~20V 。 4、焊丝直径和氩气流量: D=(2.5-3.5)d D---表示喷嘴直径(mm )d---表示钨针直径(mm ) 空气侵入。气体流量取决于喷嘴形状、尺寸、坡口形式、焊接电流及喷嘴与工件间

距 Q=KD Q—表示氩气流量(L/min)D---表示喷嘴直径(mm) K—表示系数K值=0.8~1.2 5、钨极伸出长度: 5~10 颜色观察法以鉴别气体保护效 ;铝焊缝表面呈银白本色。 2.电源种类和极性的选择: 金属 类别 碳钢 3.坡口形式和尺寸: 常用坡口形式有V形、U形、双面V形和V-U组合形等。

(三)焊前清理及预热: 1、焊前清理:施焊前必须严格清理焊接区及填充焊丝,去除氧化膜、油脂及水分。工件表面未形成氧化膜时,可用丙酮进行脱脂处理,当已生成氧化膜时应进行酸化处理或用机械法打磨掉,焊前再用丙酮去污。 2、预热:黑色金属焊接一般不须预热,δ> 26mm时,可适当预热。预热可加快焊接速度、防止过热、减少合金元素烧损,并利 (四) 1 缝长 接口口融合。 2、引弧:可采用短路接触法引弧,既钨极在引弧板上轻轻接触一下并随即抬起2mm左右即可引燃电弧。使用普通氩弧焊机, 3~5mm 3、填丝施焊: 75~80 150~200 以防扰乱氩气保护。不能象气焊那样在熔池中搅拌, 或者将焊丝端头浸入熔池中不断填入并向前移动。视装配间隙大小,焊丝 与焊枪可同步缓慢地稍做横向摆动,以增加焊缝宽度。防止焊丝与钨极接触、碰撞 ,打底焊应1次连续完成,避免停弧以减少接头。焊接时发现有缺陷,如加渣、气孔等应将缺陷清除,

氩弧焊的焊接技术与过程

氩弧焊的焊接技术 摘要:氩弧焊是以惰性气体“氩气”作为保护气体的一种电弧焊方法,氩气从喷嘴中喷出,在焊接区形成惰性气体保护层,隔绝了空气的侵入,从而对电弧及熔池进行保护。氩弧焊焊接具有许多普通电弧焊所不具有的优点。焊前工件表面的清洁度、焊接过程的良好环境控制及合理参数选择等因素是保证氩弧焊焊接质量的重要条件。选择合理的焊接规范是保证焊接质量的重要措施。手工钨极氩弧焊的规范参数主要有:焊接电流、焊接电压、氩气流量、喷嘴直径、电极伸出长度、填充焊丝直径、钨极直径、接头破口形式、焊接层数以及预热温度、焊接规范主要是根据不同的被焊金属、工件厚度以及结构形式而进行合理的选择。平时多用的钍钨极在磨削时,所产生的粉末进入人体是不利的,所以在沙轮机上磨削时,必须注意防护。 关键词:氩弧焊非熔化极直流反接直流正接 1、氩弧焊的基本原理及优缺点 1.1、氩弧焊就是在电弧焊的周围通上氩弧保护性气体,将空气隔离在焊区之外,防止焊区 的氧化。氩弧焊按照电极的不同分为熔化极氩弧焊和非熔化极氩弧焊两种,通常作业过程中手工焊接采用非熔化极氩弧焊。 1.2、非熔化极氩弧焊的工作原理及特点: 非熔化极氩弧焊是电弧在非熔化极(通常是钨极)和工件之间燃烧,在焊接电弧周围流过一种不和金属起化学反应的惰性气体(常常用氩气),形成一个保护气罩,使钨极端头,电弧和熔池及已处于高温的金属不与空气接触,能防止氧化和吸收有害气体。从而形成致密的焊接接头,其力学性能非常好。氩气是一种比较理想的保护气体,比空气密度大25%,在平焊时有利于对焊接电弧进行保护,降低了保护气体的消耗。氩气是一种化学性质非常不活泼的气体,即使在高温下也不和金属发生化学反应,从而没有了合金元素氧化烧损及由此带来的一系列问题。氩气也不溶于液态的金属,因而不会引起气孔。氩是一种单原子气体,以原子状态存在,在高温下没有分子分解或原子吸热的现象。氩气的比热容和热传导能力小,即本身吸收量小,向外传热也少,电弧中的热量不易散失,使焊接电弧燃烧稳定,热量集中,有利于焊接的进行。氩气的缺点是电离势较高。当电弧空间充满氩气时,电弧的引燃较为困难,但电弧一旦引燃后就非常稳定。 1.3、氩弧焊的优缺点 1.3.1、氩弧焊的优点:氩气保护可隔绝空气中氧气、氮气、氢气等对电弧和熔池产生的不良影响,减少合金元素的烧损,以得到致密、无飞溅、质量高的焊接接头。氩弧焊的电弧燃烧稳定,热量集中,弧柱温度高,焊接生产效率高,热影响区窄,所焊的焊件应力、变形、裂纹倾向小;氩弧焊为明弧施焊,操作、观察方便;电极损耗小,弧长容易保持。氩弧焊几乎能焊接所有金属,特别是一些难熔金属、易氧化金属,如镁、钛、钼、锆、铝等及其合金1.3.2、氩弧焊的缺点:氩弧焊因为热影响区域大,工件在修补后常常会造成变形、硬度降低、砂眼、局部退火、开裂、针孔、磨损、划伤、咬边、或者是结合力不够及内应力损伤等缺点。尤其在精密铸造件细小缺陷的修补过程在表面突出。在精密铸件缺陷的修补领域可以使用冷焊机来替代氩弧焊,由于冷焊机放热量小,较好的克服了氩弧焊的缺点,弥补了精密铸件修复难题。 2、焊接程序及技术控制 2.1、焊前准备检查电源线路、气路等是否正常。钨极氩弧焊通常采用直径0.5~ 3.0毫米的钍钨极,顶部磨成圆锥形,其顶部稍留0.~1.0毫米直径的小圆台为宜。电极的外伸长度约为3~5毫米左右,工件的被焊处应按规定开成坡口。两侧距坡口边缘25~30毫米处及焊丝用丙

