当前位置:文档之家› 关于人工神经网络的学习方法

关于人工神经网络的学习方法

关于人工神经网络的学习方法
关于人工神经网络的学习方法

关于人工神经网络的学习方法

信计一班陈思为0857129

摘要:人工神经网络是一种新的数学建模方式,它具有通过学习逼近任意非线性映射的能力。本文提出了一种基于动态BP神经网络的猜测方法,阐述了其基本原理,并以典型实例验证。关键字:神经网络,BP模型。

引言:

在系统建模、辨识和猜测中,对于线性系统,在频域,传递函数矩阵可以很好地表达系统的黑箱式输入输出模型;在时域,Box-Jenkins方法、回归分析方法、ARMA模型等,通过各种参数估计方法也可以给出描述。对于非线性时间序列猜测系统,双线性模型、门限自回归模型、ARCH模型都需要在对数据的内在规律知道不多的情况下对序列间关系进行假定。可以说传统的非线性系统猜测,在理论研究和实际应用方面,都存在极大的困难。相比之下,神经网络可以在不了解输入或输出变量间关系的前提下完成非线性建模[4,6]。神经元、神经网络都有非线性、非局域性、非定常性、非凸性和混沌等特性,与各种猜测方法有机结合具有很好的发展前景,也给猜测系统带来了新的方向与突破。建模算法和猜测系统的稳定性、动态性等研究成为当今热点问题。目前在系统建模与猜测中,应用最多的是静态的多层前向神经网络,这主要是因为这种网络具有通过学习逼近任意非线性映射的能力。利用静态的多层前向神经网络建立系统的输入/输出模型,本质上就是基于网络逼近能力,通过学习获知系统差分方程中的非线性函数。但在实际应用中,需要建模和猜测的多为非线性动态系统,利用静态的多层前向神经网络必须事先给定模型的阶次,即预先确定系统的模型,这一点非常难做到。近来,有关基于动态网络的建模和猜测的研究,代表了神经网络建模和猜测新的发展方向。

正文:

2BP神经网络模型BP网络是采用Widrow-Hoff学习算法和非线性可微转移函数的多层网络。典型的BP算法采用梯度下降法,也就是Widrow-Hoff算法。现在有许多基本的优化算法,例如变尺度算法和牛顿算法。

BP神经网络包括以下单元:

①处理单元(神经元),即神经网络的基本组成部分。输入层的处理单元只是将输入值转入相邻的联接权重,隐层和输出层的处理单元将它们的输入值求和并根据转移函数计算输出值。

②联接权重。它将神经网络中的处理单元联系起来,其值随各处理单元的联接程度而变化。

③层。神经网络一般具有输入层x、隐层y和输出层o。④阈值。其值可为恒值或可变值,它可使网络能更自由地获取所要描述的函数关系。⑤转移函数F。它是将输入的数据转化为输出的处理单元,通常为非线性函数。

BP神经网络结构。

1基本算法BP算法主要包含4步,分为向前传播和向后传播两个阶段:1)向前传播阶段从样本集中取一个样本,将Xp输入网络;计算相应的实际输出Op在此阶段,信息从输入层经过逐级的变换,传送到输出层。这个过程也是网络在完成练习后正常运行时的执行过程。2)向后传播阶段计算实际输出Op与相应的理想输出Yp的差;按极小化误差的方式调整权矩阵。这两个阶段的工作受到精度要求的控制,在这里取作为网络关于第p个样本的误差测度,而将网络关于整个样本集的误差测度定义为。

基本算法流程。2动态BP神经网络猜测算法在经典的BP算法以及其他的练习算法中都有很多变量,这些练习算法可以确定一个ANN结构,它们只练习固定结构的ANN权值。在自动设计ANN结构方面,也已有较多的尝试,比如构造性算法和剪枝算法。前一种是先随机化

网络,然后在练习过程中有必要地增加新的层和结点;而剪枝法则正好相反。文献[2]中提出了演化神经网络的理念,并把EP算法与BP进行了组合演化;也有很多学者把遗传算法和BP进行结合,但这些算法都以时间复杂度以及空间复杂度的增加为代价。根据Kolmogorov 定理,对于任意给定的L2型连续函数f:[0,1]n→Rm,f可以精确地用一个三层前向神经网络来实现,因而可以只考虑演化网络的权值和结点数而不影响演化结果。基于此,在BP原有算法的基础上,增加结点数演化因子,然后记录每层因子各异时演化出的结构,最后选取最优的因子及其网络结构,这样就可以避免由于增加或剪枝得到的局部最优。根据实验得知,不同的猜测精度也影响网络层神经元的结点数,所以可根据要求动态地建立猜测系统。具体步骤如下:将输入向量和目标向量进行归一化处理。读取输入向量、目标向量,记录输入维数m、输出层结点数n。当练习集确定之后,输入层结点数和输出层结点数随之而确定,首先碰到的一个十分重要而又困难的问题是如何优化隐层结点数和隐层数。实验表明,假如隐层结点数过少,网络不能具有必要的学习能力和信息处理能力。反之,若过多,不仅会大大增加网络结构的复杂性,网络在学习过程中更易陷入局部极小点,而且会使网络的学习速度变得很慢。隐层结点数的选择问题一直受到神经网络研究工作者的高度重视。Gorman指出隐层结点数s与模式数N的关系是:s=log2N;Kolmogorov定理表明,隐层结点数s=2n +1;而根据文献[7]:s=sqrt+0。51[7]。设置结点数演化因子a。为了快速建立网络,可以对其向量初始化,并从小到大排序[4,7]。建立BP神经网络。隐含层传递函数用tansig,输出层用logsig,练习函数采用动态自适应BP算法,并制订停止准则:目标误差精度以及练习代数。初始化网络。练习网络直到满足停止判定准则。用测试向量对网络进行猜测,并记录误差和逼近曲线,评估其网络的适应性。其适应度函数采取规则化均方误差函数。转到,选取下一个演化因子,动态增加隐含层结点数,直到最后得到最佳猜测网络。3基于神经网络的猜测原理[4]3。1正向建模正向建模是指练习一个神经网络表达系统正向动态的过程,这一过程建立的神经网络模型称为正向模型。其中,神经网络与待辨识的系统并联,两者的输出误差用做网络的练习信号。显然,这是一个典型的有导师学习问题,实际系统作为教师,向神经网络提供算法所需要的期望输出。当系统是被控对象或传统控制器时,神经网络多采用多层前向网络的形式,可直接选用BP网络或它的各种变形。而当系统为性能评价器时,则可选择再励学习算法,这时网络既可以采用具有全局逼近能力的网络,也可选用具有局部逼近能力的网络。

正向建模结构3。2逆向建模建立动态系统的逆模型,在神经网络中起着关键作用,并且得到了广泛的应用。其中,比较简单的是直接逆建模法,也称为广义逆学习。拟预告的系统输出作为网络的输入,网络输出与系统输入比较,相应的输入误差用于练习,因而网络将通过学习建立系统的逆模型。但是,假如所辨识的非线性系统是不可逆的,利用上述方法将得到一个不正确的逆模型。因此,在建立系统时,可逆性应该先有所保证。直接逆建模结构

