当前位置:文档之家› 函数依赖(理论及举例)

函数依赖(理论及举例)

函数依赖(理论及举例)
函数依赖(理论及举例)

函数依赖(理论及举例)

教你如何理解函数依赖

一、函数依赖的概念

函数依赖:函数依赖就是讨论一个数据表(关系)中属性值之间所存在的函数关系。函数是一种数学中的概念,被引入到数据库中对数据的联系进行分析。

在一个关系中,属性相当于数学上的变量,属性的域相当于变量的取值范围,属性在一个元组上的取值相当于属性变量的当前值。

例如:在下面的这个职工关系中,职工号、姓名、性别、年龄、职务等属性都相当于变量;职工号属性的域,即四位十进制数字,就是取值范围,性别属性的域:{男、女},就是性别属性的取值范围。此关系中包含有6 个元组,如第2 个元组为{3051 、刘平、男、48、副处},其中的每个属性值都是对应属性在该元组上的当前值。

单值函数和多值函数:元组中一个属性或一些属性值对另一个属性值的影响相当于自变量值对函数值的影响。当给定一个自变量值能求出唯一的一个函数值时,称此为单值函数或单映射函数,否则为多值函数。在单值函数中由自变量的一个值确定函数的一个值,但不同的自变量值允许具有相同的函数值。如f(x)=2x, f(n)=(-1)^n, f(x)=x^3+1 等都是单值函数,由自变量x 或n 的值能够唯一确定f(x) 或f(n) 的值。

属性的单值函数决定(依赖):在一个关系中,若一个或一组属性的值对另一个或一组属性值起到决定性的作用,则称为单值函数决定(依赖)。如上表中职工号的值就能够函数决定其余每个属性的值,也就是说,当职工号给定后,其他每个属性的值就跟着唯一地确定了。如

假定职工号为3074 ,则他的姓名必定是王海,性别必定为男,年龄必定为32 岁,职务必定为正科。这就叫做职工号能够分别单值函数决定姓名、性别和年龄属性,反过来,可以说姓名、性别和年龄等属性单值函数依赖于职工号属性。

二、函数依赖的定义

定义:设一个关系为R(U),X和Y为属性集U上的子集,若对于X上的每个值都有Y上的一个唯一值与之对应,则称X和Y 具有函数依赖关系,并称X 函数决定Y,或称Y 函数依赖于X,记作X→ Y,称X为决定因素。

例如:设一个职工关系为(职工号,姓名,性别,年龄,职务),职工号用来标识每个职工,选作为该关系的主码。对于该关系中每个职工的职工号,都对应着姓名属性中的唯一值,即该职工的姓名,或者说一个职工的姓名由其职工号唯一确定,所以称职工号函数决定姓名,或称姓名函数依赖于职工号,记作“职工号→姓名”,职工号为该函数依赖的决定因素。同理,当一名职工的职工号被确定之后,它所对应的性别、年龄、职务等属性值就被唯一确定下来了,所以职工号函数决定性别、年龄、职务等描述职工特征的每个属性,可以分别记作为“职工号→性别”、“职工号→年龄”、“职工号→职务”。

在该关系中除职工号外,其他属性都不能成为决定因素形成函数依赖,因为对于它们的每个属性值,都可能对应另一属性的多个不同的取值。如对于性别属性的一个取值“男”就会对应多个而不是一个职工号,此不是单值函数依赖,而是多值函数依赖,所以不能由性别来决定职工号。

相互函数依赖:在这个职工关系中,若规定不允许职工有重名,则姓名也能够唯一标识一个元组,这样姓名也能够函数确定其他每个属性,此时职工号和姓名在取值上一一对应,相互成为决定因素,即构成相互函数依赖,记作为“职工号←→姓名”。但通常是允许职工重名的,因为不应该让已经重名的职工重新起名,这样姓名就不能成为关系的候选码,就不能函数决定其他任何属性。

若一个关系中的属性子集X 不能函数决定另一个属性子集Y,则记作X Y,

读作X不能函数决定Y,或Y不能函数依赖于X

三、平凡和非平凡函数依赖

定义:设一个关系为R(U),X和Y为属性集U上的子集,若X→Y且X不包含

Y,则称X→Y为非平凡函数依赖,否则若X Y则必有X→ Y,称此X→Y 为平凡函数依赖。

例如:在一个职工关系中,职工号总能函数决定它本身,记作“职工号→职工号”,对于任一个给定的职工号,都有它本身的职工号值唯一对应,此为平凡函数依赖。又如:职工号和性别构成的属性子集总是能够函数决定其中的职工号或性别属性,可分别记作为“ (职工号,性别)→职工号”和“ (职工号,性别)→性别”,因为对于任何给定的一个元组中的职工号和性别的组合值,都唯一对应一个职工号值或性别值,不可能出现其他的职工号值或性别值,此种也为平凡函数依赖。

通常,主要讨论的是非平凡函数依赖,即X→Y且X Y。如在职工关系中,职工号函数决定其他每个属性都是非平凡函数依赖,另外“(职工号,姓名)→ 性别”也是非平凡函数依赖,虽然在这里由决定因素中所含的职工号单属性就能够函数决定性别,而带有的姓名属性有些多余。

四、完全和部分函数依赖

定义:设一个关系为R(U),X和Y为属性集U 上的子集,若存在X→Y,同时X 的一个真子集X '也能够函数决定Y,即存在X '→ Y ,则称X →Y的函数依赖为部分函数依赖,或者说,X 部分函数决定Y,Y 部分函数依赖于X;否则若在X 中不存在一个真子集X',使得X'也能够函数决定Y,则称X 完全函数决定Y,或Y完全函数依赖于X。

X→Y的部分函数依赖也称为局部函数依赖。

例如:在上面介绍的职工关系中,职工号同其他每个属性之间的函数依赖都是完全函数依赖,因为职工号是一个单属性决定因素,它不可能再包含其他任何属性,也就不可能存在真子集函数决定其他每个属性的情况存在。另外,如“(职工号,性别)”的值虽然能够函数决定相应职工的年龄,但其中的真子集职工号就能够函数决定其年龄,所以(职工号,性别)到年龄之间的函数依赖为部分函

数依赖。即在“(职工号,性别)→年龄”的函数依赖中存在着“职工号→年龄” 的函数依赖。

又例如:设一个教师任课关系为(教工号,姓名,职称,课程号,课程名,课时数,课时费),该关系给出某个学校每个教师在一个学期内任课安排的情况,假定每个教师可以讲授多门课程,每门课程可以由不同教师来讲授。

侯选码:在该关系中,由教工号和课程号的组合能够唯一确定一个元组,即确定哪个教师

讲授哪门课程,所以(教工号,课程号)为关系的候选码。

函数依赖分析:一个教师的姓名和职称完全由该教师的教工号决定,所以该关系中存在“教工号→姓名”和“教工号→职称”这两个函数依赖。一个教师所讲授某门课程的课程名和课时数,完全由该门课程的课程号所决定,所以该关系中又存在“课程号→课程名”和“课程号→课时数”这两个函数依赖。一个教师所讲某门课程的课时费通常是由教师的职称和课程号共同决定的,即存在“(职称,课程号)→课时费”这个函数依赖,它也是一种完全函数依赖,因为职称和课程号中的任何一个属性都不能单独决定课时费的多少。

