当前位置:文档之家› 非正弦周期信号的分解与合成实验报告

非正弦周期信号的分解与合成实验报告

非正弦周期信号的分解与合成实验报告
非正弦周期信号的分解与合成实验报告

非正弦周期信号的分解与合成实验报告

姓名: 学号: 班级:电气工程及其自由化

实验指导老师:成绩:____________________

一、实验目的

1.用同时分析法观测50Hz 非正弦周期信号的频谱,并与其傅利叶级数各项的频率与

系数作比较。

2.观测基波和其谐波的合成。

二、实验设备

1、THBCC-1型信号与系统控制理论及计算机控制技术实验平台

2、PC机(含“THBCC-1”软件)

三、实验原理

1.一个非正弦周期函数可以用一系列频率成整数倍的正弦函数来表示,其中与非正弦

具有相同频率的成分称为基波或一次谐波,其它成分则根据其频率为基波频率的2、3、4、?、n 等倍数分别称二次、三次、四次、?、n 次谐波,其幅度将随谐波次数的增加而减小,直至无穷小。不同频率的谐波可以合成一个非正弦周期波,反过来,一个非正弦周期波也可以分解为无限个不同频率的谐波成分。

2.实验装置的结构图

3.一个非正弦周期函数可用傅里叶级数来表示,级数各项系数之间的关系可用一各个

频谱来表示,不同的非正弦周期函数具有不同的频谱图,各种不同波形及其傅氏级数表达式如下。

四、实验内容及步骤

1.将50Hz 信号源接至信号分解实验模块BPF 的输入端。

2.将各带通滤波器的输出(注意各种不同信号所包含的频谱)分别接至示波器,观测各次谐波的频率和幅值,画出波形并列表记录频率和幅值。

3.将方波分解所得的基波和三次谐波分量接至加法器的相应输入端,观测加法器的输出波形,并记录之。

4.在步骤3 的基础上,再将五次谐波分量加到加法器的输入端,观测相加后的波形,记录之。

5.分别将50Hz 单相正弦半波、全波、矩形波和三角波的输出信号(因实验时间有限,在上述信号中选择了方波)接至50HZ 电信号分解与合成模块输入端、观测基波及各次谐波的频率和幅度,列表记录之。

6.将50Hz 单相正弦半波、全波、矩形波、三角波的基波和谐波分量别接至加法器的相应的输入端,观测求和器的输出波形,并记录之。

五、实验数据或曲线

1.根椐实验测量所得的数据,在同一坐标纸上绘制方波及其分解后所得的基波和各次谐波的波形,画出其频谱图。

(1)方波和基波

(2)方波和二次谐波

(3)方波和三次谐波

(4)方波和四次谐波

(5)方波和五次谐波

(6)方波和六次谐波

2.将所得的基波和三次谐波及其合成波形一同绘制在同一坐标纸上。(1)基波、基波和三次谐波合成波形

(2)三次谐波、基波和三次谐波合成波形

3.将所得的基波、三次谐波、五次谐波及三者合成的波形一同绘画在同一坐标纸上,并把实验4 中所观测到的合成波形也绘制在同一坐标纸上,便于比较。

(1)基波、基波及三五次谐波的合成波形

(2)三次谐波、基波及三五次谐波的合成波形

(3)五次谐波、基波及三五次谐波的合成波形

六、实验思考题

1.什么样的周期性函数没有直流分量和余弦项?

答:原周期函数必须是奇函数。奇函数傅立叶展开后仍然保持是奇函数,因此只有正弦项,没有直流和余弦项。

2.分析理论合成的波形与实验观测到的合成波形之间误差产生的原因。

答:理论合成是由无限个波形合成的,而实验合成是由有限个波形合成的。(P.S西南石油大学的童鞋请慎重Copy)

周期信号的分解与合成

实验一周期信号的分解与合成 一、实验目的 1.用同时分析法观测50Hz 非正弦周期信号的频谱。 2.观测基波和其谐波的合成。 二、实验原理 1.一个非正弦周期函数可以用一系列频率成整数倍的正弦函数来表示,其中与非正弦具有相同频率的成分称为基波或一次谐波,其它成分则根据其频率为基波频率的2、3、4、...、n 等倍数分别称二次、三次、四次、...、n 次谐波,其幅度将随谐波次数的增加而减小,直至无穷小。 2.不同频率的谐波可以合成一个非正弦周期波,反过来,一个非正弦周期波也可以分解为无限个不同频率的谐波成分。 3.一个非正弦周期函数可用傅里叶级数来表示,级数各项系数之间的关系可用一各个频谱来表示,不同的非正弦周期函数具有不同的频谱图,各种不同波形及其傅氏级数表达式见表1-1 表1-1 各种不同波形的傅里叶级数表达式(下) 1.方波

2.三角波 3.半波 4.全波 5.矩形波 三、预习要求 在做实验前必须认真复习教材中关于周期性信号傅利叶级数分解的有关内容。 四、实验内容 1. 50HZ方波信号的频谱。 2. 周期矩形脉冲的频谱;脉冲宽度为1;周期为4;则基波角频率为0.5pi 3. 使用不同频率的谐波合成方波信号;注意观察随着谐波数的增加合成的波形发生的变化。 4. 使用不同频率的谐波合成矩形脉冲信号;注意观察随着谐波数的增加合成的波形。 五、思考题 1.什么样的周期性函数没有直流分量和余弦项?