4应用实例分析

以我国西南某地震常发地区的地震资料作为样本来源,实现基于动态神经网络的地震预告。根据资料,提取出7个预告因子和实际发生的震级M作为输入和目标向量。预告因子为半年内M>=3的地震累计频度、半年内能量释放积累值、b值、异常地震群个数、地震条带个数、是否处于活动期内以及相关地震区地震级。在练习前,对数据进行归一化处理。由于输入样本为7维的输入向量,一般情况下输入层设7个神经元。根据实际情况,输出层神经元个数为1。隐含层神经元的传递函数为S型正切函数,输出层也可以动态选择传递函数。实例数据来自文献[4],将数据集分为练习集、测试集和确定集。表1中的7×7数组表示归一化后的练习向量,第一个7表示预告因子数,第二个7表示样本数。表1归一化后的练习向量在不同神经元数情况下,对网络进行练习和仿真,得到一组猜测误差曲线图。其中,曲线A表示隐层结点数为6时的猜测误差曲线,曲线B表示隐含层结点数为3时的猜测误差曲线,

曲线C表示隐含层结点数为5时的猜测误差曲线,曲线D表示隐含层结点数为4时的猜测误差曲线。将五种情况下的误差进行对比,曲线C表示的网络猜测性能最好,其隐含层神经元数为5,曲线E表示的是隐含层结点数为15时的猜测误差曲线。同时也证实,在设计BP 网络时,不能无限制地增加层神经元的个数。若过多,不仅会大大增加网络结构的复杂性,网络在学习过程中更易陷入局部极小点,而且会使网络的学习速度、猜测速度变得很慢。不同神经元数猜测误差对比曲线5结论本文针对基本的BP神经网络,提出了可动态改变神经元数的BP 神经网络猜测方法,可以根据实际情况建立猜测系统。用此种方法可以建立最好的神经网络,不会有多余的神经元,也不会让网络在学习过程中过早陷于局部极小点。参考文献[1]YaoX,LiuY。FastEvolutionaryProgramming。inEvolutionaryProgramming Ⅴ:Proc。5thAnnu。Conf。EvolutionaryProgram,L。Fogel,P。AngelineandT。B?ck,Eds。Cambridge,MA:MITPress,1996,451-460[2]XinYao,YongLiu,ANewEvolutionarySystemforEvolvingArtificialNeuralNetworksIEEETRANSACTIONSONNEURALNET WORKS,VOL8,NO。31997,694-714[3]潘正君,康立山,陈毓屏。演化计算[M]。北京:清华大学出版社,1998[4]飞思科技产品研发中心。神经网络理论与实现。北京:电子工业出版社,2005[5]蔡晓芬,方建斌。演化神经网络算法。江汉大学学报,第33卷第3期,2005。9[6]蒋宗礼。人工神经网络导论。北京:高等教育出版社,2001[7]高大启。有导师的线性基本函数前向三层神经网络结构研究。计算机学报,第21卷第1期,1998

人工神经网络

人工神经网络(ANN)又称神经网络,是在现代神经科学研究成果的基础上,对生物神经系统的结构和功能进行数学抽象、简化和模仿而逐步发展起来的一种新型信息处理和计算系统。由于人工神经网络具有自学习、高容错、高度非线性描述能力等优点,现已广泛应用于经济、机器人和自动控制、军事、医疗、化学等领域[l ~ 3],并取得了许多成果。本文简要介绍人工神经网络的原理和特点,论述人工神经网络在高分子科学与工程领域的应用。 橡胶配方是决定橡胶制品性能的关键因素,由于材料配方与制品性能之间存在很复杂的非线性关系,多数情况下无法建立完整精确的理论模型,只能借助于回归方法得到经验公式。 传统的回归方法存在以下局限性: (1)使用不同的回9j方法可获得不同的经验公式,导致经验公式的繁多和不一致; (2)当配方项目及性能指标项目较多时,采用回归公式无法完全再现实验数据; (3)当实验进一步完善,实验数据增多的时候.其他人员再进行回归时,如果无法找到原来的回归方法、程序和实验数据,原来的回归公式将不能被利用,造成一定的浪费。随着计箅机的发展而出现的人工神经网络是人工智能方法.它不像回归方法那样,需预先给定基本函数,而是以实验数据为基础.经过有限次的迭代计算而获得的一个反映实验数据内在联系的数学模型,具有极强的非线性处理、自组织调整、自适应学习及容错抗噪能力,特别适用于研究像材料配方与制品性能之间关系的复杂非线性系统特性【¨】。因此,人们开始将人工神经网络应用于橡胶配方设计”J。 随着橡胶制品在各领域应用的拓展,橡胶配方设计变得越来越重要。人们进行橡胶配方设计主要有3个目的:提高制品的性能;改善加工工艺;降低生产成本。传统的橡胶配方设计方法有全因素设计、正交试验设计n_3]、均匀设计[4‘60等,而这些配方设计试验数据的处理方法无外乎方差分析和回归分析口]。由于材料的配方和性能之问存在非常复杂的非线性关系,回归分析只适合于单目标优化数据处理的模型,对于不同的性能,需要建立不同的模型,因此将其应用于配方设计有一定的局限性。近年来,发展日趋成熟的人工神经网络技术,尤其是BP神经网络凭借其结构简单、收敛速度快、预测精度高等优势越来越多地应用到橡胶配方设计试验中。 1橡胶配方设计 1.1橡胶配方设计概述 配方设计¨J是橡胶工业中的首要技术问题,在橡胶工业中占有重要地位。所谓配方设计,就是根据产品的性能要求和工艺条件,通过试验、优化、鉴定,合理地选用原材料,确定各种原材料的用量配比关系。 橡胶配方人员的主要工作就是要确定一系列变量对橡胶各项性能的定量或定性影响。变量可以是硫化剂、促进剂、填充剂、防老剂等,也可以是加工:[艺条件(如硫化温度、硫化时间等),总之是配方人员可能控制或测得的变量。橡胶各项基本性能包括拉伸强度、撕裂强度、硬度、定伸应力等物理机械性能,以 及加工性能、光洁度、外观等。 橡胶配方设计常常是多变量的试验设计,配方设计理论和试验设计方法对于 配方设计具有重要意义。

人工神经网络原理及实际应用

人工神经网络原理及实际应用 摘要:本文就主要讲述一下神经网络的基本原理,特别是BP神经网络原理,以及它在实际工程中的应用。 关键词:神经网络、BP算法、鲁棒自适应控制、Smith-PID 本世纪初,科学家们就一直探究大脑构筑函数和思维运行机理。特别是近二十年来。对大脑有关的感觉器官的仿生做了不少工作,人脑含有数亿个神经元,并以特殊的复杂形式组成在一起,它能够在“计算"某些问题(如难以用数学描述或非确定性问题等)时,比目前最快的计算机还要快许多倍。大脑的信号传导速度要比电子元件的信号传导要慢百万倍,然而,大脑的信息处理速度比电子元件的处理速度快许多倍,因此科学家推测大脑的信息处理方式和思维方式是非常复杂的,是一个复杂并行信息处理系统。1943年Macullocu和Pitts融合了生物物理学和数学提出了第一个神经元模型。从这以后,人工神经网络经历了发展,停滞,再发展的过程,时至今日发展正走向成熟,在广泛领域得到了令人鼓舞的应用成果。本文就主要讲述一下神经网络的原理,特别是BP神经网络原理,以及它在实际中的应用。 1.神经网络的基本原理 因为人工神经网络是模拟人和动物的神经网络的某种结构和功能的模拟,所以要了解神经网络的工作原理,所以我们首先要了解生物神经元。其结构如下图所示: 从上图可看出生物神经元它包括,细胞体:由细胞核、细胞质与细胞膜组成;