该关系的侯选码为(教工号,课程号),“(教工号,课程号)→姓名”,“(教工号,课程号)→职称”,“(教工号,课程号)→课程名”,“(教工号,课程号)→课时数”等都是部分函数依赖,因为它们前项中的一个属性就能够函数决定后面的属性。

五、传递函数依赖

定义:一个关系为R(U),X,Y和Z 为属性集U 上的子集,其中存在X→Y 和Y→ Z,但Y不决定X,同时Y不包含Z,则存在X→ Z,称此为传递函数依赖,即X 传递函

数决定Z,Z 传递函数依赖于X 。

注意:在这里必须强调的是Y 不反过来函数决定X,因为如果X→Y同时Y→ X,则X和Y为相互决定的函数依赖关系,记作为“X←→ XY和”,Y

这样

是等价的,在函数依赖中是可以互换的,就是直X接→函Z数依赖,而不是传递

函数依赖了。

另外,Y不包含Z 也是必须满足的条件,因为如果YêZ,则X→Y必然包含着X 直接函数决定Y 中的每个子集,这使得X→Z为直接函数依赖而不是传递函数依赖。

例如:设一个学生关系为(学号,姓名,性别,系号,系名,系主任名),

通常每个学生只属于一个系,每个系有许多学生,每个系都对应唯一的系名和系主任名。

函数依赖分析:在该关系中,学号能够函数决定姓名、性别和系号,即存在“学号→姓名”、“学号→性别”、“学号→系号”,系号又能够函数决定系名和系主任名,即存在“系号→系名”和“系号→系主任名”。由于学号决定系号,系号又决定系名和系主任名,所以给定一个学号之后也就能够唯一对应一个系名或系主任名,也就是说,在学生关系中还存在“学号→系名”和“学号→系主任名”这两个函数依赖是传递函数依赖。

六、函数依赖之间的变换规则

设一个关系为R(U),其中X、Y、Z、W 是U 上的子集,则函数依赖存在着以下一些常用的变换规则:

(1 )自反性:若Y X U,则存在X→ Y。即整体决定部分。如(学生号,课程号)→学生号。

(2)增广性:若X→ Y,则存在XZ→ YZ。即函数依赖的两边同时增加一个相同的属性,其函数依赖保持不变。如学生号→系号,则“(学生号,课程号)→(系号,课程号)”同样成立。

(3 )传递性:若X→Y和Y→ Z,则存在X→ Z。如教工号→职称,职称→职务工资,则存在教工号→职务工资。

(4 )合并性:若X→Y和X→ Z,则存在X→ YZ。如学生号→姓名,学生号→性别,则学生号→(姓名,性别)。

(5 )分解性:若X→ Y,且Z Y,则存在X→ Z。如学生号→(姓名,性别),则存在学生号→姓名,学生号→性别。(6)伪传递性:若X→Y和WY→ Z,则存在WX→ Z。如教工号→职称,(职称,工龄)→基本工资,则存在(教工号,工龄)→ 基本工资。

7 )复合性:若X→Y和Z→ W,则存在XZ→ YW。

如学生号→姓名,课程号→课程名,则(学生号,课程号)→(姓名,课程名)

(8 )自增性:若X→ Y,则存在WX→ Y。即在函数依赖的左边添加任何属性,其依赖

关系保持不变。如学生号→姓名,

则存在:(学生号,课程号)→姓名,不过由直接依赖变为部分依赖

七、最小函数依赖

定义:设一个关系为R(U),X 和Y为U 的子集,若X→Y为完全函数依赖,同时Y 为单属性,则称X→Y为R 的最小函数依赖。由R 中所有最小函数依赖构成R 的最小函数依赖集,并且在最小函数依赖集中不应含有冗余的传递函数依赖。

例如:设一个关系为R(A,B,C,D) ,它的函数依赖集为

FD={A → B,B → C,A → C,B → D} ,判断它是否R为的最小函数依赖集。分析:由FD 中的A→B和B→C可得到A→ C,也就是说A→B和B→C中已经蕴涵A→ C,所以给出的A→C是冗余的,应去掉。原FD不是R的一个最小依赖集,若修改为FD={A → B,B → C,B → D} ,就成R为的最小函数依赖集。

八、根据函数依赖求出关系中的侯选码

定义:设一个关系为R(U),X 为U 的一个子集,若X 能够函数决定U 中的每个属性,并且X的任何真子集都不能函数决定U 中的每个属性,则称X为关系R 的一个候选码。

等价定义:由于一个候选码能够函数决定关系中的每个属性,根据函数依赖的合并规则,可知候选码能够函数决定整个元组,即所有属性。所以候选码的另一个等价定义为:若关系中的一个属性或属性组能够函数决定整个元组,并且它的任何子集都不能函数决定整个元组,则它被称为该关系的一个候选码。

例如:在上面介绍过的职工关系中,职工号属性能够函数决定职工号、姓名、性别、年龄、职务等所有属性,并且职工号为单属性,不可再分,肯定不会存在任何子集能够函数决定整个元组,所以职工号为该关系的一个候选码;若在该关系中还带有身份证号属性,则身份证号属性的每一个值也能够唯一标识一个元组,所以也能够函数决定关系中的所有属性,因此身份证号也是一个候选码。

又如:在上面介绍过的教师任课关系中,它的最小函数依赖集为:{教工号→姓名,教工号→职称,课程号→课程名,课程号→课时数,(职称,课程号)→课时费}。

求侯选码分析:由于任一个单属性都不能函数决定关系中的所有属性,所以都不是候选码,若选取一个属性子集(教工号,课程号),由于它能够函数决定所有属性,所以它是该关系的一个候选码,并且是唯一的候选码。

注意:(教工号,课程号)到教工号、姓名、职称、课程号、课程名、课时数等是部分函数决定,而到课时费是传递函数决定。即“(教工号,课程号)→ (职称,课程号)→课时费”是伪传递性。

九、根据函数依赖求关系的侯选码举例

例:设一个教学关系为(教师号,姓名,课程号,课程名,课程学分,专业号,专业名,教学等级分),假定每个教师有一个唯一的教师号,每门课程有一个唯一的课程号,每个专业

有一个唯一的专业号,每个教师号对应一个姓名,每个课程号对应一个课程名和一个课程学分,每个专业号对应一个专业名,教学等级分是根据某个教师给某个专业上某门课程的教学评价效果而得到的分数,每个教师可以给不同的专业上不同的课程,请通过函数依赖分析,求出该关系的候选码。

分析:根据题意,即所给教学关系模式的语义,可知存在着以下最小函数依赖集:

FD={教师号→姓名,课程号→课程名,课程号→课程学分,专业号→专业名,(教师号,课程号,专业号)→教学等级分}。

由FD 可以看出,只有(教师号,课程号,专业号)能够函数决定每个属性,并且它的任何真子集都不能函数决定每个属性,所以(教师号,课程号,专业号)是该关系的唯一一个候选码。

函数应用举例教案

【课题】 函数的实际应用举例 【教学目标】 知识目标: (1)理解分段函数的概念; (2)理解分段函数的图像; (3)了解实际问题中的分段函数问题. 能力目标: (1)会求分段函数的定义域和分段函数在点0x 处的函数值0()f x ; (2)掌握分段函数的作图方法; (3)能建立简单实际问题的分段函数的关系式. 【教学重点】 (1)分段函数的概念; (2)分段函数的图像. 【教学难点】 (1)建立实际问题的分段函数关系; (2)分段函数的图像. 【教学设计】 (1)结合学生生活实际,利用生活的实例为载体,创设情境,激发兴趣; (2)提供给学生素材后,给予学生充分的时间和空间,让学生在发现、探究、讨论、交流等活动中形成知识; (3)提供数学交流的环境,培养合作意识. 【教学备品】 教学课件. 【课时安排】 2课时.(90分钟) 【教学过程】 3 m

过 程 行为 行为 意图 间 (1)求函数的定义域; (2)求()()()2,0,1f f f -的值. 巡视 指导 动手 求解 交流 掌握 的情 况 30 *动脑思考 探索新知 分段函数的作图 因为分段函数在自变量的不同取值范围内,有着不同的对应法则,所以作分段函数的图像时,需要在同一个直角坐标系中,要依次作出自变量的各个不同的取值范围内相应的图像,从而得到函数的图像. 说明 讲解 思考 理解 记忆 建立 分段 函数 的数 形结 合 35 *巩固知识 典型例题 例2 作出函数()1, 0, 1, x x y f x x x -

Excel中常用函数应用举例

Excel中常用函数应用举例 1.求和函数SUM 求和 SUM(number1,number2,...)。 使用求和函数SUM,操作步骤如下: (1)打开“员工业绩表”工作簿,选择D10单元格,如图所示。 (2)单击“插入函数”按钮,在弹出的“插入函数”对话框中选择SUM函数,单击“确定”按钮,如图所示。

(3)在打开的“函数参数”对话框中,“Number1”文本框中默认引用D3:D9单元格区域,单击“确定”按钮,如图所示。 (4)求出的和值即可显示在D10单元格中,如图所示。

2.平均值函数A VERAGE 平均值函数的原理是将所选单元格区域中的数据相加,然后除以单元格个数,返回作为结果的算术平均值,其语法结构为:A VERAGE(number1,number2,...)。 使用平均值函数A VERAGE,操作步骤如下: (1)打开“员工业绩表”工作簿,选择D11单元格,如图所示。

(2)单击“插入函数”按钮,在弹出的“插入函数”对话框中选择A VERAGE函数,单击“确定”按钮,如图所示。 (3)在打开的“函数参数”对话框中,在“Number1”文本框中输入D3:D9,设定计算平均值的单元格区域,单击“确定”按钮,如图所示。

(4)求出的平均值即显示在D11单元格中,如图所示。 3.条件函数IF 条件函数可以实现真假值的判断,它根据逻辑计算的真假值返回两种结果。该函数的语法结构为:IF(logical_test,value_if_true,value_if_false)。其中,logical_test表示计算结果为true或false的任意值或表达式;value_if_true表示当logical_test为true时返回的值;value_if_false表示当logical_test为false时返回的值。

数据挖掘论文

数据挖掘课程论文 ——————数据挖掘技术及其应用的实现 数据挖掘技术及其应用的实现 摘要:随着网络、数据库技术的迅速发展以及数据库管理系统的广泛应用,人们积累的数据越来越多。数据挖掘(Data Mining)就是从大量的实际应用数据中提取隐含信息和知识,它利用了数据库、人工智能和数理统计等多方面的技术,是一类深层次的数据分析方法。本文介绍了数据库技术的现状、效据挖掘的方法以及它在Bayesian网建网技术中的应用:通过散据挖掘解决Bayesian网络建模过程中所遇到的具体问题,即如何从太规模效据库中寻找各变量之间的关系以及如何确定条件概率问题。 关键字:数据挖掘、知识获取、数据库、函数依赖、条件概率 一、引言: 数据是知识的源泉。但是,拥有大量的数据与拥有许多有用的知识完全是两回事。过去几年中,从数据库中发现知识这一领域发展的很快。广阔的市场和研究利益促使这一领域的飞速发展。计算机技术和数据收集技术的进步使人们可以从更加广泛的范围和几年前不可想象的速度收集和存储信息。收集数据是为了得到信息,然而大量的数据本身并不意味信息。尽管现代的数据库技术使我们很容易存储大量的数据流,但现在还没有一种成熟的技术帮助我们分析、理解并使数据以可理解的信息表示出来。在过去,我们常用的知识获取方法是由知识工程师把专家经验知识经过分析、筛选、比较、综合、再提取出知识和规则。然而,由于知识工程师所拥有知识的有局限性,所以对于获得知识的可信度就应该打个 折扣。目前,传统的知识获取技术面对巨型数据仓库无能为力,数据挖掘技术就应运而生。 数据的迅速增加与数据分析方法的滞后之间的矛盾越来越突出,人们希望在对已有的大量数据分析的基础上进行科学研究、商业决策或者企业管理,但是目前所拥有的数据分析工具很难对数据进行深层次的处理,使得人们只能望“数”兴叹。数据挖掘正是为了解决传统分析方法的不足,并针对大规模数据的分析处理而出现的。数据挖掘通过在大量数据的基础上对各种学习算法的训练,得到数据对象间的关系模式,这些模式反映了数据的内在特性,是对数据包含信息的更高层次的抽象[1]。目前,在需要处理大数据量的科研领域中,数据挖掘受到越来越多的关注,同时,在实际问题中,大量成功运用数据挖掘的实例说明了数据挖掘对科学研究具有很大的促进作用。数据挖掘可以帮助人们对大规模数据进行高效的分

3.5.2函数的实际应用举例第二课时

.2函数的实际应用举例第二课时 2018、12、5-6(第57-58课时) 【教学内容】实际问题中的分段函数 【教学目标】 知识目标: (1)理解分段函数的概念; (2)理解分段函数的图像; (3)了解实际问题中的分段函数问题. / 能力目标: (1)会求分段函数的定义域和分段函数在点0x 处的函数值0()f x ; (2)掌握分段函数的作图方法; (3)能建立简单实际问题的分段函数的关系式. 【教学重点】 实际问题中的分段函数 【教学难点】 (1)建立实际问题的分段函数关系; , (2)分段函数的图像. 【教学方法】 观察发现;交流讲解 【教学设计】 (1)结合学生生活实际,利用生活的实例为载体,创设情境,激发兴趣; (2)提供给学生素材后,给予学生充分的时间和空间,让学生在发现、探究、讨论、交流等活动中形成知识;