P+T焊接工艺参数

P+T焊接设备对不锈钢产品工艺的要求 一、P+T焊接设备: 该设备由纵缝机、环缝机组成,适用于碳钢、不锈钢以及某些有色金属对接焊接。 纵缝机参数: 1、3-8mm 可不开坡口直接焊接,对于较薄板直接用等离子不填丝焊接; 8-14mm 板厚要求开坡口等离子焊接,然后用填丝盖面。拖罩保护焊缝。 2、工件精度要求: 焊缝直线度要求10m长直线度误差≤2mm(直线度不能保障时,可通过摄像监控系统调整焊枪位置) 对接间隙≤1/10T(T 为试件板厚)且不大于 错边≤(T 为试件板厚)且不大于1mm 3.工作对象 ①直径范围:φ1500~φ3200mm ②工件壁厚: 2-14mm(一次熔透8mm,大于8mm需开坡口填丝) ③工件长度:≤2500 mm ④工件材质:不锈钢、碳钢、钛基合金等 工件施焊端面采用机械加工,拼缝要求规则均匀 4.设备参数

可夹持最小壁厚: 2mm 可夹持最大壁厚: 14mm 焊枪行走速度: 100-3000mm/min 跟踪滑板速度:≤200mm/min 液压升降台承载:≤6T 一、设备的用途: 等离子环缝焊接系统用于各类碳钢\合金钢(碳钢、不锈钢、钛基合金等)环缝焊接,采用等离子焊接工艺,壁厚8mm以下可不开坡口直接焊接一次性单面焊双面成形。对于较薄板直接用等离子焊接;对于8mm 板厚以上视情况采用等离子添丝焊接的方式。焊接时正面有拖罩保护焊缝,反面有背气保护系统 设备采用一套飞马特等离子焊接系统和一套KM4030焊接操作机,一套视频系统,一套20T可调式滚轮架,采用等离子高效焊接,实现工件的环缝焊接。 电控系统部分以三菱PLC为控制核心,能够准确控制设备的各种动作,操作盒上安装有触摸屏,便于修改各项控制参数,使用安全可靠,故障率低。 1、焊接成型工艺: 2-8mm 可不开坡口直接焊接,对于较薄板直接用等离子不填丝焊接; 8-14mm 板厚要求开坡口等离子焊接,然后用TIG填丝盖面。拖罩保护焊缝。

氩弧焊焊接工艺规程

氩弧焊焊接工艺规程 1、焊接方法: 手工钨极氩弧焊 2、焊接材料: 不锈钢药芯焊丝不锈钢实心焊丝 3、焊接工艺参数:见焊接工艺卡 4、焊前准备: (1)检查焊接设备,按焊接工艺卡调整电弧电压、焊接电流、钨极等焊接工艺参数。(2)焊前100-150℃烘干不锈钢药芯焊丝。 5、焊接工艺: (1)清理焊件坡口及其两侧各宽20mm围的油、污、锈等杂质,直至露出金属光泽。 清理不锈钢焊丝表面油污等赃物。 (2)组对焊接接头,注意按图纸及工艺卡要求留出间隙。 (3)使用焊接活性剂时,将活性剂与丁酮以1:1的比例混合,然后均匀涂抹在坡口面,待丁酮挥发后再施焊。渗透剂的用量要适当,若太少,熔池粘度降低不多,流动性改善不明显;若太多,熔池粘度降低太多,流动性变差。 (4)定位焊采用与打底焊相同的焊丝和工艺,定位焊缝长10~15mm,定位点固2—3处。(5)第一层氩弧焊打底焊焊接,使用不锈钢药芯焊丝,打底焊应一次连续完成,避免停弧以减少接头,焊接时发现有缺陷,如夹钨、气孔等应将缺陷清除,不允许通过重复熔化的方法来消除缺陷。电弧熄灭后,焊枪喷嘴仍要对准熔池,以延续氩气保护,防止氧化。 (6)使用不锈钢实心焊丝进行第二层以后的层焊和罩面

射线检测工艺规程 1.主题容与适用围 本规程规定了焊缝射线人员具备的资格、所用器材、检测工艺和验收标准等容。 本规程依据JB/T4730-2005的要求编写。适用于本公司P≥10Mpa产品的对接焊接接头的X 射线AB级检测技术。满足《压力容器安全技术监察规程》、GB150的要求。检测工艺卡容是本规程的补充,由Ⅱ级人员按本规程等要求编写,其参数规定的更具体。 2.引用标准、法规 JB/T4730-2005《承压设备无损检测》 GB150-1998《钢制压力容器》 GB18871-2002《电离辐射防护及辐射源安全基本标准》 GB16357-1996《工业X射线探伤放射卫生放护标准》 JB/T7902《线型象质计》 《特种设备无损检测人员考核与监督管理规则》 《压力容器安全技术监察规程》. 3.一般要求 3.1射线检测人员必须经过技术培训,按《特种设备无损检测人员考核与监督管理规则》考核并取得与其工作相适应的书。 3.1.1检测人员应每年检查一次视力,校正视力≮1.0。评片人员还应辨别出400mm距离处高0.5mm、间距0.5mm的一组印刷字母。 3.2辐射防护 射线防护应符合GB18871、GB16357的有关规定。 3.3胶片和增感屏 3.3.1胶片:在满足灵敏度要求的情况下,一般X射线选用T3或T2型胶片。 3.3.2 增感屏:采用前屏为0.03mm、后屏为0.03~0.10mm的铅箔增感屏。. 3.3.3 胶片和增感屏在透照过程中应始终紧密接触。 3.4象质计