轴突:是从细胞体向外伸出的细长部分,也就是神经纤维。轴突是神经细胞的输出端,通过它向外传出神经冲动;树突:是细胞体向外伸出的许多较短的树枝状分支。它们是细胞的输入端,接受来自其它神经元的冲动;突触:神经元之间相互连接的地方,既是神经末梢与树突相接触的交界面。 对于从同一树突先后传入的神经冲动,以及同一时间从不同树突输入的神经冲动,神经细胞均可加以综合处理,处理的结果可使细胞膜电位升高;当膜电位升高到一阀值(约40mV),细胞进入兴奋状态,产生神经冲动,并由轴突输出神经冲动;当输入的冲动减小,综合处理的结果使膜电位下降,当下降到阀值时。细胞进入抑制状态,此时无神经冲动输出。“兴奋”和“抑制”,神经细胞必呈其一。 突触界面具有脉冲/电位信号转换功能,即类似于D/A转换功能。沿轴突和树突传递的是等幅、恒宽、编码的离散电脉冲信号。细胞中膜电位是连续的模拟量。 神经冲动信号的传导速度在1~150m/s之间,随纤维的粗细,髓鞘的有无而不同。 神经细胞的重要特点是具有学习功能并有遗忘和疲劳效应。总之,随着对生物神经元的深入研究,揭示出神经元不是简单的双稳逻辑元件而是微型生物信息处理机制和控制机。 而神经网络的基本原理也就是对生物神经元进行尽可能的模拟,当然,以目前的理论水平,制造水平,和应用水平,还与人脑神经网络的有着很大的差别,它只是对人脑神经网络有选择的,单一的,简化的构造和性能模拟,从而形成了不同功能的,多种类型的,不同层次的神经网络模型。 2.BP神经网络 目前,再这一基本原理上已发展了几十种神经网络,例如Hopficld模型,Feldmann等的连接型网络模型,Hinton等的玻尔茨曼机模型,以及Rumelhart 等的多层感知机模型和Kohonen的自组织网络模型等等。在这众多神经网络模型中,应用最广泛的是多层感知机神经网络。 这里我们重点的讲述一下BP神经网络。多层感知机神经网络的研究始于50年代,但一直进展不大。直到1985年,Rumelhart等人提出了误差反向传递学习算法(即BP算),实现了Minsky的多层网络设想,其网络模型如下图所示。它可以分为输入层,影层(也叫中间层),和输出层,其中中间层可以是一层,也可以多层,看实际情况而定。

人工神经网络

人工神经网络 1.简介 人工神经网络(ANN)技术是一种信息处理范式,灵感来自于生物神经系统的方式,如大脑、处理信息。这拍拉的DIGM关键的元素是一款新颖的结构的信息处理系统。它是由大量的高度互连处理单元(神经元都)工作在和谐中要解决的具体问题。像人一样,学习结合起来,通过实例说明。一个人工神经网络被配置为某一特定的应用,如模式识别或数据分类,通过一个学习的过程。学习在生物体系需要调整突触连接之间的神经元都存在。结合起来,这是有据可查的。在更多的实际统计数据的模糊神经网络的非线性建模工具。它们能被用于模型复杂的输入-输出关系或发现模式在数据。本文将简要介绍有关知识安和打好基础,为进一步研究。 2.人工神经网络的特点 神经网络模型,拥有的卓越的能力也衍生意义是从复杂的或不精确数据,可被用于提取模式和趋势发现太过于复杂以致难以被任何人类或其它计算机技术注意到。一个受过训练的神经网络可以被认为是一个“专家”在信息范畴内,才能来来作分析。这位专家就可以被用来提供给测感和给定新的有兴趣环境,然后提问“假如如此”的问题。 神经网络的其他优点包括: 自适应学习能力:学习如何做任务的基础上,给出了初始数据训练或经验。 自组织:一个人工神经网络可以创造自己的组织或表示它收到的信息时的学习时间。 实时操作:安计算可以对并联,和特殊的硬件设备被设计和制造,充分利用这一能力。 通过冗余信息容错编码:局部破坏网络导致相应的降解性能。然而,一些网络能力甚至可以保留与主要网络伤害。 3.一个简单的神经元和复杂的神经元 一个简单神经元 一种人工神经元是一种装置与许多输入和一个输出,如图。3-26。神经元的有两种模式的操作:培养模式和使用模式。在训练模式中,神经元可以训练的射击(或没有),为特定的输入方式。在使用模式,当一个教输入模式检测到输入、输出成为其关联的输出电流。如果输入模式不属于这教的名单输入方式、烧成规则是用来确定是否发生火灾或不是。 射击规则是在神经网络的一个重要概念。一个射击规则决定了一个人如何计算一个神经

人工神经网络的发展及应用

人工神经网络的发展与应用 神经网络发展 启蒙时期 启蒙时期开始于1980年美国著名心理学家W.James关于人脑结构与功能的研究,结束于1969年Minsky和Pape~发表的《感知器》(Perceptron)一书。早在1943年,心理学家McCulloch和数学家Pitts合作提出了形式神经元的数学模型(即M—P模型),该模型把神经细胞的动作描述为:1神经元的活动表现为兴奋或抑制的二值变化;2任何兴奋性突触有输入激励后,使神经元兴奋与神经元先前的动作状态无关;3任何抑制性突触有输入激励后,使神经元抑制;4突触的值不随时间改变;5突触从感知输入到传送出一个输出脉冲的延迟时问是0.5ms。可见,M—P模型是用逻辑的数学工具研究客观世界的事件在形式神经网络中的表述。现在来看M—P 模型尽管过于简单,而且其观点也并非完全正确,但是其理论有一定的贡献。因此,M—P模型被认为开创了神经科学理论研究的新时代。1949年,心理学家D.0.Hebb 提出了神经元之间突触联系强度可变的假设,并据此提出神经元的学习规则——Hebb规则,为神经网络的学习算法奠定了基础。1957年,计算机学家FrankRosenblatt提出了一种具有三层网络特性的神经网络结构,称为“感知器”(Perceptron),它是由阈值性神经元组成,试图模拟动物和人脑的感知学习能力,Rosenblatt认为信息被包含在相互连接或联合之中,而不是反映在拓扑结构的表示法中;另外,对于如何存储影响认知和行为的信息问题,他认为,存储的信息在神经网络系统内开始形成新的连接或传递链路后,新 的刺激将会通过这些新建立的链路自动地激活适当的响应部分,而不是要求任何识别或坚定他们的过程。1962年Widrow提出了自适应线性元件(Ada—line),它是连续取值的线性网络,主要用于自适应信号处理和自适应控制。 低潮期 人工智能的创始人之一Minkey和pape~经过数年研究,对以感知器为代表的网络系统的功能及其局限性从数学上做了深入的研究,于1969年出版了很有影响的《Perceptron)一书,该书提出了感知器不可能实现复杂的逻辑函数,这对当时的人工神经网络研究产生了极大的负面影响,从而使神经网络研究处于低潮时期。引起低潮的更重要的原因是:20世纪7O年代以来集成电路和微电子技术的迅猛发展,使传统的冯·诺伊曼型计算机进入发展的全盛时期,因此暂时掩盖了发展新型计算机和寻求新的神经网络的必要性和迫切性。但是在此时期,波士顿大学的S.Grossberg教授和赫尔辛基大学的Koho—nen教授,仍致力于神经网络的研究,分别提出了自适应共振理论(Adaptive Resonance Theory)和自组织特征映射模型(SOM)。以上开创性的研究成果和工作虽然未能引起当时人们的普遍重视,但其科学价值却不可磨灭,它们为神经网络的进一步发展奠定了基础。 复兴时期 20世纪80年代以来,由于以逻辑推理为基础的人工智能理论和冯·诺伊曼型计算机在处理诸如视觉、听觉、联想记忆等智能信息处理问题上受到挫折,促使人们