(3)提供数学交流的环境,培养合作意识.【教学备品】教学课件. 【课时安排】1课时 & 【教学过程】 ),0 -∞和[0, 围内作出对应的图像,从而得到函数的图像. 的部分;作出y

说明 (1)因为分段函数是一个函数,应将不同取值范围的图像作在同一个平面直角坐标系中. (2)因为1y x =-是定义在0x <的范围,所以1y x =-的图像不包含()0,1点. 说明 " 强调 理解 : 分类 * 图像 特殊 点的 处理 *运用知识 强化练习 教材练习 1.设函数()2 21,20, 1, 0 3. x x f x x x +-

最小函数依赖集的求法

一、等价和覆盖 定义:关系模式R上的两个依赖集F和G,如果F+=G+,则称F和G是等价的,记做F≡G。若F≡G,则称G是F的一个覆盖,反之亦然。两个等价的函数依赖集在表达能力上是完全相同的。 二、最小函数依赖集 定义:如果函数依赖集F满足下列条件,则称F为最小函数依赖集或最小覆盖。 ① F中的任何一个函数依赖的右部仅含有一个属性; ② F中不存在这样一个函数依赖X→A,使得F与F-{X→A}等价; ③ F中不存在这样一个函数依赖X→A,X有真子集Z使得F-{X→A}∪{Z→A}与F等价。 算法:计算最小函数依赖集。 输入一个函数依赖集 输出 F的一个等价的最小函数依赖集G 步骤:① 用分解的法则,使F中的任何一个函数依赖的右部仅含有一个属性; ② 去掉多余的函数依赖:从第一个函数依赖X→Y开始将其从F中去掉,然后在剩下的函数依赖中求X的闭包X+,看X+是否包含Y,若是,则去掉X→Y;否则不能去掉,依次做下去。直到找不到冗余的函数依赖; ③ 去掉各依赖左部多余的属性。一个一个地检查函数依赖左部非单个属性的依赖。例如XY→A,若要判Y为多余的,则以X→A代替XY→A是否等价?若A (X)+,则Y是多余属性,可以去掉。 举例:已知关系模式R,U={A,B,C,D,E,G}, F={AB→C,D→EG,C→A,BE→C,BC→D,CG→BD,ACD→B,CE→AG},求F的最小函数依赖集。 解1:利用算法求解,使得其满足三个条件 ① 利用分解规则,将所有的函数依赖变成右边都是单个属性的函数依赖,得F为: F={AB→C,D→E,D→G,C→A,BE→C,BC→D,CG→B,CG→D,ACD→B,CE→A,CE→G} ② 去掉F中多余的函数依赖 A.设AB→C为冗余的函数依赖,则去掉AB→C,得: F1={D→E,D→G,C→A,BE→C,BC→D,CG→B,CG→D,ACD→B,CE→A,CE→G}

函数的实际应用举例

【课题】 3.3函数的实际应用举例 【教学目标】 知识目标: (1)理解分段函数的概念; (2)理解分段函数的图像; (3)了解实际问题中的分段函数问题. 能力目标: (1)会求分段函数的定义域和分段函数在点0x 处的函数值0()f x ; (2)掌握分段函数的作图方法; (3)能建立简单实际问题的分段函数的关系式. 【教学重点】 (1)分段函数的概念; (2)分段函数的图像. 【教学难点】 (1)建立实际问题的分段函数关系; (2)分段函数的图像. 【教学设计】 (1)结合学生生活实际,利用生活的实例为载体,创设情境,激发兴趣; (2)提供给学生素材后,给予学生充分的时间和空间,让学生在发现、探究、讨论、交流等活动中形成知识; (3)提供数学交流的环境,培养合作意识. 【教学备品】 教学课件. 【课时安排】 2课时.(90分钟) 【教学过程】

) + 0.3x 这个函数与前面所见到的函数不同,在自变量的不同取值

时,应该首先判断 代入到相应的解析式中进行计算. )2 == 224

),0 -∞和[0,作出对应的图像,从而得到函数的图像. 的部分;作出y

过 程 行为 行为 意图 间 说明 (1)因为分段函数是一个函数,应将不同取值围的图像作在同一个平面直角坐标系中. (2)因为1y x =-是定义在0x <的围,所以1y x =-的图像不包含()0,1点. 说明 强调 领会 理解 分类 图像 特殊 点的 处理 45 *运用知识 强化练习 教材练习3.3 1.设函数()2 21,20, 1, 0 3. x x f x x x +- 说明 分析 讲解 强调 了解 领会 主动 求解 注意 分析 实际 问题 中数 据的 含义 不断 提示 学生

中职数学基础模块上册函数的实际应用举例word教案1.doc

百度文库- 让每个人平等地提升自我 【课题】函数的实际应用举例 【教学目标】 知识目标: (1)理解分段函数的概念; (2)理解分段函数的图像; (3)了解实际问题中的分段函数问 题.能力目标: (1)会求分段函数的定义域和分段函数在点x0处的函数值 f ( x0 ) ; (2)掌握分段函数的作图方法; (3)能建立简单实际问题的分段函数的关系式. 【教学重点】 (1)分段函数的概念; (2)分段函数的图像. 【教学难点】 (1)建立实际问题的分段函数关系; (2)分段函数的图像. 【教学设计】 (1)结合学生生活实际,利用生活的实例为载体,创设情境,激发兴趣; (2)提供给学生素材后,给予学生充分的时间和空间,让学生在发现、探究、讨 论、交流等活动中形成知识; (3)提供数学交流的环境,培养合作意识. 【教学备品】 教学课件. 【课时安排】 2课时. (90 分钟) 【教学过程】 (第一课时) 创设情景兴趣导入 问题 我国是一个缺水的国家,很多城市的生活用水远远低于世界的平均水平.为了加强公民的节水意识,某城市制定每户月用水收费(含用水费和污水处理费)标准:

用水量 不超过 10 m3 超过 10 m3 部分部分 收费(元/m3) 污水处理费(元/m3 ) 那么,每户每月用水量x (m3)与应交水费y (元)之间的关系是否可以用函数解析 式表示出来? 分析 由表中看出,在用水量不超过10(m3)的部分和用水量超过10(m3)的部分的计费标准是不相同的.因此,需要分别在两个范围内来进行研究. 动脑思考探索新知 任务一:阅读课本找到以下概念 在自变量的不同取值范围内,有不同的对应法则,需要用不同的解析式来表示的函数叫做分段表示的函数,简称分段函数. 任务二:小组讨论分段函数的定义域 分段函数的定义域是自变量的各个不同取值范围的并集. 如前面水费问题中函数的定义域为0,1010,0,. 任务三:分段函数的函数值 求分段函数的函数值 f x0时,应该首先判断x0所属的取值范围,然后再把x0代入到相应的解析式中进行计算. 如前面水费问题中求某户月用水8(m3)应交的水费 f 8 时,因为0810 ,所以 f 8 1.6 812.8 (元). 学生总结,教师点评 分段函数在整个定义域上仍然是一个函数,而不是几个函数,只不过这个函数在定义域的不同 范围内有不同的对应法则,需要用相应的解析式来表示. 巩固知识典型例题 (学生自主练习,学生代表讲解) 例 1 设函数 y 2 x 1, x 0, f x 2 , x 0. x (1)求函数的定义域; (2)求 f 2 , f 0 , f 1 的值.