附: 1. 50HZ方波信号的频谱。 >> w1= ; %基波角频率 >> n=0:1:30; >>bn= ; %三角级数中系数bn,参考书p122 >> stem(n*w1,bn),grid on >> xlabel('\omega(rad/s)'),ylabel('bn') >> title('方波信号频谱分析图') 2. 周期矩形脉冲的频谱;脉冲宽度为1;周期为4;则基波角频率为0.5pi tao= ; w1= ; n=-15:1:15; fn= ; %矩形脉冲级数系数fn,参考书p130,用matlab自带函数sinc stem(n,fn),grid on xlabel('n'); ylabel('Fn'); title('周期矩形脉冲的频谱图'); 3. %使用不同频率的谐波合成方波信号;注意观察随着谐波数的增加合成的波形 %发生的变化。 t=-1:0.001:1; omega=2*pi; y=square(2*pi*t,50); plot(t,y);grid on xlabel('t'); ylabel('周期方波信号'); axis([-1 1 -1.5 1.5]); n_max=[1 3 5 11 47]; N=length(n_max); for k=1:N n=1:2:n_max(k); b=4./(pi*n); x=b*sin(omega*n'*t); figure; plot(t,y) hold on; plot(t,x); hold off; xlabel('t'); ylabel('部分和的波形');

实验报告六 非正弦周期电流电路辅助分析

实验报告六 非正弦周期电流电路辅助分析 1.电路课程设计目的 熟悉掌握谐波分析法,并对给定给正弦周期电流电路进行定量分析。 2.设计电路原理与说明 谐波分析法用于分析计算非正弦周期激励下的线性电路的相应。其步骤为: (1)将给定的周期性激励分解为恒定分量和各次谐波分量之和,一般以分解好的形式给出。 (2)分别计算电路在恒定分量及各次谐波分量单独作用下的响应。恒定分量作用下的响应,求解方法同直流电路;各次谐波分量作用下的响应可用向量法求解,应注意L,C 对不同谐波的阻抗随频率变化。 (3)根据叠加定理,将非正弦电源的各次谐波分量单独作用时的响应的瞬时值相加起来,其结果就是电路在非正弦电源激励下的稳态响应。 电路图如下 图一 已知:V t t U s )902sin(100sin 150100?-++=ωω,Ω=10R ,Ω==901C X c ω, Ω==10L X L ω 求各电表示数。 (1)直流分量作用于电路时,电感相当于短路,电容相当于开路。 0,0,0000===P U I (2)一次谐波作用于电路时 V U s ?∠=02150 1 A j X X j R U I C L s ?∠=-+?∠=-+=9.8232.1) 9010(1002150)(1111 u s

V j U ?∠=+?∠=9.1275.18)1010(9.8231.11 (3)二次谐波作用于电路时 A j X X j R U I C L s ?-∠=-+?-∠=-+=8.2163.2)4520(10902100 )(2222 V j U ?∠=+?-∠=6.418.58)2010(8.2163.22 电流表和电压表测的分别是电流、电压的有效值,功率表测量的是电路的有功功率。 W P V U A I 6.861063.21032.17.618.585.18094.263.232.1022222222=?+?==++===++= 3.电路课程设计仿真内容与步骤及结果 (1)按照电路图在Multisim 中接好电路,取ω=10,则L=1H ,C=0.00111F 。观察各表读数,是否与计算值相符。 (2)接入示波器,观察非正弦周期电流电路的电压波形及电流波形。 图二

--非正弦交流电路

第9章非正弦交流电路 学习指导与题解 一、基本要求 1.建立几个频率为整数倍的正弦波可以合成为一非正弦周期的概念。明确一个非正弦周期波可以分解为一系列频率为整数倍正弦波之和的概念(即谐波分析)、谐波中的基波与高次谐波的含义。了解谐波分析中傅里叶级数的应用。 2.掌握波形对称性与所含谐波分量的关系。能根据波形的特点判断所含谐波的情况。了解波形原点选择对所含谐波的影响。 3.掌握非正弦周期电压和电流的平均值(即直流分量)和有效值的计算。能根据给定波形计算出直流分量。能根据非正弦周期波的直流分量和各次谐波分量,计算出它的有效值。 4.掌握运用叠加定理和谐波分析计算非正弦交流电路中的电压和电流的方法。 5.建立同频率的正弦电压和电流才能形成平均功率的概念。掌握运用叠加定理和谐波分量计算非正弦交流电路中和平均功率。 二、学习指导 在电工技术中,电路除了激励和响应是直流和正弦交流电和情况外,也还遇到有非正弦周期函数电量的情况。如当电路中有几个不同频率的正弦量激励时,响应是非正弦周期函数;含有非线性元件的电路中,正弦激励下的响应也是非线性的;在电子、计算机等电路中应用的脉冲信号波形,都是非正弦周期函数。因此,研究非正弦交流电路的分析,具有重要和理论和实际意义。 本章的教学内容可分为如下三部分: 1.非正弦周期波由谐波合成的概念; 2.非正弦周期波的谐波分析; 3.非正弦交流电路的计算。 着重讨论非正弦周期波谐波分析的概念,非正弦周期量的有效值和运用叠加定理计算非正弦交流电路的方法。 现就教学内容中的几个问题分述如下。 (一)关于非正弦周期波的谐波的概念 非正弦周期波是随时间作周期性变化的非正弦函数。如周期性变化的方波、三角波等。这类波形,与正弦波相比,都有变化的周期T和频率f,不同的是波形而已。 f t,可 几个频率为整数倍的正弦波,合成是一个非正弦波。反之,一个非正弦周期波()