人工神经网络BP算法简介及应用概要

科技信息 2011年第 3期 SCIENCE &TECHNOLOGY INFORMATION 人工神经网络是模仿生理神经网络的结构和功能而设计的一种信息处理系统。大量的人工神经元以一定的规则连接成神经网络 , 神经元之间的连接及各连接权值的分布用来表示特定的信息。神经网络分布式存储信息 , 具有很高的容错性。每个神经元都可以独立的运算和处理接收到的信息并输出结果 , 网络具有并行运算能力 , 实时性非常强。神经网络对信息的处理具有自组织、自学习的特点 , 便于联想、综合和推广。神经网络以其优越的性能应用在人工智能、计算机科学、模式识别、控制工程、信号处理、联想记忆等极其广泛的领域。 1986年 D.Rumelhart 和 J.McCelland [1]等发展了多层网络的 BP 算法 , 使BP 网络成为目前应用最广的神经网络。 1BP 网络原理及学习方法 BP(BackPropagation 网络是一种按照误差反向传播算法训练的多层前馈神经网络。基于 BP 算法的二层网络结构如图 1所示 , 包括输入层、一个隐层和输出层 , 三者都是由神经元组成的。输入层各神经元负责接收并传递外部信息 ; 中间层负责信息处理和变换 ; 输出层向 外界输出信息处理结果。神经网络工作时 , 信息从输入层经隐层流向输出层 (信息正向传播 , 若现行输出与期望相同 , 则训练结束 ; 否则 , 误差反向进入网络 (误差反向传播。将输出与期望的误差信号按照原连接通路反向计算 , 修改各层权值和阈值 , 逐次向输入层传播。信息正向传播与误差反向传播反复交替 , 网络得到了记忆训练 , 当网络的全局误差小于给定的误差值后学习终止 , 即可得到收敛的网络和相应稳定的权值。网络学习过程实际就是建立输入模式到输出模式的一个映射 , 也就是建立一个输入与输出关系的数学模型 :

人工神经网络题库

人工神经网络 系别:计算机工程系 班级: 1120543 班 学号: 13 号 姓名: 日期:2014年10月23日

人工神经网络 摘要:人工神经网络是一种应用类似于大脑神经突触联接的结构进行信息处理的数学模型。在工程与学术界也常直接简称为神经网络或类神经网络。神经网络是一种运算模型,由大量的节点(或称神经元)之间相互联接构成,由大量处理单元互联组成的非线性、自适应信息处理系统。它是在现代神经科学研究成果的基础上提出的,试图通过模拟大脑神经网络处理、记忆信息的方式进行信息处理。 关键词:神经元;神经网络;人工神经网络;智能; 引言 人工神经网络的构筑理念是受到生物(人或其他动物)神经网络功能的运作启发而产生的。人工神经网络通常是通过一个基于数学统计学类型的学习方法(Learning Method )得以优化,所以人工神经网络也是数学统计学方法的一种实际应用,通过统计学的标准数学方法我们能够得到大量的可以用函数来表达的局部结构空间,另一方面在人工智能学的人工感知领域,我们通过数学统计学的应用可以来做人工感知方面的决定问题(也就是说通过统计学的方法,人工神经网络能够类似人一样具有简单的决定能力和简单的判断能力),这种方法比起正式的逻辑学推理演算更具有优势。 一、人工神经网络的基本原理 1-1神经细胞以及人工神经元的组成 神经系统的基本构造单元是神经细胞,也称神经元。它和人体中其他细胞的关键区别在于具有产生、处理和传递信号的功能。每个神经元都包括三个主要部分:细胞体、树突和轴突。树突的作用是向四方收集由其他神经细胞传来的信息,轴突的功能是传出从细胞体送来的信息。每个神经细胞所产生和传递的基本信息是兴奋或抑制。在两个神经细胞之间的相互接触点称为突触。简单神经元网络及其简化结构如图2-2所示。 从信息的传递过程来看,一个神经细胞的树突,在突触处从其他神经细胞接受信号。 这些信号可能是兴奋性的,也可能是抑制性的。所有树突接受到的信号都传到细胞体进行综合处理,如果在一个时间间隔内,某一细胞接受到的兴奋性信号量足够大,以致于使该细胞被激活,而产生一个脉冲信号。这个信号将沿着该细胞的轴突传送出去,并通过突触传给其他神经细胞.神经细胞通过突触的联接形成神经网络。 图1-1简单神经元网络及其简化结构图 (1)细胞体 (2)树突 (3)轴突 (4)突触

人工神经网络的发展及应用

人工神经网络的发展及应用 西安邮电学院电信系樊宏西北电力设计院王勇日期:2005 1-21 1 人工神经网络的发展 1.1 人工神经网络基本理论 1.1.1 神经生物学基础生物神经系统可以简略地认为是以神经元为信号的处理单元,通过广泛的突触联系形成的信息处理集团,其物质结构基础和功能单元是脑神经细胞,即神经元(neuron) 。 (1)神经元具有信号的输人、整合、输出三种主要功能作用行为,结构如图1 所示: (2)突触是整个神经系统各单元间信号传递驿站,它构成各神经元之间广泛的联接。 (3)大脑皮质的神经元联接模式是生物体的遗传性与突触联接强度可塑性相互作用的产物,其变化是先天遗传信息确定的总框架下有限的自组织过程。 1.1.2 建模方法神经元的数量早在胎儿时期就已固定,后天的脑生长主要是指树突和轴突从神经细胞体中长出并形成突触联系,这就是一般人工神经网络建模方法的生物学依据。人脑建模一般可有两种方法:①神经生物学模型方法,即根据微观神经生物学知识的积累,把脑神经系统的结构及机理逐步解释清楚,在此基础上建立脑功能模型;②神 经计算模型方法,即首先建立粗略近似的数学模型并研究该模型的动力学特性,然后冉与真实对象作比较(仿真处理方法)。1.1.3 概