计算机四级数据库真题及解析(8)

计算机四级数据库真题及解析(8) 1 下列哪一项工作属于数据库管理员的职责()。 A) 参与用户需求调研和系统分析 B) 确定数据库的存储结构和存取策略 C) 编写应用系统的程序模块 D) 应用系统的安装和调试 2 下列关于数据库数据字典的叙述中,哪一条是错误的()。 A) 数据字典中保存关于数据库的描述信息 B) 数据字典与元数据是不同的概念 C) 程序访问数据库数据时,由 DBMS 通过查询数据字典确定被访问的数据 D) 数据独立性是指存储在数据库的数据字典中的数据文件结构,与访问它的程序之间是相互分离的 3 涉及企业订单处理、市场及客户支持等功能领域的应用软件是 A) CRM B) ERP C) Web Portal D) Search Engine 4 下列关于数据模型的数据约束的叙述中,哪一条是错误的()。 A) 数据约束描述数据结构中数据间的语法和语义关联 B) 数据约束用以保证数据的正确性、有效性和相容性 C) 数据完整性约束是数据约束的一种 D) 数据约束指的是数据的静态特征,不包括数据的动态行为规则 5 下列关于物理层模型的叙述中,哪一条是错误的()。 A) 物理层模型是数据库最底层的抽象 B) 物理层模型确定数据的存储结构、存取路径 C) 逻辑模型是物理层模型的实现 D) 物理层模型的设计目标是提高数据库的性能和有效利用存储空间

6 下列关于层次模型的叙述中,哪一条是错误的()。 A) 层次模型主要反映现实世界中实体间的层次关系 B) 层次模型用有向图结构表示实体及它们之间的联系 C) 层次模型的存储结构可以通过邻接法、链接法、和邻接 -链接混合法实 现数据间的存储连接 D) 层次模型引入冗余数据和指针来实现实体的多对多关系 7 设关系 R与关系 S具有相同的度,且相对应的属性的值取自同一个域, 则 R-(R-S)与下列哪一项等价()。 A) R∪S B) R∩S C) R ×S D) R-S 8 如图所示的两个关系 R和 S 则关系 T是下列哪一项操作得到的结果()。 A) R 和 S的自然连接 B) R 和 S的左外连接 C) R 和 S的右外连接 D) R 和 S的全外连接 9 若属性(或者属性组) F是关系 R的外码,它与关系S的主码 Ks相对应,则下列关于关系模型中参照完整性约束的叙述中哪一条是错误的()。 A) 关系 R和关系 S 必须是不同关系 B) F 可以取空值 C) 如果 F 非空,则它的取值必须是 S 中某个元组的主码值 D) F 与 Ks可以同名,也可以不同名 10 有一个关系:学生(学号,姓名,系别),规定学号的值域是 8个数字 组成的字符串,这一规则属于下列哪一项约束()。 A) 实体完整性约束 B) 参照完整性约束 C) 用户自定义完整性约束 D) 关键字完整性约束 11 如图所示的两个关系R和S 则关系T是下列哪一操作得到的结果()。

高一数学 函数的应用举例二教案

湖南师范大学附属中学高一数学教案:函数的应用举例二 教材: 函数的应用举例二 目的: 要求学生熟悉属于“增长率”、“利息”一类应用问题,并能掌握其解法。 过程: 一、 新授: 例一、 (《教学与测试》 P69 第34课) 某工厂今年1月、2月、3月生产某产品分别为1万件、1.2万件、1.3 万件,为估计以后每月的产量,以这三个月的产量为依据,用一个函 数模拟该产品的月产量y 与月份x 的关系,模拟函数可选用二次函数 或c b a y x +?=(a,b,c 为常数),已知四月份该产品的产量为1.37万 件,请问:用以上那个函数作模拟函数较好?说明理由。 解:设二次函数为: r qx px y ++=2 由已知得:?? ???==-=??????=++=++=++7.035.005.03.1392.1241r q p r q p r q p r q p ∴7.035.005.02 ++-=x x y 当 x = 4时,3.17.0435.0405.021=+?+?-=y 又对于函数 c b a y x +?= 由已知得:?? ????????==-=?=+=+=+4.15.08.03.12.1132c b a c ab c ab c ab ∴ 4.1)2 1(8.0+?-=x y 当 x = 4时,35.14.1)21 (8.04 2=+?-=y

由四月份的实际产量为1.37万件, |37.1|07.002.0|37.1|12-=<=-y y ∴选用函数4.1)21(8.0+?-=x y 作模拟函数较好。 例二、(《教学与测试》 P69 第34课) 已知某商品的价格每上涨x %,销售的数量就减少m x %,其中m 为 正常数。 1. 当2 1=m 时,该商品的价格上涨多少,就能使销售的总金额最大? 2.如果适当的涨价,能使销售总金额增加,求m 的取值范围。 解:1.设商品现在定价a 元,卖出的数量为b 个。 由题设:当价格上涨x %时,销售总额为%)1(%)1(mx b x a y -?+= 即 ]10000)1(100[10000 2+-+-= x m mx ab y 取21=m 得:]22500)50([20000 2+--=x ab y 当 x = 50时,ab y 89max = 即该商品的价格上涨50%时,销售总金额最大。 2.∵二次函数]10000)1(100[10000 2+-+-= x m mx ab y 在 ])1(50,(m m x --上递增,在),)1(50[+∞-m m 上递减 ∴适当地涨价,即 x > 0 , 即0)1(50>-m m 就是 0 < m <1 , 能使销售总金额增加。 例三、(课本 91 例二) 按复利计算利息的一种储蓄,本金为a 元,每期利率为r ,设本利和 为y ,存期为x ,写出本利和y 随存期x 变化的函数关系式。如果 存入本金1000元,每期利率为2.25%,试计算5期后本利和是多少?