氩弧焊的焊接方法

氩弧焊的焊接方法 ?教学目的:掌握好手工钨极氩弧焊的焊前准备、运焊把、送丝、引弧、焊接、收弧的技巧 ?具体要求: ?1、了解焊弧焊的原理、特点和分类 ?2、掌握好氩弧焊焊前准备和焊接方法 ?3、掌握好氩焊在焊接过程中产的缺陷和解决的办法 ?4、适用于有接焊接基础人员,其焊件需要进行无损检测、内部和外观要求有较高要求的标准焊件。 ?1、氩弧焊的原理: ?氩弧焊是使用惰性气体氩气作为保护气体的一种气电保护焊的焊接方法。 ?2、氩弧的特点: ?(1)焊缝质量高,由于氩气是一种惰性气体,不与金属起化学反应,合金元素不会被烧损,而氩气也不熔于金属,焊接过程基本上是金属熔化和 结晶的过程,因此,保护较果好,能获得较为纯净及高质量的焊缝 ?(2)焊接变形应力小,由于电弧受氩气流的压缩和冷却作用,电弧热量集中,且氩弧的温度又很高,故热影响区小,故焊接时应力与变形小,特 别造用于薄件焊接和管道打底焊。 ?(3)焊接范围广,几乎可以焊接所有金属材料,特别适宜焊接化学成份活泼的金属和合金。 ?3、氩弧焊的分类: ?氩弧焊根据电极材料的不同可分为钨极氩弧焊(不熔化极)和熔化极氩弧焊。根据其操作方法可分为手工、半自动和自动氩弧焊。根据电源又可以 分为直流氩弧焊、交流氩弧焊和脉冲氩弧焊。 ?4、焊前准备: ?(1)阅读焊接工艺卡,了解施焊工件的材质、所需要的设备、工具和相关工艺参数,其中包括选用正确的焊机,(如焊接铝合金则需要用交流焊 机),正确的选用钨极和气体流量, ?首先,要从焊接工艺卡上得知焊接电流的大小等工艺参数。然后选用钨

极(一般来说直径2.4mm用的比较多,它的电流造应范围是150A—250A,铝例外)。 ?再根据钨极的直径选用多大的喷嘴,钨极直径的2.5—3.5倍是喷嘴的内径D=(2.5—3.5)dw其中D表示喷嘴内径(mm),dw表示钨极直径(mm)。 ?最后根据喷嘴的内径选用气体流量,喷嘴内径的0.8—1.2倍是气的流量。 Q=(0.8—1.2)D,其中Q表示气体流量(L/min)钨极的申出长度不可超过其喷嘴的内径直径,否则容易产生气孔。 ?(2)检查焊机、供气系统、供水系统、接地是否完好。 ?(3)检查工件是否合格:1.是否有油、锈等脏物(焊缝20mm内必须干净、干燥)2.坡口角度、间隙、钝边是否合适。坡口角度、间隙大、则曾大焊接量大,易产生焊瘤。坡口角度小、间隙小、钝边厚则容易产生未熔合和焊不透。一般来说坡口角度为30—32度,间隙为0—4mm,钝边为0—1mm。3.错边不能过大,一般在1mm内。4.定位焊的长度、点数是否达到要求,定位焊本身要没有缺陷。 ?5、氩弧焊的操作手法:氩弧是一种左右手同时动作的操作,与我们平时生活中的左手画圆右手画方相同,所以建议在刚开始学习氩弧焊的人员进行类似的训练,对学习氩弧焊有一定的帮助。 ?(1)送丝:分内填丝和外填丝。 ?外填丝可以用于打底和填充,是用较大的电流,其焊丝头在坡口正面,左手捏焊丝,不断送进熔池进行焊接,其坡口间隙要求较小或没有间隙。 ?其优点因为电流大、和间隙小,所以生产效率高,操作技能容易掌握。其缺点是用于打底的话因为操作者看不到钝边熔化和反面余高情况,所以容易产生未熔合和得不到理想的反面成形。 ?内填丝只能用于打底焊,是用左手拇指、食指或中指配合送丝动作,小指和无名指夹住焊丝控制方向,其焊丝则紧贴坡口内侧钝边处,与钝边一起熔化进行焊接,要求坡口间隙大于焊丝直径,是板材的话可以将焊丝弯成弧形。 ?其优点因为焊丝在坡口的反面,可以清晰地看清钝边和焊丝的熔化情况,眼睛的余光也可以看见反面余高的情况,所以焊缝熔合好好,反面

激光焊接的工作原理及其主要工艺参数

激光焊接的工作原理及其主要工艺参数摘要:焊接技术主要应用在金属母材热加工上,常用的有电弧焊,电阻焊,钎焊, 电子束焊,激光焊等多种,本文详细介绍了激光焊接的工作原理与工艺参数,还讨论了激光焊接技术在现代工业中的应用,并与其他焊接方法进行对比。研究表明激光焊接技术将逐步得到广泛应用。 关键词:焊接技术;激光焊接;工作原理;工艺参数。 1. 引言 目前常用的焊接工艺有电弧焊、电阻焊、钎焊、电子束焊等。电弧焊是目前应用最广泛的焊接方法,它包括手弧焊、埋弧焊、钨极气体保护电弧焊、等离子弧焊、熔化极气体保护焊等。但上述各种焊接方法都有各自的缺点,比如空间限制,对于精细器件不易操作等,而激光焊接不但不具有上述缺点,而且能进行精确的能量控制,可以实现精密微型器件的焊接。并且它能应用于很多金属,特别是能解决一些难焊金属及异种金属的焊接。 激光指在能量相应与两个能级能量差的光子作用下,诱导高能态的原子向低能态跃迁,并同时发射出相同能量的光子。激光具有方向性好、相干性好、单色性好、光脉冲窄等优点。激光焊接是利用大功率相干单色光子流聚焦而成的激光束为热源进行的焊接,这种焊接通常有连续功率激光焊和脉冲功率激光焊。激光焊接从上世纪60年代激光器诞生不久就开始了研究,从开始的薄小零器件的焊接到目前大功率激光焊接在工业生产中的大量的应用,经历了近半个世纪的发展。由于激光焊接具有能量密度高、变形小、热影响区窄、焊接速度高、易实现自动控制、无后续加工的优点,近年来正成为金属材料加工与制造的重要手段,越来越广泛地应用在汽车、航空航天、造船等领域。虽然与传统的焊接方法相比,激光焊接尚存在设备昂贵、一次性投资大、技术要求高的问题,但激光焊接生产效率高和易实现自动控制的特点使其非常适于大规模生产线。 2. 激光焊接原理 2.1激光产生的基本原理和方法 光与物质的相互作用,实质上是组成物质的微观粒子吸收或辐射光子。微观粒子都具有一套特定的能级,任一时刻粒子只能处在与某一能级相对应的状态,物质与光子相互作用时,粒子从一个能级跃迁到另一个能级,并相应地吸收或辐射光子。光子的能量值为此两能级的能量差△E,频率为ν=△E/h。爱因斯坦认为光和原子的相互作用过程包含原子的自发辐射跃迁、受激辐射跃迁和受激吸收跃迁三种过程。我们考虑原子的两个能级E1和E2,处于两个能级的原子数密度分别为N1和N2。构成黑体物质原子中的辐射场能量密度为ρ,并有E2 -E1=hν。 2.1.自发辐射 处于激发态的原子如果存在可以接纳粒子的较低能级,即使没有外界作用,粒子也有一定的概率自发地从高能级激发态(E2)向低能级基态(E1)跃迁,同时辐射出能量为(E2-E1)的光子,光子频率ν=(E2-E1)/h。这种辐射过程称为自发辐射。自发辐射发出的光,不具有相位、偏振态上的一致,是非相干光。 2.2.受激辐射 除自发辐射外,处于高能级E2上的粒子还可以另一方式跃迁到较低能级。当频率为ν=(E2-E1)/h的光子入射时,也会引发粒子以一定的概率,迅速地从能级E2跃迁到能级E1,同时辐射一个与外来光子频率、相位、偏振态以及传播方向都相同的光子,