信号分解与合成实验报告

实验二信号分解与合成 --谢格斯110701336 聂楚飞110701324 一、实验目的 1、观察电信号的分解。 2、掌握带通滤波器的有关特性测试方法。 3、观测基波和其谐波的合成。 二、实验内容 1、观察信号分解的过程及信号中所包含的各次谐波。 2、观察由各次谐波合成的信号。 三、预备知识 1、了解李沙育图相关知识。 2、课前务必认真阅读教材中周期信号傅里叶级数的分解以及如何将各次谐波进行叠加等相关内容。 四、实验仪器 1、信号与系统实验箱一台(主板)。 2、电信号分解与合成模块一块。 3、20M双踪示波器一台。 五、实验原理 任何电信号都是由各种不同频率、幅度和初相的正弦波迭加而成的。对周期信号由它的 傅里叶级数展开式可知,各次谐波为基波频率的整数倍。而非周期信号包含了从零到无穷大的所有频率成份,每一频率成份的幅度均趋向无限小,但其相对大小是不同的。 通过一个选频网络可以将电信号中所包含的某一频率成份提取出来。本实验采用性能较 佳的有源带通滤波器作为选频网络,因此对周期信号波形分解的实验方案如图2-3-1所示。 将被测方波信号加到分别调谐于其基波和各次奇谐波频率的一系列有源带通滤波器电路上。从每一有源带通滤波器的输出端可以用示波器观察到相应频率的正弦波。本实验所用 的被测信号是 1 53Hz左右的周期信号,而用作选频网络的五种有源带通滤波器的输出 频率分别是「2 2、3 3、4 4、5 5,因而能从各有源带通滤波器的两端观察到基波和各 次谐波。其中,在理想情况下,如方波的偶次谐波应该无输出信号,始终为零电平,而奇次谐波则具有很好的幅度收敛性,理想情况下奇次谐波中一、三、五、七、九次谐波的幅度比应为1: (1/3):(1/5):(1/7):(1/9)。但实际上因输入方波的占空比较难控制在50%,且方 波可能有少量失真以及滤波器本身滤波特性的有限性都会使得偶次谐波分量不能达到理想零的情况。 六、实验步骤 1、把系统时域与频域分析模块插在主板上,用导线接通此模块“电源接入”和主板上 的电源(看清标识,防止接错,带保护电路),并打开此模块的电源开关。 2、调节函数信号发生器,使其输出53Hz左右(其中在50Hz ~ 56Hz之间进行选择,

信号分解与合成实验

深圳大学实验报告课程名称:信号与系统 实验项目名称:信号的分解与合成实验 学院:信息工程工程学院 专业: 电子信息工程 指导教师: 报告人:学号:班级: 实验时间: 实验报告提交时间: 教务处制

电位器W01、W02、W03可以将基波,三次谐波,五次谐波,七次谐波的幅度调节成1:1/3 : 1/5 : 1/7,通过导线将其连接至信号的合成的输入插座IN01、IN02、IN03、IN04J ,通过测试勾可以观察到合成后的波形。 2、验证三次谐波与基波之间的相位差是否为180,五次谐波与基波之间的相位差是否为0.可用李沙育图形法进行测量,其测量方法如下:用导线将函数发生器的方便输出端与带通滤波器输入端连接起来,即把方波信号分先后送入各带通滤波器,如图(1)所示. 具体方法:基波与各高次谐波相位比较(李沙育频率测试法) 把BFP-1ω处的基波送入示波器的X 轴,再分别把BFP-31ω、BFP-51ω处的高次谐波送入Y 轴,示波器采用X —Y 方式显示,观察李沙育图。 当基波与三次谐波相位差为0、90、180时,波形分别如图所示. 以上是三次谐波与基波产生的典型的李沙育图,通过图形上下端及两旁的波峰个数,确定频率比.

五、实验步骤与相应实验结果: 1、把电信号分解与合成模块插在主板上,用导线接通此模块“电源插入”和主板上的电源,并打开此模块的电源开关. 2、调节函数信号发生器,使其输出10KHz左右的方波,占空比为50%,峰峰值为6V左右,如图(2)所示。将其接至该实验模块的“输入端",用示波器观察各次谐波的输出即各次谐波,分别如图(3)、图(4)、图(5)、图(6)所示. 图(2)输出方波信号 图(3)基次谐波图(4)三次谐波 图(5)五次谐波图(6)七次谐波

典型信号的合成和分解

实验指导书 实验项目名称:典型信号的合成和分解 实验项目性质:普 通 所属课程名称:工程测试技术 实验计划学时:2 一.实验目的 通过本实验熟悉信号的合成、分解原理,了解信号频谱的含义和特点。 二.实验内容和要求 1.周期信号的合成和分解 在有限区间内,凡满足狄里赫利条件的周期信号x(t)都可以展开傅里叶三角函数级数。 001001 ()(cos sin )2 cos()(1,2,3,)2n n n n n n n a x t a n t b n t a A n t n ωωω?∞=∞==++=+-=∑∑ 式中 0a ——常值分量 00/20/202()T T a x t dt T -=? n a ——余弦分量的幅值

00/20/202()cos T n T a x t n tdt T ω-=? n b ——正弦分量的幅值 00/20/202()sin T n T b x t n tdt T ω-=? n A ——n 次谐波的振幅,是n 的偶函数 n A = n ?——n 次谐波的相角,是n 的奇函数 arctan n n n a b ?= 可见,周期信号是由周期信号是由一个或几个、乃至无穷多个不同频率的谐波叠加而成的。也就是说,复杂周期信号是由几个乃至无穷多个简单的周期信号组成的,这些组成的周期信号的频率具有公约数,周期具有公共的周期。 因此,周期信号可以分解成多个乃至无穷多个谐波信号。反过来说,我们可以用一组谐波信号来合 成任意形状的周期信号。 例如对于如右图所示的方 波,其时域描述表达式为 000()()02()02x t x t nT T A t x t T A t =+????<