念人工神经网络用物理町实现系统采模仿人脑神经系统的结构和功能,是一门新兴的前沿交义学科,其概念以T.Kohonen.Pr 的论述 最具代表性:人工神经网络就是由简单的处理单元(通常为适应性神经元,模型见图2)组成的并行互联网络,它的组织能够模拟生物神 经系统对真实世界物体所作出的交互反应。 1.2 人工神经网络的发展 人工神经网络的研究始于40 年代初。半个世纪以来,经历了兴起、高潮与萧条、高潮及稳步发展的较为曲折的道路。1943 年,心理学家W.S.Mcculloch 和数理逻辑学家W.Pitts 提出了M—P 模型, 这是第一个用数理语言描述脑的信息处理过程的模型,虽然神经元的功能比较弱,但它为以后的研究工作提供了依据。1949 年,心理学家D. O. Hebb提出突触联系可变的假设,根据这一假设提出的学习规律为神经网络的学习算法奠定了基础。1957 年,计算机科学家Rosenblatt 提出了著名的感知机模型,它的模型包含了现代计算机的一些原理,是第一个完整的人工神经网络。1969 年,美国著名人工智能学者M.Minsky 和S.Papert 编写了影响很大的Perceptron 一书,从理论上证明单层感知机的能力有限,诸如不能解决异或问题,而且他们推测多层网络的感知能也不过如此,在这之后近10 年,神经网络研究进入了一个缓慢发展的萧条期。美国生物物理学家J.J.Hopfield 于1982年、1984 年在美国科学院院刊发表的两篇文章,有力地推动了神经网络的研究,引起了研究神经网络的

人工神经网络及其应用实例_毕业论文

人工神经网络及其应用实例人工神经网络是在现代神经科学研究成果基础上提出的一种抽 象数学模型,它以某种简化、抽象和模拟的方式,反映了大脑功能的 若干基本特征,但并非其逼真的描写。 人工神经网络可概括定义为:由大量简单元件广泛互连而成的复 杂网络系统。所谓简单元件,即人工神经元,是指它可用电子元件、 光学元件等模拟,仅起简单的输入输出变换y = σ (x)的作用。下图是 3 中常用的元件类型: 线性元件:y = 0.3x,可用线性代数法分析,但是功能有限,现在已不太常用。 2 1.5 1 0.5 -0.5 -1 -1.5 -2 -6 -4 -2 0 2 4 6 连续型非线性元件:y = tanh(x),便于解析性计算及器件模拟,是当前研究的主要元件之一。

离散型非线性元件: y = ? 2 1.5 1 0.5 0 -0.5 -1 -1.5 -2 -6 -4 -2 2 4 6 ?1, x ≥ 0 ?-1, x < 0 ,便于理论分析及阈值逻辑器件 实现,也是当前研究的主要元件之一。 2 1.5 1 0.5 0 -0.5 -1 -1.5 -2 -6 -4 -2 2 4 6

每一神经元有许多输入、输出键,各神经元之间以连接键(又称 突触)相连,它决定神经元之间的连接强度(突触强度)和性质(兴 奋或抑制),即决定神经元间相互作用的强弱和正负,共有三种类型: 兴奋型连接、抑制型连接、无连接。这样,N个神经元(一般N很大)构成一个相互影响的复杂网络系统,通过调整网络参数,可使人工神 经网络具有所需要的特定功能,即学习、训练或自组织过程。一个简 单的人工神经网络结构图如下所示: 上图中,左侧为输入层(输入层的神经元个数由输入的维度决定),右侧为输出层(输出层的神经元个数由输出的维度决定),输入层与 输出层之间即为隐层。 输入层节点上的神经元接收外部环境的输入模式,并由它传递给 相连隐层上的各个神经元。隐层是神经元网络的内部处理层,这些神 经元在网络内部构成中间层,不直接与外部输入、输出打交道。人工 神经网络所具有的模式变换能力主要体现在隐层的神经元上。输出层 用于产生神经网络的输出模式。 多层神经网络结构中有代表性的有前向网络(BP网络)模型、

人工神经网络算法

https://www.doczj.com/doc/db18214283.html,/s/blog_5bbd6ec00100b5nk.html 人工神经网络算法(2008-11-20 17:24:22) 标签:杂谈 人工神经网络算法的作用机理还是比较难理解,现在以一个例子来说明其原理。这个例子是关于人的识别技术的,在门禁系统,逃犯识别,各种验证码破译,银行预留印鉴签名比对,机器人设计等领域都有比较好的应用前景,当然也可以用来做客户数据的挖掘工作,比如建立一个能筛选满足某种要求的客户群的模型。 机器识别人和我们人类识别人的机理大体相似,看到一个人也就是识别对象以后,我们首先提取其关键的外部特征比如身高,体形,面部特征,声音等等。根据这些信息大脑迅速在内部寻找相关的记忆区间,有这个人的信息的话,这个人就是熟人,否则就是陌生人。 人工神经网络就是这种机理。假设上图中X(1)代表我们为电脑输入的人的面部特征,X(2)代表人的身高特征X(3)代表人的体形特征X(4)代表人的声音特征W(1)W(2)W(3)W(4)分别代表四种特征的链接权重,这个权重非常重要,也是人工神经网络起作用的核心变量。 现在我们随便找一个人阿猫站在电脑面前,电脑根据预设变量提取这个人的信息,阿猫面部怎么样,身高多少,体形胖瘦,声音有什么特征,链接权重初始值是随机的,假设每一个W均是0.25,这时候电脑按这个公式自动计 算,Y=X(1)*W(1)+X(2)*W(2)+X(3)*W(3)+X(4)*W(4)得出一个结果Y,这个Y要和一个门槛值(设为Q)进行比较,如果Y>Q,那么电脑就判定这个人是阿猫,否则判定不是阿猫.由于第一次计算电脑没有经验,所以结果是随机的.一般我们设定是正确的,因为我们输入的就是阿猫的身体数据啊. 现在还是阿猫站在电脑面前,不过阿猫怕被电脑认出来,所以换了一件衣服,这个行为会影响阿猫的体形,也就是X(3)变了,那么最后计算的Y值也就变了,它和Q比较的结果随即发生变化,这时候电脑的判断失误,它的结论是这个人不是阿猫.但是我们告诉它这个人就是阿猫,电脑就会追溯自己的判断过程,到底是哪一步出错了,结果发现原来阿猫体形X(3)这个 体征的变化导致了其判断失误,很显然,体形X(3)欺骗了它,这个属性在人的识别中不是那 么重要,电脑自动修改其权重W(3),第一次我对你是0.25的相信,现在我降低信任值,我0.10的相信你.修改了这个权重就意味着电脑通过学习认为体形在判断一个人是否是自己认识的人的时候并不是那么重要.这就是机器学习的一个循环.我们可以要求阿猫再穿一双高跟皮鞋改变一下身高这个属性,让电脑再一次进行学习,通过变换所有可能变换的外部特征,轮换让电脑学习记忆,它就会记住阿猫这个人比较关键的特征,也就是没有经过修改的特征.也就是电脑通过学习会总结出识别阿猫甚至任何一个人所依赖的关键特征.经过阿猫的训练电脑,电脑已经非常聪明了,这时你在让阿猫换身衣服或者换双鞋站在电脑前面,电脑都可以迅速的判断这个人就是阿猫.因为电脑已经不主要依据这些特征识别人了,通过改变衣服,身高骗不了它.当然,有时候如果电脑赖以判断的阿猫关键特征发生变化,它也会判断失误.我们就