看完绝对就理解了阻焊层和助焊层

关于阻焊层和助焊层的理解-经典讲义 1.阻焊层:solder mask,是指板子上要上绿油的部分;因为它是负片输出,所以实际上有solder mask的部分实际效果并不上绿油,而是镀锡,呈银白色! 2.助焊层:paste mask,是机器贴片时要用的,是对应所有贴片元件的焊盘的,大小与toplayer/bottomlayer层一样,是用来开钢网漏锡用的。 要点:两个层都是上锡焊接用的,并不是指一个上锡,一个上绿油;那么有没有一个层是指上绿油的层,只要某个区域上有该层,就表示这区域是上绝缘绿油的呢?暂时我还没遇见有这样一个层!我们画的PCB板,上面的焊盘默认情况下都有solder层,所以制作成的PCB板上焊盘部分是上了银白色的焊锡的,没有上绿油这不奇怪;但是我们画的PCB板上走线部分,仅仅只有toplayer或者bottomlayer 层,并没有solder层,但制成的PCB板上走线部分都上了一层绿油。那可以这样理解:1、阻焊层的意思是在整片阻焊的绿油上开窗,目的是允许焊接!2、默认情况下,没有阻焊层的区域都要上绿油!3、paste mask层用于贴片封装!SMT封装用到了:toplayer层,topsolder 层,toppaste层,且toplayer和toppaste一样大小,topsolder比它们大一圈。DIP封装仅用到了:topsolder和multilayer层(经过一番分解,我发现multilayer层其实就是toplayer,bottomlayer,topsolder,bottomsolder层大小重叠),且topsolder/bottomlayer比toplayer/bottomlayer大一圈。

氩弧焊16MnDG管对接__焊接工艺评定

焊接工艺评定报告书评定报告书编号: 材料牌号:16MnDG+16MnDG 材料规格:Φ159×6 焊缝型式:对接焊缝 焊接方法:氩弧焊 试件编号: 填报日期:

预焊接工艺规程(pWPS ) 单位名称 预焊接工艺规程编号 日期 所依据焊接工艺评定报告编号: NB47014-2011 焊接方法 氩弧焊 机械化程度: 手工 焊接接头:对接 坡口形式: V 型 衬垫(材料及规格) 无 其他 共焊3层:单道焊采用单面焊双面 成形技术焊接,先焊第一层(打底层),再 焊二层(中间层),最后焊第三层(盖面层) 都采用手工钨极氩弧焊。 简图:(接头形式、坡口形式与尺寸、焊层、焊道布置及顺序) 母材: 类别号 Fe-1 组别号 Fe-1-2 与类别号 Fe-1 组别号Fe-1-2 相焊或 标准号 GB/T18984材料代号 16MnDG 与标准号GB/T18984材料代号16MnDG 相焊 对接焊缝焊件母材厚度范围 1.5--12 mm 角焊缝焊件母材厚度范围 / 管子直径、壁厚范围:对接焊缝 Φ159×6 角焊缝 / 其他 无 填充金属: 氩弧焊丝 焊材类别: FeS-1-2 焊材标准: GB/T8110-2008 填充金属尺寸: Φ2.5mm 焊材型号: ER50-6 焊材牌号(金属材料代号): THT50-6 填充金属类别: Fe-1-1 其他: 无 对接焊缝焊件焊缝金属厚度范围: 5mm 角焊缝焊件焊缝金属厚度范围 / 耐蚀堆焊金属化学成份(%) C Si Mn P S Cr Ni Mo V Ti Nb 其他: 注:对每一种母材与焊接材料的组合均需分别填表 0.5-1.5 3—4 55o -60 o 6 0.5-3

氩弧焊焊接工艺参数(精)