信号分解与合成实验报告

实验二 信号分解与合成 --谢格斯 110701336 聂楚飞110701324 一、实验目的 1、观察电信号的分解。 2、掌握带通滤波器的有关特性测试方法。 3、观测基波和其谐波的合成. 二、实验内容 1、观察信号分解的过程及信号中所包含的各次谐波。 2、观察由各次谐波合成的信号。 三、预备知识 1、了解李沙育图相关知识. 2、课前务必认真阅读教材中周期信号傅里叶级数的分解以及如何将各次谐波进行叠加等相关内容. 四、实验仪器 1、信号与系统实验箱一台(主板)。 2、电信号分解与合成模块一块。 3、20M双踪示波器一台. 五、实验原理 任何电信号都是由各种不同频率、幅度和初相的正弦波迭加而成的。对周期信号由它的傅里叶级数展开式可知,各次谐波为基波频率的整数倍。而非周期信号包含了从零到无穷大的所有频率成份,每一频率成份的幅度均趋向无限小,但其相对大小是不同的. 通过一个选频网络可以将电信号中所包含的某一频率成份提取出来。本实验采用性能较佳的有源带通滤波器作为选频网络,因此对周期信号波形分解的实验方案如图2-3—1所示。 将被测方波信号加到分别调谐于其基波和各次奇谐波频率的一系列有源带通滤波器电路上。从每一有源带通滤波器的输出端可以用示波器观察到相应频率的正弦波。本实验所用的被测信号是Hz 531=ω左右的周期信号,而用作选频网络的五种有源带通滤波器的输出频 率分别是543215432ωωωωω、、、、 ,因而能从各有源带通滤波器的两端观察到基波和各次谐波.其中,在理想情况下,如方波的偶次谐波应该无输出信号,始终为零电平,而奇次谐波则具有很好的幅度收敛性,理想情况下奇次谐波中一、三、五、七、九次谐波的幅度比应为1:(1/3):(1/5):(1/7):(1/9)。但实际上因输入方波的占空比较难控制在50%,且方波可能有少量失真以及滤波器本身滤波特性的有限性都会使得偶次谐波分量不能达到理想零的情况。 六、实验步骤 1、把系统时域与频域分析模块插在主板上,用导线接通此模块“电源接入"和主板上的电源(看清标识,防止接错,带保护电路),并打开此模块的电源开关. 2、调节函数信号发生器,使其输出Hz 53左右(其中在Hz Hz 56~50之间进行选择,

周期矩形脉冲的分解与合成

周期矩形脉冲的分解与合成

本科实验报告 实验名称:周期矩形脉冲的分解与合成

一、实验目的和要求 ? 进一步了解波形分解与合成原理。 ? 进一步掌握用傅里叶级数进行谐波分析的方法。 ? 分析典型的矩形脉冲信号,了解矩形脉冲信号谐波分量的构成。 ? 观察矩形脉冲信号通过多个数字滤波器后,分解出各谐波分量的情况。 ? 观察相位对波形合成中的作用。 二、实验内容和原理 2.1 信号的时域特性与频域特性 时域特性和频域特性是信号的两种不同的描述方式。一个时域上的周期信号,只要满足荻里赫勒(Dirichlet)条件,就可以将其展开成三角形式或指数形式的傅里叶级数。由于三角形式的傅里叶级数物理含义比较明确,所以本实验利用三角形式实现对周期信号的分解。 一个周期为T 的时域周期信号()x t ,可以在任意00(,)t t T +区间,精确分解为以下三角形式傅里叶级数,即 0001()(cos sin ) k k k x t a a k t b k t ωω∞ ==++∑ 2.2 矩形脉冲信号的幅度谱 一般利用指数形式的傅里叶级数计算周期信号的幅度谱。 0()jk t k k x t X e ω∞ =-∞ = ∑ (3) 式中0/2 /2 1()T jk t k T X x t e dt T ω--= ? 。计算出指数形式的复振幅k X 后,再利用单边幅 度谱和双边幅度谱的关系:0 2,0 ,0k k X k C X k ?≠?=?=??,即可求出第k 次谐波对应的振

幅。 内容: (1)方波信号的分解。调整“信号源及频率计模块”各主要器件,通过TP1~TP8观察500Hz方波信号的各次谐波,并记录各次谐波的峰峰值。 (2)矩形波信号的分解。将矩形脉冲信号的占空比变为25%,再通过TP1~TP8观察500Hz矩形脉冲信号的各次谐波,并记录各次谐波的峰峰值。 (3)方波的合成。将矩形脉冲信号的占空比再变为50%,通过调节8位拨码开关,观察不同组合的方波信号各次谐波的合成情况,并记录实验结果。 (4)相位对矩形波合成的影响。将SW1调节到“0110”,通过调节8位拨码开关,观察不同组合的方波信号各次谐波的合成情况,并记录实验结果。 三、实验项目 周期矩形脉冲的分解与合成 四、实验器材 信号与系统实验箱一台 双踪示波器一台 五、实验步骤 5.1 方波信号的分解 ①连接“信号源与频率计模块”的模拟输出端口P2与“数字信号处理模块”的模拟输入端口P9; ②将“信号源及频率计模块”的模式切换开关S2置信号源方式,扫频开关S3置off,利用波形切换按钮S4产生矩形波(默认方波,即占空比为50%),利用频率调节按钮ROL1保证信号频率为500Hz; ③将“数字信号处理模块”模块的8位拨码开关调节为“00000000”; ④打开信号实验箱总电源(右侧边),打开S2、S4 两模块供电开关; ⑤用示波器分别观察测试点“TP1~TP7”输出的一次谐波至七次谐波的波形及TP8处输出的七次以上谐波的波形; ⑥根据表1,记录输入信号参数及测试结果。 5.2 矩形波信号的分解 ①按下“信号源及频率计模块”的频率调节按钮ROL1约1秒钟后,数码

实验二、 波形合成与分解

实验二 波形合成与分解 1.实验目的 在理论学习的基础上,通过本实验熟悉信号的合成、分解原理,了解信号频谱的含义,加深对傅里叶变换性质和作用的理解。 2.实验原理 根据傅里叶分析的原理,任何周期信号都可以用一组三角函数)}cos();{sin(00t n t n ωω的组合表示,即: )2sin()2cos()sin()cos()(020201010t b t a t b t a a t x ωωωω++++= 即可以用一组正弦波和余弦波来合成任意形状的周期信号。 3.实验内容 (1) 方波的合成 图示方波是一个奇谐信号,由傅里叶级数可知,它是由无穷个奇次谐波分量 合成的,本实验用图形的方式来表示它的合成。方波信号可以分解为: ,9,7,5,3,1,1)2sin(2)(10=?=∑∞ =n n t nf A t x n ππ 用前5项谐波近似合成50Hz,幅值为3的方波,写出实验步骤。 a.只考察从 0=t s 到10=t s 这段时间内的信号。 b.画出基波分量)sin()(t t y =。 c.将三次谐波加到基波之上,并画出结果,并显示。 3/)*3sin()sin()(t t t y += d.再将一次、三次、五次、七次和九次谐波加在一起。 9/)*9sin(7/)*7sin(5/)*5sin(3/)*3sin()sin()(t t t t t t y ++++= e.合并从基波到十九次谐波的各奇次谐波分量。 f.将上述波形分别画在一幅图中,可以看出它们逼近方波的过程。注意“吉布斯现象”。周期信号傅里叶级数在信号的连续点收于该信号,在不连续点收敛于信号左右极限的平均值。如果我们用周期信号傅里叶级数的部分和来近似周期信号,在不连续点附近将会出现起伏和超量。在实际中,如果应用这种近似,就应该选择足够大的N ,以保证这些起伏拥有的能量可以忽略。 (2) 设计谐波合成三角波的实验,写出实验步骤,并完成实验。