高中数学函数的应用举例二教案新人教版必修1

第二十八教时 教材: 函数的应用举例二 目的: 要求学生熟悉属于“增长率”、“利息”一类应用问题,并能掌握其解法。 过程: 一、新授: 例一、(《教学与测试》 P69 第34课) 某工厂今年1月、2月、3月生产某产品分别为1万件、1.2万件、1.3 万件,为估计以后每月的产量,以这三个月的产量为依据,用一个函 数模拟该产品的月产量y 与月份x 的关系,模拟函数可选用二次函数 或c b a y x +?=(a,b,c 为常数),已知四月份该产品的产量为1.37万件, 请问:用以上那个函数作模拟函数较好?说明理由。 解:设二次函数为: r qx px y ++=2 由已知得:?? ???==-=??????=++=++=++7.035.005.03.1392.1241r q p r q p r q p r q p ∴7.035.005.02++-=x x y 当 x = 4时,3.17.0435.0405.021=+?+?-=y 又对于函数 c b a y x +?= 由已知得:?? ????????==-=?=+=+=+4.15.08.03.12.1132c b a c ab c ab c ab ∴4.1)21(8.0+?-=x y 当 x = 4时,35.14.1)2 1(8.042=+?-=y 由四月份的实际产量为1.37万件, |37.1|07.002.0|37.1|12-=<=-y y ∴选用函数4.1)2 1(8.0+?-=x y 作模拟函数较好。 例二、(《教学与测试》 P69 第34课)

已知某商品的价格每上涨x %,销售的数量就减少m x %,其中m 为 正常数。 1.当2 1=m 时,该商品的价格上涨多少,就能使销售的总金额最大? 2.如果适当的涨价,能使销售总金额增加,求m 的取值范围。 解:1.设商品现在定价a 元,卖出的数量为b 个。 由题设:当价格上涨x %时,销售总额为%)1(%)1(mx b x a y -?+= 即 ]10000)1(100[10000 2+-+-=x m mx ab y 取21=m 得:]22500)50([20000 2+--=x ab y 当 x = 50时,ab y 8 9max = 即该商品的价格上涨50%时,销售总金额最大。 2.∵二次函数]10000)1(100[10000 2+-+-=x m mx ab y 在 ])1(50,(m m x --上递增,在),)1(50[+∞-m m 上递减 ∴适当地涨价,即 x > 0 , 即0)1(50>-m m 就是 0 < m <1 , 能使销售总金额增加。 例三、(课本 91 例二) 按复利计算利息的一种储蓄,本金为a 元,每期利率为r ,设本利和 为y ,存期为x ,写出本利和y 随存期x 变化的函数关系式。如果 存入本金1000元,每期利率为2.25%,试计算5期后本利和是多少? “复利”:即把前一期的利息和本金加在一起算作本金,再计算下一期利息。 分析:1期后 )1(1r a r a a y +=?+= 2期后 22)1(r a y += …… ∴ x 期后,本利和为:x r a y )1(+= 将 a = 1000元,r = 2.25%,x = 5 代入上式: 550225 .11000%)25.21(1000?=+?=y 由计算器算得:y = 1117.68(元) 二、如有时间多余,则可处理《课课练》 P101“例题推荐” 3 三、作业:《教学与测试》 P70 第7题

数据挖掘技术及其应用

数据挖掘毕业论文 ---------数据挖掘技术及其应用 摘要:随着网络、数据库技术的迅速发展以及数据库管理系统的广泛应用,人们积累的数据越来越多。数据挖掘(Data Mining)就是从大量的实际应用数据中提取隐含信息和知识,它利用了数据库、人工智能和数理统计等多方面的技术,是一类深层次的数据分析方法。本文介绍了数据库技术的现状、效据挖掘的方法以及它在Bayesian网建网技术中的应用:通过散据挖掘解决Bayesian网络建模过程中所遇到的具体问题,即如何从太规模效据库中寻找各变量之间的关系以及如何确定条件概率问题。 关键字:数据挖掘、知识获取、数据库、函数依赖、条件概率 一、引言: 数据是知识的源泉。但是,拥有大量的数据与拥有许多有用的知识完全是两回事。过去几年中,从数据库中发现知识这一领域发展的很快。广阔的市场和研究利益促使这一领域的飞速发展。计算机技术和数据收集技术的进步使人们可以从更加广泛的范围和几年前不可想象的速度收集和存储信息。收集数据是为了得到信息,然而大量的数据本身并不意味信息。尽管现代的数据库技术使我们很容易存储大量的数据流,但现在还没有一种成熟的技术帮助我们分析、理解并使数据以可理解的信息表示出来。在过去,我们常用的知识获取方法是由知识工程师把专家经验知识经过分析、筛选、比较、综合、再提取出知识和规则。然而,由于知识工程师所拥有知识的有局限性,所以对于获得知识的可信度就应该打个 折扣。目前,传统的知识获取技术面对巨型数据仓库无能为力,数据挖掘技术就应运而生。 数据的迅速增加与数据分析方法的滞后之间的矛盾越来越突出,人们希望在对已有的大量数据分析的基础上进行科学研究、商业决策或者企业管理,但是目前所拥有的数据分析工具很难对数据进行深层次的处理,使得人们只能望“数”兴叹。数据挖掘正是为了解决传统分析方法的不足,并针对大规模数据的分析处理而出现的。数据挖掘通过在大量数据的基础上对各种学习算法的训练,得到数据对象间的关系模式,这些模式反映了数据的内在特性,是对数据包含信息的更高层次的抽象[1]。目前,在需要处理大数据量的科研领域中,数据挖掘受到越来越多

3.3 函数的实际应用举例

【课题】3.3 函数的实际应用举例 【学习目标】理解分段函数的概念,了解实际问题中的分段函数的问题。 【学习重点】对分段函数的认识和理解,根据实际问题列出函数关系式。 【学习难点】把实际问题转化为数学问题,建立实际问题的分段函数关系。【学习过程】 一、前置练习,自主学习 1、请每位学生和家长了解下自家每月用水情况,有能力的学生可以进一步了解下,费用是怎么计算的? 2、我国是一个缺水的国家,很多城市的生活用水远远低于世界的平均水平.为了加强公民的节水意识,某城市制定每户月用水收费(含用水费和污水处理费)标准: 那么,每户每月用水量x(m)与应交水费y(元)之间的关系是否可以用函数解析式表示出来? 解:分别研究在两个范围内的对应法则,列出下表: 二、新课知识: 1、分段函数:在自变量的不同取值范围内,有不同的对应法则,需要用不同的解析式来表示的函数叫做分段表示的函数,简称分段函数. 2、定义域:分段函数的定义域是自变量的各个不同取值范围的并集. 3、函数值:求分段函数的函数值()0 f x时,应该首先判断0x所属的取值范围,然后再把 x代入到相应的解析式中进行计算. 注意:分段函数在整个定义域上仍然是一个函数,而不是几个函数,只不过这个函数在定义域的不同范围内有不同的对应法则,需要用相应的解析式来表示.