氩弧焊焊接工艺参数 一、电特性参数 1.焊接电流钨极氩弧焊的焊接电流通常是根据工件的材质、厚度和接头的空间位置来选择的,焊接电流增加时,熔深增大,焊缝的宽度和余高稍有增加,但增加很少,焊接电流过大或过小都会使焊缝成形不良或产生焊接缺陷。 2.电弧电压钨极氩弧焊的电弧电压主要是由弧长决定的,弧长增加,电弧电压增高,焊缝宽度增加,熔深减小。电弧太长电弧电压过高时,容易引起未焊透及咬边,而且保护效果不好。但电弧也不能太短,电弧电压过低、电弧太短时,焊丝给送时容易碰到钨极引起短路,使钨极烧损,还容易夹钨,故通常使弧长近似等于钨极直径。 3.焊接速度焊接速度增加时,熔深和熔宽减小,焊接速度过快时,容易产生未熔合及未焊透,焊接速度过慢时,焊缝很宽,而且还可能产生焊漏、烧穿等缺陷。手工钨极氩弧焊时,通常是根据熔池的大小、熔池形状和两侧熔合情况随时调整焊接速度。 二、其它参数 1.喷嘴直径喷嘴直径(指内径)增大,应增加保护气体流量,此时保护区范围大,保护效果好。但喷嘴过大时,不仅使氩气的消耗增加,而且不便于观察焊接电弧及焊接操作。因此,通常使用的喷嘴直径一般取8mm~20mm为宜。 2.喷嘴与焊件的距离喷嘴与焊件的距离是指喷嘴端面和工件间的距离,这个距离越小,保护效果越好。所以,喷嘴与焊件间的距离应尽可能小些,但过小将不便于观察熔池,因此通常取喷嘴至焊件间的距离为7mm~15mm。 3.钨极伸出长度为防止电弧过热烧坏喷嘴,通常钨极端部应伸出喷嘴以外。钨极端头至喷嘴端面的距离为钨极伸出长度,钨极伸出长度越小,喷嘴与工件间距离越近,保护效果越好,但过小会妨碍观察熔池。通常焊对接缝时,钨极伸出长度为5mm~6mm较好;焊角焊缝时,钨极伸出长度为7mm~8mm较好。 4.气体保护方式及流量钨极氩弧焊除采用圆形喷嘴对焊接区进行保护外,还可以根据施焊空间将喷嘴制成扁状(如窄间隙钨极氩弧焊)或其他形状。 焊接根部焊缝时,焊件背部焊缝会受空气污染氧化,因此必须采用背部充气保护。氩气和氦气是所有材料焊接时,背部充气最安全的气体。而氮气是不锈钢和铜合金焊接时,背部充气保护最安全的气体。一般惰性气体背部充气保护的气体流量范围为0.5~42L/min。当喷嘴直径、钨极伸出长度增加时,气体流量也应相应增加。若气流量过小,保护气流软弱无力,保护效果不好,易产生气孔和焊缝被氧化等缺陷;若气流量过大,容易产生紊流,保护效果也不好,还会影响电弧的稳定燃烧。 对管件内充气时,应留适当的气体出口,防止焊接时管内气体压力过大。在根部焊道焊接结束前的25~50毫米时,要保证管内内充气体压力不能过大,以便防止焊接熔池吹出或根部内凹。当采用氩气进行管件焊接背面保护时,最好从下部进入,使空气向上排出,并且使气体出口远离焊缝。

PCB线路板生产流程中晒阻焊工序工艺

印制板中晒阻焊工序,是将网印后有阻焊的印制板。用照像底版将印制板上的焊盘覆盖,使其在曝光中不受紫外线的照射,而阻焊保护层经过紫外光照射更加结实的附着在印制板面上,焊盘没有受到紫外光照射,可以露出铜焊盘,以便在热风整平时上铅锡。 晒阻焊工序大致可分为三道操作程序: 第一道程序为曝光。首先,在开始曝光以前要检查曝光框的聚脂薄膜及玻璃框是否干净,如果不干净应及时用防静电布擦拭干净,然后,打开曝光机的电源开关,再打开真空钮选择曝光程序,摇动曝光快门,在未开始正式曝光前,应先让曝光机“空曝”五次,“空曝”的作用是使机器能够进入饱和的工作状态,最主要的是使紫外线曝光灯能量进入正常范围。如果不“空曝”曝光灯的能量可能未进入最佳的工作状态。在曝光中就会使印制板出现问题。“空曝”五次后,曝光机己进入最佳工作状态,在用照相底版对位以前,要检查底版质量是否合格。检查底版上药膜面是否有针孔和露光的部分,与印制板的图形是否一致,因为这将检查照像底版可以避免因为一些不必要的原因使印制板返工或报废。 晒阻焊通常采用目视定位,使用银盐底版,把底版的焊盘与印制板的焊盘孔重合对准,用胶带固定即可进行曝光。在对位中会遇到的晒阻焊通常采用目视定位,使用银盐底版,把底版的焊盘与印制板的焊盘孔重合对准,用胶带固定即可进行曝光。在对位中会遇到的问题很多,比如说,因为底版与温度、湿度等因素有关,如果温度与湿度不控制好,照相底版有可能缩小或放大变形,这样在晒阻焊的时候,照相底版与印制板焊盘不是完全吻合。在底版缩小的时候,看底版焊盘与印制板焊盘相差有多少,如果相差很小,可以在热风整平时上铅锡,那么,就没有很大问题可以进行硒阻焊。如果相差很大,只有重新翻版,尽量使底版焊盘重合。在对位以前,还应注意底版的药膜面是否翻反,应保证药膜面在对位时朝下,如果朝上,使药膜面被划伤,从而导致底版露光,使晒出的印制板不需曝光处有阻焊料,严重的会造成印制板报废。另外,还要注意有时拼版的底版会与印制板图形不重合,通常将拼版底版沿拼板的边缘剪开,然后单拼对位,将整个印制板对好后进行曝光。以上问题是在正式曝光硒阻焊前应注意的问题。 然后,进行晒阻焊,在曝光以前应检查印制板是否被真空盒吸覆。真空吸覆的压力应充足无露气存在。如果露气会使紫外光沿板子侧面照进图形内,造成遮光处曝光,显影不掉,有时遇到单面曝光的情况,在这种情况下,把单面没有图形的一面用黑色布与曝光灯射出的紫外光隔开,如果不用黑布,紫外光透过没有图形的一面透射到焊盘里使焊盘孔里的阻焊料经过曝光后,显影不掉。在曝两面图形不一致的印制板时,先网印一面阻焊,然后进行单面曝光,显影后,在网印另一面阻焊,因为,如果两面同时网印曝光,有一面图形复杂焊盘多,需要遮光的部分多,而另一面需要遮光的部分少,使紫外光透过一面照射到另一面,遮光多的一面经过紫外光的照射,在显影时显不掉影,会造成返工或报废。在曝光过程中,也会遇到网印后的印制板在固化时没有烘干的情况,这种情况下,在对位时会使阻焊料沾到照相底版上,而且,印制板也要返工,所以,发现不干的情况,尤其是大部分印制板没有烘干就要在放到烘箱中重新烘干。这些情况都是曝光过程中易出现的问题,所以要认真检查,及时发现,及时解决。 第二道工序是显影。显影操作一般要在显影机中进行,控制好显影液的温度、传送速度、喷淋压力等显影参数,能够得到更好的显影效果。显影是把遮光的部分用显影溶液去掉焊盘上的阻焊。显影用的溶液是百分之一的无水碳酸钠,液温通常在三十至三十五摄氏度之间。在正式显影之前,要把显影机升温,使溶液达到预定温度,从而达到最佳的显影效果。显影机分三个部分:第一段是喷淋段,主要是利用高压喷射无水碳酸钠,使未被曝光的阻焊剂溶解下来; 第二段是水洗段,首先是利用高压泵水洗,先将残留溶液水洗干净,然后进入循环水洗,彻底洗净;第三段是吹干段,吹干段前后各有一个风刀主要是用热风把板子吹干,再有吹干段的温度较高也可把板子烘干。正确的显影时间通过显出点来确定,显出点必须保持在显影段总长度的一个恒定百分比上,如果显出点离显影段出口太近,未曝光的阻焊层得不到充分的显影会造成未曝光阻焊层的残余可能留在板面上,如果显出点离显影段的入口太近,被曝光的阻焊层由于与显影液过长时问的接触,可能被浸蚀而变得发毛,失去光泽。通常显出点控制在显影段总长度的40%—60%之内,另外,要注意在显影时,很容易将板子划伤,通常解决的方法,是在显影时,放板子操作人员要戴手套,对板子要轻拿轻放,还有是印制板的尺寸大小不一,所以,尽量尺寸差不多大的一起放,在放板子时,板子与板子之间要保