信号的分解与合成

实验十三 信号分解及合成 一、 实验目的 1、 了解和熟悉波形分解与合成原理。 2、 了解和掌握用傅里叶级数进行谐波分析的方法。 二、 实验仪器 1、 双踪示波器 2、 数字万用表 3、 信号源及频率计模块S2 4、 数字信号处理模块S4 三、 实验原理 (一)信号的频谱与测量 信号的时域特性和频域特性是对信号的两种不同的描述方式。对于一个时域的周期信号 ()f t ,只要满足狄利克菜(Dirichlet)条件,就可以将其展开成三角形式或指数形式的傅里 叶级数。 例如,对于一个周期为T 的时域周期信号()f t ,可以用三角形式的傅里叶级数求出它的 各次分量,在区间11(,)t t T +内表示为 () 01 ()cos sin 41,3,5,7,n n n f t a a n t b n t A k Tk ω ∞ ==+Ω+Ω=??? ∑ ()01 ()cos sin n n n f t a a n t b n t ∞ ==+Ω+Ω∑ 即将信号分解成直流分量及许多余弦分量和正弦分量,研究其频谱分布情况。 图1 c a

信号的时域特性和频域特性 信号的时域特性与频域特性之间有着密切的内在联系,这种联系可以用图13-1来形象地表示。其中图(a)是信号在幅度—时间—频率三维坐标系统中的图形;图(b)是信号在幅度一时间坐标系统中的图形即波形图:把周期信号分解得到的各次谐波分量按频率的高低排列,就可以得到频谱图。反映各频率分量幅度的频谱称为振幅频谱。图(c)是信号在幅度—频率坐标系统中的图形即振幅频谱图。反映各分量相位的频谱称为相位频谱。在本实验中只研究信号振幅频谱。周期信号的振幅频谱有三个性质:离散性、谐波性、收敛性。测量时利用了这些性质。从振幅频谱图上,可以直观地看出各频率分量所占的比重。测量方法有同时分析法和顺序分析法。 同时分析法的基本工作原理是利用多个滤波器,把它们的中心频率分别调到被测信号的各个频率分量上。当被测信号同时加到所有滤波器上,中心频率与信号所包含的某次谐波分景频率-致的滤波器便有输出。在被测信号发生的实际时间内可以同时测得信号所包含的各频率分量。在本实验中采用同时分析法进行频谱分析,如图132所示。 (二)方波的分解 我们以下图的方波为例:占空比为50% 方波在一个周期内的解析式为:0()2 A t T f t T A t T <≤?? =? -<≤?? 故有 () 01 ()cos sin 41,3,5,7,n n n f t a a n t b n t A k Tk ω ∞ ==+Ω+Ω=??? ∑ 于是,所求级数 b

电工基础第八章非正弦周期电流电路习题详解

第八章 非正弦周期电流电路习题解答 8-1解:直流分量单独作用时,将电容开路,电源u(t)短路,其余保留。 交流分量单独作用时,将电源U短路,其余保留。 8-2解:电流表达式为24sin i t A ω=+ 在直流分量(0)2I A =作用下,电感看作短路,电源电压(0)22040U V =?=; 在基波分量(1)()4sin I t t A ω= 作用下,(1)0(2030)10256.3U j V =+=∠ 电源电压表达式为()4056.3)u t t V ω=++ 平均功率402102cos56.3240P W =?= 无功功率102sin 56.3240Q Var == 视在功率2242379.5.2S V A =+= 8-3解:(1)在电压的直流分量(0)10U V =单独作用下,电容看作开路,电路中无电流, 即 (0)0I A = 在一次谐波下,(1)()80sin(60)u t t V ω=+单独作用下: (1)(1)(1)8060 4.7129.46218 U I A Z j j ∠===∠+- 在三次谐波(3)()18sin3u t t V ω=单独作用下: (3)(3)(3)180 30666 U I A Z j j ∠===∠+- 电路中的电流为() 4.7sin(129.4)3sin3t i t t A ωω=+ + 其有效值为 3.94I A == (2)电源输出的功率为: 1180 4.7cos(60129.4)183cos 09322 P W =??-+??=

8-4解:(1)一次谐波电压、电流是(1)(1)()100sin314()10sin314u t t V i t t A ==;,它们 同相位,即:(1)(1)L C X X = 100010 100 R ∠==Ω∠ 有: 1 314(1)314L C = 三次谐波时,22215010(942)()(2)942 1.755L C +-= 联立求解(1)、(2)两式,可得31.9318.4L mH C F μ==, (2)(3)1109421030 3.3328.569.5942Z j L j j j C =+-=+-=∠Ω 即 3069.599.5θθ--==-, (3)电路消耗的功率 1110010cos 050 1.755cos 69.5515.422 P W =??+??= 8-5解:电流()S i t 的直流分量(0)2S I A =单独作用时,电容开路,即L 、C 串联支路为开路。 (0)(0)2R S I I A == 一次谐波(1)()10sin S i t t A ω=单独作用时 531010 100L ω-=?=Ω 5611100100.110 C ω-==Ω?? L 、C 串联支路谐振相当于短路 (1)0R I A = 二次谐波(2)()3sin 2S i t t A ω=单独作用时 2200L ω=Ω 1502C ω=Ω L 、C 串联支路的复阻抗为150j Ω (2)15030 1.853.1200150 R j I A j =∠?=∠+ 即 ()2 1.8sin(253.1)R t i t A ω=++ 其有效值为 2.37R I A ==