人工神经网络应用实例

人工神经网络在蕨类植物生长中的应用 摘要:人工神经网络(ARTIFICIAL NEURAL NETWORK,简称ANN)是目前国际上一门发展迅速的前沿交叉学科。为了模拟大脑的基本特性,在现代神经科学研究的基础上,人们提出来人工神经网络的模型。根据此特点结合蕨类植物的生长过程进行了蕨类植物生长的模拟。结果表明,人工神经网络的模拟结果是完全符合蕨类植物的生长的,可有效的应用于蕨类植物的生长预测。 关键词:人工神经网络;蕨类植物;MATLAB应用 一人工神经网络的基本特征 1、并行分布处理:人工神经网络具有高度的并行结构和并行处理能力。这特别适于实时控制和动态控制。各组成部分同时参与运算,单个神经元的运算速度不高,但总体的处理速度极快。 2、非线性映射:人工神经网络具有固有的非线性特性,这源于其近似任意非线性映射(变换)能力。只有当神经元对所有输入信号的综合处理结果超过某一门限值后才输出一个信号。因此人工神经网络是一种具有高度非线性的超大规模连续时间动力学系统。 3、信息处理和信息存储合的集成:在神经网络中,知识与信息都等势分布贮存于网络内的各神经元,他分散地表示和存储于整个网络内的各神经元及其连线上,表现为神经元之间分布式的物理联系。作为神经元间连接键的突触,既是信号转换站,又是信息存储器。每个神经元及其连线只表示一部分信息,而不是一个完整具体概念。信息处理的结果反映在突触连接强度的变化上,神经网络只要求部分条件,甚至有节点断裂也不影响信息的完整性,具有鲁棒性和容错性。 4、具有联想存储功能:人的大脑是具有联想功能的。比如有人和你提起内蒙古,你就会联想起蓝天、白云和大草原。用人工神经网络的反馈网络就可以实现这种联想。神经网络能接受和处理模拟的、混沌的、模糊的和随机的信息。在处理自然语言理解、图像模式识别、景物理解、不完整信息的处理、智能机器人控制等方面具有优势。 5、具有自组织自学习能力:人工神经网络可以根据外界环境输入信息,改变突触连接强度,重新安排神经元的相互关系,从而达到自适应于环境变化的目的。 二人工神经网络的基本数学模型 神经元是神经网络操作的基本信息处理单位(图1)。神经元模型的三要素为: (1) 突触或联接,一般用,表尔神经元和神经元之间的联接强度,常称之为权值。 (2) 反映生物神经元时空整合功能的输入信号累加器。 图1 一个人工神经元(感知器)和一个生物神经元示意图 (3) 一个激活函数用于限制神经元输出(图2),可以是阶梯函数、线性或者是指数形式的

介绍人工神经网络的发展历程和分类.

介绍人工神经网络的发展历程和分类 1943年,心理学家W.S.McCulloch 和数理逻辑学家W.Pitts 建立了神经网络和数学模型,称为MP 模型。他们通过MP 模型提出了神经元的形式化数学描述和网络结构方法,证明了单个神经元能执行逻辑功能,从而开创了人工神经网络研究的时代。1949年,心理学家提出了突触联系强度可变的设想。60年代,人工神经网络的到了进一步发展,更完善的神经网络模型被提出。其中包括感知器和自适应线性元件等。M.Minsky 等仔细分析了以感知器为代表的神经网络系统的功能及局限后,于1969年出版了《Perceptron 》一书,指出感知器不能解决高阶谓词问题。他们的论点极大地影响了神经网络的研究,加之当时串行计算机和人工智能所取得的成就,掩盖了发展新型计算机和人工智能新途径的必要性和迫切性,使人工神经网络的研究处于低潮。在此期间,一些人工神经网络的研究者仍然致力于这一研究,提出了适应谐振理论(ART 网)、自组织映射、认知机网络,同时进行了神经网络数学理论的研究。以上研究为神经网络的研究和发展奠定了基础。1982年,美国加州工学院物理学家J.J.Hopfield 提出了Hopfield 神经网格模型,引入了“计算能量”概念,给出了网络稳定性判断。 1984年,他又提出了连续时间Hopfield 神经网络模型,为神经计算机的研究做了开拓性的工作,开创了神经网络用于联想记忆和优化计算的新途径,有力地推动了神经网络的研究,1985年,又有学者提出了波耳兹曼模型,在学习中采用统计热力学模拟退火技术,保证整个系统趋于全局稳定点。1986年进行认知微观结构地研究,提出了并行分布处理的理论。人工神经网络的研究受到了各个发达国家的重视,美国国会通过决议将1990年1月5日开始的十年定为“脑的十年”,国际研究组织号召它的成员国将“脑的十年”变为全球行为。在日本的“真实世界计算(RWC )”项目中,人工智能的研究成了一个重要的组成部分。 人工神经网络的模型很多,可以按照不同的方法进行分类。其中,常见的两种分类方法是,按照网络连接的拓朴结构分类和按照网络内部的信息流向分类。按照网络拓朴结构分类网络的拓朴结构,即神经元之间的连接方式。按此划分,可将神经网络结构分为两大类:层次型结构和互联型结构。层次型结构的神经网络将神经

人工神经网络概述及其在分类中的应用举例

人工神经网络概述及其在分类中的应用举例 人工神经网络(ARTIFICIAL NEURAL NETWORK,简称ANN)是目前国际上一门发展迅速的前沿交叉学科。为了模拟大脑的基本特性,在现代神经科学研究的基础上,人们提出来人工神经网络的模型。人工神经网络是在对人脑组织结构和运行机智的认识理解基础之上模拟其结构和智能行为的一种工程系统。 神经网络在2个方面与人脑相似: (1) 人工神经网络获取的知识是从外界环境中学习得来的。 (2) 互连神经元的连接强度,即突触权值,用于存储获取的信息。他既是高度非线性动力学系统,又是自适应组织系统,可用来描述认知、决策及控制的智能行为。神经网络理论是巨量信息并行处理和大规模并行计算的基础。 一人工神经网络的基本特征 1、并行分布处理:人工神经网络具有高度的并行结构和并行处理能力。这特别适于实时控制和动态控制。各组成部分同时参与运算,单个神经元的运算速度不高,但总体的处理速度极快。 2、非线性映射:人工神经网络具有固有的非线性特性,这源于其近似任意非线性映射(变换)能力。只有当神经元对所有输入信号的综合处理结果超过某一门限值后才输出一个信号。因此人工神经网络是一

种具有高度非线性的超大规模连续时间动力学系统。 3、信息处理和信息存储合的集成:在神经网络中,知识与信息都等势分布贮存于网络内的各神经元,他分散地表示和存储于整个网络内的各神经元及其连线上,表现为神经元之间分布式的物理联系。作为神经元间连接键的突触,既是信号转换站,又是信息存储器。每个神经元及其连线只表示一部分信息,而不是一个完整具体概念。信息处理的结果反映在突触连接强度的变化上,神经网络只要求部分条件,甚至有节点断裂也不影响信息的完整性,具有鲁棒性和容错性。 4、具有联想存储功能:人的大脑是具有联想功能的。比如有人和你提起内蒙古,你就会联想起蓝天、白云和大草原。用人工神经网络的反馈网络就可以实现这种联想。神经网络能接受和处理模拟的、混沌的、模糊的和随机的信息。在处理自然语言理解、图像模式识别、景物理解、不完整信息的处理、智能机器人控制等方面具有优势。 5、具有自组织自学习能力:人工神经网络可以根据外界环境输入信息,改变突触连接强度,重新安排神经元的相互关系,从而达到自适应于环境变化的目的。 6、软件硬件的实现:人工神经网络不仅能够通过硬件而且可借助软件实现并行处理。近年来,一些超大规模集成电路的硬件实现已经问世,而且可从市场上购到,这使得神经网络具有快速和大规模处理能力的实现网络。许多软件都有提供了人工神经网络的工具箱(或软件包)如Matlab、Scilab、R、SAS等。 二人工神经网络的基本数学模型