三、讲解例题: 例1:设函数()221, 0,,0.x x y f x x x -??==?>??… (1)求函数的定义域; (2)求()()()2,0,1f f f -的值. 例2:作出函数()1,0,1,0x x y f x x x -

①数据描述,关系,函数依赖

数据管理阶段:手工管理阶段、文件系统阶段、数据库管理系统阶段。 三级模式:外模式、模式、内模式。 二级映像: ①外模式—模式:通过映射建立对应关系,模式变时只需修改映射关系, 可使外模式保持不变。 ②模式—内模式:通过映射建立对应关系,模式变时只需修改映射关系, 可使模式保持不变。 数据描述 1)概念数据模型概念模型 抽象:通过抓取事物的主要特征来表达事物的过程。 ①实体:Entity,现实世界中的客观事物,是现实世界中任何可区分、可识别的事物。 ②属性:Proprety 实体的特性。 ③实体关系:实体之间的对应关系:一对一、一对多、多对多。 ④※表达(E —R)Entity—Relation 2)逻辑数据模型 层次型:条件:①只能有一个根节点(无父节点) ②其他节点只能有一个父节点 网状型:条件:①只能有一个根节点(无父节点) ②其他节点可以有一个或者多个父节点 关系型:关系:二维表 元组:表中的行 属性:表中的列 对象型: 关系概念: ⑴域:具有相同特征的数据集合(取值范围) ⑵笛卡尔积:定义在一组域上的集合 例:D1×D2×D3={(d1,d2,.....dn)|di(-Di,1<=n<=n,n>=1} D1={男,女} D2={张三,李四} D3={20,18,19} D1×D2×D3={(男,张三,20),(男,张三,18),(男,张三,19), (男,李四,20),(男,李四,18),(男,李四,19), (女,张三,20),(女,张三,18),(女,张三,19), (女,李四,20),(女,李四,18),(女,李四,19)} ⑶关系:是笛卡尔积的一个子集,若笛卡尔积有n个域,则该笛卡尔积、子集称为n元关系(集合论) ⑷关键字(码):能唯一区分确定不同元组的属性或属性集合是该关系的一个关键字。 ①超码:能唯一识别每个元组的属性或属性组 ②候选码:能唯一识别每个元组的最少属性或属性组 ③主码:从候选码中选出一个作为主码 ④备用码:除了主码之外的候选码 ⑤外码:关系R1中的属性或者属性组在另一个关系R2中是主码,则称该属性或属性组是R1的外码。

关系模式的分解与函数依赖关系的判断

关系模式的分解与函数依赖关系的判断 (在读此文章时须认真细心读懂每一行每一个细节) 关于无损分解和保持依赖的判断,是系分和数工考试中每年基本上都会考的题,而且绝大部分是对一个关系模式分解成两个模式的考察,分解为三个以上模式时无损分解和保持依赖的判断比较复杂,考的可能性不大,因此我们只对“一个关系模式分解成两个模式”这种类型的题的相关判断做一个总结。 以下的论述都基于这样一个前提: R是具有函数依赖集F的关系模式,(R1 ,R2)是R的一个分解。 首先我们给出一个看似无关却非常重要的概念:属性集的闭包。 令α为一属性集。我们称在函数依赖集F下由α函数确定的所有属性的集合为F下α的闭包,记为α+ 。下面给出一个计算α+的算法,该算法的输入是函数依赖集F和属性集α,输出存储在变量result中。 算法一: result=α; while(result发生变化)do for each 函数依赖β→γ in F do begin if β∈result then result=(result∪γ); end (此算法是要算出α属性所能决定的所有属性是那些,包括传递依赖的属性,如主键所能决定的是整个表的所有属性。例如α→β、β→γ、β→δ、δ→θ,此算法能算出属性为:{α、β、γ、β、δ、θ}) 属性集闭包的计算有以下两个常用用途: ·判断α是否为超码: 通过计算α+(α在F下的闭包),看α+ 是否包含了R中的所有属性。若是,则α为R的超码。 ·通过检验是否β∈α+,来验证函数依赖是否成立。也就是说,用属性闭包计算α+,看它是否包含β。 (请原谅我用∈符号来表示两个集合之间的包含关系,那个表示包含的符号我找不到,大家知道是什么意思就行了。) 看一个例子吧,2005年11月系分上午37题: ● 给定关系R(A1,A2,A3,A4)上的函数依赖集F={A1→A2,A3→A2,A2→A3,A2→A4},R的候选关键字为________。 (37)A. A1 B. A1A3 C. A1A3A4 D. A1A2A3 首先我们按照上面的算法计算A1+ 。 result=A1, 由于A1→A2,A1∈result,所以result=result∪A2=A1A2 由于A2→A3,A2∈result,所以result=result∪A3=A1A2A3

计算最小函数依赖集示例

计算最小函数依赖集示例 举例:已知关系模式R,U={A,B,C,D,E,G}, F={AB→C,D→EG,C→A,BE→C,BC→D,CG→BD,ACD→B,CE→AG},求 F的最小函数依赖集。 解:利用算法求解,使得其满足三个条件 ①利用分解规则,将所有的函数依赖变成右边都是单个属性的函数依赖,得F为: F={AB→C,D→E,D→G,C→A,BE→C,BC→D,CG→B,CG→D,ACD→B,CE→A,CE →G} ②去掉F中多余的函数依赖。 A.设AB→C为冗余的函数依赖,则去掉AB→C,得: F1={D→E,D→G,C→A,BE→C,BC→D,CG→B,CG→D,ACD→B,CE→A,CE→G}计算(AB)F1+:设X(0)=AB 计算X(1):扫描F1中各个函数依赖,找到左部为AB或AB子集的函数依赖,因为找不到这样的函数依赖。故有X(1)=X(0)=AB,算法终止。 (AB)F1+= AB不包含C,故AB→C不是冗余的函数依赖,不能从F1中去掉。 B.设CG→B为冗余的函数依赖,则去掉CG→B,得: F2={AB→C,D→E,D→G,C→A,BE→C,BC→D,CG→D,ACD→B,CE→A,CE→G}计算(CG)F2+:设X(0)=CG 计算X(1):扫描F2中的各个函数依赖,找到左部为CG或CG子集的函数依赖,得到一个C→A函数依赖。故有X(1)=X(0)∪A=CGA=ACG。 计算X(2):扫描F2中的各个函数依赖,找到左部为ACG或ACG子集的函数依赖,得到一个CG→D函数依赖。故有X(2)=X(1)∪D=ACDG。 计算X(3):扫描F2中的各个函数依赖,找到左部为ACDG或ACDG子集的函数依赖,得到两个ACD→B和D→E函数依赖。故有X(3)=X(2)∪ BE=ABCDEG,因为X(3)=U,算法终止。 (CG)F2+=ABCDEG包含B,故CG→B是冗余的函数依赖,从F2中去掉。 C.设CG→D为冗余的函数依赖,则去掉CG→D,得: F3={AB→C,D→E,D→G,C→A,BE→C,BC→D,ACD→B,CE→A,CE→G}计算(CG)F3+:设X(0)=CG 计算X(1):扫描F3中的各个函数依赖,找到左部为CG或CG子集的函数依赖,得到一个C→A函数依赖。故有X(1)=X(0)∪A=CGA=ACG。 计算X(2):扫描F3中的各个函数依赖,找到左部为ACG或ACG子集的函数依赖,因为找不到这样的函数依赖。故有X(2)=X(1),算法终止。(CG)F3+=ACG。 (CG)F3+=ACG不包含D,故CG→D不是冗余的函数依赖,不能从F3中去掉。 D.设CE→A为冗余的函数依赖,则去掉CE→A,得: F4={AB→C,D→E,D→G,C→A,BE→C,BC→D,CG→D,ACD→B,CE→G}计算(CG)F4+:设X(0)=CE