非正弦周期电流电路及电路频率特性

非正弦周期电流电路及电路频率特性 4.5 三相电路的功率 4.5 三相电路的功率例题3 第5章电路的频率特性非正弦周期交流电路非正弦周期交流电路非正弦周期交流电路 5.1 非正弦周期交流电路的分析和计算 1. 非正弦周期信号 1. 非正弦周期信号 1. 非正弦周期信号 2. 非正弦周期电流电路分析 2. 非正弦周期电流电路分析 2. 非正弦周期电流电路分析 2. 非正弦周期电流电路分析2. 非正弦周期电流电路分析 3. 非正弦周期量的有效值 3. 非正弦周期量的有效值 3. 非正弦周期量的有效值 4. 非正弦周期电流电路的平均功率 4. 非正弦周期电流电路的平均功率 4. 非正弦周期电流电路的平均功率 4. 非正弦周期电流电路的平均功率 4. 非正弦周期电流电路的平均功率 4. 非正弦周期电流电路的平均功率习题 5.2 RC串联电路的频率特性 5.2 RC串联电路的频率特性 5.2 RC 串联电路的频率特性 5.2 RC串联电路的频率特性 5.3 RC串/并联电路的频率特性 5.3 RC串/并联电路的频率特性 5.3 RC串/并联电路的频率特性谐振的概念串联谐振特点串联谐振特点串联谐振特点串联谐振特点串联谐振特点串联谐振特点串联谐振特点串联电路频率特性阻抗的幅频特性阻抗的相频特性电流的幅频特性电流的幅频特性电流抑制比谐振通用曲线谐振通用曲线5.5 LC并联电路的频率特性例题1 例题2 例题3 例题3 例题3 例题3 例题3 例题4 R + _ + _ . . + _ . . 网络函数:响应相量激励相量―幅频特性―相频特性 R + _ + _ . . + _ . . 0 ω1/RC 相频特性 RC低通滤波器:带宽:截止角频率幅频特性 0 ω

信号分解与合成实验报告

实验二 信号分解与合成 --谢格斯 110701336 聂楚飞110701324 一、实验目的 1、观察电信号的分解。 2、掌握带通滤波器的有关特性测试方法。 3、观测基波和其谐波的合成。 二、实验内容 1、观察信号分解的过程及信号中所包含的各次谐波。 2、观察由各次谐波合成的信号。 三、预备知识 1、了解李沙育图相关知识。 2、课前务必认真阅读教材中周期信号傅里叶级数的分解以及如何将各次谐波进行叠加 等相关内容。 四、实验仪器 1、信号与系统实验箱一台(主板)。 2、电信号分解与合成模块一块。 3、20M 双踪示波器一台。 五、实验原理 任何电信号都是由各种不同频率、幅度和初相的正弦波迭加而成的。对周期信号由它的 傅里叶级数展开式可知,各次谐波为基波频率的整数倍。而非周期信号包含了从零到无穷大的所有频率成份,每一频率成份的幅度均趋向无限小,但其相对大小是不同的。 通过一个选频网络可以将电信号中所包含的某一频率成份提取出来。本实验采用性能较 佳的有源带通滤波器作为选频网络,因此对周期信号波形分解的实验方案如图2-3-1所示。 将被测方波信号加到分别调谐于其基波和各次奇谐波频率的一系列有源带通滤波器电 路上。从每一有源带通滤波器的输出端可以用示波器观察到相应频率的正弦波。本实验所用的被测信号是Hz 531=ω左右的周期信号,而用作选频网络的五种有源带通滤波器的输出 频率分别是543215432ωωωωω、、、、 ,因而能从各有源带通滤波器的两端观察到基波和各次谐波。其中,在理想情况下,如方波的偶次谐波应该无输出信号,始终为零电平,而奇次谐波则具有很好的幅度收敛性,理想情况下奇次谐波中一、三、五、七、九次谐波的幅度比应为1:(1/3):(1/5):(1/7):(1/9)。但实际上因输入方波的占空比较难控制在50%,且方波可能有少量失真以及滤波器本身滤波特性的有限性都会使得偶次谐波分量不能达到理想零的情况。

第6节 非正弦周期电流电路分析

第6章 非正弦周期电流电路分析 主要内容 1. 信号的基本概念和分类。 2. 信号的基本运算。 3. 常用非正弦周期信号。 4. 非正弦周期信号的傅里叶级数分解。 5. 周期信号的频谱。 6. 非正弦周期电流电路分析。 6.1信号 6.1.1 信号的基本概念 宇宙万物都处在不停的运动中,物质的一切运动或状态的变化,从广义上讲都是信号(Signal ),即信号是物质运动的表现形式。例如,钟鼓楼的报时钟声和轮船的汽笛声是声信号;烽火台的烽火和交通路口的红绿灯信号是光信号;电路中的电流和无线电基站发射的电磁波是电信号。在社会活动和日常生活中,人们总要使用语言、文字、数据、图像等多种媒体来传递消息(Message ),消息是这些语言、文字、数据、图像等信号所代表的具体内容。通信的目的在于通过各种消息的传递,使人们获取不同的信息(Information ),信息就是指具有新内容、新知识的消息。为了有效地传输和利用消息,通常需要将消息转换成各种便于传输和处理的信号。可见,信号是消息的载体,消息是信号的具体内容。 信号通常表现为某种随时间变化的物理量,在各种信号中,电信号最便于传输、控制和处理。因此,在实际应用中通常将各种非电信号(如声音、图像、温度、压力、位移、转矩、流量等)通过适当的传感器转换成电信号。 6.1.2 信号的描述和分类 电信号通常表现为电压信号和电流信号,它们都是时间的函数,可分别用u (t )和i (t )表示,或一般地表示为f (t )、y (t )等。信号的描述方法通常包括函数表达式法、波形图法、频谱图法和数据列表法。信号的变化规律是多种多样的,可以从不同的研究角度进行分类。 1.确定信号与随机信号 若信号随时间的变化表现为某种确定的规律,能用确定的函数表达式来描述,或者说对于任意一个确定的时刻,信号都有确定的函数值,这种信号称为确定信号。例如,正弦信号就是典型的确定信号。相反,如果信号的取值在不同时刻随机变化,事先无法预知它的变化规律,不能用确定的函数表达式来描述,这种信号称为不确定信号或随机信号。例如,噪声信号就是典型的随机信号。图6-1所示为几种常用信号的波形图,其中(a )~(e )是确定信号,(f )是随机信号。 由于信号在传输过程中不可避免地要受到各种噪声和干扰的影响,所以在实际应用中,理想的确定信号并不存在。但作为科学的抽象,研究确定信号仍然十分重要,它是研究随机信号的基础。 2.周期信号与非周期信号 周期信号是按某一固定周期重复出现的信号,它可以表示为 f (t )= f (t+nT ) n =0,±1,±2,… (6-1) 式中,T 称为信号的周期。周期信号的特点在于只要给定任意一个周期内信号的变化规律,就可以确定它在其他时间内的变化规律,如图6-1(c )所示。 非周期信号不具有周期性,它通常有两种表现方式:一种是仅在某些时间区间存在的信号,如图 6-1(a )、(b )、(d )、(e )、(f ) 所示;另一种是拟周期信号(概周期信号),例如)2sin(sin )(t t t f +=,它的两个正弦分量频率之比为无理数。另外,通常也可以将非周期信号看作是周期为无穷大的周期信号。