人工神经网络与其发展和应用的介绍

人工神经网络与其发展和应用的介绍 发表时间:2018-05-02T11:39:29.337Z 来源:《科技中国》2017年11期作者:卓一凡 [导读] 摘要:人工神经网络是人工智能的重要分支,自其创始伊始便成为了人工智能领域的研究热点。本文从人工神经网络的发展历史开始,介绍了其在医学,信息,控制等方面的应用及其现状,对其中的优缺点进行了简要的分析。并对人工神经网络未来的发展作简要的展望。 摘要:人工神经网络是人工智能的重要分支,自其创始伊始便成为了人工智能领域的研究热点。本文从人工神经网络的发展历史开始,介绍了其在医学,信息,控制等方面的应用及其现状,对其中的优缺点进行了简要的分析。并对人工神经网络未来的发展作简要的展望。关键词:人工神经网络,应用,优缺点,发展 1:人工神经网络的发展 纵观整个人工神经网络发展,大体经历了四个时期:启蒙,低潮,振兴,发展。 1.1:启蒙时期 人工神经网络和数学模型于1943年由W.S.McCulloch和W.Pitts建立,称为MP模型,证明了单个神经元能执行逻辑功能,人工神经网络的研究由此开始。1951年,心理学家 Donala O. Hebb提出了Hebb 法则:在神经网络中,信息在连接权中进行储存,突触之间的联系强度是可以变化的,而这种变化建立起了神经元间的连接。Hebb法则成为了构造具有学习功能的神经网络模型的基础。1954 年,生物学家Eccles提出了真实突触的分流模型,为神经网络模拟突触的功能提供了原理和生理学的依据。1956 年,Uttley 发明了一种由处理单元组成的推理机,用于模拟行为及条件反射。1958年,Rosenblatt将学习机制增加到了原有的MP模型上,首次把神经网络理论付诸实现。正是由于他的成功,引起了学者们对人工神经网络的研究兴趣。 1.2:低潮时期 当许多学者抱着极大的热忱去研究人工神经网络的时候,Minsky 和Papert 从数学角度对以感知器为代表的网络系统功能及其局限性进行了深入的研究,并在1969年出版《Percep2trons》一书。该书提出当前的网络只能对简单的线性问题进行解决,而对复杂的多层神经网络无能为力。这一结论使得许多国家的此类项目被暂停资助,自此开始了神经网络的低潮期。但不久后,转机出现。就在1972年,欧洲和美洲的两位学者:芬兰的Kohonen教授,美国的Anderson分别提出了自组织映射SOM(Self2Organizingfeature map)理论和一个名叫“交互存储器 ”的理论。而两者之间竟有着许多相似之处,不由得让人惊讶。但Kohonen的研究是目前所使用神经网络的主要依据。正是由于这些研究,引导了以后人工神经网络的振兴。 1.3:振兴时期 1982年,美国物理学家Hopfield博士发表了Hopfield模型理论,对人工神经网络的研究产生了深远的影响。如下图 Hopfield模型理论证明:神经网络并非不能达到稳定的状态,只是需要一定条件。而他的研究也让许多学者对人工神经网络的研究重新产生了兴趣。1986年,由美国的 Rumelhart 和 McCkekkand主编并撰写的《Parallel Distributed Processing : Ex2ploration in the Microstructures of Cognition》一书出版,提出了 PDP(Parallel Distributed Processing)网络思想,再一次推动了神经网络的发展。20世纪 90 年代, Edelman提出Darwinism 模型。1995 年,Jenkins等人进行了光学神经网络(PNN)的研究 .神经网络的研究重回人们的视野。 1.4:发展时期 20世纪80年代,人工神经网络在世界范围内全面复苏,这也引起了国家对神经网络的重视。“中国神经网络首届学术会议”于1990年2月由国内8个顶尖学会联合在北京召开。 1992年举办了中国第二届神经网络学术大会,中国神经网络学会便由此诞生。我国的“863”计划,“攀登”计划中,都有关于人工神经网络研究的内容。国际上,1987 年,在美国加洲举行了首届国际神经网络学会. 此后每年召开两次.至此,人工神经网络的研究得到了长足的发展。 2.人工神经网络的基本原理 自生物学发展伊始,大脑便是无数科学家研究的重点,人们想要弄清楚大脑是如何运作的?其机理是什么?人工神经网络便应运而生,它的目的是想要对人类神经网络进行开发与测试 2.1:人工神经网络的生物学基础 人工神经网络是人类神经网络的仿生学模拟。我们如果想要了解人工神经网络,就要先了解生物的神经元,如下图:

机器学习算法汇总:人工神经网络、深度学习及其它

学习方式 根据数据类型的不同,对一个问题的建模有不同的方式。在机器学习或者人工智能领域,人们首先会考虑算法的学习方式。在机器学习领域,有几种主要的学习方式。将算法按照学习方式分类是一个不错的想法,这样可以让人们在建模和算法选择的时候考虑能根据输入数据来选择最合适的算法来获得最好的结果。 监督式学习: 在监督式学习下,输入数据被称为“训练数据”,每组训练数据有一个明确的标识或结果,如对防垃圾邮件系统中“垃圾邮件”“非垃圾邮件”,对手写数字识别中的“1“,”2“,”3“,”4“等。在建立预测模型的时候,监督式学习建立一个学习过程,将预测结果与“训练数据”的实际结果进行比较,不断的调整预测模型,直到模型的预测结果达到一个预期的准确率。监督式学习的常见应用场景如分类问题和回归问题。常见算法有逻辑回归(Logistic Regression)和反向传递神经网络(Back Propagation Neural Network) 非监督式学习:

在非监督式学习中,数据并不被特别标识,学习模型是为了推断出数据的一些内在结构。常见的应用场景包括关联规则的学习以及聚类等。常见算法包括Apriori算法以及k-Means算法。 半监督式学习: 在此学习方式下,输入数据部分被标识,部分没有被标识,这种学习模型可以用来进行预测,但是模型首先需要学习数据的内在结构以便合理的组织数据来进行预测。应用场景包括分类和回归,算法包括一些对常用监督式学习算法的延伸,这些算法首先试图对未标识数据进行建模,在此基础上再对标识的数据进行预测。如图论推理算法(Graph Inference)或者拉普拉斯支持向量机(Laplacian SVM.)等。 强化学习:

机器学习之人工神经网络算法

机器学习中有一个重要的算法,那就是人工神经网络算法,听到这个名称相信大家能够想到 人体中的神经。其实这种算法和人工神经有一点点相似。当然,这种算法能够解决很多的问题,因此在机器学习中有着很高的地位。下面我们就给大家介绍一下关于人工神经网络算法 的知识。 1.神经网络的来源 我们听到神经网络的时候也时候近一段时间,其实神经网络出现有了一段时间了。神经网络 的诞生起源于对大脑工作机理的研究。早期生物界学者们使用神经网络来模拟大脑。机器学 习的学者们使用神经网络进行机器学习的实验,发现在视觉与语音的识别上效果都相当好。 在BP算法诞生以后,神经网络的发展进入了一个热潮。 2.神经网络的原理 那么神经网络的学习机理是什么?简单来说,就是分解与整合。一个复杂的图像变成了大量 的细节进入神经元,神经元处理以后再进行整合,最后得出了看到的是正确的结论。这就是 大脑视觉识别的机理,也是神经网络工作的机理。所以可以看出神经网络有很明显的优点。 3.神经网络的逻辑架构 让我们看一个简单的神经网络的逻辑架构。在这个网络中,分成输入层,隐藏层,和输出层。输入层负责接收信号,隐藏层负责对数据的分解与处理,最后的结果被整合到输出层。每层