氩弧焊的焊接方法

氩弧焊的焊接方法 ? 教学目的:掌握好手工钨极氩弧焊的焊前准备、运焊把、送丝、 引弧、焊接、收弧的技巧 ? 具体要求: ? 1、了解焊弧焊的原理、特点和分类 ? 2、掌握好氩弧焊焊前准备和焊接方法 ? 3、掌握好氩焊在焊接过程中产的缺陷和解决的办法 ? 4、适用于有接焊接基础人员,其焊件需要进行无损检测、内部和外观要求有较高要求的标准焊件。 ? 1、氩弧焊的原理: ? 氩弧焊是使用惰性气体氩气作为保护气体的一种气电保护焊的焊接方法。? 2、氩弧的特点: ? (1)焊缝质量高,由于氩气是一种惰性气体,不与金属起化学反应,合 金元素不会被烧损,而氩气也不熔于金属,焊接过程基本上是金属熔化和 结晶的过程,因此,保护较果好,能获得较为纯净及高质量的焊缝? (2)焊接变形应力小,由于电弧受氩气流的压缩和冷却作用,电弧热量 集中,且氩弧的温度又很高,故热影响区小,故焊接时应力与变形小,特 别造用于薄件焊接和管道打底焊。 ? (3)焊接范围广,几乎可以焊接所有金属材料,特别适宜焊接化学成份 活泼的金属和合金。 ? 3、氩弧焊的分类: ? 氩弧焊根据电极材料的不同可分为钨极氩弧焊(不熔化极)和熔化极氩弧 焊。根据其操作方法可分为手工、半自动和自动氩弧焊。根据电源又可以

分为直流氩弧焊、交流氩弧焊和脉冲氩弧焊。 ? 4、焊前准备: ? (1)阅读焊接工艺卡,了解施焊工件的材质、所需要的设备、工具和相 关工艺参数,其中包括选用正确的焊机,(如焊接铝合金则需要用交流焊 机),正确的选用钨极和气体流量, ? 首先,要从焊接工艺卡上得知焊接电流的大小等工艺参数。然后选用钨 极(一般来说直径2.4mm用的比较多,它的电流造应范围是150A—250A, 铝例外)。 ? 再根据钨极的直径选用多大的喷嘴,钨极直径的2.5—3.5倍是喷嘴的内径D=(2.5—3.5)dw其中D表示喷嘴内径(mm),dw表示钨极直径(mm)。? 最后根据喷嘴的内径选用气体流量,喷嘴内径的0.8—1.2倍是气的流量。 Q=(0.8—1.2)D,其中Q表示气体流量(L/min)钨极的申出长度不可超过 其喷嘴的内径直径,否则容易产生气孔。 ? (2)检查焊机、供气系统、供水系统、接地是否完好。? (3)检查工件是否合格:1.是否有油、锈等脏物(焊缝20mm内必须干 净、干燥)2.坡口角度、间隙、钝边是否合适。坡口角度、间隙大、则曾 大焊接量大,易产生焊瘤。坡口角度小、间隙小、钝边厚则容易产生未熔 合和焊不透。一般来说坡口角度为30—32度,间隙为0—4mm,钝边为 0—1mm。3.错边不能过大,一般在1mm内。4.定位焊的长度、点数是否 达到要求,定位焊本身要没有缺陷。 ? 5、氩弧焊的操作手法:氩弧是一种左右手同时动作的操作,与我们 平时生活中的左手画圆右手画方相同,所以建议在刚开始学习氩弧焊的人 员进行类似的训练,对学习氩弧焊有一定的帮助。 ? (1)送丝:分内填丝和外填丝。

材料的等离子弧焊接

材料的等离子弧焊接 索引:穿孔型等离子弧焊接最适于焊接厚度3~8mm不锈钢、厚度12mm 以下钛合金、板厚2~6mm低碳或低合金结构钢以及铜、黄铜、镍及镍合金的对接焊缝。这一厚度范围内可不开坡口,不加填充金属,不用衬垫的条件下实现单面焊双面成形。厚度大于上述范围时可采纳V形坡口多层焊。 关键词: 高温合金, 铝及铝合金, 钛及钛合金, 银与铂, 等离子弧焊接 穿孔型等离子弧焊接最适于焊接厚度3~8mm不锈钢、厚度12mm 以下钛合金、板厚 2~6mm低碳或低合金结构钢以及铜、黄铜、镍及镍合金的对接焊缝。这一厚度范围内可不开坡口,不加填充金属,不用衬垫的条件下实现单面焊双面成形。厚度大于上述范围时可采用V形坡口多层焊。