实验非正弦周期电路仿真

非正弦周期电路的研究 一、 实验目的: 1、 充分理解非正弦周期电路的谐波分析法,了解非正弦周期函数的傅里叶分析法。 2、 熟练掌握非正弦周期电流电路的计算。 二、 实验原理: 在实际问题中,电路中可能会产生非正弦量,即电路中的电压和电流随时间作非正弦周期性变化,它可能由以下原因导致:电路中有两个以上不同频率的正弦电源同时作用;电路中含有二极管等非线性元件;电路输入的信号不是正弦信号。 利用数学手段可以将工程中常遇到的非正弦周期信号分解成无限多个不同频率的正弦波,设()f t 为一满足狄里赫利条件的非正弦周期信号,其周期为T ,角频率为2T πω=,则()f t 的傅里叶级数展开式的一般形式为: 上式还和合并为:()01cos()km k k f t A A k t ω?∞==++∑ 式中:0A ——()f t 的直流分量或恒定分量,也称零次谐波。 11cos()m A t ω?+——频率和()f t 相同,称为基波或一次谐波。 cos()km k A k t ω?+——频率为基波频率的k 倍,称为k 次谐波。

反之同理,我们可以利用几个不同频率(频率之间为倍数关系)的电源制造一个非正弦周期性信号。 在对非正弦周期电路进行分析时和利用电路的叠加原理,即逐个分析电路信号的各次谐波,最后再将各次谐波信号合成,这样就把非正弦电路分解成了多个正弦电路分析。 合成时,非正弦周期电流i 的有效值为: 同理,22222 0123...k U U U U U U =+++++ (1)如下右图所示电路,计算电源电压及干路上电流的有效值,设输入电源为:()()100sin31440cos62810sin 94220s u t t t t =-++ (2)如下右图所示电路 已知输入电压13cos cos3i m m u U t U tV ωω=+,100rad s ω=,1L H =,输出R 上的电压,若要使输出01cos m u U t ω=,则12,C C 应如何取值? 输出无三次谐波,可知1 ,L C 对三次谐波发生并联谐振,即 解得:111.1C F μ= 同时,输出电压为输入电压 的一次谐波,可知12,,L C C 的串并联电路对于一次谐波发生串联谐振,即:

信号及系统中信号分解及合成实验报告

信号与系统实验报告 非正弦周期信号的分解与合成 专业: 班级: 姓名: 学号: 用同时分析法观测50H z非正弦周期信号的分解与合成 一、实验目的 1、用同时分析法观测50Hz非正弦周期信号的频谱,并与其傅立叶级数各项的频率与系数作比较。 2、观测基波和其谐波的合成。 二、实验设备 1、信号与系统实验箱:THKSS-A型或THKSS-B型或THKSS-C型。 2、双踪示波器,数字万用表。 三、实验原理 1、一个非正弦周期函数可以用一系列频率成整数倍的正弦函数来表示,其中与非正弦具有相同频率的成分称为基波或一次谐波,其它成分则根据其频率为基波频率的 2、 3、 4、…、n等倍数分别称二次、三次、四次、…、n次谐波,其幅度将随谐波次数的增加而减小,直至无穷小。 2、不同频率的谐波可以合成一个非正弦周期波,反过来,一个非正弦周期波也可以分解为无限个不同频率的谐波成分。 3、一个非正弦周期函数可用傅立叶级数来表示,级数各项系数之间的关系可用一个频谱来表示,不同的非正弦周期函数具有不同的频谱图,各种不同波形及其傅氏级数表达式见表2-1,方波频谱图如图2-1表示 方波频谱图 各种不同波形的傅立叶级数表达式

1、方波 2、三角波 3、半波 4、全波 5、矩形波 实验装置的结构如下图所示 信号分解与合成实验装置结构框图, 图中LPF 为低通滤波器,可分解出非正弦周期函数的直流分量。1BPF ~6BPF 为调谐在基波和各次谐波上的带通滤波器,加法器用于信号的合成。 四、实验步骤 1、将50Hz 的方波信号,并将其接至信号分解实验模块BPF 的输入端,将各带通滤波器的输出分别接至示波器,观测各次谐波的频率和幅值,并列表记录之。 2、将方波分解所得的基波和三次谐波分量接至加法器的相应输入端,观测加法器的输出波形,并记录之。 3、在2的基础上,再将五次谐波分量加到加法器的输入端,观测相加后的波形,记录之。 4、分别将50Hz 单相正弦半波、全波、矩形波和三角波的输出信号接至50HZ 电信号分解与合成模块输入端、观测基波及各次谐波的频率和幅度,记录之。 5、将50Hz 单相正弦半波、全波、矩形波、三角波的基波和谐波分量接至加法器的相应的输入端,观测求和器的输出波形,并记录之。