中的一个圆代表一个处理单元,可以认为是模拟了一个神经元,若干个处理单元组成了一个层,若干个层再组成了一个网络,也就是”神经网络”。在神经网络中,每个处理单元事实上 就是一个逻辑回归模型,逻辑回归模型接收上层的输入,把模型的预测结果作为输出传输到 下一个层次。通过这样的过程,神经网络可以完成非常复杂的非线性分类。 4.神经网络的应用。 图像识别领域是神经网络中的一个著名应用,这个程序是一个基于多个隐层构建的神经网络。通过这个程序可以识别多种手写数字,并且达到很高的识别精度与拥有较好的鲁棒性。可以 看出,随着层次的不断深入,越深的层次处理的细节越低。但是进入90年代,神经网络的发展进入了一个瓶颈期。其主要原因是尽管有BP算法的加速,神经网络的训练过程仍然很困难。因此90年代后期支持向量机算法取代了神经网络的地位。 在这篇文章中我们大家介绍了关于神经网络的相关知识,具体的内容就是神经网络的起源、 神经网络的原理、神经网络的逻辑架构和神经网络的应用,相信大家看到这里对神经网络知 识有了一定的了解,希望这篇文章能够帮助到大家。

浅谈BP人工神经网络概要

2008年第22期(总第500期) 学理论 XUELILUN No.22,2008 General.No.500 浅谈BP人工神经网络 柴燕茹马岩 (哈尔滨商业大学 管理学院,哈尔滨 150028) 摘要:人工神经网络有很多模型,但是目前应用最广泛的、基本思想最直观、最容易理解的是前馈神经网络 中的误差逆传播学习算法(ErrorBackPropagation),简称为BP神经网络。它是前馈神经网络中的核心部分,也是最精华的部分。 关键词:神经元;神经网络;局限性 文献标志码:A文章编号:1002—2589(2008)22—39—02中图分类号: Q983+.6 一、人工神经网络的基本原理 人工神经网络或称作连接模型(Connectfonist-Model),是对人脑或自然神经网络(NaturalNeuralNet-work)若干基本特性的抽象和模拟。人工神经网络以大脑的生理研究成果为基础,其目的在于模拟大脑的某些机理与机制,实现某个方 参照生物神经元网络发展起来的人工神经网络现面的功能。 已有许多种类型,但它们中的神经元结构是基本相同的。 (一)生物神经元的结构与功能 1.生物神经元的结构。生物神经元有一条轴突和若干树突,它通过轴突与其它细胞的树突相连接。树突是脑神经元的输入器,轴突则是信息传递的通道。生物神经元有兴奋和抑制两种状态,每一个神经元都是在与之相连的兴奋性突触和抑制性突触共同作用下活动的。它本身的兴奋和抑制作用又对其他神经元产生作用。当神经元接受到大量的兴奋性突触传来的信息时,信息被综合处理后神经元膜电位升高,超过一定阈值时,神经元被激活,细胞体产生 但神经元没有接收到信息或者接收到信息经综输出信息。 合后没能超过阈值,神经元则处于抑制状态。只有神经元所有输入的总效应达到阈值电平,它才能开始工作。无论什么时候达到阈值电平,神经元就产生一个全强度的输出脉冲,从细胞体经轴突进入轴突分枝。这时的神经元就称

《人工神经网络的发展及其应用》

人工神经网络及其应用 摘要:神经网络是新技术领域中的一个时尚词汇。很多人听过这个词,但很少人真正明白它是什么。本文的目的是介绍关于人工神经网络的基本包括它的背景,发展,发展前景。 关键词:神经网络,发展,背景。 1 人工神经网络产生的背景 自古以来,关于人类智能本源的奥秘,一直吸引着无数哲学家和自然科学家的研究热情。生物学家、神经学家经过长期不懈的努力,通过对人脑的观察和认识,认为人脑的智能活动离不开脑的物质基础,包括它的实体结构和其中所发生的各种生物、化学、电学作用,并因此建立了神经元网络理论和神经系统结构理论,而神经元理论又是此后神经传导理论和大脑功能学说的基础。在这些理论基础之上,科学家们认为,可以从仿制人脑神经系统的结构和功能出发,研究人类智能活动和认识现象。另一方面,19世纪之前,无论是以欧氏几何和微积分为代表的经典数学,还是以牛顿力学为代表的经典物理学,从总体上说,这些经典科学都是线性科学。然而,客观世界是如此的纷繁复杂,非线性情况随处可见,人脑神经系统更是如此。复杂性和非线性是连接在一起的,因此,对非线性科学的研究也是我们认识复杂系统的关键。为了更好地认识客观世界,我们必须对非线性科学进行研究。人工神经网络作为一种非线性的、与大脑智能相似的网络模型,就这样应运而生了。所以,人工神经网络的创立不是偶然的,而是20世纪初科学技术充分发展的产物。 2 人工神经网络的发展 人工神经网络的研究始于40年代初。半个世纪以来,经历了兴起、高潮与萧条、高潮及稳步发展的远为曲折的道路。 1943年,心理学家W.S.Mcculloch和数理逻辑学家W.Pitts 提出了M—P模型,这是第一个用数理语言描述脑的信息处理过程的模型,虽然神经元的功能比较弱,但它为以后的研究工作提供了依据。1949年,心理学家D.O.Hebb提出突触联系可变的假设,根据这一假设提出的学习规律为神经网络的学习算法奠定了基础。1957 年,计算机科学家Rosenblatt 提出了著名的感知机模型,它的模型包含了现代计算机的一些原理,是第一个完整的人工神经网络,第一次把神经网络研究付诸工程实现。由于可应用于模式识别,联想记忆等方面,当时有上百家实验室投入此项研究,美国军方甚至认为神经网络工程应当比“原子弹工程”更重要而给予巨额资助,并在声纳信号识别等领域取得一定成绩。1960年,B.Windrow和E.Hoff提出了自适应线性单元,它可用于自适应滤波、预测和模式识别。至此,人工神经网络的研究工作进入了第一个高潮。 1969年,美国著名人工智能学者M.Minsky和S.Papert编写了影响很大的Perceptron一书,从理论上证明单层感知机的能力有限,诸如不能解决异或问题,而且他们推测多层网络的感知机能力也不过如此,他们的分析恰似一瓢冷水,很多学者感到前途渺茫而纷纷改行,原先参与研究的实验室纷纷退出,在这之后近10年,神经网络研究进入了一个缓慢发展的萧条期。这期间,芬兰学者T.Kohonen 提出了自组织映射理论,反映了大脑神经细胞的自组织特性、记忆方式以及神经细胞兴奋刺激的规律;美国学者S.A.Grossberg的自适应共振理论(ART );日本学者K.Fukushima提出了认知机模型;ShunIchimari则致力于神经网络

相关主题
文本预览
相关文档 最新文档