3.2.2几种函数模型的应用举例

第三章 函数的应用 3.2.2几种函数模型的应用举例 【导学目标】 1.通过实例感受一次函数、二次函数、指数函数、对数函数以及幂函数的广泛应用,体会解决实际问题中建立函数模型的过程,从而进一步加深对这些函数的理解与应用; 2.初步了解对统计数据表的分析与处理. 【自主学习】 1、根据散点图设想比较接近的可能的函数模型: ①一次函数模型:()(0);f x kx b k =+≠ ②二次函数模型:2()(0);g x ax bx c a =++≠ ③指数函数模型:()x f x a b c =+g (0,a b ≠>0,1b ≠) ④对数函数模型:()log a f x m x b =+g (0,m ≠01a a >≠且) ⑤幂函数模型:12 ()(0);h x ax b a =+≠ 2、一般函数模型应用题的求解方法步骤: 1) 阅读理解,审清题意:逐字逐句,读懂题中的文字叙述,理解题中所反映的实际问题,明白已知什么,所求什么,从中提炼出相应的数学问题。 2)根据所给模型,列出函数表达式:合理选取变量,建立实际问题中的变量之间的函数关系,而将实际问题转化为函数模型问题。 3)运用所学知识和数学方法,将得到的函数问题予以解答,求得结果。 4)将所解得函数问题的解,翻译成实际问题的解答。 在将实际问题向数学问题的转化过程中,能画图的要画图,可借助于图形的直观性,研究两变量间的联系. 抽象出数学模型时,注意实际问题对变量范围的限制. 【典型例题】 例1:某桶装水经营部每天的房租、人员工资等固定成本为200元,每桶水的进价是5元. 销售单价与日均销售量的关系如下表所示: 请根据以上数据作出分析,这个经营部怎样定价才能获得最大利润?

函数的应用举例

函数的应用举例 导读:本文函数的应用举例,仅供参考,如果觉得很不错,欢迎点评和分享。 教学目标 1. 能够运用函数的性质,指数函数,对数函数的性质解决某些简单的实际问题. (1) 能通过阅读理解读懂题目中文字叙述所反映的实际背景,领悟其中的数学本,弄清题中出现的量及其数学含义. (2) 能根据实际问题的具体背景,进行数学化设计,将实际问题转化为数学问题,并调动函数的相关性质解决问题. (3) 能处理有关几何问题,增长率的问题,和物理方面的实际问题. 2. 通过联系实际的引入问题和解决带有实际意义的某些问题,培养学生分析问题,解决问题的能力和运用数学的意识,也体现了函数知识的应用价值,也渗透了训练的价值. 3. 通过对实际问题的研究解决,渗透了数学建模的思想.提高了学生学习数学的兴趣,使学生对函数思想等有了进一步的了解.教学建议 教材分析 (1)本小节内容是全章知识的综合应用.这一节的出现体现了强化应用意识的要求,让学生能把数学知识应用到生产,生活的实际

中去,形成应用数学的意识.所以培养学生分析解决问题的能力和运用数学的意识是本小节的重点,根据实际问题建立数学模型是本小节的难点. (2)在解决实际问题过程中常用到函数的知识有:函数的概念,函数解析式的确定,指数函数的概念及其性质,对数概念及其性质,和二次函数的概念和性质.在方法上涉及到换元法,配方法,方程的思想,数形结合等重要的思方法..事业本节的学习,既是对知识的复习,也是对方法和思想的再认识. 教法建议 (1)本节中处理的均为应用问题,在题目的叙述表达上均较长,其中要分析把握的信息量较多.事业处理这种大信息量的阅读题首先要在阅读上下功夫,找出关键语言,关键数据,特别是对实际问题中数学变量的隐含限制条件的提取尤为重要. (2)对于应用问题的处理,第二步应根据各个量的关系,进行数学化设计建立目标函数,将实际问题通过分析概括,抽象为数学问题,最后是用数学方法将其化为常规的函数问题(或其它数学问题)解决.此类题目一般都是分为这样三步进行. (3)在现阶段能处理的应用问题一般多为几何问题,利润最大,费用最省问题,增长率的问题及物理方面的问题.在选题时应以以上几方面问题为主. 教学设计示例 函数初步应用

数据库函数依赖

数据库函数依赖 一、函数依赖(Functional Dependency)的概念 数据依赖的一种,它反映属性或属性组之间相依存,互相制约的关系,即反映现实世界的约束关系。 二、定义 设R(U)是属性U上的一个关系模式,X和Y均为U={A1,A2,…,An}的子集,r为R的任一关系,如果对于r中的任意两个元组u,v,只要有u[X]=v[X],就有u[Y]=v[Y],则称X函数决定Y,或称Y函数依赖于X,记为X→Y。 例: (sno-学生ID,tno-教师ID,cno-课程ID,sname-学生姓名,tname-教师姓名,cname-课程名称,grade-成绩) 1、sno→sname, cno→cname,(sno,cno)→grade √ 2、sname→sno, tno→cno, sno→tname × 三、函数依赖是语义范畴 1、语义:数据所反映的现实世界事物本质联系 2、根据语义来确定函数依赖性的存在与否 3、函数依赖反映属性之间的一般规律,必须在关系模式下的任一个关系r中都满足约束条件。 四、属性间的联系决定函数依赖关系 设X、Y均是U的子集 1、X和Y间联系是1:1,则X→Y,Y→X。(相互依赖,可记作X←→Y) 2、X和Y间联系是M:1(M),则X→Y。 3、X和Y间联系是M:N(M,N),则X、Y间不存在函数依赖。 五、完全函数依赖和部分函数依赖 1、函数依赖分为完全函数依赖和部分函数依赖 2、定义: 在R(U)中,如果X→Y,并且对于X的任何真子集X'都有X'Y',则称Y完全依赖于X,记作X→Y;否则,如果X→Y,且X中存在一个真子集X',使得X'→Y成立,则称Y部分依赖于X。 例: 学生ID,学生姓名,所修课程ID,课程名称,成绩 (学生ID,所修课程ID)→成绩 成绩既不能单独依赖于学生ID,也不能单独依赖于所修课程ID,因此成绩完全函数依赖于关键字。 (学生ID,所修课程ID)→学生姓名 学生ID→学生姓名 学生姓名可以依赖于关键字的一个主属性——学生ID,因此学生姓名部分函数依赖于(学生ID,所修课程ID)。 六、平凡函数依赖和非平凡函数依赖 设X,Y均为某关系上的属性集,且X→Y 1)若Y包含于X,则称X→Y为:平凡函数依赖;(Sno, Cno) →Sno (Sno, Cno) →Cno 2)若Y不包含于X,则称X→Y为:非平凡函数依赖。(Sno, Cno) →Grade Y包含于X内,W于X相交,与Y无直接交集。 则:X→Y为平凡函数依赖

相关主题
文本预览
相关文档 最新文档