信号的产生分解与合成

东南大学电工电子实验中心 实验报告 课程名称:电子线路实践 第七次实验 实验名称:信号的产生、分解与合成 院(系):电子科学与工程学院专业: 姓名:姜勖学号: 06A11315 实验室: 104 实验组别: 27 同组人员:徐媛媛实验时间:年月日 评定成绩:审阅教师: 实验四信号的产生、分解与合成 一、实验内容及要求 设计并安装一个电路使之能够产生方波,并从方波中分离出主要谐波,再将这 些谐波合成为原始信号或其他周期信号。 1.基本要求 (1)设计一个方波发生器,要求其频率为1kHz,幅度为5V; (2)设计合适的滤波器,从方波中提取出基波和3次谐波; (3)设计一个加法器电路,将基波和3次谐波信号按一定规律相加,将合成后的信号与原始信号比较,分析它们的区别及原因。 2.提高要求 设计5次谐波滤波器或设计移相电路,调整各次谐波的幅度和相位,将合成

后的信号与原始信号比较,并与基本要求部分作对比,分析它们的区别及原因。 3. 创新要求 用类似方式合成其他周期信号,如三角波、锯齿波等。 分析项目的功能与性能指标: 功能:通过振荡电路产生一个方波,并将其通过滤波得到1、3、5次谐波,最后通过加法电路合成新的波形。 性能指标: (1)方波:频率1KHz,幅度5V。 (2)滤波器:基础要求从方波中提取基波和三次谐波,提高要求提取五次谐波。 (3)移相电路:通过移相电路调节滤出来的1、3、5次谐波相位,使得其与原方波相位差近似为0。 (4)加法器电路:将基波和3次谐波和5次谐波信号按一定规律相加。 1、信号的产生 通过震荡电路产生1kHz,幅度为5V的方波信号。 2、滤波器的设计 根据方波的傅里叶展开式: 可知原信号分解只包含奇次谐波分量。因此设计不同中心频率的带通滤波器,可将各次谐波滤出。 3、相位校正电路 由于滤波器用到了对不同频率有不同响应的储能元件,对于滤除的波形会产生附加相位。若要让各次谐波叠加出原有信号,必须调节其相位使之同相。用全通滤波器可在不影响相对幅度的前提下改变相位。 4、加法电路 将滤除的基波、3次谐波、5次谐波相加,得到近似的方波信号。对于滤波器对不同频率分量不成比例的衰减,可在加法电路中选择合适的比例给予响应的补偿。 二、电路设计(预习要求) (1)电路设计思想(请将基本要求、提高要求、创新要求分别表述): 1、信号发生电路: 利用运放和RC回路构成振荡电路,通过分别调节正反向RC回路的时间常数和运放同相输入端的参考电压来调节震荡电路的频率以及占空比。用一对稳压二极管限制输出电压幅度,并对稳压管导通压降进行一定的补偿。 2、有源带通滤波器: 根据实验要求,设计有源带通滤波器,将所需频率的信号以尽量小的衰减输出,同时对其它频率有非常大的衰减。因此需要增加滤波器的阶数。初步选择采用二阶有源带通滤波器,通过理论计算,调节其中一个电阻来改变中心频率。 根据实际搭出的电路效果,可尝试使用四阶有源带通滤波器,以求获得更好的滤波效果。

第十二章(非正弦周期电流电路)习题解答

第十二章(非正弦周期电流电路)习题解答 一、选择题 1. 在图12—1所示电路中,已知)]cos(2512[1t u s ω+=V , )240cos(2502+ω=t u s V 。设电压表指示有效值,则电压表的读数为 B V 。 A .12; B .13; C. 解:设u 如图12—1所示,根据KVL 得 )240cos(25)cos(2512021+ω+ω+=+=t t u u u s s } 即 )120cos(25)cos(25120 -ω+ω+=t t u =)60cos(25120 -ω+t 根据 2 )1(2 )0(U U U += 得1351222=+=U A 2.在图12—2所示的电路中,已知)100cos(2t u s = V , )]60100cos(243[0-+=t i s A ,则s u 发出的平均功率为 A W 。 A .2; B .4; C .5 解:由平均功率的计算公式得 ~ )600cos(0 )1()1()0()0(++=I U I U P =2)60cos(41300 =?+?W 3.欲测一周期性非正弦量的有效值,应用 A 仪表。 A .电磁系; B .整流系; C .磁电系 4.在图12—3所示的电路中,Ω=20R ,Ω=ω5L , Ω=ω451 C , )]3cos(100)cos(276100[t t u s ω+ω+=V ,现欲使电流i 中含有尽可大的基波分量,Z 应 是 C 元件。 A .电阻; B .电感; C .电容

解:由图12—3可见,此电路对基波的阻抗为~ j45 j5 45 5 20 j 1 j j 1 j - ? + + = ω + ω ω ? ω + + =Z C L C L Z R Z i = 8 45 j 20+ +Z 欲使电流i中含有尽可大的基波分量就是要使i Z的模最小,因此Z应为电容。 二、填空题 1.图12—4所示电路处于稳态。已知Ω =50 R,Ω = ω5 L,Ω = ω 45 1 C , )] 3 cos( 100 200 [t u s ω + =V,则电压表的读数为V,电流表的读数为4 A 。 解:由题目所给的条件可知,L、C并联电路对三次谐波谐振,L对直流相当于短路。因此,电压表的读数为7. 70 2 100 =V,而电流表的读数为4 50 200 =A。 2.图12—5所示电路中,当) cos( 2 200? + ω =t u V时,测得10 = I A;当 )] 3 cos( 2 ) cos( 2 [ 2 2 1 1 ? + ω + ? + ω =t U t U u V时,测得200 = U V,6 = I A。则 83 . 105 1 = U V,71 . 169 2 = U V。 ; 解:由题意得

相关主题
文本预览
相关文档 最新文档