1.高温合金的等离子弧焊接 用等离子弧焊焊接固溶强化和Al、Ti含量较低的时效强化高温合金时,能够填充焊丝也能够不加焊丝,均能够获得良好质量的焊缝。一般厚板采纳小孔型等离子弧焊,薄板采纳熔透型等离子弧焊,箔材用微束等离子弧焊。焊接电源采纳陡降外特性的直流正极性,高频引弧,焊枪的加工和装配要求精度较高,并有专门高的同心度。等离子气流和焊接电流均要求能递增和衰减操纵。 焊接时,采纳氩和氩中加适量氢气作为爱护气体和等离子气体,加入氢气能够使电弧功率增加,提高焊接速度。氢气加入量一般在5%左右,要求不大于15%。焊接时是否采纳填充焊丝依照需要确定。选用填充焊丝的牌号与钨极惰性气体爱护焊的选用原则相同。 高温合金等离子弧焊的工艺参数与焊接奥氏体不锈钢的差不多相同,应注意操纵焊接热输入。镍基高温合金小孔法自动等离子弧焊的工艺参数见表1-1。在焊接过程中应操纵焊接速度,速度过快会产生气孔,还应注意电极与压缩喷嘴的同心度。高温合金等离子弧焊接接头力学性能较高,接头强度系数一般大于90%。

阻焊工序检验规范

阻焊工序检验规范 1.0目的 制定阻焊工序的检验方法和允收标准,使检验工作有章可循,有据可依。 2.0检验方式 2. 1首件检查:针对阻焊显影后必须做首件检查. 2. 2检查频率: 检验员在阻焊显影后针对当班所生产的每一款新型号板/工具更改/工 艺变更后的板须进行首件确认(包括上一班首件OK的板和各套生产film 所生产的板); 2.3 阻焊全检:阻焊QC对阻焊显影后的板做全检检查。 2. 4过程抽检:针对阻焊显影后必须做抽检检查. 3.0检验工具 MI/制造流程卡(LOT卡)﹑10倍放大镜﹑3M胶带﹑光台﹑锡炉 4.0检验项目 4.1 阻焊油墨的型号与颜色; 4.2 板表面的阻焊印刷质量; 4.3 板表面以及孔内的阻焊显影质量; 4.4 板面阻焊的耐热冲击测试; 4.5 板子与film之间的对准度情况; 4.6 板面阻焊的硬度测试; 4.7 板面的油墨厚度控制; 5.0缺陷名称 油墨用错﹑油墨入孔﹑油墨上盘﹑漏印、露铜、露线、阻焊垃圾/杂物、手指印、龟裂、聚油、阻焊塞孔﹑显影过度﹑显影不净﹑阻焊气泡﹑阻焊脱落﹑菲林对反﹑菲林划伤﹑周期错误﹑UL标志错误、烤板过度等 6.0检验步骤 6.1检验前,检验员须准备好10倍放大镜﹑3M胶带等相关的检验工序并放置在检验台面 上; 6.2.检验时,检验员须戴干净的白手套,并根据首检记录报表上的检验项目逐项进行检 验; 6.3首检

任何送给当站检验人员进行检验的首件板,必须是有经过操作人员进行自检,且自检合格后的板,否则当站检验人员有权拒检,同时,针对此工序的板,操作员在通知检验人员进行首检时,必须准备好相应的LOT卡并放置于待检板的旁边,否则当站检验人员有权进行 6.3.1针对于任何一款板,在阻焊显影之后,操作人员须将前三片的首件板单独放置 在显影机附近,并准备好相应的LOT卡,同时通知当站检验人员取板进行首检作业; 6.3.2检验人员须检查前一站的检验人员是否有在LOT卡的相应位置上进行签卡确认, 如有则进入下一步的检验工作;如上一站的检验人员并未在LOT卡的相应位置上进行签卡确认,则当站检验人员有权进行拒检首件板,同时将此信息立即向生产以及本部门的技工以上人员进行反馈,以使问题能够得到及时的处理,并在处理后,得到本部门技工以上人员通知的情况下进行相应的检验; 6.3.2.1检验人员须认真检查板边处的板型号﹑版本号与LOT卡上的工具型号以及 版本号是否一致; 6.3.2.2检查板子的生产工艺流程是否与LOT卡上的工艺流程一致,是否有走错工 序; 6.3.2.3检查板面的油墨型号﹑颜色是否与LOT卡上的要求一致; 6.3.2.4检查板面的阻焊生产周期与UL标志是否与LOT卡上的要求一致; 6.3.2.5在光台上检查生产Film与板子图形之间的对准度,以确定是否有因对位偏 而造成的绿油压盘上PAD/IC/邦定位置; 6.3.2.6在光台上检查板面是否有显影不干净/显影过度; 6.3.2.7在光台上检查板面是否有阻焊下垃圾/杂物; 6.3.2.8在光台上检查组件孔内是否残留有阻焊油墨未显影干净; 6.3.3所有的检验项目均检验合格后,检验员须做好相关的首检质量记录报表,同时 通知生产部操作人员可以进入到批量生产,如首检不合格,也同样须要通知到生产部操作人员,以便于操作人员及时改善,并由阻焊工序技工以上人员在相关的检验记录上签名确认,同时在改善后重新进行首板检验直至合格为止;

氩弧焊焊接工艺规程

氩弧焊焊接工艺规程 1、焊接方法: 手工钨极氩弧焊 2、焊接材料: 不锈钢药芯焊丝不锈钢实心焊丝 3、焊接工艺参数:见焊接工艺卡 4、焊前准备: (1)检查焊接设备,按焊接工艺卡调整电弧电压、焊接电流、钨极等焊接工艺参数。 (2)焊前100-150℃烘干不锈钢药芯焊丝。 5、焊接工艺: (1)清理焊件坡口及其两侧各宽20mm范围内的油、污、锈等杂质,直至露出金属光泽。 清理不锈钢焊丝表面油污等赃物。 (2)组对焊接接头,注意按图纸及工艺卡要求留出间隙。 (3)使用焊接活性剂时,将活性剂与丁酮以1:1的比例混合,然后均匀涂抹在坡口面内, 待丁酮挥发后再施焊。渗透剂的用量要适当,若太少,熔池粘度降低不多,流动性改 善不明显;若太多,熔池粘度降低太多,流动性变差。 (4)定位焊采用与打底焊相同的焊丝与工艺,定位焊缝长10~15mm,定位点固2—3处。 (5)第一层氩弧焊打底焊焊接,使用不锈钢药芯焊丝,打底焊应一次连续完成,避免停弧以减少接头,焊接时发现有缺陷,如夹钨、气孔等应将缺陷清除,不允许通过重复熔 化的方法来消除缺陷。电弧熄灭后,焊枪喷嘴仍要对准熔池,以延续氩气保护,防止 氧化。 (6)使用不锈钢实心焊丝进行第二层以后的层焊与罩面 射线检测工艺规程 1、主题内容与适用范围 本规程规定了焊缝射线人员具备的资格、所用器材、检测工艺与验收标准等内容。 本规程依据JB/T4730-2005的要求编写。适用于本公司P≥10Mpa产品的对接焊接接头的X 射线AB级检测技术。满足《压力容器安全技术监察规程》、 GB150的要求。检测工艺卡内容就是本规程的补充,由Ⅱ级人员按本规程等要求编写,其参数规定的更具体。

等离子弧焊的研究现状及发展趋势

等离子弧焊的研究现状及发展趋势 1 概述 等离子弧焊发明于1953年,英文学名为“Plasma Arc Welding”,缩写为PAW,由钨极氩弧焊发展而成,是该领域内的一项重大技术创新。等离子弧焊与原始的TIG焊相比,具有优质、高效、经济等优点,早在上世纪60年代初已成功用于金属制品生产。近20年来,等离子弧焊技术获得了进一步的发展,并成为现代焊接结构制造业中不可缺少的精密焊接工艺方法,在压力容器、管道、航天航空、石化装置、核能装备和食品及制药机械生产中得到普遍的推广应用,可以焊接普通优质碳钢、低合金钢、不锈钢、镍基合金、铜镍合金、钛、钽、锆及其合金和铝及其合金等金属材料。 为充分发挥等离子弧焊方法的潜在优势,增强其工艺适应性,进一步扩大应用范围,已开发出各种等离子弧焊工艺方法,如微束等离子弧焊、熔透型(弱等离子)等离子弧焊、锁孔型等离子弧焊、脉冲等离子弧焊、交流变极性等离子弧焊、等离子弧钎焊和等离子弧堆焊等。可以预料,等离子弧焊必将在现代工业生产中发挥出愈来愈重要的作用。 2 等离子弧焊的基本工作原理 等离子弧焊是早期对焊接电弧物理深入研究的最重要的成果之一。通过试验研究发现,在任何一种焊接电弧中,都存在温度超过3000℃的等离子区,但在自由状态的电弧中,这一区域的尺寸显得过小,且紧靠阴极,未能充分发挥其作用。TIG焊自由状态电弧的形貌成锥形,大部分能量被散失,电弧的热效率很低,从而大大降低了焊接效率。为充分利用电弧的能量,自然萌发出将电弧柱进行压缩,使其能量集中的想法,并逐步形成了等离子弧焊的设计思想。 等离子弧是一种被压缩的钨极氢弧,或者说是一种受约束的非自由电弧。一般情况下,借助于水冷喷嘴的约束作用,等离子体电弧弧柱在压缩作用下形成压缩电弧,即等离子弧。等离子弧由特殊结构的等离子体发生器产生,具有热压缩效应、机械压缩效应以及电磁压缩效应的特点。根据电极接电方式,等离子弧可以分为非转移型等离子弧和转移型等离子弧。 非转移型等离子弧的电极接负极,喷嘴接正极,电极与喷嘴之间产生等离子

2、手工钨极氩弧焊作业指导书.

山东天元建设集团安装工程有限 公司工业设备安装公司企业标准 SDTY/GAQMSⅢ-003(2) 手工钨极氩弧焊作业指导书 2005—03—01 发布 2005—03—01实施山东天元建设集团安装工程有限公司工业设备安装公司发布

SDTY/GAQMSⅢ-003(2) 前言 本标准主要起草人:刘珍 本标准审核人:林青友王文高 本标准批准人:沈银根 本标准自2005年03月01日发布,自发布之日起在全公司范围内试行。 本标准由公司焊接与无损检测室负责解释。

手工钨极氩弧焊作业指导书 1 范围 本标准适用于锅炉本体受热面、锅炉本体管路、主蒸汽管道、主给水管道、工业管道、公用管道和长输管道的手工钨极氩弧焊焊接工作。本标准也适用于电站锅炉受热工仪表管道的手工钨极氩弧焊焊接工作。 2 规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款,凡是注日期的引用文件,其随后的修改单(不包括勘误的内容)或修订版均不适用于标准,然而,鼓励根据本部分达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 GB/T 983—95 《不锈钢焊条》 DL/T 869-2012 《火力发电厂焊接技术规程》 DL/T 5210.7-2010《电力建设施工质量验收及评价规程》—焊接篇 SY0401-98 《输油输气管道线路工程施工及验收规范》 劳人部[1988]1号《锅炉压力容器焊工考试规则》 HYDBP006-2004《压力管道安装工程焊接、热处理过程控制程序》 HYDBP018-2004《压力管道安装工程焊接材料管理程序》 HYDBP008-2004《压力管道安装工程计量管理手册》 HYDBP007-2004《压力管道安装工程检验和试验控制程序》 HYDBP010-2004《压力管道安装工程不合格品控制程序》 3 先决条件 3.1 环境 3.1.1 施工环境应符合下列要求: 3.1.1.1 风速:手工氩弧焊风速应小于2M/S。

相关主题
文本预览
相关文档 最新文档